MIC2172BN [MICREL]

100kHz 1.25A Switching Regulators Preliminary Information; 100kHz的1.25A开关稳压器的初步信息
MIC2172BN
型号: MIC2172BN
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

100kHz 1.25A Switching Regulators Preliminary Information
100kHz的1.25A开关稳压器的初步信息

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2172/3172  
100kHz 1.25A Switching Regulators  
Preliminary Information  
slave’s. The master MIC2172’s oscillator frequency is in-  
creased up to 135kHz by connecting a resistor from SYNC to  
ground (see applications information).  
General Description  
The MIC2172 and MIC3172 are complete 100kHz SMPS  
current-mode controllers with internal 65V 1.25A power  
switches. The MIC2172 features external frequency syn-  
chronization or frequency adjustment, while the MIC3172  
features an enable/shutdown control input.  
The MIC2172/3172 is available in an 8-pin plastic DIP or  
SOIC for –40°C to +85°C operation.  
Features  
• 1.25A, 65V internal switch rating  
• 3V to 40V input voltage range  
• Current-mode operation  
• Internal cycle-by-cycle current limit  
• Thermal shutdown  
Although primarily intended for voltage step-up applications,  
the floating switch architecture of the MIC2172/3172 makes  
it practical for step-down, inverting, and Cuk configurations  
as well as isolated topologies.  
Operating from 3V to 40V, the MIC2172/3172 draws only  
7mA of quiescent current making it attractive for battery  
operated supplies.  
• Low external parts count  
• Operates in most switching topologies  
• 7mA quiescent current (operating)  
• <1µA quiescent current, shutdown mode (MIC3172)  
• TTL shutdown compatibility (MIC3172)  
• External frequency synchronization (MIC2172)  
• External frequency trim (MIC2172)  
• Fits most LT1172 sockets (see applications info)  
The MIC3172 is for applications that require on/off control of  
the regulator. The MIC3172 is externally shutdown by  
applyingaTTLlowsignaltoEN(enable). Whendisabled, the  
MIC3172 draws only leakage current (typically less than  
1µA). ENmustbehighfornormaloperation. Forapplications  
4
not requiring control, EN must be tied to V or TTL high.  
IN  
Applications  
• Laptop/palmtop computers  
• Toys  
The MIC2172 is for applications requiring two or more SMPS  
regulators that operate from the same input supply. The  
MIC2172 features a SYNC input which allows locking of its  
internal oscillator to an external reference. This makes it  
possibletoavoidtheaudiblebeatfrequenciesthatresultfrom  
the unequal oscillator frequencies of independent SMPS  
regulators.  
• Hand-held instruments  
• Off-line converter up to 50W  
(requires external power switch)  
• Predriver for higher power capability  
• Master/slave configurations (MIC2172)  
A reference signal can be supplied by one MIC2172 desig-  
natedasamaster. Toinsurelockingoftheslave’soscillators,  
the reference oscillator frequency must be higher than the  
Typical Applications  
VOUT  
5V, 0.25A  
VIN  
4V to 6V  
+5V  
T1  
(4.75V min.)  
D2  
1N5818  
C1  
R4*  
C3*  
D1*  
C1*  
22µF  
L1  
27µH  
22µF  
R1  
C4  
470µF  
3.74k  
1%  
VOUT  
+12V, 0.14A  
VIN  
D1  
VIN  
Enable  
VSW  
N/C  
SYNC  
VSW  
EN  
Shutdown  
R1  
10.7k  
1%  
1:1.25  
PRI = 100µH  
1N5822  
MIC2172  
L
MIC3172  
COMP  
FB  
COMP  
FB  
GND  
R2  
GND  
R3  
1k  
R2  
1.24k  
1%  
C2  
470µF  
P1 P2  
S
R3  
1k  
1.24k  
P1 P2  
S
1%  
C3  
1µF  
C2  
1µF  
* Locate near MIC2172 when supply leads > 2"  
* Optional voltage clipper (may be req’d if T1 leakage inductance too high)  
Figure 1.  
Figure 2.  
MIC2172 5V to 12V Boost Converter  
MIC3172 5V Flyback Converter  
1997  
4-13  
MIC2172/3172  
Micrel  
Ordering Information  
Part Number  
MIC2172BN  
MIC2172BM  
MIC3172BN  
MIC3172BM  
Temperature Range  
Package  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-pin plastic DIP  
8-lead SOIC  
8-pin plastic DIP  
8-lead SOIC  
Pin Configuration  
MIC2172*/3172  
MIC2172*/3172  
S GND  
1
8
P GND 1  
S GND  
COMP  
1
2
3
4
8
P GND 1  
VSW  
7
6
5
COMP  
FB  
2
3
4
7
6
5
VSW  
P GND 2  
VI N  
FB  
P GND 2  
VI N  
*SYNC/EN  
*SYNC/EN  
8-lead DIP (N)  
8-lead SOIC (M)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
S GND  
Signal Ground: Internal analog circuit ground. Connect directly to the input  
filter capacitor for proper operation (see applications info). Keep separate  
from power grounds.  
2
COMP  
Frequency Compensation: Output of transconductance type error amplifier.  
Primary function is for loop stabilization. Can also be used for output voltage  
soft-start and current limit tailoring.  
3
FB  
Feedback: Inverting input of error amplifier. Connect to external resistive  
divider to set power supply output voltage.  
4 (MIC2172)  
SYNC  
Synchronization/Frequency Adjust: Capacitively coupled input signal greater  
than device’s free running frequency (up to 135kHz) will lock device’s  
oscillator on falling edge. Oscillator frequency can be trimmed up to 135kHz  
by adding a resistor to ground. If unused, pin must float (no connection).  
4 (MIC3172)  
EN  
Enable: Apply TTL high or connect to VIN to enable the regulator. Apply  
TTL low or connect to ground to disable the regulator. Device draws only  
leakage current (<1µA) when disabled.  
5
6
VIN  
Supply Voltage: 3.0V to 40V  
P GND 2  
Power Ground #2: One of two NPN power switch emitters with 0.3current  
sense resistor in series. Required. Connect to external inductor or input  
voltage ground depending on circuit topology.  
7
8
VSW  
Power Switch Collector: Collector of NPN switch. Connect to external  
inductor or input voltage depending on circuit topology.  
P GND 1  
Power Ground #1: One of two NPN power switch emitters with 0.3current  
sense resistor in series. Optional. For maximum power capability connect  
to P GND 2. Floating pin reduces current limit by a factor of two.  
4-14  
1997  
MIC2172/3172  
Micrel  
Absolute Maximum Ratings MIC2172  
Input Voltage .................................................................40V  
Switch Voltage ..............................................................65V  
Sync Current ..............................................................50mA  
Feedback Voltage (Transient, 1ms) ........................... ±15V  
Operating Temperature Range  
Junction Temperature .............................. –55°C to +150°C  
Thermal Resistance  
θ
θ
8-pin PDIP .................................................130°C/W  
8-pin SOIC .................................................120°C/W  
JA  
JA  
Storage Temperature ............................... –65°C to +150°C  
Soldering (10 sec.) .................................................. +300°C  
8-pin PDIP................................................. –40 to +85°C  
8-pin SOIC ................................................ –40 to +85°C  
Electrical Characteristics MIC2172 Note 1. Unless otherwise specified, VIN = 5V.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Reference Section  
Feedback Voltage (VFB  
Pin 2 tied to pin 3  
)
1.220 1.240 1.264  
V
V
1.214  
1.274  
Feedback Voltage  
Line Regulation  
3V VIN 40V  
0.03  
%/V  
Feedback Bias Current (IFB  
)
310  
3.9  
750  
1100  
nA  
nA  
4
Error Amplifier Section  
Transconductance (ICOMP/VFB  
)
ICOMP = ±25µA  
3.0  
2.4  
6.0  
7.0  
µA/mV  
µA/mV  
Voltage Gain (VCOMP/VFB  
)
0.9V VCOMP 1.4V  
500  
800  
175  
2000  
V/V  
Output Current  
VCOMP = 1.5V  
125  
100  
350  
400  
µA  
µA  
Output Swing  
High Clamp, VFB = 1V  
Low Clamp, VFB = 1.5V  
1.8  
0.25  
2.1  
0.35  
2.3  
0.52  
V
V
Compensation Pin  
Threshold  
Duty Cycle = 0  
0.8  
0.6  
0.9  
1.08  
1.25  
V
V
Output Switch Section  
ON Resistance  
I
SW = 1A, VFB = 0.8V  
0.76  
1
1.1  
Current Limit  
Duty Cycle = 50%, TJ 25°C  
Duty Cycle = 50%, TJ < 25°C  
Duty Cycle = 80% Note 2  
1.25  
1.25  
1
3
3.5  
2.5  
A
A
A
Breakdown Voltage (BV)  
3V VIN 40V  
65  
75  
V
ISW = 5mA  
1997  
4-15  
MIC2172/3172  
Micrel  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Oscillator Section  
Frequency (fO)  
88  
85  
100  
89  
112  
115  
kHz  
kHz  
Duty Cycle [δ(max)]  
80  
95  
%
Sync Coupling Capacitor  
Required for Frequency Lock  
VPP = 3.0V  
VPP = 40V  
22  
2.2  
51  
4.7  
120  
10  
pF  
pF  
Peak-to-Peak Voltage  
CCOUPLING = 12pF  
2.2  
12  
30  
V
Required for Frequency Lock  
Input Supply Voltage Section  
Minimum Operating Voltage  
Quiescent Current (IQ)  
2.7  
7
3.0  
9
V
3V VIN 40V, VCOMP = 0.6V, ISW = 0  
ISW = 1A, VCOMP = 1.5V  
mA  
mA  
Supply Current Increase (IIN)  
9
20  
Bold type denotes specifications applicable to the full operating temperature range.  
Note 1 Devices are ESD sensitive. Handling precautions required.  
Note 2 For duty cycles (δ) between 50% and 95%, minimum guaranteed switch current is given by I = 0.833 (2-δ) for the MIC3172.  
CL  
Absolute Maximum Ratings MIC3172  
Input Voltage .................................................................40V  
Switch Voltage ..............................................................65V  
Enable Voltage ..............................................................40V  
Feedback Voltage (Transient, 1ms) ........................... ±15V  
Operating Temperature Range  
Junction Temperature ................................ –55°C to 150°C  
Thermal Resistance  
θ
θ
θ
8-pin PDIP .................................................130°C/W  
8-pin SOIC .................................................120°C/W  
8-pin CerDIP ..............................................100°C/W  
JA  
JA  
JA  
8-pin PDIP................................................. –40 to +85°C  
8-pin SOIC ................................................ –40 to +85°C  
8-pin CerDIP ........................................... –55 to +125°C  
Storage Temperature ................................. –65°C to 150°C  
Soldering (10 sec.) .................................................... 300°C  
Electrical Characteristics MIC3172 Note 1. Unless otherwise specified, VIN = 5V.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Reference Section  
Feedback Voltage (VFB  
Pin 2 tied to pin 3  
)
1.224 1.240 1.264  
V
V
1.214  
1.274  
Feedback Voltage  
Line Regulation  
3V VIN 40V  
0.07  
310  
%/V  
Feedback Bias Current (IFB  
)
750  
1100  
nA  
nA  
4-16  
1997  
MIC2172/3172  
Micrel  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Error Amplifier Section  
Transconductance (ICOMP/VFB  
)
ICOMP = ±25µA  
3.0  
2.4  
3.9  
6.0  
7.0  
µA/mV  
µA/mV  
Voltage Gain (VCOMP/VFB  
)
0.9V VCOMP 1.4V  
500  
800  
175  
2000  
V/V  
Output Current  
VCOMP = 1.5V  
125  
100  
350  
400  
µA  
µA  
Output Swing  
High Clamp, VFB = 1V  
Low Clamp, VFB = 1.5V  
1.8  
0.25  
2.1  
0.35  
2.3  
0.52  
V
V
Compensation Pin  
Threshold  
Duty Cycle = 0  
0.8  
0.6  
0.9  
1.08  
1.25  
V
V
Output Switch Section  
ON Resistance  
I
SW = 1A, VFB = 0.8V  
0.76  
1
1.1  
Current Limit  
Duty Cycle = 50%, TJ 25°C  
Duty Cycle = 50%, TJ < 25°C  
Duty Cycle = 80% Note 2  
1.25  
1.25  
1
3
3.5  
2.5  
A
A
A
Breakdown Voltage (BV)  
3V VIN 40V  
65  
75  
V
ISW = 5mA  
Oscillator Section  
4
Frequency (fO)  
88  
85  
100  
89  
112  
115  
kHz  
kHz  
Duty Cycle [δ(max)]  
80  
95  
%
Input Supply Voltage Section and Enable Section  
Minimum Operating Voltage  
2.7  
3.0  
V
Quiescent Current (IQ)  
3V VIN 40V, VCOMP = 0.6V, ISW = 0  
Shutdown, VEN = 0V  
7
0.1  
9
5
mA  
µA  
Quiescent Current Increase (IIN) ISW = 1A, VCOMP = 1.5V  
9
20  
mA  
Enable Input Threshold  
0.4  
1.2  
2.4  
V
Enable Input Current  
VEN = 0V  
VEN = 2.4V  
–1  
0
2
1
10  
µA  
µA  
Bold type denotes specifications applicable to the full operating temperature range.  
Note 1 Devices are ESD sensitive. Handling precautions required.  
Note 2 For duty cycles (δ) between 50% and 95%, minimum guaranteed switch current is given by I = 0.833 (2-δ) for the MIC3172.  
CL  
1997  
4-17  
MIC2172/3172  
Micrel  
Typical Performance Characteristics  
Feedback Voltage  
Line Regulation  
MIC2172 Minimum  
Operating Voltage  
Feedback Bias Current  
5
4
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 125°C  
3
J
2
1
0
T
= 25°C  
J
Switch Current = 1A  
-1  
-2  
-3  
-4  
-5  
T
= -40°C  
J
0
10  
V
20  
30  
40  
-100 -50  
0
50  
100 150  
-100 -50  
0
50  
100 150  
Operating (V)  
Temperature (°C)  
Temperature (°C)  
IN  
Supply Current  
(Shutdown Mode)  
Supply Current  
Enable Thresholds  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
1.4  
1.3  
1.2  
1.1  
1
MIC3172  
IN = 40V  
I
= 0  
MIC3172  
SW  
V
ON  
D.C. = 90%  
D.C. = 50%  
D.C. = 0%  
OFF  
8
7
0.9  
0.8  
6
5
0
10  
20  
30  
40  
-100 -50  
0
50  
100 150  
-100 -50  
0
50  
100 150  
Temperature (°C)  
V
Operating Voltage (V)  
Temperature (°C)  
IN  
Supply Current  
Current Limit  
Switch ON Voltage  
50  
40  
30  
20  
10  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
4
3
2
1
0
T
= –40°C  
J
–40°C  
125°C  
T
= 25°C  
J
25°C  
δ = 90%  
T
= 125°C  
J
δ = 50%  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
0
20  
40  
60  
80  
100  
Switch Current (A)  
Switch Current (A)  
Duty Cycle (%)  
Supply Current  
Oscillator Frequency  
Oscillator Frequency  
MIC2172  
10  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
VCOMP = 0.6V  
9
8
7
6
5
4
3
2
1
0
80  
70  
60  
-100 -50  
0
50  
100 150  
-50  
0
50  
100  
150  
1
10  
100  
(k)  
1000  
Temperature (°C)  
Temperature (°C)  
R
ADJ  
4-18  
1997  
MIC2172/3172  
Micrel  
Typical Performance Characteristics  
Error Amplifier Gain  
Error Amplifier Gain  
Error Amplifier Phase  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
-30  
0
30  
60  
90  
120  
150  
180  
210  
-100 -50  
0
50  
100 150  
1
10  
100  
1000 10000  
1
10  
100  
1000 10000  
Temperature (°C)  
Frequency (kHz)  
Frequency (kHz)  
4
Block Diagram MIC2172  
VSW  
Pin 7  
D1  
2.3V  
VI N  
Pin 5  
Reg.  
Anti-Sat.  
Driver  
100kHz  
Osc.  
Logic  
SYNC  
Pin 4  
Q1  
Com-  
parator  
FB  
Pin 3  
Current  
Amp.  
Error  
Amp.  
1.24V  
Ref.  
S
GND  
Pin 1  
COMP  
Pin 2  
P
P
GND GND  
2
1
Pin 6 Pin 8  
1997  
4-19  
MIC2172/3172  
Micrel  
Block Diagram MIC3172  
VSW  
Pin 7  
D1  
2.3V  
VI N  
Pin 5  
Reg.  
Anti-Sat.  
Driver  
100kHz  
Osc.  
Logic  
EN  
Pin 4  
Q1  
Com-  
parator  
FB  
Pin 3  
Current  
Amp.  
Error  
Amp.  
1.24V  
Ref.  
S
GND  
Pin 1  
COMP  
Pin 2  
P
P
GND GND  
2
1
Pin 6 Pin 8  
technique. Feedbackloopcompensationisgreatlysimplified  
because inductor current sensing removes a pole from the  
closed loop response. Inherent cycle-by-cycle current limit-  
ing greatly improves the power switch reliability and provides  
automatic output current limiting. Finally, current-mode op-  
eration provides automatic input voltage feed forward which  
prevents instantaneous input voltage changes from disturb-  
ing the output voltage setting.  
Functional Description  
Refer to “Block Diagram MIC2172” and “Block Diagram  
MIC3172.”  
Internal Power  
The MIC2172/3172 operates when V is 2.6V (and V  
IN  
EN  
2.0V for the MIC3172). An internal 2.3V regulator supplies  
biasing to all internal circuitry including a precision 1.24V  
band gap reference.  
Anti-Saturation  
The anti-saturation diode (D1) increases the usable duty  
cycle range of the MIC2172/3172 by eliminating the base to  
collector stored charge which would delay Q1’s turnoff.  
The enable control (MIC3172 only) enables or disables the  
internal regulator which supplies power to all other internal  
circuitry.  
Compensation  
PWM Operation  
Loop stability compensation of the MIC2172/3172 can be  
accomplished by connecting an appropriate network from  
eitherCOMPtocircuitground(TypicalApplications)orCOMP  
to FB.  
The 100kHz oscillator generates a signal with a duty cycle of  
approximately 90%. The current-mode comparator output is  
used to reduce the duty cycle when the current amplifier  
output voltage exceeds the error amplifier output voltage.  
The resulting PWM signal controls a driver which supplies  
base current to output transistor Q1.  
The error amplifier output (COMP) is also useful for soft start  
and current limiting. Because the error amplifier output is a  
transconductance type, the output impedance is relatively  
high which means the output voltage can be easily clamped  
or adjusted externally.  
Current Mode Advantages  
The MIC2172/3172 operates in current mode rather than  
voltage mode. There are three distinct advantages to this  
4-20  
1997  
MIC2172/3172  
Micrel  
By using the MIC3172, U1 and Q1 shown in figure 5 can be  
eliminated, reducing the total components count.  
Applications Information  
Using the MIC3172 Enable Control (New Designs)  
Synchronizing the MIC2172  
For new designs requiring enable/shutdown control, connect  
EN to a TTL or CMOS control signal (figure 3). The very low  
driver current requirement ensures compatibility regardless  
of the driver or gate used.  
Using several unsynchronized switching regulators in the  
same circuit will cause beat frequencies to appear on the  
inputs and outputs. These beat frequencies can be very low  
making them difficult to filter.  
U1  
Micrel’s MIC2172 can be synchronized to a single master  
frequency avoiding the possibility of undesirable beat fre-  
quencies in multiple regulator circuits. The master frequency  
canbeanexternaloscillatororadesignatedmasterMIC2172.  
The master frequency should be 1.05 to 1.20 times the  
slave’s 100kHz nominal frequency to guarantee synchroni-  
zation.  
Enable  
Shutdown  
4
EN  
Logic  
Gate  
MIC3172  
Figure 3. MIC3172 TTL Enable/Shutdown  
Using the MIC3172 in LT1172 Applications  
U2  
The MIC3172 can be used in most original LT1172 applica-  
tions by adapting the MIC3172’s enable/shutdown feature to  
the existing LT1172 circuit.  
4
5
SYNC  
MIC2172  
VSW  
U1  
4
5
Unlike the LT1172 which can be shutdown by reducing the  
SYNC  
VSW  
voltage on pin 2 (V ) below 0.15V, the MIC3172 has a  
C
10k  
MIC2172  
dedicated enable/shutdown pin. To replace the LT1172 with  
the MIC3172, determine if the LT1172’s shutdown feature is  
used.  
Slave  
U3  
Master  
4
5
4
SYNC  
VSW  
Circuits without Shutdown  
MIC2172  
If the shutdown feature is not being used, connect EN to V  
to continuously enable the MIC3172 or use an MIC2172 with  
SYNC open (figure 4).  
IN  
Additional  
Slaves  
Slave  
Figure 6. Master/Slave Synchronization  
VIN  
VIN  
Figure6showsatypicalapplicationwhereseveralMIC2172s  
operate from the same supply voltage. U1’s oscillator fre-  
quency is increased above U2’s and U3’s by connecting a  
resistor from SYNC to ground. U2-SYNC and U3-SYNC are  
VIN  
VIN  
4
4
N/C  
SYNC  
EN  
MIC2172  
MIC3172  
capacitively coupled to the master’s output (V ). The  
SW  
slaves lock to the negative (falling edge) of U1’s output  
waveform.  
Figure 4. MIC2172/3172 Always Enabled  
Circuits with Shutdown  
U1  
4
5
If shutdown was used in the original LT1172 application,  
connect EN to a logic gate that produces a TTL logic-level  
outputsignalthatmatchestheshutdownsignal. TheMIC3172  
will be enabled by a logic-high input and shutdown with a  
logic-low input (figure 5). The actual components performing  
the functions of U1 and Q1 may vary according to the original  
application.  
SYNC  
MIC2172  
VSW  
External  
Signal  
Slave  
U2  
4
5
SYNC  
VSW  
4
EN  
MIC2172  
MIC3172  
Additional  
Slaves  
add  
connection  
COMP  
Slave  
Figure 7. External Synchronization  
U1  
Existing  
Enable  
Shutdown  
R1  
C1  
Q1  
Care must be exercised to insure that the master MIC2172 is  
always operating in continuous mode.  
VN2222  
or equiv.  
Existing  
Logic  
Gate  
Figure 5. Adapting to the LT1172 Socket  
1997  
4-21  
MIC2172/3172  
Micrel  
Figure 7 shows how one or more MIC2172s can be locked to  
an external reference frequency. The slaves lock to the  
negative (falling edge) of the external reference waveform.  
the total power dissipation is the sum of the device operating  
losses and power switch losses.  
The device operating losses are the dc losses associated  
with biasing all of the internal functions plus the losses of the  
power switch driver circuitry. The dc losses are calculated  
from the supply voltage (V ) and device supply current (I ).  
Soft Start  
A diode-coupled capacitor from COMP to circuit ground  
slows the output voltage rise at turn on (figure 8).  
IN  
Q
TheMIC2172/3172supplycurrentisalmostconstantregard-  
less of the supply voltage (see “Electrical Characteristics”).  
The driver section losses (not including the switch) are a  
function of supply voltage, power switch current, and duty  
cycle.  
VIN  
VIN  
MIC2172/3172  
0.004+δ  
COMP  
P
= V  
(
I
+ V I  
IN SW  
)
(bias+driver)  
IN Q  
50  
D1  
D2  
C1  
R1  
C2  
where:  
P
V
= device operating losses  
(bias+driver)  
= supply voltage  
IN  
Figure 8. Soft Start  
I = quiescent supply current  
Q
Theadditionaltimeittakesfortheerroramplifiertochargethe  
capacitor corresponds to the time it takes the output to reach  
regulation. Diode D1 discharges C1 when V is removed.  
I
= power switch current  
(see “ Design Hints: Switch Current  
Calculations”)  
SW  
IN  
Current Limit  
δ = duty cycle  
FordesignsdemandinglessoutputcurrentthantheMIC2172/  
3172 is capable of delivering, P GND 1 can be left open  
reducing the current capability of Q1 by one-half.  
V
+ V – V  
OUT  
F
IN  
δ =  
V
+ V  
OUT  
F
V
= output voltage  
OUT  
VIN  
V = D1 forward voltage drop  
F
VIN  
VSW  
As a practical example refer to figure 1.  
MIC2172/3172  
V
= 5.0V  
IN  
VOUT  
FB  
P1 P2 S COMP  
GND  
I = 0.006A  
Q
I
= 0.625A  
SW  
δ = 60% (0.6)  
R1  
ICL 0.6V/R2  
R3  
C2  
Q1  
Then:  
C1  
R2  
Note: Input and output  
returns not common.  
0.004+0.6  
50  
P(bias+driver) = 5 × 0.006 + 5 0.625  
(
)
Figure 9. Current Limit  
P
= 0.068W  
(bias+driver)  
Alternatively,themaximumcurrentlimitoftheMIC2172/3172  
can be reduced by adding a voltage clamp to the COMP  
output (figure 9). This feature can be useful in applications  
requiringeitheracompleteshutdownofQ1’sswitchingaction  
or a form of current fold-back limiting. This use of the COMP  
output does not disable the oscillator, amplifiers or other  
circuitry, therefore the supply current is never less than  
approximately 5mA.  
Power switch dissipation calculations are greatly simplified  
bymakingtwoassumptionswhichareusuallyfairlyaccurate.  
First, the majority of losses in the power switch are due to  
on-losses. To find these losses, assign a resistance value to  
the collector/emitter terminals of the device using the satura-  
tion voltage versus collector current curves (see Typical  
Performance Characteristics). Power switch losses are  
calculatedbymodelingtheswitchasaresistorwiththeswitch  
duty cycle modifying the average power dissipation.  
Thermal Management  
Although the MIC2172/3172 family contains thermal protec-  
tion circuitry, for best reliability, avoid prolonged operation  
with junction temperatures near the rated maximum.  
2
P
= (I ) R  
δ
SW  
SW  
SW  
From the Typical performance Characteristics:  
The junction temperature is determined by first calculating  
the power dissipation of the device. For the MIC2172/3172,  
R
= 1Ω  
SW  
4-22  
1997  
MIC2172/3172  
Then:  
Micrel  
Applications and Design Hints  
2
P
P
P
P
= (0.625) × 1 × 0.6  
SW  
Access to both the collector and emitter(s) of the NPN power  
switch makes the MIC2172/3172 extremely versatile and  
suitable for use in most PWM power supply topologies.  
= 0.234W  
(SW)  
(total)  
(total)  
= 0.068 + 0.234  
= 0.302W  
Boost Conversion  
Thejunctiontemperatureforanysemiconductoriscalculated  
using the following:  
Refer to figure 11 for a typical boost conversion application  
where a +5V logic supply is available but +12V at 0.14A is  
required.  
T = T + P θ  
(total) JA  
J
A
Where:  
+5V  
(4.75V min.)  
C1*  
22µF  
L1  
27µH  
T = junction temperature  
J
VOUT  
+12V, 0.14A  
T = ambient temperature (maximum)  
A
VIN  
D1  
VSW  
N/C  
SYNC  
P
= total power dissipation  
(total)  
R1  
10.7k  
1%  
1N5822  
MIC2172  
θ
= junction to ambient thermal resistance  
JA  
COMP  
FB  
For the practical example:  
GND  
R2  
R3  
1k  
C2  
470µF  
P1 P2  
S
1.24k  
1%  
C3  
1µF  
T = 70°C  
A
θ
= 130°C/W (for plastic DIP)  
JA  
* Locate near MIC2172 when supply leads > 2"  
Then:  
T = 70 + 0.30 × 130  
Figure 11. 5V to 12V Boost Converter  
J
T = 109°C  
J
The first step in designing a boost converter is determining  
whether inductor L1 will cause the converter to operate in  
either continuous or discontinuous mode. Discontinuous  
mode is preferred because the feedback control of the  
converter is simpler.  
This junction temperature is below the rated maximum of  
150°C.  
4
Grounding  
Refer to figure 10. Heavy lines indicate high current paths.  
When L1 discharges its current completely during the  
MIC2172/3172’s off-time, it is operating in discontinuous  
mode.  
VIN  
VIN  
EN*  
VSW  
MIC2172/3172  
GND FB  
L1 is operating in continuous mode if it does not discharge  
completely before the MIC2172/3172 power switch is turned  
on again.  
P1 P2 S  
VC  
Discontinuous Mode Design  
Given the maximum output current, solve equation (1) to  
determine whether the device can operate in discontinuous  
mode without initiating the internal device current limit.  
Single point ground  
* MIC3172 only  
ICL  
VIN  
δ
Figure 10. Single Point Ground  
2
IOUT  
(1)  
VOUT  
A single point ground is strongly recommended for proper  
operation.  
V
+ V – V  
OUT  
F
IN  
The signal ground, compensation network ground, and feed-  
back network connections are sensitive to minor voltage  
variations. The input and output capacitor grounds and  
power ground conductors will exhibit voltage drop when  
carrying large currents. Keep the sensitive circuit ground  
traces separate from the power ground traces. Small voltage  
variations applied to the sensitive circuits can prevent the  
MIC2172/3172 or any switching regulator from functioning  
properly.  
δ =  
(1a)  
V
+ V  
OUT  
F
Where:  
I
= internal switch current limit  
I
I
CL  
= 1.25A when δ < 50%  
= 0.833 (2 – δ) when δ ≥ 50%  
CL  
CL  
(Refer to Electrical Characteristics.)  
I
= maximum output current  
OUT  
V
= minimum input voltage  
IN  
δ = duty cycle  
1997  
4-23  
MIC2172/3172  
= required output voltage  
Micrel  
V
Switch Operation  
OUT  
V = D1 forward voltage drop  
During Q1’s on time (Q1 is the internal NPN transistor—see  
block diagrams), energy is stored in T1’s primary inductance.  
DuringQ1’sofftime,storedenergyispartiallydischargedinto  
C4 (output filter capacitor). Careful selection of a low ESR  
capacitor for C4 may provide satisfactory output ripple volt-  
age making additional filter stages unnecessary.  
F
For the example in figure 11.  
I
I
= 0.14A  
OUT  
= 1.147A  
CL  
V
= 4.75V (minimum)  
IN  
δ = 0.623  
= 12.0V  
C1 (input capacitor) may be reduced or eliminated if the  
MIC3172 is located near a low impedance voltage source.  
V
OUT  
V = 0.6V  
Output Diode  
F
Then:  
The output diode allows T1 to store energy in its primary  
inductance (D2 nonconducting) and release energy into C4  
(D2 conducting). The low forward voltage drop of a Schottky  
diode minimizes power loss in D2.  
1.147  
2
× 4.75 × 0.623  
I
OUT  
12  
Frequency Compensation  
I
0.141A  
OUT  
A simple frequency compensation network consisting of R3  
and C2 prevents output oscillations.  
This value is greater than the 0.14A output current require-  
ment so we can proceed to find the inductance value of L1.  
High impedance output stages (transconductance type) in  
the MIC2172/3172 often permit simplified loop-stability solu-  
tions to be connected to circuit ground, although a more  
conventional technique of connecting the components from  
the error amplifier output to its inverting input is also possible.  
2
V
δ
(
)
IN  
L1 ≤  
(2)  
2 POUT fSW  
Where:  
P
= 12 × 0.14 = 1.68W  
Voltage Clipper  
OUT  
5
f
= 1×10 Hz (100kHz)  
Care must be taken to minimize T1’s leakage inductance,  
otherwise it may be necessary to incorporate the voltage  
clipper consisting of D1, R4, and C3 to avoid second break-  
down (failure) of the MIC3172’s power NPN Q1.  
SW  
For our practical example:  
2
4.75 × 0.623  
(
)
L1 ≤  
2 × 1.68 × 1×105  
Enable/Shutdown  
I
26.062µH (use 27µH)  
L1  
The MIC3172 includes the enable/shutdown feature. When  
the device is shutdown, total supply current is less than 1µA.  
This is ideal for battery applications where portions of a  
system are powered only when needed. If this feature is not  
Equation (3) solves for L1’s maximum current value.  
V
T
IN ON  
I
=
(3)  
L1(peak)  
L1  
required, simply connect EN to V or to a TTL high voltage.  
IN  
Where:  
Discontinuous Mode Design  
-6  
T
= δ / f  
= 6.23×10 sec  
SW  
When designing a discontinuous flyback converter, first de-  
termine whether the device can safely handle the peak  
primary current demand placed on it by the output power.  
Equation (8) finds the maximum duty cycle required for a  
given input voltage and output power. If the duty cycle is  
greater than 0.8, discontinuous operation cannot be used.  
ON  
-6  
4.75 × 6.23 × 10  
I
=
L1(peak)  
-6  
27 ×10  
I
= 1.096A  
L1(peak)  
Use a 27µH inductor with a peak current rating of at least  
1.4A.  
2 P  
OUT  
(8)  
Flyback Conversion  
δ ≥  
I
V
CL IN(min)  
Flyback converter topology may be used in low power appli-  
cations where voltage isolation is required or whenever the  
input voltage can be less than or greater than the output  
voltage. As with the step-up converter the inductor (trans-  
former primary) current can be continuous or discontinuous.  
Discontinuous operation is recommended.  
For a practical example let:  
P
= 5.0V × 0.25A = 1.25W  
OUT  
V
I
= 4.0V to 6.0V  
= 1.25A when δ < 50%  
IN  
CL  
0.833 (2 – δ) when δ ≥ 50%  
Figure 12 shows a practical flyback converter design using  
the MIC3172.  
4-24  
1997  
MIC2172/3172  
Then:  
Micrel  
2
2
0.5 f  
V
T
SW IN(min)  
ON  
L
(10)  
PRI  
2 × 1. 2 5  
P
OUT  
δ ≥  
1.25 × 4  
Where:  
δ ≥ 0.5 (50%) Use 0.55.  
L
= maximum primary inductance  
PRI  
The slightly higher duty cycle value is used to overcome  
circuit inefficiencies. A few iterations of equation (8) may be  
required if the duty cycle is found to be greater than 50%.  
f
= device switching frequency (100kHz)  
= minimum input voltage  
SW  
V
T
IN(min)  
= power switch on time  
Calculate the maximum transformer turns ratio a, or  
ON  
N
/N  
,thatwillguaranteesafeoperationoftheMIC2172/  
Then:  
PRI SEC  
3172 power switch.  
2
5
2
-6  
0.5 × 1×10 × 4.0 5.5 × 10  
(
)
V
F
– V  
L
CE CE  
IN(max)  
PRI  
(9)  
1. 2 5  
a  
V
SEC  
L
19.23µH  
PRI  
Where:  
a = transformer maximum turns ratio  
Use an 18µH primary inductance to overcome circuit ineffi-  
ciencies.  
V
= power switch collector to emitter  
maximum voltage  
CE  
To complete the design the inductance value of the second-  
ary is found which will guarantee that the energy stored in the  
transformer during the power switch on time will be com-  
pleted discharged into the output during the off-time. This is  
necessary when operating in discontinuous-mode.  
F
= safety derating factor (0.8 for most  
commercial and industrial applications)  
CE  
V
= maximum input voltage  
IN(max)  
V
= transformer secondary voltage (V  
+ V )  
OUT F  
SEC  
2
2
4
0.5 fSW VSEC TOFF  
For the practical example:  
LSEC  
Where:  
(11)  
POUT  
V
F
= 65V max. for the MIC2172/3172  
CE  
= 0.8  
CE  
V
= 5.6V  
L
= maximum secondary inductance  
= power switch off time  
SEC  
SEC  
Then:  
T
OFF  
Then:  
65 × 0.8 – 6.0  
a ≤  
5.6  
2
0.5 × 1×105 × 5.62 × 4.5 × 10-6  
(
)
a 8.2143  
LSEC  
1. 2 5  
Next, calculate the maximum primary inductance required to  
store the needed output energy with a power switch duty  
cycle of 55%.  
L
25.4µH  
SEC  
VOUT  
5V, 0.25A  
VIN  
4V to 6V  
T1  
D2  
1N5818  
C1  
22µF  
R4*  
C3*  
R1  
C4  
470µF  
3.74k  
1%  
D1*  
VIN  
Enable  
VSW  
EN  
Shutdown  
1:1.25  
PRI = 100µH  
L
MIC3172  
COMP  
FB  
GND  
R2  
1.24k  
1%  
R3  
1k  
P1 P2  
S
C2  
1µF  
* Optional voltage clipper (may be req’d if T1 leakage inductance too high)  
Figure 12. MIC3172 5V 0.25A Flyback Converter  
1997  
4-25  
MIC2172/3172  
Micrel  
Finally, recalculate the transformer turns ratio to insure that  
it is less than the value earlier found in equation (9).  
a = transformer turns ratio (0.8)  
F
= reverse voltage safety derating factor (0.8)  
BR  
Then:  
L
PRI  
a  
(12)  
L
6.0 + 5.0 × 0.8  
(
)
SEC  
V
BR  
0.8 × 0.8  
Then:  
V
15.625V  
BR  
1. 8 × 10-5  
2.54 × 10-5  
A 1N5817 will safely handle voltage and current require-  
ments in this example.  
a ≤  
Forward Converters  
a 0.84 Use 0.8 (same as 1:1.25).  
This ratio is less than the ratio calculated in equation (9).  
When specifying the transformer it is necessary to know the  
primary peak current which must be withstood without satu-  
rating the transformer core.  
Micrel’s MIC2172/3172 can be used in several circuit con-  
figurations to generate an output voltage which is less than  
the input voltage (buck or step-down topology). Figure 13  
shows the MIC3172 in a voltage step-down application.  
Because of the internal architecture of these devices, more  
external components are required to implement a step-down  
regulator than with other devices offered by Micrel (refer to  
the LM257x or LM457x family of buck switchers). However,  
for step-down conversion requiring a transformer (forward),  
the MIC2172/3172 is a good choice.  
V
T
IN(min) ON  
I
=
(13)  
So:  
PEAK(pri)  
L
PRI  
-6  
4.0 × 5.5 × 10  
18µH  
I
=
PEAK(pri)  
A 12V to 5V step-down converter using transformer isolation  
(forward) is shown in figure 14. Unlike the isolated flyback  
converter which stores energy in the primary inductance  
during the controller’s on-time and releases it to the load  
during the off-time, the forward converter transfers energy to  
the output during the on-time, using the off-time to reset the  
transformer core. In the application shown, the transformer  
core is reset by the tertiary winding discharging T1’s peak  
magnetizing current through D2.  
I
= 1.22A  
PEAK(pri)  
Now find the minimum reverse voltage requirement for the  
output rectifier. This rectifier must have an average current  
rating greater than the maximum output current of 0.25A.  
VIN(max) + V  
a
(
)
OUT  
VBR  
Where:  
(14)  
FBR  
a
For most forward converters the duty cycle is limited to 50%,  
allowing the transformer flux to reset with only two times the  
input voltage appearing across the power switch. Although  
during normal operation this circuit’s duty cycle is well below  
V
= output rectifier maximum peak  
reverse voltage rating  
BR  
VIN  
D1  
1N4148  
VIN  
VSW  
EN  
C2  
D3  
MIC3172  
2.2µF  
1N4148  
R3†  
COMP  
FB  
GND  
P1 P2  
C1*  
100µF  
3.7k  
R3  
470  
S
R2†  
1.2k  
C4  
1µF  
R4  
10  
C3  
1µF  
L1  
100µH  
C5  
5V, 0.1A to 1A  
(ILOAD > 100mA)  
D2  
330µF  
* Locate near MIC2172/3172 when supply leads > 2"  
R3/R2 sets output voltage  
Figure 13. Step-Down or Buck Converter  
4-26  
1997  
MIC2172/3172  
Micrel  
50%,theMIC2172(andMIC3172)hasamaximumdutycycle  
capability of 90%. If 90% was required during operation  
(start-up and high load currents), a complete reset of the  
transformer during the off-time would require the voltage  
across the power switch to be ten times the input voltage.  
This would limit the input voltage to 6V or less for forward  
converter applications.  
into saturation for a period determined by the Pri 1/C2 time  
constant. Once the voltage across C2 has reached its  
maximum circuit value, Q1’s collector current will no longer  
increase. Since T1 is in series with Q1, this drop in primary  
current causes the flux in T1 to change and because of the  
mutual coupling to the feedback winding further reduces  
primary current eventually turning Q1 off. The primary wind-  
ings now change state with the feedback winding forcing Q2  
on repeating the alternate half cycle exactly as with Q1. This  
action produces a sinusoidal voltage wave form; whose  
amplitude is proportional to the input voltage, across T1’s  
primarywindingwhichissteppedupandcapacitivelycoupled  
to the lamp.  
To prevent core saturation, the application given here uses a  
duty cycle limiter consisting of Q1, C4 and R3. Whenever the  
MIC3172 exceeds a duty cycle of 50%, T1’s reset winding  
current turns Q1 on. This action reduces the duty cycle of the  
MIC3172 until T1 is able to reset during each cycle.  
Fluorescent Lamp Supply  
Lamp Current Regulation  
An extremely useful application of the MIC3172 is generating  
an ac voltage for fluorescent lamps used as liquid crystal  
display back lighting in portable computers.  
Initial ionization (lighting) of the fluorescent lamp requires  
several times the ac voltage across it than is required to  
sustain current through the device. The current through the  
lamp is sampled and regulated by the MIC3172 to achieve a  
given intensity. The MIC3172 uses L1 to maintain a constant  
average current through the transistor emitters. This current  
controls the voltage amplitude of the Royer oscillator and  
maintains the lamp current. During the negative half cycle,  
lamp current is rectified by D3. During the positive half cycle,  
lampcurrentisrectifiedbyD2throughR4andR5. R3andC5  
filter the voltage dropped across R4 and R5 to the MIC3172’s  
feedback pin. The MIC3172 maintains a constant lamp  
current by adjusting its duty cycle to keep the feedback  
voltage at 1.24V. The intensity of the lamp is adjusted using  
potentiometer R5. The MIC3172 adjusts its duty cycle  
accordingly to bring the average voltage across R4 and R5  
back to 1.24V.  
Figure 15 shows a complete power supply for lighting a  
fluorescent lamp. Transistors Q1 and Q2 together with ca-  
pacitor C2 form a Royer oscillator. The Royer oscillator  
generatesasinewavewhosefrequencyisdeterminedbythe  
series L/C circuit comprised of T1 and C2. Assuming that the  
MIC3172 and L1 are absent, and the transistors’ emitters are  
grounded, circuit operation is described in “Oscillator Opera-  
tion.”  
4
Oscillator Operation  
Resistor R2 provides initial base current that turns transistor  
Q1onandimpressestheinputvoltageacrossonehalfofT1’s  
primary winding (Pri 1). T1’s feedback winding provides  
additional base drive (positive feedback) to Q1 forcing it well  
T1  
1:1:1  
D3  
1N5819  
L1 100µH  
VOUT  
VIN  
12V  
5V, 1A  
R4  
D4  
1N5819  
C5  
470µF  
3.74k  
1%  
R1*  
C2*  
D1*  
VIN  
Enable  
Shutdown  
EN  
VSW  
FB  
MIC3172  
C1  
22µF  
GND  
D2  
1N5819  
P1 P2 S COMP  
R5  
1.24k  
1%  
R2  
1k  
Q1†  
R3†  
C3  
1µF  
C4†  
* Voltage clipper  
Duty cycle limiter  
Figure 14. 12V to 5V Forward Converter  
1997  
4-27  
MIC2172/3172  
On/Off Control  
Micrel  
Efficiency  
Especially important for battery powered applications, the  
lamp can be remotely or automatically turned off using the  
MIC3172’s EN pin. The entire circuit draws less than 1µA  
while shutdown.  
To obtain maximum circuit efficiency careful selection of Q1  
and Q2 for low collector to emitter saturation voltage is a  
must. Inductor L1 should be chosen for minimal core and  
copperlossesattheswitchingfrequencyoftheMIC3172,and  
T1 should be carefully constructed from magnetic materials  
optimizedfortheoutputpowerrequiredattheRoyeroscillator  
frequency. Suitable inductors may be obtained from  
Coiltronics, Inc., tel: (407) 241-7876.  
Cold Cathode  
T1  
Fluorescent  
Lamp  
BF  
C4  
R2  
VIN  
4.5V to 20V  
Q1  
Q2  
D2  
D3  
eSc  
rPi1  
D1  
1N4148  
1N4148  
C2  
C3  
VIN  
L1  
Enable (On)  
EN  
VSW  
FB  
Shutdown (Off)  
rPi2  
MIC3172  
300µH  
R3  
C5  
R4  
GND  
R5  
Intensity  
Control  
P1 P2 S COMP  
R1  
C1  
L1: Coiltronics CTX300-4P  
T1: Coiltronics CTX110602  
C2: Polyfilm, WIMA FKP2 0.1µF to 0.68µF  
C4: 15pF to 30pF, 3kV min.  
Figure 15. LCD Backlight Fluorescent Lamp Supply  
4-28  
1997  

相关型号:

MIC2172YM

100kHz 1.25A Switching Regulators
MICREL

MIC2172YM

3.5A SWITCHING REGULATOR, 115kHz SWITCHING FREQ-MAX, PDSO8
MICROCHIP

MIC2172YM-TR

3.5A SWITCHING REGULATOR, 115kHz SWITCHING FREQ-MAX, PDSO8
MICROCHIP

MIC2172YMTR

暂无描述
MICREL

MIC2172YN

100kHz 1.25A Switching Regulators
MICREL

MIC2172YN

3.5A SWITCHING REGULATOR, 115kHz SWITCHING FREQ-MAX, PDIP8
MICROCHIP

MIC2172_05

100kHz 1.25A Switching Regulators
MICREL

MIC2172_06

100kHz 1.25A Switching Regulators
MICREL

MIC2174

Synchronous Buck Controller Featuring Adaptive On-Time Control 40V Input, 300kHz
MICREL

MIC2174-1YMM

Synchronous Buck Controller Featuring Adaptive On-Time Control 40V Input, 300kHz
MICREL

MIC2174-1YMM-TR

Switching Controller, Current-mode, 375kHz Switching Freq-Max, PDSO10, LEAD FREE, MSOP-10
MICREL

MIC2174-1YMMTR

SWITCHING CONTROLLER, 375kHz SWITCHING FREQ-MAX, PDSO10, LEAD FREE, MSOP-10
MICREL