MIC2182-3.3YSM [MICREL]

High-Efficiency Synchronous Buck Controller; 高效率同步降压控制器
MIC2182-3.3YSM
型号: MIC2182-3.3YSM
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

High-Efficiency Synchronous Buck Controller
高效率同步降压控制器

开关 光电二极管 信息通信管理 控制器
文件: 总28页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2182  
High-Efficiency Synchronous Buck Controller  
General Description  
Features  
Micrel’s MIC2182 is a synchronous buck (step-down) switch-  
ing regulator controller. An all N-channel synchronous archi-  
tecture and powerful output drivers allow up to a 20A output  
current capabilty. The PWM and skip-mode control scheme  
allows efficiency to exceed 95% over a wide range of load  
current, making it ideal for battery powered applications, as  
well as high current distributed power supplies.  
4.5V to 32V Input voltage range  
1.25V to 6V Output voltage range  
95% efficiency  
300kHz oscillator frequency  
Current sense blanking  
5impedance MOSFET Drivers  
Drives N-channel MOSFETs  
600µA typical quiescent current (skip-mode)  
The MIC2182 operates from a 4.5V to 32V input and can  
operate with a maximum duty cycle of 86% for use in low-  
dropout conditions. It also features a shutdown mode that  
reduces quiescent current to 0.1µA.  
Logic controlled micropower shutdown (I < 0.1µA)  
Current-mode control  
Q
Cycle-by-cycle current limiting  
Built-in undervoltage protection  
Adjustable undervoltage lockout  
Easily synchronizable  
Precision 1.245V reference output  
0.6% total regulation  
16-pin SOP and SSOP packages  
Frequency foldback overcurrent protection  
Sustained short-circuit protection at any input voltage  
20A output current capability  
The MIC2182 achieves high efficiency over a wide output  
current range by automatically switching between PWM and  
skip mode. Skip-mode operation enables the converter to  
maintain high efficiency at light loads by turning off circuitry  
pertaining to PWM operation, reducing the no-load supply  
current from 1.6mA to 600µA. The operating mode is inter-  
nally selected according to the output load conditions. Skip  
mode can be defeated by pulling the PWM pin low which  
reduces noise and RF interference.  
Applications  
The MIC2182 is available in a 16-pin SOP (small-outline  
package) and SSOP (shrink small-outline package) with an  
operating range from –40°C to +85°C.  
DC power distribution systems  
Notebook and subnotebook computers  
PDAs and mobile communicators  
Wireless modems  
Battery-operated equipment  
Typical Application  
C11  
22uf  
35V  
VIN  
D2  
MIC2182-3.3BSM  
4.5V to 30V*  
11 SD103BWS  
10  
VIN  
VDD  
C9  
4.7µF  
16V  
x2  
C5  
0.1µF  
R7  
14  
BST  
C6  
0.1µF  
100k  
6
16  
L1  
EN/UVLO HSD  
Q2*  
VOUT  
3.3V/4A  
R2  
0.02Ω  
10µH  
Si4884  
2
15  
13  
12  
8
PWM  
VSW  
LSD  
C4  
C7  
D1  
B140  
1nF  
Q1*  
220uf  
Si4884  
10V ×2  
1
3
5
SS  
PGND  
CSH  
GND  
COMP  
SYNC  
C13, 1nF  
R1  
2k  
9
C3  
0.1µF  
VOUT  
VREF  
7
* 30V maximum input voltage limit is due  
to standard 30V MOSFET selection.  
C2  
2.2nF  
SGND  
C1  
0.1µF  
See Application Informationsection for  
5V to 3.3V/10A and other circuits.  
4
GND  
4.5V–30V* to 3.3V/4A Converter  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-042204  
April 22, 2004  
1
MIC2182  
Micrel  
Ordering Information  
Part Number  
Voltage  
Adjustable  
3.3V  
Temperature Range  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
Package  
Lead Finish  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Pb-Free  
Pb-Free  
Pb-Free  
Pb-Free  
Pb-Free  
Pb-Free  
MIC2182BM  
16-pin narrow SOP  
16-pin narrow SOP  
16-pin narrow SOP  
16-pin narrow SSOP  
16-pin narrow SSOP  
16-pin narrow SSOP  
16-pin narrow SOP  
16-pin narrow SOP  
16-pin narrow SOP  
16-pin narrow SSOP  
16-pin narrow SSOP  
16-pin narrow SSOP  
MIC2182-3.3BM  
MIC2182-5.0BM  
MIC2182BSM  
5.0V  
Adjustable  
3.3V  
MIC2182-3.3BSM  
MIC2182-5.0BSM  
MIC2182YM  
5.0V  
Adjustable  
3.3V  
MIC2182-3.3YM  
MIC2182-5.0YM  
MIC2182YSM  
5.0V  
Adjustable  
3.3V  
MIC2182-3.3YSM  
MIC2182-5.0YSM  
5.0V  
Pin Configuration  
MIC2182  
MIC2182-x.x  
SS  
PWM  
1
2
3
4
5
6
7
8
16 HSD  
SS  
1
16 HSD  
15 VSW  
14 BST  
13 LSD  
12 PGND  
11 VDD  
10 VIN  
15 VSW  
14 BST  
13 LSD  
12 PGND  
11 VDD  
10 VIN  
PWM 2  
COMP 3  
SGND 4  
COMP  
SGND  
SYNC  
SYNC  
5
6
EN/UVLO  
VREF  
EN/UVLO  
FB 7  
CSH 8  
9
VOUT  
CSH  
9 VOUT  
Adjustable  
16-pin SOP (M)  
16-Pin SSOP (SM)  
Fixed  
16-pin SOP (M)  
16-Pin SSOP (SM)  
M9999-042204  
2
April 22, 2004  
MIC2182  
Micrel  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
SS  
Soft-Start (External Component): Connect external capacitor to ground to  
reduce inrush current by delaying and slowing the output voltage rise time.  
Rise time is controlled by an internal 5µA current source that charges an  
external capacitor to VDD  
.
2
3
4
5
PWM  
COMP  
SGND  
SYNC  
PWM/Skip-Mode Select (Input): Low sets PWM-mode operation. 1nF  
capacitor to ground sets automatic PWM/skip-mode selection.  
Compensation (Output): Internal error amplifier output. Connect to capacitor  
or series RC network to compensate the regulator control loop.  
Small Signal Ground (Return): Route separately from other ground traces to  
the () terminal of COUT  
.
Frequency Synchronization (Input): Optional. Connect to external clock  
signal to synchronize the oscillator. Leading edge of signal above the  
threshold terminates the switching cycle. Connect to SGND if unused.  
6
EN/UVLO  
Enable/Undervoltage Lockout (Input): Low-level signal powers down the  
controller. Input below the 2.5V threshold disables switching and functions  
as an accurate undervoltage lockout (UVLO). Input below the threshold  
forces complete micropower (< 0.1µA) shutdown.  
7 (fixed)  
7 (adj)  
8
VREF  
FB  
Reference Voltage (Output): 1.245V output. Requires 0.1µf capacitor to  
ground.  
Feedback (Input): Regulates FB pin to 1.245V. See Application Information”  
for resistor divider calculations.  
CSH  
Current-Sense High (Input): Current-limit comparator noninverting input. A  
built-in offset of 100mV between CSH and VOUT pins in conjunction with the  
current-sense resistor set the current-limit threshold level. This is also the  
positive input to the current sense amplifier.  
9
VOUT  
Current-Sense Low (Input): Output voltage feedback input and inverting  
input for the current limit comparator and the current sense amplifier.  
10  
11  
VIN  
[Battery] Unregulated Input (Input): +4.5V to +32V supply input.  
VDD  
5V Internal Linear-Regulator (Output): VDD is the external MOSFET gate  
drive supply voltage and an internal supply bus for the IC. Bypass to SGND  
with 4.7µF. VDD can supply up to 5mA for external loads.  
12  
13  
14  
PGND  
LSD  
MOSFET Driver Power Ground (Return): Connects to source of synchro-  
nous MOSFET and the () terminal of CIN  
Low-Side Drive (Output): High-current driver output for external synchronous  
MOSFET. Voltage swing is between ground and VDD  
.
BST  
Boost (Input): Provides drive voltage for the high-side MOSFET driver. The  
drive voltage is higher than the input voltage by VDD minus a diode drop.  
15  
16  
VSW  
HSD  
Switch (Return): High-side MOSFET driver return.  
High-Side Drive (Output): High-current driver output for high-side MOSFET.  
This node voltage swing is between ground and VIN + 5V Vdiode drop  
.
April 22, 2004  
3
M9999-042204  
MIC2182  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Analog Supply Voltage (V ) .......................................+34V  
Analog Supply Voltage (V ) ........................ +4.5V to +32V  
IN  
IN  
Digital Supply Voltage (V ) .........................................+7V  
Ambient Temperature (T ) ......................... 40°C to +85°C  
DD  
A
Driver Supply Voltage (B ) ....................................V +7V  
Junction Temperature (T ) ....................... 40°C to +125°C  
ST  
IN  
J
Sense Voltage (V  
, C ) ............................. 7V to 0.3V  
Package Thermal Resistance  
OUT  
SH  
SOP ) ..........................................................100°C/W  
Sync Pin Voltage (V  
) ................................ 7V to 0.3V  
JA  
SYNC  
SSOP )........................................................150°C/W  
JA  
Enable Pin Voltage (V  
) ...................................... V  
IN  
EN/UVLO  
Power Dissipation (P )  
D
SOP................................................ 400mW @ T = 85°C  
A
SSOP ............................................. 270mW @ T = 85°C  
A
Ambient Storage Temperature (T ) ......... 65°C to +150°C  
S
ESD, Note 3  
Electrical Characteristics  
VIN = 15V; SS = open; VPWM = 0V; VSHDN = 5V; ILOAD = 0.1A; TA = 25°C, bold values indicate 40°C TA +85°C; Note 4; unless  
noted  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
MIC2182 [Adjustable], (Note 5)  
Feedback Voltage Reference  
Feedback Voltage Reference  
Feedback Voltage Reference  
Feedback Bias Current  
Output Voltage Range  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Output Voltage Total Regulation  
MIC2182-3.3  
1.233  
1.220  
1.208  
1.245  
1.245  
1.245  
10  
1.257  
1.270  
1.282  
V
V
4.5V < VIN < 32V, 0 < VCSH VOUT < 75mV  
V
nA  
V
1.25  
6
VIN = 4.5V to 32V, VCSH VOUT = 50mV  
0.03  
0.5  
%/V  
%
25mV < (VCSH VOUT) < 75mV (PWM mode only)  
0mV < (V  
V  
) < 75mV (full load range) 4.5V < V < 32V  
0.6  
%
CSH  
OUT  
IN  
Output Voltage  
3.267  
3.234  
3.201  
3.3  
3.3  
3.333  
3.366  
3.399  
V
V
Output Voltage  
Output Voltage  
4.5V < VIN < 32V, 0 < VCSH VOUT < 75mV  
VIN = 4.5V to 32V, VCSH VOUT = 50mV  
3.3  
V
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Output Voltage Total Regulation  
MIC2182-5.0  
0.03  
0.5  
0.8  
%/V  
%
25mV < (VCSH VOUT) < 75mV (PWM mode only)  
0mV < (V  
V  
) < 75mV (full load range) 4.5V < V < 32V  
%
CSH  
OUT  
IN  
Output Voltage  
4.95  
4.90  
4.85  
5.0  
5.0  
5.05  
5.10  
V
V
Output Voltage  
Output Voltage  
6.5V < VIN < 32V, 0 < VCSH VOUT < 75mV  
VIN = 6.5V to 32V, VCSH VOUT = 50mV  
5.0  
5.150  
V
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Output Voltage Total Regulation  
Input and VDD Supply  
PWM Mode  
0.03  
0.5  
0.8  
%/V  
%
25mV < (VCSH VOUT) < 75mV (PWM mode only)  
0mV < (VCSH VOUT) < 75mV (full load range) 6.5V < V < 32V  
%
IN  
VPWM = 0V, excluding external MOSFET gate drive current  
IL = 0mA, VPWM floating (1nF capacitor to ground)  
VEN/UVLO = 0V  
1.6  
600  
0.1  
2.5  
1500  
5
mA  
µA  
µA  
V
Skip Mode  
Shutdown Quiescent Current  
Digital Supply Voltage (VDD  
Undervoltage Lockout  
)
IL = 0mA to 5mA  
4.7  
5.3  
VDD upper threshold (turn on threshold)  
VDD lower threshold (turn off threshold)  
4.2  
4.1  
V
V
M9999-042204  
4
April 22, 2004  
MIC2182  
Micrel  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Reference Output (Fixed Versions Only)  
Reference Voltage  
1.220  
1.245  
1.270  
V
Reference Line Regulation  
Reference Load Regulation  
Enable/UVLO  
6V < VIN < 32V  
1
2
mV  
mV  
0µA < IREF < 100µA  
Enable Input Threshold  
UVLO Threshold  
0.6  
2.2  
1.1  
2.5  
0.1  
1.6  
2.8  
5
V
V
Enable Input Current  
Soft Start  
VEN/UVLO = 5V  
µA  
Soft-Start Current  
VSS = 0V  
3.5  
5  
100  
20  
6.5  
µA  
Current Limit  
Current-Limit Threshold Voltage  
Error Amplifier  
VCSH = VOUT  
75  
135  
mV  
Error Sense Amplifier Gain  
Current Amp  
Current Sense Amplifier Gain  
Oscillator Section  
Oscillator Frequency  
Maximum Duty Cycle  
Minimum On-Time  
2.0  
270  
300  
86  
330  
kHz  
%
VOUT = VOUT(nominal) + 200mV  
140  
1.3  
0.1  
250  
1.9  
5
ns  
SYNC Threshold Level  
SYNC Input Current  
SYNC Minimum Pulse Width  
SYNC Capture Range  
Frequency Foldback Threshold  
Foldback Frequency  
Gate Drivers  
0.7  
V
VSYNC = 5V  
µA  
ns  
200  
330  
0.75  
Note 6  
kHz  
V
measured at VOUT pin  
0.95  
60  
1.15  
kHz  
Rise/Fall Time  
CL = 3000pF  
60  
ns  
Output Driver Impedance  
source  
sink  
5
3.5  
8.5  
6
Driver Nonoverlap Time  
PWM Input  
80  
ns  
PWM Input Current  
VPWM = 0V  
10  
µA  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
Note 4. 25°C limits are 100% production tested. Limits over the operating temperature range are guaranteed by design and are not production tested.  
Note 5. > 1.3 × V (for the feedback voltage reference and output voltage line and total regulation).  
Note 6. See applications information for limitations on the maximum operating frequency.  
V
IN  
OUT  
April 22, 2004  
5
M9999-042204  
MIC2182  
Micrel  
Typical Characteristics  
Quiescent Current  
vs. Temperature  
Quiescent Current  
vs. Supply Voltage  
Quiescent Current  
vs. Temperature  
2.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.50  
1.00  
0.50  
0
1.8  
PWM  
1.6  
UVLO Mode  
(mA)  
1.4  
1.2  
1.0  
0.8  
-0.520  
0.15  
0.10  
0.05  
0
PWM  
Skip  
Skip  
0.6  
0.4  
0.2  
0
SHUTDOWN  
(µA)  
-40 -20  
0 20 40 60 80 100120140  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100120140  
0
0
0
0
4
8
12 16 20 24 28 32  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
V
(Fixed Versions)  
V
(Fixed Versions)  
REF  
Load Regulation  
Quiescent Current  
vs. Supply Voltage  
REF  
Line Regulation  
1.5  
1.0  
0.5  
0
1.256  
1.254  
1.252  
1.250  
1.248  
1.246  
1.244  
1.242  
1.240  
1.238  
1.236  
1.260  
1.250  
1.240  
1.230  
1.220  
1.210  
1.200  
UVLO Mode  
(mA)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-
SHUTDOWN  
(µA)  
0
4
8
12 16 20 24 28 32  
0
4
8
12 16 20 24 28 32  
200 400 600 800 1000  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (µA)  
V
(Fixed Versions)  
REF  
V
V
DD  
DD  
vs. Temperature  
Line Regulation  
Load Regulation  
1.260  
1.255  
1.250  
1.245  
1.240  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
5.00  
4.95  
4.90  
4.85  
4.80  
-40 -20  
0 20 40 60 80 100120140  
0
4
8
12 16 20 24 28 32  
5
10  
15  
20  
25  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
V
Oscillator Frequency  
vs. Supply Voltage  
Oscillator Frequency  
vs. Temperature  
DD  
vs. Temperature  
10  
8
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.98  
4.96  
4.94  
4.92  
4.90  
4.88  
4.86  
4.84  
4.82  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-40 -20  
0 20 40 60 80 100120140  
4
8
12 16 20 24 28 32  
-40 -20  
0
20 40 60 80 100120140  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
M9999-042204  
6
April 22, 2004  
MIC2182  
Micrel  
Soft-Start Current  
vs. Temperature  
Overcurrent Threshold  
vs. Temperature  
Current-Limit  
Foldback  
5
4
3
2
1
0
5.0  
0.12  
0.11  
0.10  
0.09  
0.08  
4.8  
4.6  
4.4  
4.2  
4.0  
VIN = 5V  
OUT = 3.3V  
CS = 15mΩ  
V
R
0
1
2
3
4
5
6
7
8
-40 -20  
0
20 40 60 80 100120140  
-40 -20 0 20 40 60 80 100120140  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
April 22, 2004  
7
M9999-042204  
MIC2182  
Micrel  
Block Diagrams  
VIN  
CIN  
VDD  
VIN  
EN/UVLO  
VDD  
6
11  
Reference  
4.7µF  
VIN  
10  
D2  
SS  
1
VBST  
14  
Control  
Logic  
HSD  
CBST  
L1  
16  
Q2  
RCS  
VOUT  
COUT  
PWM  
VSW  
15  
2
LSD  
13  
D1  
Q1  
PGND  
12  
Current  
Limit  
PWM Mode  
to Skip  
Mode  
0.024V  
Skip-Mode  
Current  
Limit  
0.07V  
Low  
Comp  
2%VBG  
Hysteresis  
Comp  
Current  
Sense  
Amp  
CSH  
8
PWM  
CORRECTIVE  
RAMP  
RESET  
VOUT  
9
AV = 2  
R1  
R2  
SYNC  
Oscillator  
Error  
Amp  
5
FB  
7
COMP  
3
SGND  
4
CCOMP  
100k  
R1  
Gm = 0.2×10-3  
V
= 1.245V 1+  
= 6.0V  
RCOMP  
OUT  
R2  
MIC2182 [adj.]  
V
OUT(max)  
Figure 2a. Adjustable Output Voltage Version  
M9999-042204  
8
April 22, 2004  
MIC2182  
Micrel  
VIN  
CIN  
VDD  
VIN  
EN/UVLO  
VDD  
6
11  
Reference  
4.7µF  
VIN  
10  
D2  
SS  
1
VBST  
14  
Control  
Logic  
HSD  
CBST  
L1  
16  
Q2  
RCS  
VOUT  
COUT  
PWM  
VSW  
15  
2
LSD  
13  
D1  
Q1  
PGND  
12  
Current  
Limit  
PWM Mode  
to Skip  
Mode  
0.024V  
Skip-Mode  
Current  
Limit  
0.07V  
Low  
Comp  
2%VBG  
Hysteresis  
Comp  
Current  
Sense  
Amp  
CSH  
8
PWM  
CORRECTIVE  
RAMP  
RESET  
VOUT  
9
AV = 2  
*82.5k for 3.3V Output  
150k for 5V Output  
SYNC  
R1*  
Oscillator  
Error  
Amp  
5
SGND  
4
COMP  
R2  
50k  
3
VREF  
7
CCOMP  
100k  
Gm = 0.2×10-3  
RCOMP  
MIC2182-x.x  
Figure 2b. Fixed Output Voltage Versions  
April 22, 2004  
9
M9999-042204  
MIC2182  
Micrel  
Control Loop  
Functional Description  
See Applications Informationfollowing this section for com-  
ponent selection information and Figure 14 and Tables 1  
through 5 for predesigned circuits.  
PWM and Skip Modes of Operation  
The MIC2182 operates in PWM (pulse-width-modulation)  
mode at heavier output load conditions. At lighter load condi-  
tions, the controller can be configured to automatically switch  
to a pulse-skipping mode to improve efficiency. The potential  
disadvantage of skip mode is the variable switching fre-  
quency that accompanies this mode of operation. The occur-  
rence of switching pulses depends on component values as  
well as line and load conditions. There is an external sync  
function that is disabled in skip mode. In PWM mode, the  
synchronous buck converter forces continuous current to  
flowintheinductor.Inskipmode,currentthroughtheinductor  
can settle to zero, causing voltage ringing across the induc-  
tor. Pulling the PWM pin (pin 2) low will force the controller to  
operate in PWM mode for all load conditions, which will  
improve cross regulation of transformer-coupled, multiple  
output configurations.  
The MIC2182 is a BiCMOS, switched-mode, synchronous  
step-down (buck) converter controller. Current-mode control  
is used to achieve superior transient line and load regulation.  
An internal corrective ramp provides slope compensation for  
stable operation above a 50% duty cycle. The controller is  
optimized for high-efficiency, high-performance dc-dc con-  
verter applications.  
The MIC2182 block diagrams are shown in Figure 2a and  
Figure 2b.  
The MIC2182 controller is divided into 6 functions.  
Control loop  
- PWM operation  
- Skip-mode operation  
PWM Control Loop  
Current limit  
The MIC2182 uses current-mode control to regulate the  
output voltage. This method senses the output voltage (outer  
loop) and the inductor current (inner loop). It uses inductor  
current and output voltage to determine the duty cycle of the  
buck converter. Sampling the inductor current removes the  
inductor from the control loop, which simplifies compensa-  
tion.  
Reference, enable, and UVLO  
MOSFET gate drive  
Oscillator and sync  
Soft start  
VIN  
CIN  
VDD  
VIN  
VDD  
11  
Reference  
4.7µF  
VIN  
10  
D2  
VBST  
14  
CONTROL LOGIC AND  
PULSE-WIDTH MODULATOR  
HSD  
CBST  
16  
Q2  
Q1  
L1  
RCS  
VOUT  
COUT  
VSW  
15  
LSD  
13  
D1  
PWM Mode  
to Skip  
Mode  
PGND  
12  
Q
LOW  
FORCES  
SKIP MODE  
0.024V  
R
S
Current  
Sense  
Amp  
CSH  
8
PWM  
COMPARATOR  
VOUT  
9
CORRECTIVE  
RAMP  
RESET  
AV = 2  
R1  
R2  
Oscillator  
Error  
Amp  
FB  
7
COMP  
3
R1  
CCOMP  
RCOMP  
100k  
V
= 1.245V 1+  
OUT  
Gm = 0.2×10-3  
R2  
MIC2182 [adj.] PWM Mode  
Figure 3. PWM Operation  
M9999-042204  
10  
April 22, 2004  
MIC2182  
Micrel  
Skip-Mode Control Loop  
A block diagram of the MIC2182 PWM current-mode control  
loop is shown in Figure 3 and the PWM mode voltage and  
current waveforms are shown in figure 5A. The inductor  
current is sensed by measuring the voltage across the  
This control method is used to improve efficiency at light  
output loads. At light output currents, the power drawn by the  
MIC2182 is equal to the input voltage times the IC supply  
resistor, R . A ramp is added to the amplified current-sense  
current (I ). At light output currents, the power dissipated by  
CS  
Q
signal to provide slope compensation, which is required to  
prevent unstable operation at duty cycles greater than 50%.  
the IC can be a significant portion of the total output power,  
whichlowerstheefficiencyofthepowersupply.TheMIC2182  
draws less supply current in skip mode by disabling portions  
of the control and drive circuitry when the IC is not switching.  
The disadvantage of this method is greater output voltage  
ripple and variable switching frequency.  
A transconductance amplifier is used for the error amplifier,  
which compares an attenuated sample of the output voltage  
with a reference voltage. The output of the error amplifier is  
the COMP (compensation) pin, which is compared to the  
current-sensewaveforminthePWMblock. Whenthecurrent  
signal becomes greater than the error signal, the comparator  
turns off the high-side drive. The COMP pin (pin 3) provides  
access to the output of the error amplifier and allows the use  
of external components to stabilize the voltage loop.  
AblockdiagramoftheMIC2182skipmodeisshowninFigure  
4. Skip mode voltage and current waveforms are shown in  
figure 5B.  
VIN  
CIN  
VDD  
VDD  
11  
Reference  
VIN  
4.7µF  
VIN  
10  
D2  
VBST  
14  
CONTROL LOGIC AND  
SKIP-MODE LOGIC  
HSD  
CBST  
16  
Q2  
Q1  
L1  
RCS  
VOUT  
COUT  
VSW  
15  
LOW-SIDE DRIVER  
ONE SHOT  
LSD  
13  
PGND  
12  
Q
R
S
Skip-Mode  
Current  
Limit  
0.07V  
Low  
Comp  
ONE SHOT  
2%VBG  
LOW  
FORCES  
PWM MODE  
Hysteresis  
Comp  
±1%  
Current  
Sense  
Amp  
CSH  
8
VOUT  
9
AV = 2  
R1  
R2  
FB  
7
R1  
MIC2182 [adj.] Skip Mode  
V
= 1.245V 1+  
OUT  
R2  
Figure 4. Skip-Mode Operation  
April 22, 2004  
11  
M9999-042204  
MIC2182  
Micrel  
VIN  
0V  
VSW  
ILOAD  
IL1  
0A  
VDD  
Reset  
Pulse  
0V  
VIN + VDD  
VHSD  
0V  
VDD  
0V  
VLSD  
Figure 5a. PWM-Mode Timing  
VDD  
VHSD  
0V  
VDD  
VLSD  
0V  
VIN  
VOUT  
VSW  
0V  
ILIM(skip)  
IL1  
0A  
VDD  
Vone-shot  
0V  
+1%  
VNOMINAL  
VOUT  
1%  
0V  
IOUT  
0A  
Figure 5b. Skip-Mode Timing  
A hysteretic comparator is used in place of the PWM error  
amplifier and a current-limit comparator senses the inductor  
current. A one-shot starts the switching cycle by momentarily  
turning on the low side MOSFET to insure the high-side drive  
boost capacitor, Cbst, is fully charged. The high-side MOS-  
FET is turned on and current ramps up in the inductor, L1.  
The high-side drive is turned off when either the peak voltage  
on the input of the current-sense comparator exceeds the  
threshold, typically 35mV, or the output voltage rises above  
the hysteretic threshold of the output voltage comparator.  
Once the high-side MOSFET is turned off, the load current  
Figure 6 shows the improvement in efficiency that skip mode  
makes when at lower output currents.  
100  
PWM  
80  
Skip  
60  
40  
20  
0
0.01  
0.1  
1
10  
100  
discharges the output capacitor, causing V  
to fall. The  
OUT  
OUTPUT CURRENT (A)  
cycle repeats when V  
1%.  
falls below the lower threshold, –  
OUT  
Figure 6. Efficiency  
The maximum peak inductor current depends on the skip-  
mode current-limit threshold and the value of the current-  
sense resistor, R  
.
CS  
35mV  
I
=
inductor(peak)  
R
sense  
M9999-042204  
12  
April 22, 2004  
MIC2182  
Micrel  
Switching from PWM to Skip Mode  
rent-limit threshold is 100mV+35mV 25mV. The current-  
sense resistor must be sized using the minimum current-limit  
threshold. The external components must be designed to  
withstand the maximum current limit. The current-sense  
resistor value is calculated by the equation below:  
The current sense amplifier in Figure 3 monitors the average  
voltage across the current-sense resistor. The controller will  
switch from PWM to skip mode when the average voltage  
across the current-sense resistor drops below approximately  
12mV.ThisisshowninFigure7b.Theaverageoutputcurrent  
at this transition level for is calculated below.  
75mV  
RCS  
=
IOUT(max)  
0.012  
I
=
The maximum output current is:  
135mV  
OUT(skipmode)  
R
CS  
IOUT(max)  
=
where:  
RCS  
0.012 = threshold voltage of the internal comparator  
= current-sense resistor value  
The current-sense pins CSH (pin 8) and V  
(pin 9) are  
OUT  
R
CS  
noise sensitive due to the low signal level and high input  
impedance.ThePCBtracesshouldbeshortandroutedclose  
toeachother.Asmall(1nFto0.1µF)capacitoracrossthepins  
will attenuate high frequency switching noise.  
Switching from Skip to PWM Mode  
The frequency of occurrence of the skip-mode current pulses  
increase as the output current increases until the hysteretic  
dutycyclereaches100%(continuouspulses). Increasingthe  
current past this point will cause the output voltage will drop.  
The low limit comparator senses the output voltage when it  
drops below 2% of the set output and automatically switches  
the converter to PWM mode.  
When the peak inductor current exceeds the current-limit  
threshold, the current-limit comparator, in Figure 2, turns off  
the high-side MOSFET for the remainder of the cycle. The  
output voltage drops as additional load current is pulled from  
the converter. When the output voltage reaches approxi-  
mately 0.95V, the circuit enters frequency-foldback mode  
andtheoscillatorfrequencywilldropto60kHzwhilemaintain-  
ing the peak inductor current equal to the nominal 100mV  
across the external current-sense resistor. This limits the  
maximum output power delivered to the load under a short  
circuit condition.  
The inductor current in skip mode is a triangular wave shape  
a minimum value of 0 and a maximum value of 35mV/R  
(seeFigure7b). Themaximumaverageoutputcurrentinskip  
mode is the average value of the inductor waveform:  
CS  
35mV  
I
= 0.5 ×  
OUT(maxskipmode)  
R
CS  
Reference, Enable, and UVLO Circuits  
The capacitor on the PWM pin (pin 2) is discharged when the  
IC transitions from skip to PWM mode. This forces the IC to  
remain in PWM mode for a fixed period of time. The added  
delay prevents unwanted switching between PWM and skip  
mode. The capacitor is charged with a 10uA current source  
onpin2. Thethresholdonpin2is2.5V. Thedelayforatypical  
1nF capacitor is:  
The output drivers are enabled when the following conditions  
are satisfied:  
The V voltage (pin 11) is greater than its  
DD  
undervoltage threshold (typically 4.2V).  
The voltage on the enable pin is greater than the  
enable UVLO threshold (typically 2.5V)  
The internal bias circuit generates a 1.245V bandgap refer-  
C
× V  
threshold  
1nF × 2.5V  
10µA  
PWM  
ence voltage for the voltage error amplifier and a 5V V  
t
=
=
= 250µs  
DD  
delay  
I
source  
voltage for the gate drive circuit. The reference voltage in the  
fixed-output-voltage versions of the MIC2182 is buffered and  
where:  
brought to pin 7. The V  
pin should be bypassed to GND  
REF  
C
= capacitor connected to pin 2  
PWM  
(pin 4) with a 0.1µF capacitor. The adjustable version of the  
MIC2182 uses pin 7 for output voltage sensing. A decoupling  
capacitor on pin 7 is not used in the adjustable output voltage  
version.  
Current Limit  
The current-limit circuit operates during PWM mode. The  
output current is detected by the voltage drop across the  
external current-sense resistor (R in Figure 2.). The cur-  
CS  
35mV THRESHOLD  
ACROSS RCS  
.
ILIM(skip)  
Inductor  
Current  
0A  
Figure 7a. Maximum Skip-Mode-Load Inductor Current  
IMIN(PWM)  
0A  
12mV THRESHOLD  
OF AVERAGE VOLTAGE  
Inductor  
Current  
ACROSS RCS  
.
Figure 7b. Minimum PWM-Mode-Load Inductor Current for PWM Operation  
April 22, 2004  
13  
M9999-042204  
MIC2182  
Micrel  
The enable pin (pin 6) has two threshold levels, allowing the  
MIC2182toshutdowninalowcurrentmode,orturnoffoutput  
switching in UVLO mode. An enable pin voltage lower than  
the shutdown threshold turns off all the internal circuitry and  
reduces the input current to typically 0.1µA.  
Oscillator and Sync  
Theinternaloscillatorisfreerunningandrequiresnoexternal  
components. The nominal oscillator frequency is 300kHz. If  
the output voltage is below approximately 0.95V, the oscilla-  
tor operates in a frequency-foldback mode and the switching  
frequency is reduced to 60kHz.  
If the enable pin voltage is between the shutdown and UVLO  
thresholds, theinternalbias, V , andreferencevoltagesare  
The SYNC input (pin 5) allows the MIC2182 to synchronize  
with an external clock signal. The rising edge of the sync  
signal generates a reset signal in the oscillator, which turns  
off the low-side gate drive output. The high-side drive then  
turns on, restarting the switching cycle. The sync signal is  
inhibited when the controller operates in skip mode or during  
frequency foldback. The sync signal frequency must be  
greater than the maximum specified free running frequency  
of the MIC2182. If the synchronizing frequency is lower,  
double pulsing of the gate drive outputs will occur. When not  
used, the sync pin must be connected to ground.  
DD  
turned on. The soft-start pin is forced low by an internal  
discharge MOSFET. The output drivers are inhibited from  
switching and remain in a low state. Raising the enable  
voltage above the UVLO threshold of 2.5V allows the soft-  
start capacitor to charge and enables the output drivers.  
Either of two UVLO conditions will pull the soft-start capacitor  
low.  
When the V drops below 4.1V  
DD  
When the enable pin drops below the 2.5V  
threshold  
Figure 8 shows the timing between the external sync signal  
(trace 2), the low-side drive (trace 1) and the high-side drive  
(trace R1). There is a delay of approximately 250ns between  
the rising edge of the external sync signal and turnoff of the  
low-side MOSFET gate drive.  
MOSFET Gate Drive  
The MIC2182 high-side drive circuit is designed to switch an  
N-channelMOSFET.ReferringtotheblockdiagraminFigure  
2, a bootstrap circuit, consisting of D2 and C  
energy to the high-side drive circuit. Capacitor C  
charged while the low-side MOSFET is on and the voltage on  
, supplies  
BST  
is  
BST  
Some concerns of operating at higher frequencies are:  
Higher power dissipation in the internal V  
the V pin (pin 15) is approximately 0V. When the high-side  
DD  
SW  
regulator. This occurs because the MOSFET  
gates require charge to turn on the device. The  
average current required by the MOSFET gate  
increases with switching frequency. This in-  
creases the power dissipated by the internal  
MOSFETdriveristurnedon, energyfromC  
isusedtoturn  
BST  
theMOSFETon. AstheMOSFETturnson, thevoltageonthe  
pin increases to approximately V . Diode D2 is re-  
V
SW  
IN  
versed biased and C  
floats high while continuing to keep  
BST  
the high-side MOSFET on. When the low-side switch is  
turned back on, C is recharged through D2.  
V
regulator. Figure 10 shows the total gate  
DD  
BST  
charge which can be driven by the MIC2182  
over the input voltage range, for different values  
of switching frequency. The total gate charge  
includes both the high- and low-side MOSFETs.  
The larger SOP package is capable of dissipat-  
ing more power than the SSOP package and  
can drive larger MOSFETs with higher gate  
drive requirements.  
The drive voltage is derived from the internal 5V V  
bias  
DD  
supply. The nominal low-side gate drive voltage is 5V and the  
nominal high-side gate drive voltage is approximately 4.5V  
due the voltage drop across D2. A fixed 80ns delay between  
the high- and low-side driver transitions is used to prevent  
currentfromsimultaneouslyflowingunimpededthroughboth  
MOSFETs.  
TIME  
Figure 8. Sync Waveforms  
Figure 9. Startup Waveforms  
M9999-042204  
14  
April 22, 2004  
MIC2182  
Reduced maximum duty cycle due to switching  
Micrel  
Thesoft-startvoltageisapplieddirectlytothePWMcompara-  
tor. A 5uA internal current source is used to charge up the  
soft-start capacitor. The capacitor is discharged when either  
the enable voltage drops below the UVLO threshold (2.5V) or  
transition times and constant delay times in the  
controller. As the switching frequency increased,  
the switching period decreases. The switching  
transition times and constant delays in the  
MIC2182 start to become noticeable. The effect  
is to reduce the maximum duty cycle of the  
controller. This will cause the minimum input to  
output differential voltage (dropout voltage) to  
increase.  
the V voltage drops below the UVLO level (4.1V).  
DD  
Thepartswitchesataminimumdutycyclewhenthesoft-start  
pin voltage is less than 0.4V. This maintains a charge on the  
bootstrap capacitor and insures high-side gate drive voltage.  
As the soft-start voltage rises above 0.4V, the duty cycle  
increases from the minimum duty cycle to the operating duty  
cycle. The oscillator runs at the foldback frequency of 60kHz  
until the output voltage rises above 0.95V. Above 0.95V, the  
switching frequency increases to 300kHz (or the syncd  
frequency), causing the output voltage to rise a greater rate.  
The rise time of the output is dependent on the soft-start  
capacitor, output capacitance, output voltage, and load cur-  
rent. The oscilloscope photo in Figure 9 show the output  
voltage and the soft-start pin voltage at startup.  
100  
SOP  
80  
60  
40  
20  
0
300kHz  
400kHz  
500kHz  
Minimum Pulse Width  
0
4
8
12 16 20 24 28 32  
SUPPLY VOLTAGE (V)  
The MIC2182 has a specified minimum pulse width. This  
minimum pulse width places a lower limit on the minimum  
duty cycle of the buck converter. When the MIC2182 is  
operating in forced PWM mode (pin 2 low) and when the  
output current is very low or zero, there is a limit on the ratio  
Figure 10a. SOP Gate Charge vs. Input Voltage  
100  
SSOP  
80  
60  
of V  
/V . If this limit is exceeded, the output voltage will  
OUT IN  
rise above the regulated voltage level. A minimum load is  
required to prevent the output from rising up. This will not  
occur for output voltages greater than 3V.  
300kHz  
40  
400kHz  
20  
Figure 11 should be used as a guide when the MIC2182 is  
forced into PWM-only mode. The actual maximum input  
voltage will depend on the exact external components used  
(MOSFETs, inductors, etc.).  
500kHz  
0
0
4
8
12 16 20 24 28 32  
SUPPLY VOLTAGE (V)  
35  
30  
25  
20  
15  
10  
Figure 10b. SSOP Gate Charge vs. Input Voltage  
It is recommended that the user limits the maximum synchro-  
nized frequency to 600kHz. If a higher synchronized fre-  
quency is required, it may be possible and will be design  
dependent. Please consult Micrel applications for assis-  
tance.  
Soft Start  
Soft start reduces the power supply input surge current at  
startup by controlling the output voltage rise time. The input  
surge appears while the output capacitance is charged up. A  
slower output rise time will draw a lower input surge current.  
Soft start may also be used for power supply sequencing.  
0
1
2
3
4
5
6
OUTPUT VOLTAGE (V)  
Figure 11. Max. Input Voltage in Forced-PWM Mode  
This restriction does not occur when the MIC2182 is set to  
automatic mode (pin 2 connected to a capacitor) since the  
converter operates in skip mode at low output current.  
April 22, 2004  
15  
M9999-042204  
MIC2182  
Micrel  
output currents, the core losses can be a significant contribu-  
tor. Core loss information is usually available from the mag-  
netics vendor.  
Applications Information  
The following applications information includes component  
selection and design guidelines. See Figure 14 and Tables 1  
through 5 for predesigned circuits.  
Copper loss in the inductor is calculated by the equation  
below:  
Inductor Selection  
P
= Iinductor(rms)2 ×Rwinding  
Values for inductance, peak, and RMS currents are required  
to select the output inductor. The input and output voltages  
andtheinductancevaluedeterminethepeaktopeakinductor  
ripple current. Generally, higher inductance values are used  
withhigherinputvoltages.Largerpeaktopeakripplecurrents  
will increase the power dissipation in the inductor and  
MOSFETs. Larger output ripple currents will also require  
more output capacitance to smooth out the larger ripple  
current. Smaller peak to peak ripple currents require a larger  
inductance value and therefore a larger and more expensive  
inductor. A good compromise between size, loss and cost is  
to set the inductor ripple current to be equal to 20% of the  
maximum output current.  
inductorCu  
The resistance of the copper wire, R  
, increases with  
winding  
temperature.Thevalueofthewindingresistanceusedshould  
be at the operating temperature.  
R
= R  
× 1+ 0.0042 ×(T T  
)
)
(
winding(hot)  
winding(20°C)  
hot  
20°C  
where:  
T
= temperature of the wire  
HOT  
under operating load  
T
= ambient temperature  
20°C  
R
is room temperature winding resistance  
winding(20°C)  
The inductance value is calculated by the equation below.  
(usually specified by the manufacturer)  
Current-Sense Resistor Selection  
V
×(V  
V  
)
OUT  
IN(max)  
OUT  
L =  
Low inductance power resistors, such as metal film resistors  
should be used. Most resistor manufacturers make low  
inductance resistors with low temperature coefficients, de-  
signedspecificallyforcurrent-senseapplications. Bothresis-  
tance and power dissipation must be calculated before the  
V
× f × 0.2 ×I  
S OUT(max)  
IN(max)  
where:  
f = switching frequency  
S
0.2 = ratio of ac ripple current to dc output current  
= maximum input voltage  
resistor is selected. The value of R  
is chosen based on  
SENSE  
V
IN(max)  
the maximum output current and the maximum threshold  
level. The power dissipated is based on the maximum peak  
output current at the minimum overcurrent threshold limit.  
The peak-to-peak inductor current (ac ripple current) is:  
VOUT ×(VIN(max) VOUT  
)
IPP  
=
75mV  
V
IN(max) × fS ×L  
R
=
SENSE  
I
OUT(max)  
The peak inductor current is equal to the average output  
current plus one half of the peak to peak inductor ripple  
current.  
The maximum overcurrent threshold is:  
135mV  
Iovercurrent(max)  
=
IPK = IOUT(max) + 0.5 ×IPP  
RCS  
2
The RMS inductor current is used to calculate the I ·R losses  
The maximum power dissipated in the sense resistor is:  
in the inductor.  
2
P
= I  
×R  
CS  
D(RSENSE  
)
overcurrent(max)  
2
IPP  
1
3 IOUT(max)  
MOSFET Selection  
Iinductor(rms) = IOUT(max) × 1+  
External N-channel logic-level power MOSFETs must be  
used for the high- and low-side switches. The MOSFET gate-  
to-source drive voltage of the MIC2182 is regulated by an  
Maximizing efficiency requires the proper selection of core  
material and minimizing the winding resistance. The high  
frequencyoperationoftheMIC2182requirestheuseofferrite  
materials for all but the most cost sensitive applications.  
Lower cost iron powder cores may be used but the increase  
incorelosswillreducetheefficiencyofthepowersupply.This  
is especially noticeable at low output power. The winding  
resistance decreases efficiency at the higher output current  
levels. The winding resistance must be minimized although  
this usually comes at the expense of a larger inductor.  
internal 5V V  
operation is specified at V = 4.5V must be used.  
regulator. Logic-level MOSFETs, whose  
DD  
GS  
It is important to note the on-resistance of a MOSFET  
increases with increasing temperature. A 75°C rise in junc-  
tion temperature will increase the channel resistance of the  
MOSFET by 50% to 75% of the resistance specified at 25°C.  
This change in resistance must be accounted for when  
calculating MOSFET power dissipation.  
Total gate charge is the charge required to turn the MOSFET  
on and off under specified operating conditions (V  
Thepowerdissipatedintheinductorisequaltothesumofthe  
core and copper losses. At higher output loads, the core  
losses are usually insignificant and can be ignored. At lower  
and  
DS  
V
). The gate charge is supplied by the MIC2182 gate drive  
GS  
circuit. At 300kHz switching frequency and above, the gate  
M9999-042204  
16 April 22, 2004  
MIC2182  
Micrel  
charge can be a significant source of power dissipation in the  
MIC2182. At low output load this power dissipation is notice-  
able as a reduction in efficiency. The average current re-  
quired to drive the high-side MOSFET is:  
C
× V + C  
× V  
OSS  
IN  
ISS  
GS  
t
=
T
I
G
where:  
C
and C  
are measured at V = 0.  
OSS DS  
IG[high-side](avg) = QG × fS  
ISS  
I = gate drive current (1A for the MIC2182)  
G
where:  
The total high-side MOSFET switching loss is:  
I
=
G[high-side](avg)  
average high-side MOSFET gate current  
P
= (V +V )×I × t × f  
AC S  
IN D PK T  
Q = total gate charge for the high-side MOSFET  
where:  
G
taken from manufacturers data sheet  
t = switching transition time  
T
with V = 5V.  
GS  
(typically 20ns to 50ns)  
The low-side MOSFET is turned on and off at V  
= 0  
DS  
V = freewheeling diode drop, typically 0.5V.  
D
because the freewheeling diode is conducting during this  
time. The switching losses for the low-side MOSFET is  
usually negligable. Also, the gate drive current for the low-  
f it the switching frequency, nominally 300kHz  
S
The low-side MOSFET switching losses are negligible and  
can be ignored for these calculations.  
side MOSFET is more accurately calculated using C  
at  
ISS  
V
= 0 instead of gate charge.  
RMS Current and MOSFET Power Dissipation Calculation  
DS  
For the low-side MOSFET:  
= C  
Under normal operation, the high-side MOSFETs RMS  
currentisgreatestwhenV islow(maximumdutycycle).The  
IN  
I
× V × f  
GS S  
G[low-side](avg)  
ISS  
low-sideMOSFETsRMScurrentisgreatestwhenV ishigh  
IN  
Since the current from the gate drive comes from the input  
voltage, the power dissipated in the MIC2182 due to gate  
drive is:  
(minimum duty cycle). However, the maximum stress the  
MOSFETs see occurs during short circuit conditions, where  
the output current is equal to I  
. (See the Sense  
overcurrent(max)  
Resistor section). The calculations below are for normal  
operation. To calculate the stress under short circuit condi-  
P
= V  
I
+I  
G[low-side](avg)  
(
)
gatedrive  
IN G[high-side](avg)  
tions, substituteI  
forI  
. Usetheformula  
overcurrent(max)  
OUT(max)  
AconvenientfigureofmeritforswitchingMOSFETsistheon-  
resistance times the total gate charge (R  
below to calculate D under short circuit conditions.  
× Q ). Lower  
DS(on)  
G
Dshortcircuit = 0.063 1.8 ×103 × V  
numbers translate into higher efficiency. Low gate-charge  
logic-level MOSFETs are a good choice for use with the  
MIC2182. Power dissipation in the MIC2182 package limits  
the maximum gate drive current. Refer to Figure 10 for the  
MIC2182 gate drive limits.  
IN  
The RMS value of the high-side switch current is:  
2
IPP  
2
ISW(highside)(rms) = D × IOUT(max)  
+
12  
Parameters that are important to MOSFET switch selection  
are:  
2
Voltage rating  
On-resistance  
Total gate charge  
I
2
PP  
I
(rms) = 1D I  
+
(
)
SW(lowside)  
OUT(max)  
12  
where:  
The voltage rating of the MOSFETs are essentially equal to  
the input voltage. A safety factor of 20% should be added to  
D = duty cycle of the converter  
the V  
of the MOSFETs to account for voltage spikes  
DS(max)  
V
OUT  
due to circuit parasitics.  
D =  
η × V  
IN  
The power dissipated in the switching transistor is the sum of  
η = efficiency of the converter.  
theconductionlossesduringtheon-time(P  
)andthe  
conduction  
switchinglossesthatoccurduringtheperiodoftimewhenthe  
Converter efficiency depends on component parameters,  
which have not yet been selected. For design purposes, an  
MOSFETs turn on and off (P ).  
AC  
efficiency of 90% can be used for V less than 10V and 85%  
P
= P  
+P  
IN  
SW  
conduction  
AC  
can be used for V greater than 10V. The efficiency can be  
IN  
where:  
Pconduction = ISW(rms)2 ×RSW  
= P +P  
moreaccuratelycalculatedoncethedesigniscomplete.Ifthe  
assumed efficiency is grossly inaccurate, a second iteration  
through the design procedure can be made.  
P
For the high-side switch, the maximum dc power dissipation  
is:  
AC  
AC(off)  
AC(on)  
R
= on-resistance of the MOSFET switch.  
SW  
2
Making the assumption the turn-on and turnoff transition  
times are equal, the transition time can be approximated by:  
P
= R  
×I  
(rms)  
switch1(dc)  
DS(on)1 SW1  
April 22, 2004  
17  
M9999-042204  
MIC2182  
Micrel  
For the low-side switch (N-channel MOSFET), the dc power  
dissipation is:  
circuit inductance will cause ringing during the high-side  
MOSFET turn-on.  
An external Schottky diode conducts at a lower forward  
voltage preventing the body diode in the MOSFET from  
turning on. The lower forward voltage drop dissipates less  
power than the body diode. The lack of a reverse recovery  
mechanism in a Schottky diode causes less ringing and less  
power loss. Depending on the circuit components and oper-  
ating conditions, an external Schottky diode will give a 1/2%  
to 1% improvement in efficiency. Figure 12 illustrates the  
difference in noise on the VSW pin with and without a  
Schottky diode.  
2
P
= R  
×I  
(rms)  
switch2(dc)  
DS(on)2  
SW2  
Since the ac switching losses for the low side MOSFET is  
near zero, the total power dissipation is:  
P
= P  
switch2(dc)  
low-side MOSFET(max)  
The total power dissipation for the high-side MOSFET is:  
= P +P  
P
highsideMOSFET(max)  
SWITCH 1(dc)  
AC  
External Schottky Diode  
Output Capacitor Selection  
An external freewheeling diode is used to keep the inductor  
current flow continuous while both MOSFETs are turned off.  
This dead time prevents current from flowing unimpeded  
through both MOSFETs and is typically 80ns The diode  
conducts twice during each switching cycle. Although the  
averagecurrentthroughthisdiodeissmall, thediodemustbe  
able to handle the peak current.  
The output capacitor values are usually determined by the  
capacitorsESR(equivalentseriesresistance).Voltagerating  
and RMS current capability are two other important factors in  
selectingtheoutputcapacitor.Recommendedcapacitorsare  
tantalum, low-ESR aluminum electrolytics, and OS-CON.  
The output capacitors ESR is usually the main cause of  
output ripple. The maximum value of ESR is calculated by:  
ID(avg) = IOUT × 2 × 80ns × fS  
V  
OUT  
The reverse voltage requirement of the diode is:  
R
ESR  
I
PP  
V
(rrm) = V  
IN  
diode  
where:  
The power dissipated by the Schottky diode is:  
V
I
= peak to peak output voltage ripple  
OUT  
Pdiode = ID(avg) × VF  
= peak to peak inductor ripple current  
PP  
where:  
The total output ripple is a combination of the ESR and the  
output capacitance. The total ripple is calculated below:  
V = forward voltage at the peak diode current  
F
The external Schottky diode, D2, is not necessary for circuit  
operation since the low-side MOSFET contains a parasitic  
body diode. The external diode will improve efficiency and  
decrease high frequency noise. If the MOSFET body diode is  
used,itmustberatedtohandlethepeakandaveragecurrent.  
The body diode has a relatively slow reverse recovery time  
and a relatively high forward voltage drop. The power lost in  
the diode is proportional to the forward voltage drop of the  
diode. As the high-side MOSFET starts to turn on, the body  
diodebecomesashortcircuitforthereverserecoveryperiod,  
dissipating additional power. The diode recovery and the  
2
I
PP ×(1D)  
2
VOUT  
=
+ IPP ×RESR  
(
)
COUT × fS  
where:  
D = duty cycle  
= output capacitance value  
C
OUT  
f = switching frequency  
S
The voltage rating of capacitor should be twice the output  
voltage for a tantalum and 20% greater for an aluminum  
electrolytic or OS-CON.  
The output capacitor RMS current is calculated below:  
I
PP  
I
(rms) =  
COUT  
12  
The power dissipated in the output capacitor is:  
2
P
= I  
(rms) ×R  
DISS(COUT  
)
COUT  
ESR(COUT  
)
Input Capacitor Selection  
The input capacitor should be selected for ripple current  
rating and voltage rating. Tantalum input capacitors may fail  
whensubjectedtohighinrushcurrents,causedbyturningthe  
input supply on. Tantalum input capacitor voltage rating  
should be at least 2 times the maximum input voltage to  
maximize reliability. Aluminum electrolytic, OS-CON, and  
multilayer polymer film capacitors can handle the higher  
inrush currents without voltage derating.  
Figure 12. Switch Output Noise  
With and Without Shottky Diode  
M9999-042204  
18  
April 22, 2004  
MIC2182  
Micrel  
The input voltage ripple will primarily depend on the input  
capacitors ESR. The peak input current is equal to the peak  
inductor current, so:  
Supply current to the MIC2182  
MOSFET gate-charge power (included in the IC  
supply current)  
V = I  
×R  
ESR(CIN  
Core losses in the output inductor  
IN  
inductor(peak)  
)
To maximize efficiency at light loads:  
The input capacitor must be rated for the input current ripple.  
TheRMSvalueofinputcapacitorcurrentisdeterminedatthe  
maximum output current. Assuming the peak to peak induc-  
tor ripple current is low:  
Use a low gate-charge MOSFET or use the  
smallest MOSFET, which is still adequate for  
maximum output current.  
Allow the MIC2182 to run in skip mode at lower  
IC (rms) IOUT(max)  
×
D ×(1D)  
currents.  
IN  
Use a ferrite material for the inductor core, which  
has less core loss than an MPP or iron power  
core.  
The power dissipated in the input capacitor is:  
2
P
= I (rms) ×R  
DISS(CIN  
)
CIN  
ESR(CIN  
)
Under heavy output loads the significant contributors to  
power loss are (in approximate order of magnitude):  
Voltage Setting Components  
The MIC2182-3.3 and MIC2182-5.0 ICs contain internal  
voltage dividers that set the output voltage. The MIC2182  
adjustable version requires two resistors to set the output  
voltage as shown in Figure 13.  
Resistive on-time losses in the MOSFETs  
Switching transition losses in the MOSFETs  
Inductor resistive losses  
Current-sense resistor losses  
R1  
Input capacitor resistive losses (due to the  
Error  
Amp  
FB  
7
capacitors ESR)  
R2  
To minimize power loss under heavy loads:  
Use logic-level, low on-resistance MOSFETs.  
Multiplying the gate charge by the on-resistance  
gives a Figure of merit, providing a good bal-  
ance between low and high load efficiency.  
VREF  
1.245V  
MIC2182 [adj.]  
Figure 13. Voltage-Divider Configuration  
Slow transition times and oscillations on the  
voltage and current waveforms dissipate more  
power during turn-on and turnoff of the  
MOSFETs. A clean layout will minimize parasitic  
inductance and capacitance in the gate drive  
and high current paths. This will allow the fastest  
transition times and waveforms without oscilla-  
tions. Low gate-charge MOSFETs will transition  
faster than those with higher gate-charge  
requirements.  
The output voltage is determined by the equation:  
R1  
VO = VREF × 1+  
R2  
Where: V  
for the MIC2182 is typically 1.245V.  
REF  
A typical value of R1 can be between 3k and 10k. If R1 is too  
large it may allow noise to be introduced into the voltage  
feedback loop. If R1 is too small in value it will decrease the  
efficiency of the power supply, especially at low output loads.  
For the same size inductor, a lower value will  
have fewer turns and therefore, lower winding  
resistance. However, using too small of a value  
will require more output capacitors to filter the  
output ripple, which will force a smaller band-  
width, slower transient response and possible  
instability under certain conditions.  
Once R1 is selected, R2 can be calculated using:  
V
×R1  
REF  
R2 =  
V V  
O
REF  
Voltage Divider Power Dissipation  
The reference voltage and R2 set the current through the  
voltage divider.  
Lowering the current-sense resistor value will  
decrease the power dissipated in the resistor.  
However, it will also increase the overcurrent  
limit and will require larger MOSFETs and  
inductor components.  
VREF  
Idivider  
=
R2  
The power dissipated by the divider resistors is:  
Use low-ESR input capacitors to minimize the  
2
Pdivider = (R1+R2)×Idivider  
power dissipated in the capacitors ESR.  
Efficiency Calculation and Considerations  
Decoupling Capacitor Selection  
Efficiency is the ratio of output power to input power. The  
difference is dissipated as heat in the buck converter. Under  
light output load, the significant contributors are:  
The 4.7µF decoupling capacitor is used to minimize noise on  
the VDD pin. The placement of this capacitor is critical to the  
proper operation of the IC. It must be placed right next to the  
April 22, 2004  
19  
M9999-042204  
MIC2182  
Micrel  
When the high-side MOSFET is switched on, the  
pins and routed with a wide trace. The capacitor should be a  
good quality tantalum. An additional 1µF ceramic capacitor  
may be necessary when driving large MOSFETs with high  
gatecapacitance. IncorrectplacementoftheV decoupling  
capacitor will cause jitter or oscillations in the switching  
waveform and large variations in the overcurrent limit.  
critical flow of current is from the input capacitor  
through the MOSFET, inductor, sense resistor,  
output capacitor, and back to the input capacitor.  
These paths must be made with short, wide  
pieces of trace. It is good practice to locate the  
ground terminals of the input and output capaci-  
tors close to each.  
DD  
A 0.1µF ceramic capacitor is required to decouple the VIN.  
The capacitor should be placed near the IC and connected  
directly to between pin 10 (Vcc) and pin 12 (PGND).  
When the low-side MOSFET is switched on,  
current flows through the inductor, sense  
resistor, output capacitor, and MOSFET. The  
source of the low-side MOSFET should be  
located close to the output capacitor.  
PCB Layout and Checklist  
PCB layout is critical to achieve reliable, stable and efficient  
performance. A ground plane is required to control EMI and  
minimize the inductance in power, signal and return paths.  
The freewheeling diode, D1 in Figure 2, con-  
ducts current during the dead time, when both  
MOSFETs are off. The anode of the diode  
should be located close to the output capacitor  
ground terminal and the cathode should be  
located close to the input side of the inductor.  
The following guidelines should be followed to insure proper  
operation of the circuit.  
Signal and power grounds should be kept  
separate and connected at only one location.  
Large currents or high di/dt signals that occur  
when the MOSFETs turn on and off must be  
kept away from the small signal connections.  
The 4.7µF capacitor, which connects to the VDD  
terminal (pin 11) must be located right at the IC.  
The VDD terminal is very noise sensitive and  
placement of this capacitor is very critical.  
Connections must be made with wide trace. The  
capacitor may be located on the bottom layer of  
the board and connected to the IC with multiple  
vias.  
The connection between the current-sense  
resistor and the MIC2182 current-sense inputs  
(pin 8 and 9) should have separate traces,  
routed from the terminals directly to the IC pins.  
The traces should be routed as closely as  
possible to each other and their length should be  
minimized. Avoid running the traces under the  
inductor and other switching components. A 1nF  
to 0.1µF capacitor placed between pins 8 and 9  
will help attenuate switching noise on the current  
sense traces. This capacitor should be placed  
close to pins 8 and 9.  
The V bypass capacitor should be located  
IN  
close to the IC and connected between pins 10  
and 12. Connections should be made with a  
ground and power plane or with short, wide  
trace.  
M9999-042204  
20  
April 22, 2004  
MIC2182  
Micrel  
Predesigned Circuits  
Power supplies larger than 10A can also be constructed  
using the MIC2182 using larger power-handling compo-  
nents.  
Asingleschematicdiagram,showninFigure 14,canbeused  
tobuildpowersuppliesrangingfrom3Ato10Aatthecommon  
outputvoltagesof1.8V,2.5V,3.3V,and5V.Componentsthat  
vary, depending upon output current and voltage, are listed  
in the accompanying Tables 3 through 6.  
ThePowerSupplyOperatingCharacteristicsgraphsfollow-  
ing the component and vendor tables provide useful informa-  
tion about the actual performance of some of these circuits.  
D2  
MIC2182  
VDD  
BST  
EN/UVLO HSD  
C11  
VIN  
SD103BWS  
(table)  
VIN  
C9  
4.7µF  
16V  
C5  
0.1µF  
R7  
100k  
C6  
0.1µF  
Q2  
L1  
(table)  
R2  
(table)  
(table)  
VOUT  
PWM  
VSW  
LSD  
C4  
1nF  
Q1  
(table)  
D1  
(table)  
C7  
(table)  
C12  
0.1µF  
50V  
SS  
PGND  
CSH  
GND  
COMP  
SYNC  
C13, 1nF  
R1  
2k  
C3  
0.1µF  
VOUT  
VREF  
C2  
2.2nF  
C1  
0.1µF  
50V  
SGND  
GND  
Figure 14. Basic Circuit Diagram for Use with Tables 3 through 6  
Specification  
Switching frequency ripple  
Maximum ambient temperature  
Short-circuit capability  
Limit  
1% of output voltage  
85°C  
Continuous  
300kHz  
Switching frequency  
Table 1. Specifications for Figure 14 and Tables 3 through 6  
Manufacturer  
AVX  
Telephone Number (USA)  
(803) 946-0690  
(516) 435-1110  
(561) 241-7876  
(704) 264-8861  
(310) 322-3331  
(408) 944-0800  
(805) 446-4800  
Web Address  
www.avxcorp.com  
Central Semiconductor  
www.centralsemi.com  
www.coiltronics.com  
Coiltronics  
IRC  
IR  
www.irf.com  
www.micrel.com  
Micrel  
Vishay/Lite On  
(diodes)  
www.vishay-liteon.com  
Vishay/Siliconix  
(MOSFETs)  
(800) 554-5665  
(800) 487-9437  
www.siliconix.com  
Vishay/Dale  
www.vishaytechno.com  
(inductors and resistors)  
Sumida  
(847) 956-0666  
www.japanlink.com/sumida  
Table 2. Component Suppliers  
April 22, 2004  
21  
M9999-042204  
MIC2182  
Micrel  
3A (6.5V30V)  
4A (6.5V30V)  
5A (6.5V30V)  
10A (6.5V10V)  
Reference  
Part No. / Description  
Part No. / Description  
Part No. / Description  
Part No. / Description  
C7  
qty: 2  
qty: 2  
qty: 2  
qty: 2  
TPSE227M010R0100  
AVX, 220µF 10V,  
0.1ESR,  
TPSE227M010R0100  
AVX, 220µF 10V,  
0.1ESR,  
TPSV227M010R0060  
AVX, 220µF 10V,  
0.06ESR,  
TPSV337M010R0060  
AVX, 330µF 10V,  
0.06ESR,  
output filter capacitor  
output filter capacitor  
output filter capacitor  
output filter capacitor  
C11  
qty: 2  
qty: 3  
qty: 4  
qty: 4  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSV107M020R0085  
AVX, 100µF 20V,  
0.06ESR,  
input filter capacitor  
input filter capacitor  
input filter capacitor  
input filter capacitor  
D1  
L1  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B330, Vishay,  
freewheeling diode  
qty: 1 CDRH125-100,  
Sumida Inductor,  
10µH 4A,  
qty: 1 CDRH127-100,  
Sumida Inductor,  
10µH 5A,  
qty: 1 CDRH127-100  
Sumida,  
10µH 5A,  
qty: 1 UP4B-3R3,  
Coiltronics,  
3.3µH 11A,  
output inductor  
output inductor  
output inductor  
output inductor  
Q1  
Q2  
R2  
qty: 1 Si4800, Siliconix,  
low-side MOSFET  
qty: 1 Si4800, Siliconix,  
low-side MOSFET  
qty: 1 Si4884, Siliconix,  
low-side MOSFET  
qty: 2 Si4884, Siliconix  
low-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 1 Si4884, Siliconix,  
high-side MOSFET  
qty: 2 Si4884, Siliconix,  
high-side MOSFET  
qty: 1  
qty: 1  
qty: 1  
qty: 2  
WSL-2010 .025 1%,  
Vishay, 0.025, 1%, 0.5W,  
current sense resistor  
WSL-2010 .020 1%,  
Vishay, 0.02, 1%, 0.5W,  
current sense resistor  
WSL-2512 .015 1%,  
Vishay, 0.015, 1%, 1W,  
current sense resistor  
WSL-2512 .015 1% ,  
Vishay, 0.015, 1%, 1W,  
current sense resistor  
U1  
MIC2182-5.0BSM or  
MIC2182-5.0BM  
MIC2182-5.0BSM or  
MIC2182-5.0BM  
MIC2182-5.0BSM or  
MIC2182-5.0BM  
MIC2182-5.0BM  
Table 3. Components for 5V Output  
3A (4.5V30V)  
4A (4.5V30V)  
5A (4.5V30V)  
10A (4.5V5.5V)  
Reference  
C7  
Part No. / Description  
Part No. / Description  
Part No. / Description  
Part No. / Description  
qty: 2  
qty: 2  
qty: 2  
qty: 2  
TPSE227M010R0100  
AVX, 220µF 10V,  
0.1ESR,  
TPSE227M010R0100  
AVX, 220µF 10V,  
0.1ESR,  
TPSV227M010R0060  
AVX, 220µF 10V,  
0.06ESR,  
TPSV477M006R0055  
AVX, 470µF 6.3V,  
0.055ESR,  
output filter capacitor  
output filter capacitor  
output filter capacitor  
output filter capacitor  
C11  
qty: 2  
qty: 2  
qty: 3  
qty: 3  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSV227M016R0075  
AVX, 220µF 16V,  
0.075ESR,  
filter capacitor  
input filter capacitor  
input filter capacitor  
input filter capacitor  
D1  
L1  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B330, Vishay,  
freewheeling diode  
qty: 1 CDRH125-100,  
Sumida Inductor,  
10µH 4A,  
qty: 1 CDRH127-100,  
Sumida Inductor,  
10µH 5A,  
qty: 1 CDRH127-100  
Sumida,  
10µH 5A,  
qty: 1 UP4B-3R3,  
Coiltronics,  
3.3µH 11A,  
output inductor  
output inductor  
output inductor  
output inductor  
Q1  
Q2  
R2  
qty: 1 Si4800, Siliconix,  
low-side MOSFET  
qty: 1 Si4800, Siliconix,  
low-side MOSFET  
qty: 1 Si4800, Siliconix,  
low-side MOSFET  
qty: 2 Si4884, Siliconix,  
low-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 1 Si4884, Siliconix,  
high-side MOSFET  
qty: 2 Si4884, Siliconix,  
high-side MOSFET  
qty: 1  
qty: 1  
qty: 1  
qty: 2  
WSL-2010 .025 1%,  
Vishay, 0.025, 1%, 0.5W,  
current sense resistor  
WSL-2010 .020 1%,  
Vishay, 0.02, 1%, 0.5W,  
current sense resistor  
WSL-2512 .015 1%,  
Vishay, 0.015, 1%, 1W,  
current sense resistor  
WSL-2512 .015 1% ,  
Vishay, 0.015, 1%, 1W,  
current sense resistor  
U1  
MIC2182-3.3BSM or  
MIC2182-3.3BM  
MIC2182-3.3BM or  
MIC2182-3.3BSM  
MIC2182-3.3BM or  
MIC2182-3.3BSM  
MIC2182-3.3BM  
Table 4. Components for 3.3V Output  
M9999-042204  
22  
April 22, 2004  
MIC2182  
Micrel  
3A (4.5V30V)  
4A (4.5V30V)  
5A (4.5V30V)  
10A (4.5V5.5V)  
Reference  
Part No. / Description  
Part No. / Description  
Part No. / Description  
Part No. / Description  
C7  
qty: 2  
qty: 2  
qty: 2  
qty: 2  
TPSE227M010R0100  
AVX, 220µF 10V,  
0.1ESR,  
TPSE227M010R0100  
AVX, 220µF 10V,  
0.1ESR,  
TPSV227M010R0060  
AVX, 220µF 10V,  
0.06ESR,  
TPSV447M006R0055  
AVX, 470µF 6.3V,  
0.06ESR,  
output filter capacitor  
output filter capacitor  
output filter capacitor  
output filter capacitor  
C11  
qty: 2  
qty: 2  
qty: 2  
qty: 3  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSV227M016R0075  
AVX, 220µF 16V,  
0.06ESR,  
input filter capacitor  
input filter capacitor  
input filter capacitor  
input filter capacitor  
D1  
L1  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B330, Vishay,  
freewheeling diode  
qty: 1 CDRH125-100,  
Sumida Inductor,  
10µH 4A,  
qty: 1 CDRH127-100,  
Sumida Inductor,  
10µH 5A,  
qty: 1 CDRH127-100  
Sumida,  
10µH 5A,  
qty: 1 UP4B-3R3,  
Coiltronics,  
3.3µH 11A,  
output inductor  
output inductor  
output inductor  
output inductor  
Q1  
Q2  
R2  
qty: 1 Si4800, Siliconix,  
low-side MOSFET  
qty: 1 Si4884, Siliconix,  
low-side MOSFET  
qty: 1 Si4884, Siliconix,  
low-side MOSFET  
qty: 2 Si4884, Siliconix  
low-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 2 Si4884, Siliconix,  
high-side MOSFET  
qty: 1  
qty: 1  
qty: 1  
qty: 1  
WSL-2010 .025 1%,  
Vishay, 0.025, 1%, 0.5W,  
current sense resistor  
WSL-2010 .020 1%,  
Vishay, 0.02, 1%, 0.5W,  
current sense resistor  
WSL-2512 .015 1%,  
Vishay, 0.015, 1%, 1W,  
current sense resistor  
WSL-2512 .015 1% ,  
Vishay, 0.015, 1%, 1W,  
current sense resistor  
U1  
MIC2182BSM or  
MIC2182BSM or  
MIC2182BSM or  
MIC2182BM  
MIC2182BM  
MIC2182BM  
MIC2182BM  
Table 5. Components for 2.5V Output  
3A (4.5V30V)  
4A (4.5V30V)  
5A (4.5V8V)  
10A (4.5V5.5V)  
Reference  
Part No. / Description  
Part No. / Description  
Part No. / Description  
Part No. / Description  
C7  
qty: 2  
qty: 2  
qty: 2  
qty: 2  
TPSE227M010R0100  
AVX, 220µF 10V,  
0.1ESR,  
TPSE227M010R0100  
AVX, 220µF 10V,  
0.1ESR,  
TPSV227M010R0060  
AVX, 220µF 10V,  
0.06ESR,  
TPSV447M006R0055  
AVX, 470µF 6.3V,  
0.06ESR,  
output filter capacitor  
output filter capacitor  
output filter capacitor  
output filter capacitor  
C11  
qty: 2  
qty: 2  
qty: 2  
qty: 2  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSE226M035R0300  
AVX, 22µF 35V,  
0.3ESR,  
TPSV227M016R0075  
AVX, 220µF 16V,  
0.06ESR,  
input filter capacitor  
input filter capacitor  
input filter capacitor  
input filter capacitor  
D1  
L1  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B140, Vishay,  
freewheeling diode  
qty: 1 B330, Vishay,  
freewheeling diode  
qty: 1 CDRH125-100,  
Sumida Inductor,  
10µH 4A,  
qty: 1 CDRH127-100,  
Sumida Inductor,  
10µH 5A,  
qty: 1 CDRH127-100  
Sumida,  
10µH 5A,  
qty: 1 UP4B-3R3,  
Coiltronics,  
3.3µH 11A,  
output inductor  
output inductor  
output inductor  
output inductor  
Q1  
Q2  
R2  
qty: 1 Si4800, Siliconix,  
low-side MOSFET  
qty: 1 Si4884, Siliconix,  
low-side MOSFET  
qty: 1 Si4884, Siliconix,  
low-side MOSFET  
qty: 2 Si4884, Siliconix  
low-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 1 Si4800, Siliconix,  
high-side MOSFET  
qty: 2 Si4884, Siliconix,  
high-side MOSFET  
qty: 1  
qty: 1  
qty: 1  
qty: 2  
WSL-2010 .025 1%,  
Vishay, 0.025, 1%, 0.5W,  
current sense resistor  
WSL-2010 .020 1%,  
Vishay, 0.02, 1%, 0.5W,  
current sense resistor  
WSL-2512 .015 1%,  
Vishay, 0.015, 1%, 1W,  
current sense resistor  
WSL-2512 .015 1% ,  
Vishay, 0.015, 1%, 1W,  
current sense resistor  
U1  
MIC2182BSM or  
MIC2182BSM or  
MIC2182BSM or  
MIC2182BM  
MIC2182BM  
MIC2182BM  
MIC2182BM  
Table 6. Components for 1.8V Output  
April 22, 2004  
23  
M9999-042204  
MIC2182  
Micrel  
Power Supply Operating Characteristics  
Effect of Soft-Start Capacitor (CSS) Value  
On Output Voltage Waveforms  
During Turn-On  
Effect of Soft-Start Capacitor (CSS) Value  
On Output Voltage Waveforms  
During Turn-On  
(10A Power Supply Configuration)  
(4A Power Supply Configuration)  
Normal (300kHz Switching Frequency) and  
Output Short-Circuit (60kHz) Conditions  
Switch Node (Pin 15) Waveforms  
Converter Waveforms  
VIN = 7V  
SWITCH-NODE  
VOLTAGE  
L1 = 3.3µH  
VOUT = 3.3V  
IOUT = 10A  
HIGH-SIDE  
DRIVE VOLTAGE  
REFERENCED TO GROUND  
QTY: 2  
Si4884  
HIGH-SIDE MOSFET  
GATE-TO-SOURCE VOLTAGE  
HIGH-SIDE  
MOSFETS  
QTY: 2  
Si4884  
LOW-SIDE  
MOSFETS  
LOW-SIDE MOSFET  
GATE-TO-SOURCE VOLTAGE  
10Amps  
INDUCTOR CURRENT  
Typical Skip-Mode Waveforms  
Typical PWM-Mode Waveforms  
M9999-042204  
24  
April 22, 2004  
MIC2182  
Micrel  
Load Transient Response  
and Bode Plot  
Load Transient Response  
and Bode Plot  
(4A Power Supply Configuration)  
(10A Power Supply Configuration)  
V
IN = 12V  
V
IN = 6V  
VOUT = 3.3V  
L1 = 10µH  
R2 = 20mΩ  
VOUT = 3.3V  
L1 = 3.3µH  
R2 = 7.5mΩ  
Bode Plot  
(4A Power Supply Configuration)  
Bode Plot  
(10A Power Supply Configuration)  
5V Efficiency  
(4A Power Supply Configuration)  
100  
80  
60  
40  
20  
0
210  
180  
150  
120  
90  
100  
80  
60  
40  
20  
0
210  
180  
150  
120  
90  
100  
Skip  
PWM  
80  
GAIN  
GAIN  
60  
PHASE  
VIN = 5V  
40  
R2 = 15mΩ  
L1 = 10µH  
60  
60  
20  
PHASE  
-20  
-40  
30  
-20  
-40  
30  
1 high-side MOSFET: Si4800  
1 low-side MOSFET: Si4800  
0
0
0
0.01  
0.1  
1
4
OUTPUT CURRENT (A)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
12V Efficiency  
(4A Power Supply Configuration)  
24V Efficiency  
(4A Power Supply Configuration)  
Efficiency  
(10A Power Supply Configuration)  
100  
100  
100  
Skip  
80  
PWM  
80  
80  
Skip  
PWM  
Skip  
PWM  
60  
60  
40  
20  
60  
40  
20  
0
VIN = 12V  
40  
VIN = 24V  
R2 = 15mΩ  
L1 = 10µH  
R2 = 7.5mΩ  
R2 = 15mΩ  
L1 = 10µH  
L1 = 3.3µH  
20  
1 high-side MOSFET: Si4800  
1 low-side MOSFET: Si4800  
2 high-side MOSFETs: Si4884  
2 low-side MOSFETs: Si4884  
1 high-side MOSFET: Si4800  
1 low-side MOSFET: Si4800  
0
0
0.01  
0.1  
1
4
0.01  
0.1  
1
4
0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
April 22, 2004  
25  
M9999-042204  
MIC2182  
Micrel  
Package Information  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
REF  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
BSC  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0°8°  
0.050 (1.27)  
0.016 (0.40)  
0.394 (10.00)  
0.386 (9.80)  
SEATING  
PLANE  
0.0648 (1.646)  
0.0434 (1.102)  
0.244 (6.20)  
0.228 (5.79)  
16-pin SOP (M)  
5.40 (0.213)  
5.20 (0.205)  
7.90 (0.311)  
DIMENSIONS:  
MM (INCH)  
7.65 (0.301)  
0.875  
(0.034) REF  
6.33 (0.239)  
6.07 (0.249)  
2.00 (0.079)  
1.73 (0.068)  
10°  
4°  
0.22 (0.009)  
0.13 (0.005)  
0.38 (0.015)  
0.25 (0.010)  
1.25 (0.049) REF  
0.21 (0.008)  
0.05 (0.002)  
COPLANARITY:  
0.10 (0.004) MAX  
0°  
8°  
0.95 (0.037)  
0.55 (0.022)  
0.65 (0.0260)  
BSC  
16-Pin SSOP (SM)  
M9999-042204  
26  
April 22, 2004  
MIC2182  
Micrel  
April 22, 2004  
27  
M9999-042204  
MIC2182  
Micrel  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchasers  
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchasers own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2004 Micrel, Incorporated.  
M9999-042204  
28  
April 22, 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY