MIC2295YD5 [MICREL]

High Power Density 1.2A Boost Regulator; 高功率密度1.2A升压稳压器
MIC2295YD5
型号: MIC2295YD5
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

High Power Density 1.2A Boost Regulator
高功率密度1.2A升压稳压器

稳压器
文件: 总13页 (文件大小:1263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2295  
High Power Density 1.2A Boost Regulator  
Features  
General Description  
2.5V to 10V input voltage range  
Output voltage adjustable to 34V  
1.2A switch current  
1.2MHz PWM operation  
Stable with small size ceramic capacitors  
High efficiency  
Low input and output ripple  
<1mA shutdown current  
UVLO  
The MIC2295 is a 1.2Mhz, PWM dc/dc boost  
switching regulator available in low profile Thin  
SOT23 and 2mm x 2mm MLFpackage options.  
High power density is achieved with the MIC2295’s  
internal 34V / 1.2A switch, allowing it to power large  
loads in a tiny footprint.  
The MIC2295 implements constant frequency  
1.2MHz PWM current mode control. The MIC2295  
offers internal compensation that offers excellent  
transient response and output regulation  
performance. The high frequency operation saves  
board space by allowing small, low-profile external  
components. The fixed frequency PWM scheme also  
reduces spurious switching noise and ripple to the  
input power source.  
Output over-voltage protection (MIC2295BML)  
Over temperature shutdown  
Thin SOT23-5 package option  
2mm x 2mm leadless 8-lead MLFpackage  
option  
–40oC to +125oC junction temperature range  
Applications  
The MIC2295 is available in a low-profile Thin  
SOT23 5-lead package and a 2mm x2mm 8-lead  
MLFleadless package. The 2mm x 2mm MLFꢀ  
package option has an output over-voltage  
protection feature.  
Organic EL power supplies  
3.3V to 5V/500mA conversion  
TFT-LCD bias supplies  
Flash LED drivers  
Positive and negative output regulators  
SEPIC converters  
The MIC2295 has an operating junction temperature  
range of –40°C to +125°C  
Positive to negative Cuk converters  
12V supply for DSL applications  
Multi-output dc/dc converters  
L1  
10µH  
VOUT  
5V/500mA  
VOUT  
15V/100mA  
10µH  
MIC2295 BD5  
MIC2295BML  
SW  
VIN  
1-Cell  
Li Ion  
R1  
VIN  
VIN  
SW  
R1  
100k  
10k  
OVP  
FB  
VIN  
1-Cell  
Li Ion  
EN  
10µF  
FB  
EN  
3V to 4.2V  
C1  
2.2µF  
2.2µF  
C1  
2.2µF  
R2  
9.01K  
R2  
3.3k  
AGND PGND  
GND  
MLF and MicroLeadFrame is a trademark of Amkor Technology  
July 2004  
M9999-072204  
(408) 955-1690  
Micrel  
MIC2295  
Ordering Information  
Output Over  
Voltage  
Protection  
Junction  
Temperature  
Range  
Package  
Part Number  
Marking Code  
Standard  
Standard  
Lead-Free  
Lead-Free  
Thin SOT23-  
5
-40°C to 125°C  
-40°C to 125°C  
MIC2295BD5 MIC2295YD5  
MIC2295BML MIC2295YML  
-
SVAA  
SXA  
SVAA  
SXA  
2mm x2mm  
MLF-8L  
34V  
Pin Configuration  
Pin Description  
MIC2295BD5  
MIC2295BML  
Pin Name  
Pin Function  
Thin SOT-23-5  
2x2 MLF-8L  
1
2
3
7
6
3
SW  
GND  
FB  
Switch Node (Input): Internal power BIPOLAR collector.  
Ground (Return): Ground.  
Feedback (Input): 1.24V output voltage sense node.  
VOUT = 1.24V ( 1 + R1/R2)  
4
5
EN  
Enable (Input): Logic high enables regulator. Logic low  
shuts down regulator.  
2
1
VIN  
OVP  
Supply (Input): 2.5V to 10V input voltage.  
Output Over-Voltage Protection (Input): Tie this pin to  
VOUT to clamp the output voltage to 34V maximum in fault  
conditions. Tie this pin to ground if OVP function is not  
required.  
5
4
8
N/C  
No connect. No internal connection to die.  
Analog ground  
Power ground  
AGND  
PGND  
GND  
EP  
Ground (Return). Exposed backside pad.  
July 2004  
2
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
Absolute Maximum Rating (1)  
Supply voltage (VIN) ……………………..…  
Switch voltage (VSW) ……………………  
Enable pin voltage (VEN) …………..……..…. -0.3 to VIN  
FB Voltage  
Operating Range (2)  
Supply Voltage (VIN) …………………..…… 2.5V to 10V  
Junction Temperature Range (TJ) …… -40°C to +125°C  
Package Thermal Impedance  
12V  
-0.3V to 34V  
JA 2x2 MLF-8L lead ……………………  
93°C/W  
(VFB)……...………………………..…………6V  
Switch Current (ISW) ………………………..…..….. 2.5A  
Ambient Storage Temperature (TS) …. -65°C to +150°C  
ESD Rating(3)...………………………… ……..2KV  
JA ThinSOT23-5 lead …………………… 256°C/W  
Electrical Characteristics TA=25oC, VIN =VEN = 3.6V, VOUT = 15V, IOUT = 40mA, unless otherwise noted. Bold values  
indicate -40°C TJ 125°C.  
Symbol Parameter  
VIN Supply Voltage Range  
VUVLO  
IVIN  
Condition  
Min  
2.5  
1.8  
Typ  
Max  
Units  
10  
2.4  
5
V
V
Under-Voltage Lockout  
Quiescent Current  
Shutdown Current  
Feedback Voltage  
2.1  
2.8  
0.1  
VFB = 2V (not switching)  
VEN = 0V(4)  
mA  
mA  
ISD  
1
VFB  
(+/-1%)  
1.227  
1.24  
1.252  
V
(+/-2%) (Over Temp)  
1.215  
1.265  
Feedback Input Current  
Line Regulation  
IFB  
VFB = 1.24V  
-450  
0.04  
nA  
%
%
%
3V VIN 5V  
5mA IOUT 40mA  
1
Load Regulation  
1.5  
DMAX  
Maximum Duty Cycle  
85  
90  
ISW  
Switch Current Limit  
Note 5  
1.2  
1.7  
600  
0.01  
A
VSW  
ISW  
Switch Saturation Voltage  
Switch Leakage Current  
ISW = 1.2A  
mV  
mA  
VEN = 0V, VSW = 10V  
5
TURN ON  
TURN OFF  
VEN = 10V  
1.5  
VEN  
Enable Threshold  
V
0.4  
40  
IEN  
Enable Pin Current  
20  
1.2  
32  
mA  
MHz  
V
fSW  
VOVP  
Tj  
Oscillator Frequency  
1.05  
30  
1.35  
34  
Output over-voltage protection  
MIC2295BML only  
Hysteresis  
°C  
150  
10  
Over-Temperature Threshold  
Shutdown  
°C  
Notes:  
1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply  
when operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum  
junction temperature, TJ(Max), the junction-to-ambient thermal resistance, JA, and the ambient temperature, TA. The maximum  
allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.  
2. This device is not guaranteed to operate beyond its specified operating rating.  
3. IC devices are inherently ESD sensitive. Handling precautions required. Human body model rating: 1.5K in series with 100pF.  
4.  
ISD = IVIN.  
5. Guaranteed by design.  
July 2004  
3
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
Typical Characteristics  
C3  
MIC2295 -5V Output  
80  
1uF/16V  
L1  
VOUT = -5V @ 0.15A  
VIN = 5V  
L2  
75  
70  
65  
60  
55  
1
5
SW  
VIN  
CMHSH5-2L  
C1  
1 F/  
6.3V  
C2  
MIC2295BML  
4.7uF/  
6.3V  
4
EN  
OVP  
50  
Vin=4V  
3
45  
FB  
Vin=5V  
R3  
R1  
10K  
40  
Vin=5.5V  
GND  
2
10K  
35  
30  
0
100  
200  
300  
Output Current  
L1 = Murata LQH32CN4R7M23  
L2 = Murata LQH32CN4R7M23  
C4  
1uF/  
6.3V  
MIC6211  
+
-
R2  
2.49K  
Sumida  
CDRH4D18  
4.7µH  
15V Short circuit  
protected Boost  
VOUT = 15V / 50mA  
85  
80  
75  
70  
65  
60  
0.1uF/  
6.3V  
1
5
SW  
VIN  
10µF/  
6.3V  
4.7µF/  
25V  
160K  
10K  
MIC2295  
1-Cell  
Li Ion  
4
EN  
3
FB  
Vin=2.5  
V
GND  
2
Vin=3V  
0
20  
40  
60  
80  
100  
CIN = JMK212BJ106MG (Taiyo Yuden)  
OUTPUT CURRENT (mA)  
July 2004  
4
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
C3  
L1  
MIC2295 SEPIC 5V Output  
1uF/16V  
MBRX140  
VOUT = 5V @ 0.3A  
4.7uH  
VIN = 3.3V to 5.5V  
78  
1
5
76  
74  
72  
70  
68  
66  
64  
4.7uH  
L2  
C4  
R1  
43.2K  
SW  
VIN  
470pF/  
10V  
C1  
F/  
6.3V  
C2  
MIC2295BML  
4.7uF/  
6.3V  
4
EN  
3
Vin=3V  
FB  
Vin=3.5V  
Vin=4V  
GND  
2
Vin=5V  
R2  
14.3K  
Vin=5.5V  
0
50  
100  
150  
200  
250  
OUTPUT CURRENT (mA)  
L1 = Murata LQH32CN4R7M23  
L2 = Murata LQH32CN4R7M23  
C3  
5V MIC2295 SEPIC with one  
coupled inductor  
L1  
1uF/16V  
M BRX140  
VI N =3.3V to5. 5 V  
4.7uH  
VOUT =5V @0.3A  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
5
1
4. 7 u H  
L1  
R1  
C4  
VI N  
SW  
C1  
44..7 µF/  
6.3V  
43.2K  
470pF/  
10V  
C 2  
4.7uF/  
6. 3 V  
M IC2295BM L  
4
EN  
3
FB  
G N D  
2
Vin=2.5  
V
R2  
14.3K  
Vin=3.3  
V
Vin=5V  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
L 1= Sumida CL5SD11/HP  
Input Voltage  
vs. Supply Voltage  
MIC2295 12V output Efficiency  
90  
Max Duty Cycle vs Input Voltage  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
100  
85  
80  
75  
95  
90  
85  
80  
75  
70  
70  
Vin=3.3V  
Vin=4.2V  
65  
Vin=3.6V  
60  
2.5  
4
5.5  
7
8.5  
10  
0
50  
100  
150  
200  
2.5  
4
5.5  
7
8.5  
10  
SUPPLY VOLTAGE (V)  
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
Switch Voltage  
vs. Supply Voltage  
MIC2295 15V output Efficiency  
Feedback Voltage  
vs. Temperature  
90  
300  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
85  
80  
75  
250  
200  
150  
100  
50  
70  
Vin=3.3V  
Vin=4V  
Vin=4.2V  
65  
0
2.5  
60  
4.5  
6.5  
8.5  
0
50  
100  
150  
200  
-40 -20  
0
20 40 60 80 100 120  
Input Voltage (V)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
July 2004  
5
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
Frequency  
Current Limit  
Load Regulation  
vs. Temperature  
vs. Temperature  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
12.2  
12.15  
12.1  
12.05  
12  
11.95  
11.9  
VIN = 3.6V  
11.85  
11.8  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
0
25 50 75 100 125 150  
LOAD (mA)  
TEMPERATURE (°C)  
Maximum Duty Cycle  
vs. Supply Voltage  
FB Pin Current  
vs. Temperature  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
700  
600  
500  
400  
300  
200  
100  
0
-40 -20  
0
20 40 60 80 100 120  
2.5  
4
5.5  
7
8.5  
10  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
July 2004  
6
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
Switching Waveforms  
Line Transient Response  
Output Voltage  
Inductor Current  
(10µH)  
4.2V  
VSW  
3.6VIN  
12VOUT  
150mA  
3.2V  
12VOUT  
150mA Load  
Time (400ns/div)  
Time (400µs/div)  
Enable Characteristics  
=3.6V  
V
IN  
3.6V  
IN  
12V  
OUT  
150mA Load  
TIME (400µs/div.)  
July 2004  
7
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
the output of the slope compensation ramp  
generator. This summed current-loop signal is fed to  
one of the inputs of the PWM generator.  
Functional Description  
The MIC2295 is a high power density, PWM dc/dc  
boost regulator. The block diagram is shown in  
Figure 1. The MIC2295 is composed of an oscillator,  
slope compensation ramp generator, current  
amplifier, gm error amplifier, PWM generator, and a  
1.2A bipolar output transistor. The oscillator  
generates a 1.2MHz clock. The clock’s two functions  
are to trigger the PWM generator that turns on the  
output transistor, and to reset the slope  
compensation ramp generator. The current amplifier  
is used to measure the switch current by amplifying  
the voltage signal from the internal sense resistor.  
The output of the current amplifier is summed with  
The gm error amplifier measures the feedback  
voltage through the external feedback resistors and  
amplifies the error between the detected signal and  
the 1.24V reference voltage. The output of the gm  
error amplifier provides the voltage-loop signal that  
is fed to the other input of the PWM generator.  
When the current-loop signal exceeds the voltage-  
loop signal, the PWM generator turns off the bipolar  
output transistor. The next clock period initiates the  
next switching cycle, maintaining constant frequency  
current-mode PWM control  
VIN  
FB  
OVP*  
EN  
MIC2295  
OVP*  
SW  
PWM  
Generator  
gm  
VREF  
1.24V  
Σ
CA  
1.2MHz  
Oscillator  
Ramp  
Generator  
GND  
*
OVP available on MLFTM package option only.  
MIC2295 Block Diargam  
July 2004  
8
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
switch at full duty-cycle in an attempt to maintain the  
feedback voltage. As a result the output voltage will  
climb out of control. This may cause the switch  
node voltage to exceed its maximum voltage rating,  
possibly damaging the IC and the external  
components. To ensure the highest level of  
protection, the MIC2295 OVP pin will shut the switch  
off when an over-voltage condition is detected  
saving itself and other sensitive circuitry  
downstream.  
Application Information  
DC to DC PWM Boost Conversion  
The MIC2295 is a constant frequency boost  
converter. It operates by taking a DC input voltage  
and regulating a higher DC output voltage. Figure 2  
shows a typical circuit.  
L1  
D1  
10uH  
1A/40V  
Vout  
Vin  
Schottky  
SW  
OVP  
VIN  
EN  
Component Selection  
MIC2288BML  
R1  
R2  
C2  
10uF  
FB  
Inductor  
GND  
Inductor selection is a balance between efficiency,  
stability, cost, size and rated current. For most  
applications a 10uH is the recommended inductor  
value. It is usually a good balance between these  
considerations. Efficiency is affected by inductance  
value in that larger inductance values reduce the  
peak to peak ripple current. This has an effect of  
reducing both the DC losses and the transition  
losses.  
There is also a secondary effect of an inductors DC  
resistance (DCR). The DCR of an inductor will be  
higher for more inductance in the same package  
size. This is due to the longer windings required for  
an increase in inductance. Since the majority of  
input current (minus the MIC2295 operating current)  
is passed through the inductor, higher DCR  
inductors will reduce efficiency.  
Gnd  
Gnd  
Figure 2. Typical Application  
Boost regulation is achieved by turning on an  
internal switch, which draws current through the  
inductor (L1). When the switch turns off, the  
inductor’s magnetic field collapses, causing the  
current to be discharged into the output capacitor  
through an external Schottkey diode (D1). Voltage  
regulation is achieved my modulating the pulse  
width or pulse width modulation (PWM).  
Duty Cycle Considerations  
Duty cycle refers to the switch on-to-off time ratio  
and can be calculated as follows for a boost  
regulator;  
V
Also, to maintain stability, increasing inductor size  
will have to be met with an increase in output  
capacitance. This is due to the unavoidable “right  
half plane zero” effect for the continuous current  
boost converter topology. The frequency at which  
the right half plane zero occurs can be calculated as  
IN  
D = 1ꢀ  
V
OUT  
The duty cycle required for voltage conversion  
should be less than the maximum duty cycle of 85%.  
Also, in light load conditions where the input voltage  
is close to the output voltage, the minimum duty  
cycle can cause pulse skipping. This is due to the  
energy stored in the inductor causing the output to  
overshoot slightly over the regulated output voltage.  
During the next cycle, the error amplifier detects the  
output as being high and skips the following pulse.  
This effect can be reduced by increasing the  
minimum load or by increasing the inductor value.  
Increasing the inductor value reduces peak current,  
which in turn reduces energy transfer in each cycle.  
follows;  
2
V
IN  
Frhpz =  
V
OUT L IOUT 2  
The right half plane zero has the undesirable effect  
of increasing gain, while decreasing phase. This  
requires that the loop gain is rolled off before this  
has significant effect on the total loop response. This  
can be accomplished by either reducing inductance  
(increasing RHPZ frequency) or increasing the  
output capacitor value (decreasing loop gain).  
Over Voltage Protection  
Output Capacitor  
For MLF package of MIC2295, there is an over  
voltage protection function. If the feedback resistors  
are disconnected from the circuit or the feedback pin  
is shorted to ground, the feedback pin will fall to  
ground potential. This will cause the MIC2295 to  
Output capacitor selection is also a trade-off  
between performance, size and cost. Increasing  
output capacitance will lead to an improved transient  
response, but also an increase in size and cost. X5R  
July 2004  
9
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
Output Voltage Setting  
or X7R dielectric ceramic capacitors are  
recommended for designs with the MIC2295. Y5V  
values may be used, but to offset their tolerance  
over temperature, more capacitance is required. The  
following table shows the recommended ceramic  
(X5R) output capacitor value vs. output voltage.  
The following equation can be used to select the  
feedback resistors R1 and R2 (see figure 1).  
V
OUT  
R1 = R2 ꢀ  
1  
1.24V  
A high value of R2 can increase the whole system  
efficiency, but the feedback pin input current (IFB) of  
the gm operation amplifier will affect the output  
voltage. An R2 value of xx KW is suitable for most  
applications  
Output Voltage  
Recommended Output  
Capacitance  
10µF  
<6V  
4.7µF  
2.2µF  
<16V  
<34V  
Inductor Selection  
In MIC2295, the switch current limit is 1.2A. The  
selected inductor should handle at least 1.2A current  
without saturating. The inductor should have a low  
DC resistor to minimize power losses. The inductor’s  
value can be 4.7uH to 10uH for most applications.  
Capacitor Selection  
Multi-layer ceramic capacitors are the best choice for  
input and output capacitors. They offer extremely  
low ESR, allowing very low ripple, and are available  
in very small, cost effective packages. X5R  
dielectrics are preferred. A 4.7uF to 10uF output  
capacitor is suitable for most applications.  
Diode Selection  
The MIC2295 requires an external diode for  
operation. A Schottkey diode is recommended for  
most applications due to their lower forward voltage  
drop and reverse recovery time. Ensure the diode  
selected can deliver the peak inductor current and  
the maximum reverse voltage is rated greater than  
the output voltage.  
Input Capacitor  
A minimum 1uF ceramic capacitor is recommended  
for designing with the MIC2295. Increasing input  
capacitance will improve performance and greater  
noise immunity on the source. The input capacitor  
should be as close as possible to the inductor and  
the MIC2295, with short traces for good noise  
performance.  
Diode Selection  
For maximum efficiency, Schottky diode is  
recommended for use with MIC2295. An optimal  
component selection can be made by choosing the  
appropriate reverse blocking voltage rating and the  
average forward current rating for a given  
application. For the case of maximum output voltage  
(34V) and maximum output current capability, a 40V  
/ 1A Schottky diode should be used.  
Feedback Resistors  
The MIC2295 utilizes a feedback pin to compare the  
output to an internal reference. The output voltage is  
adjusted by selecting the appropriate feedback  
resistor values. The desired output voltage can be  
calculated as follows;  
Open-Circuit Protection  
For MLF package option of MIC2295, there is an  
output over-voltage protection function that clamps  
the output to below 34V in fault conditions. Possible  
fault conditions may include: if the device is  
configured in a constant current mode of operation  
and the load opens, or if in the standard application  
the feedback resistors are disconnected from the  
circuit. In these cases the FB pin will pull to ground,  
causing the MIC2295 to switch with a high duty-  
cycle. As a result, the output voltage will climb out of  
regulation, causing the SW pin to exceed its  
maximum voltage rating and possibly damaging the  
IC and the external components. To ensure the  
highest level of safety, the MIC2295 has a dedicated  
pin, OVP, to monitor and clamp the output voltage in  
over-voltage conditions. The OVP function is  
offered in the 2mm x 2mm MLF-8L package option  
only. To disable OVP function, tie the OVP pin to  
ground  
R1  
V
= V  
+1  
OUT  
REF  
R2  
Where Vref is equal to 1.24V.  
Duty-Cycle  
The MIC2295 is a general-purpose step up DC-DC  
converter. The maximum difference between the  
input voltage and the output voltage is limited by the  
maximum duty-cycle (Dmax) of the converter. In the  
case of MIC2295, DMAX = 85%. The actual duty  
cycle for a given application can be calculated as  
follows:  
V
IN  
D = 1ꢀ  
V
OUT  
The actual duty-cycle, D, cannot surpass the  
maximum rated duty-cycle, Dmax  
.
July 2004  
10  
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
L1  
10µH  
VIN  
3V to 4.2V  
VOUT  
9V @ 180mA  
D1  
MIC2295BML  
R1  
31.6k  
VIN  
SW  
OVP  
FB  
C1  
2.2µF  
10V  
C2  
4.7µF  
16V  
EN  
GND  
R2  
5k  
GND  
GND  
3VIN - 4.2VIN to 9VOUT @ 180mA  
3.3VIN to 5VOUT @ 400mA  
L1  
10µH  
L1  
10µH  
VIN  
3V to 4.2V  
VOUT  
12V @ 120mA  
VIN  
3V to 5V  
VOUT  
12V @ 120mA  
D1  
D1  
MIC2295BML  
MIC2295BML  
R1  
43.2k  
R1  
43.2k  
VIN  
SW  
OVP  
FB  
VIN  
SW  
OVP  
FB  
C1  
2.2µF  
10V  
C2  
4.7µF  
16V  
C1  
2.2µF  
10V  
C2  
4.7µF  
16V  
EN  
EN  
GND  
R2  
5k  
GND  
R2  
5k  
GND  
GND  
GND  
GND  
3VIN - 4.2Vin to 12VOUT @ 120mA  
3VIN – 5VIN to 12VOUT @ 120mA  
L1  
10µH  
L1  
4.7µH  
VIN  
3V to 5V  
VOUT  
12V @ 120mA  
VIN  
3V to 4.2V  
VOUT  
5V @ 400mA  
D1  
D1  
470 pF  
MIC2295BML  
MIC2295BML  
R1  
43.2k  
VIN  
SW  
OVP  
FB  
VIN  
SW  
OVP  
FB  
R1  
5.62k  
C1  
4.7µF  
6.3V  
C2  
4.7µF  
16V  
C1  
2.2µF  
10V  
C2  
2.2µF  
16V  
EN  
EN  
GND  
R2  
1.87k  
GND  
R2  
5k  
GND  
GND  
GND  
GND  
3VIN - 4.2VIN to 5VOUT @ 400mA  
3VIN – 5VIN to 12VOUT @ 120mA  
L1  
10µH  
L1  
10µH  
VIN  
3V to 5V  
VOUT  
12V @300mA  
VIN  
5V  
VOUT  
24V@80mA  
D1  
D1  
MIC2295BML  
MIC2295BML  
R1  
VIN  
SW  
OVP  
FB  
R1  
VIN  
SW  
OVP  
FB  
43.2k  
C1  
2.2µF  
10V  
C2  
43.2k  
C1  
2.2µF  
10V  
C2  
2.2µF  
25V  
4.7µF  
16V  
EN  
EN  
GND  
R2  
5k  
GND  
R2  
5k  
GND  
GND  
GND  
GND  
3VIN to 5VIN to 12VOUT @ 300mA  
5VIN to 24VOUT @ 80mA  
July 2004  
11  
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
Package Information  
8-Pin Package MLF (ML)  
July 2004  
12  
M9999-052402  
(408) 955-1690  
Micrel  
MIC2295  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel  
for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a  
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended  
for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a  
significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a  
Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.  
© 2004 Micrel, Incorporated.  
July 2004  
13  
M9999-052402  
(408) 955-1690  

相关型号:

MIC2295YD5-TR

2.5A SWITCHING REGULATOR, 1350kHz SWITCHING FREQ-MAX, PDSO5
MICROCHIP

MIC2295YD5TR

2.5 A SWITCHING REGULATOR, 1350 kHz SWITCHING FREQ-MAX, PDSO5, LEAD FREE, TSOT-23, 5 PIN
ROCHESTER

MIC2295YML

High Power Density 1.2A Boost Regulator
MICREL

MIC2295YMLTR

暂无描述
MICREL

MIC2295_05

High Power Density 1.2A Boost Regulator
MICREL

MIC2296

High Power Density 1.2A Boost Regulator
MICREL

MIC2296BD5

High Power Density 1.2A Boost Regulator
MICREL

MIC2296BD5TR

暂无描述
MICREL

MIC2296BML

High Power Density 1.2A Boost Regulator
MICREL

MIC2296YD5

High Power Density 1.2A Boost Regulator
MICREL

MIC2296YD5-TR

2.5A SWITCHING REGULATOR, 675kHz SWITCHING FREQ-MAX, PDSO5
MICROCHIP

MIC2296YD5TR

2.5 A SWITCHING REGULATOR, 675 kHz SWITCHING FREQ-MAX, PDSO5, LEAD FREE, TSOT-23, 5 PIN
ROCHESTER