MIC281-2YM6TR [MICREL]

SPECIALTY ANALOG CIRCUIT, PDSO6, LEAD FREE, SOT-23, 6 PIN;
MIC281-2YM6TR
型号: MIC281-2YM6TR
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

SPECIALTY ANALOG CIRCUIT, PDSO6, LEAD FREE, SOT-23, 6 PIN

传感器
文件: 总12页 (文件大小:174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC281  
Low-Cost IttyBitty™ Thermal Sensor IttyBitty®  
REV 11/04  
General Description  
Features  
The MIC281 is a digital thermal sensor capable of measuring  
the temperature of a remote PN junction. It is optimized for  
applications favoring low cost and small size. The remote  
junction may be an inexpensive commodity transistor, e.g.,  
2N3906, or an embedded thermal diode such as found in  
Intel Pentium* II/III/IV CPUs, AMD Athlon* CPUs, and Xilinx  
Virtex* FPGAs.  
• Remote temperature measurement using embedded  
thermal diodes or commodity transistors  
Accurate remote sensing  
±3°C max., 0°C to 100°C  
• Excellent noise rejection  
2
• I C and SMBus 2.0 compatible serial interface  
• SMBus timeout to prevent bus lockup  
• Voltage tolerant I/Os  
• Low power shutdown mode  
• Failsafe response to diode faults  
• 3.0V to 3.6V power supply range  
• IttyBitty™ SOT23-6 Package  
The MIC281 is 100% software and hardware backward com-  
patiblewiththeMIC280andfeaturesthesameindustry-leading  
noise performance and small size. The advanced integrating  
A/Dconverterandanalogfront-endreduceerrorsduetonoise  
for maximum accuracy and minimum guardbanding.  
A2-wireSMBus2.0-compatibleserialinterfaceisprovidedfor  
host communication. The clock and data pins are 5V-tolerant  
Applications  
• Desktop, server and notebook computers  
• Set-top boxes  
regardless of the value of V . They will not clamp the bus  
DD  
lines low even if the device is powered down.  
Superior performance, low power, and small size make the  
MIC281 an excellent choice for cost-sensitive thermal man-  
agement applications.  
• Game consoles  
• Appliances  
Typical Application  
3.3V  
10k  
pull-ups  
0.1µF  
MIC281  
5
1
DATA  
CLK  
NC  
VDD  
TO  
SERIAL BUS  
HOST  
4
3
2
T1  
GND  
CPU DIODE  
2000pF  
MIC281 Typical Application  
IttyBitty is a registered trademark of Micrel, Inc.  
*All trademarks are the property of their respective owners.  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
November 2004  
1
MIC281  
MIC281  
Micrel  
Ordering Information  
Part Number  
Marking Pb-FREE  
MIC281-0YM6* TB00  
Slave Address Ambient Temp. Range  
Package  
Standard  
Marking  
MIC281-0BM6* TB00  
MIC281-1BM6* TB01  
MIC281-2BM6* TB02  
MIC281-3BM6* TB03  
MIC281-4BM6 TB04  
MIC281-5BM6* TB05  
MIC281-6BM6* TB06  
MIC281-7BM6* TB07  
1001 000x  
1001 001x  
1001 010x  
1001 011x  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
SOT23-6  
SOT23-6  
SOT23-6  
SOT23-6  
SOT23-6  
SOT23-6  
SOT23-6  
SOT23-6  
b
b
b
MIC281-1YM6* TB01  
MIC281-2YM6* TB02  
MIC281-3YM6* TB03  
b
MIC281-4YM6  
TB05  
1001 100x  
b
b
MIC281-5YM6* TB05  
MIC281-6YM6* TB06  
MIC281-7YM6* TB07  
1001 101x  
1001 110x  
b
b
1001 111x  
* Contact Micrel regarding availability  
Pin Configuration  
VDD  
GND  
T1  
1
2
3
6
5
4
NC  
DATA  
CLK  
SOT23-6  
Pin Description  
Pin  
Pin Name  
Pin Description  
1
VDD  
GND  
T1  
Analog Input: Power supply input to the IC.  
Ground return for all IC functions.  
2
3
Analog Input: Connection to remote diode junction.  
Digital Input: Serial bit clock input.  
4
CLK  
DATA  
NC  
5
Digital I/O: Open-drain. Serial data input/output.  
No Connection: Must be left unconnected.  
6
MIC281  
2
November 2004  
MIC281  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Power Supply Voltage, V  
3.8V  
Power Supply Voltage, V ......................... +3.0V to +3.6V  
DD.....................................................  
DD  
Voltage on T1 ........................................0.3V to V +0.3V  
Ambient Temperature Range (T ) .............. –40°C to +85°C  
DD  
A
Voltage on CLK, DATA....................................–0.3V to 6.0V  
Current Into Any Pin ................................................. ±10mA  
Package Thermal Resistance (θ )  
JA  
SOT-23-6...........................................................230°C/W  
Power Dissipation, T = 125°C................................109mW  
A
Junction Temperature................................................ 150°C  
Storage Temperature................................ –65°C to +150°C  
ESD Ratings, Note 7  
Human Body Model................................................ 1.5kV  
Machine Model ........................................................200V  
Soldering (SOT23-6 Package)  
+5  
Vapor Phase (60s).........................................220 / °C  
Infrared (15s).................................................235 / °C  
–0  
+5  
–0  
Electrical Characteristics  
For typical values, TA=25°C, VDD=3.3V unless otherwise noted. Bold values are for TMINTATMAX unless otherwise noted. Note 2  
Symbol  
Power Supply  
IDD  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Supply Current  
T1 open; CLK=DATA=High; Normal Mode  
0.23  
9
0.4  
mA  
µA  
Shutdown mode; T1 open; CLK = 100kHz;  
Note 5  
Shutdown Mode; T1 open; CLK=DATA=High  
VDD > VPOR  
6
µA  
µs  
V
tPOR  
Power-on reset time, Note 5  
200  
2.65  
VPOR  
Power-on reset voltage  
All registers reset to default values; A/D  
conversions initiated  
2.95  
VHYST  
Power-on reset hysteresis voltage  
Note 5  
300  
mV  
Temperature-to-Digital Converter Characteristics  
Accuracy, Notes 3, 5, 6  
0°C ≤ TD ≤ 100°C; 0°C ≤ TA ≤ 85°C;  
3.15V ≤ VDD ≤ 3.45V  
±1  
±2  
±3  
±5  
°C  
°C  
ms  
–40°C ≤ TD ≤ 125°C; 0°C ≤ TA ≤ 85°C;  
3.15V ≤ VDD ≤ 3.45V  
tCONV  
Remote Temperature Input, T1  
IF Current into External Diode  
Note 5  
Serial Data I/O Pin, DATA  
Conversion time, Note 5  
200  
240  
T1 forced to 1.0V, high level  
192  
12  
400  
µA  
Low level  
7
µA  
VOL  
Low Output Voltage, Note 4  
IOL = 3mA  
0.3  
0.5  
0.8  
5.5  
V
V
IOL = 6mA  
VIL  
Low Input Voltage  
High Input Voltage  
Input Capacitance, Note 5  
Input Current  
3.0V ≤ VDD ≤ 5.5V  
3.0V ≤ VDD ≤ 5.5V  
V
VIH  
2.1  
V
CIN  
ILEAK  
10  
pF  
µA  
±1  
November 2004  
3
MIC281  
MIC281  
Micrel  
Symbol  
Parameter  
Condition  
Min  
2.1  
Typ  
Max  
Units  
Serial Clock Input, CLK  
VIL  
Low Input Voltage  
3.0V ≤ VDD ≤ 3.6V  
0.8  
5.5  
V
V
VIH  
High Input Voltage  
Input Capacitance, Note 5  
Input current  
3.0V ≤ VDD ≤ 3.6V  
CIN  
ILEAK  
10  
pF  
µA  
±1  
Serial Interface Timing  
t1  
t2  
CLK (clock) period  
2.5  
100  
300  
100  
100  
25  
µs  
ns  
ns  
ns  
ns  
ms  
Data in Setup Time to CLK High  
Data Out Stable After CLK Low  
DATA Low Setup Time to CLK Low  
t3  
t4  
Start Condition  
t5  
DATA High Hold Time After CLK High Stop Condition  
Bus timeout  
tTO  
30  
35  
Note 1. The device is not guaranteed to function outside its operating range.  
Note 2. Final test on outgoing product is performed at TA = 25°C.  
Note 3. TD is the temperature of the remote diode junction. Testing is performed using a single unit of one of the transistors listed in Table 5.  
Note 4. Current into the DATA pin will result in self-heating of the device. Sink current should be minimized for best accuracy.  
Note 5. Guaranteed by design over the operating temperature range. Not 100% production tested.  
Note 6. Accuracy specifications do not include quantization noise which may be up to ± 0.5LSB.  
Note 7. Devices are ESD sensitive. Observe appropriate handling precautions.  
Timing Diagram  
t1  
SCL  
t4  
t2  
t5  
SDA  
DATA INPUT  
t3  
SDA  
DATA OUTPUT  
Serial Interface Timing  
MIC281  
4
November 2004  
MIC281  
Micrel  
Typical Characteristics  
V
= 3.3V; T = 25°C, unless otherwise noted.  
DD  
A
Quies cent C urrent vs .  
C lock Frequency in  
S hutdown Mode  
R emote Temperature  
Meas urement E rror  
S upply C urrent vs .  
Temperature for V = 3.3V  
DD  
2
1.5  
1
400  
350  
300  
250  
200  
150  
100  
50  
20  
15  
10  
5
T1 open  
DATA = HIG H  
0.5  
0
-0.5  
-1  
-1.5  
-2  
0
0
0
20  
40  
60  
80  
100  
-55 -35 -15  
5 25 45 65 85 105 125  
0
100  
200  
300  
400  
REMOTE DIODE TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Quies cent C urrent vs .  
Temperature in S hutdown Mode  
Quies cent C urrent vs .  
S upply Voltage in S hutdown Mode  
Meas urement E rror vs .  
P C B L eakage to +3.3V/G ND  
10  
30  
8
T1 open  
C LK = DATA = HIG H  
T1 open  
C LK = DATA = HIG H  
9
6
4
25  
8
7
6
5
4
3
2
1
0
20  
15  
10  
5
2
G ND  
3.3V  
0
-2  
-4  
-6  
0
-8  
1x10 6  
1x10 7  
1x10 8  
1x10 9  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
-55 -35 -15  
5 25 45 65 85 105 125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
RESISTANCE FROM T1 ()  
E rror Due to Nois e on the  
C ollector of R emote Trans is tor  
R emote Temperature E rror vs .  
E rror Due to Nois e on the B as e  
C apacitance on T1  
of R emote Trans is tor  
5
1.6  
7
100mVP -P  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
25mVP -P  
0
5
4
3
-5  
-10  
10mVP -P  
3mVP -P  
50mVP -P  
2
1
-15  
-20  
25mVP -P  
10M  
100M  
0
1k  
1
10 100  
10k 100k 1M  
1k  
10M  
100M  
1
10 100  
10k 100k 1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
November 2004  
5
MIC281  
MIC281  
Micrel  
Functional Description  
Serial Port Operation  
TheMIC281usesstandardSMBusWrite_ByteandRead_Byte  
operations for communication with its host. The SMBus  
Write_Byte operation involves sending the device’s slave  
address (with the R/W bit low to signal a write operation),  
followed by a command byte and the data byte. The SMBus  
Read_Byteoperationisacompositewriteandreadoperation:  
the host first sends the device’s slave address followed by  
the command byte, as in a write operation. A new start bit  
must then be sent to the MIC281, followed by a repeat of the  
slave address with the R/W bit (LSB) set to the high (read)  
state. The data to be read from the part may then be clocked  
out. These protocols are shown in Figures 1 and 2.  
The Command byte is eight bits (one byte) wide. This byte  
carries the address of the MIC281 register to be operated  
upon.Thecommandbytevaluescorrespondingtothevarious  
MIC281 registers are shown in Table 1. Other command byte  
values are reserved, and should not be used.  
MIC281 Slave Address  
Command Byte  
Data Byte to MIC281  
S
1
0
0
1
A2 A1 A0  
0
A
X
X
X
X
X
X
X
X
A
D7 D6 D5 D4 D3 D2 D1 D0 /A P  
DATA  
CLK  
R/W = WRITE  
ACKNOWLEDGE  
ACKNOWLEDGE  
NOT ACKNOWLEDGE  
START  
STOP  
Master to slave transfer,  
i.e., DATA driven by master.  
Slave to master transfer,  
i.e., DATA driven by slave.  
Figure 1. Write_Byte Protocol  
MIC281 Slave Address  
Command Byte  
MIC281 Slave Address  
Data Read From MIC281  
S
1
0
0
1
X
X
X
0
A
X
X
X
X
X
X
X
X
A
S
1
0
0
1
X
X
X
1
A
X
X
X
X
X
X
X
X /A P  
DATA  
CLK  
R/W = WRITE  
ACKNOWLEDGE  
ACKNOWLEDGE  
R/W = READ  
ACKNOWLEDGE  
NOT ACKNOWLEDGE  
START  
START  
STOP  
Master to slave transfer,  
i.e., DATA driven by master.  
Slave to master transfer,  
i.e., DATA driven by slave.  
Figure 2. Read_Byte Protocol  
Command Byte  
Value  
Power-on  
Default  
Target Register  
Label  
Description  
Read  
01h  
Write  
n/a  
TEMP  
Remote temperature result  
Configuration  
00h (0°C)  
80h  
CONFIG  
MFG_ID  
DEV_ID  
03h  
03h  
n/a  
Manufacturer identification  
Device and revision identification  
FEh  
FFh  
2Ah  
n/a  
0xh*  
* The lower nibble contains the die revision level, e.g., Rev 0 = 00h.  
Table 1. MIC281 Register Addresses  
MIC281  
6
November 2004  
MIC281  
Micrel  
Temperature  
+127°C  
+125°C  
+25°C  
Binary  
Hex  
7F  
7D  
19  
Slave Address  
0111 1111  
0111 1101  
0001 1001  
0000 0001  
0000 0000  
1111 1111  
1110 0111  
1000 0011  
1000 0000  
The MIC281 will only respond to its own unique slave ad-  
dress. A match between the MIC281’s address and the  
address specified in the serial bit stream must be made to  
initiate communication. The MIC281’s slave address is fixed  
at the time of manufacture. Eight different slave addresses  
are available as determined by the part number. See Table  
2 below and the Ordering Information table.  
+1°C  
01  
0°C  
00  
–1°C  
FF  
E7  
83  
–25°C  
Part Number  
MIC281-0BM6  
MIC281-1BM6  
MIC281-2BM6  
MIC281-3BM6  
MIC281-4BM6  
MIC281-5BM6  
MIC281-6BM6  
MIC281-7BM6  
Slave Address  
–125°C  
–128°C  
1001 000xb = 90h  
1001 001xb = 92h  
1001 010xb = 94h  
1001 011xb = 96h  
1001 100xb = 98h  
1001 101xb = 9Ah  
1001 110xb = 9Ch  
1001 111xb = 9Eh  
80  
Table 3. Digital Temperature Format  
Diode Faults  
The MIC281 is designed to respond in a failsafe manner to  
diode faults. If an internal or external fault occurs in the tem-  
perature sensing circuitry, such as T1 being open or shorted  
to V or GND, the temperature result will be reported as the  
DD  
maximum full-scale value, +127°C. Note that diode faults will  
notbedetecteduntiltherstA/Dconversioncycleiscompleted  
following power-up or exiting shutdown mode.  
Table 2. MIC281 Slave Addresses  
Temperature Data Format  
Shutdown Mode  
Theleast-significantbitofthetemperatureregisterrepresents  
one degree Centigrade. The values are in a two’s comple-  
ment format, wherein the most significant bit (D7) represents  
the sign: zero for positive temperatures and one for negative  
temperatures. Table 3 shows examples of the data format  
used by the MIC281 for temperatures.  
Setting the shutdown bit in the configuration register will  
cause the MIC281 to cease operation. TheA/D converter will  
stop and power consumption will drop to the I  
registers will be affected by entering shutdown mode. The  
last temperature reading will persist in the TEMP register.  
level. No  
SHDN  
November 2004  
7
MIC281  
MIC281  
Micrel  
Detailed Register Descriptions  
Remote Temperature Result (TEMP)  
8-bits, read-only  
Remote Temperature Result Register  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Temperature Data from ADC  
Bit  
Function  
Operation  
Read-only  
D[7:0]  
Measured temperature data for the remote zone  
Power-up default value: 0000 0000 = 00 (0°C)**  
b
h
Command byte:  
0000 0001 = 01  
b
h
Each LSB represents one degree centigrade. The values are in a two’s complement binary format such that 0°C is reported  
as 0000 0000b. See Temperature Data Format (above) for more details.  
**TEMP will contain measured temperature data after the completion of one conversion.  
Configuration Register (CONFIG)  
8-bits, read/write  
Configuration Register  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
write-only  
Reserved  
Shutdown  
(SHDN)  
reserved  
Bits(s)  
Function  
Operation*  
D7  
Reserved  
Always write as zero;  
reads undefined  
SHDN  
D[5:0]  
Shutdown bit  
Reserved  
0 = normal operation, 1 =  
shutdown  
Always write as zero;  
reads undefined  
Power-up default value: x0xx xxxx (Not in shutdown mode)  
b
Command byte:  
0000 0011 = 03  
b h  
* Any write to CONFIG will result in any A/D conversion in progress being aborted and the result discarded. The A/D will begin a new conver-  
sion sequence once the write operation is complete.  
MIC281  
8
November 2004  
MIC281  
Micrel  
Manufacturer ID Register (MFG_ID)  
8-bits, read-only  
Manufacturer ID Register  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
0
0
1
0
1
0
1
0
BIT(S)  
FUNCTION  
Operation*  
D[7:0]  
Identifies Micrel as the manufacturer of the device. Always returns 2Ah.  
Read-only. Always returns 2Ah.  
Power-up default value:  
Read command byte:  
0010 1010 = 2A  
b
h
1111 1110 = FE  
b
h
Die Revision Register (DIE_REV)  
8-bits, read-only  
Die Revision Register  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
MIC281 DIE REVISION NUMBER  
Bit(s)  
Function  
Operation*  
D[7:0]  
Identifies the device revision number  
Read-only  
Power-up default value:  
Read command byte:  
[Device revision number]  
h
1111 1111 = FF  
b
h
November 2004  
9
MIC281  
MIC281  
Micrel  
Series Resistance  
Application Information  
The operation of the MIC281 depends upon sensing the  
ofadiode-connectedPNPtransistor(“diode)attwodif-  
Remote Diode Selection  
V
CB-E  
Mostsmall-signalPNPtransistorswithcharacteristicssimilar  
totheJEDEC2N3906willperformwellasremote temperature  
sensors. Table 4 lists several examples of such parts that  
Micrel has tested for use with the MIC281. Other transistors  
equivalent to these should also work well.  
ferentcurrentlevels.Forremotetemperaturemeasurements,  
this is done using an external diode connected between T1  
and ground. Since this technique relies upon measuring the  
relatively small voltage difference resulting from two levels of  
current through the external diode, any resistance in series  
with the external diode will cause an error in the temperature  
reading from the MIC281. A good rule of thumb is this: for  
each ohm in series with the external transistor, there will be a  
0.9°C error in the MIC281’s temperature measurement. It is  
not difficult to keep the series resistance well below an ohm  
(typically < 0.1), so this will rarely be an issue.  
Vendor  
Part Number  
MMBT3906  
MMBT3906L  
SMBT3906  
Package  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
Fairchild Semiconductor  
On Semiconductor  
Infineon Technologies  
Samsung Semiconductor  
KST3906-TF  
Table 4. Transistors Suitable for Use as Remote  
Diodes  
Filter Capacitor Selection  
It is usually desirable to employ a filter capacitor between the  
T1 and GND pins of the MIC281. The use of this capacitor is  
recommended in environments with a lot of high frequency  
noise(suchasdigitalswitchingnoise),oriflongtracesorwires  
are used to connect to the remote diode. The recommended  
total capacitance from the T1 pin to GND is 2200pF. If the  
remote diode is to be at a distance of more than 6”-12” from  
theMIC281, usingtwistedpairwiringorshieldedmicrophone  
cablefortheconnectionstothediodecansignificantlyreduce  
noise pickup. If using a long run of shielded cable, remember  
to subtract the cable’s conductor-to-shield capacitance from  
the 2200pF total capacitance.  
Minimizing Errors  
Self-Heating  
Oneconcernwhenusingapartwiththetemperatureaccuracy  
and resolution of the MIC281 is to avoid errors induced by  
self-heating (V × I ) + (V × I ). In order to understand  
DD  
DD  
OL  
OL  
what level of error this might represent, and how to reduce  
that error, the dissipation in the MIC281 must be calculated  
and its effects reduced to a temperature offset. The worst-  
case operating condition for the MIC281 is when V  
3.6V. The maximum power dissipated in the part is given in  
Equation 1 below.  
=
DD  
In most applications, the DATA pin will have a duty cycle of  
substantiallybelow25%inthelowstate.Theseconsiderations,  
combinedwithmoretypicaldeviceandapplicationparameters,  
give a better system-level view of device self-heating. This  
is illustrated by Equation 2. In any application, the best ap-  
proach is to verify performance against calculation in the final  
application environment. This is especially true when dealing  
withsystemsforwhichsometemperaturedatamaybepoorly  
defined or unobtainable except by empirical means.  
PD = [(IDD×VDD)+(IOL(DATA) × VOL(DATA))]  
PD = [(0.4mA×3.6V)+(6mA×0.5V)]  
PD = 4.44mW  
R
of SOT23-6 package is 230°C/W, therefore...  
θ(J-A)  
the theoretical maximum self-heating is:  
4.44mW×230°C/W = 1.02°C  
Equation 1. Worst-Case Self-Heating  
PD = [(IDD×VDD)+(IOL(DATA) × VOL(DATA))]  
PD = [(0.23mA×3.3V)+(25% × 1.5mA×0.15V)]  
PD = 0.815mW  
R
of SOT23-6 package is 230°C/W, therefore...  
θ(J-A)  
the typical self-heating is:  
0.815mW×230°C/W = 0.188°C  
Equation 2. Real-World Self-Heating Example  
MIC281  
10  
November 2004  
MIC281  
Micrel  
4. Due to the small currents involved in the mea-  
Layout Considerations  
surement of the remote diode’s V , it is  
BE  
Thefollowingguidelinesshouldbekeptinmindwhendesign-  
ing and laying out circuits using the MIC281:  
important to adequately clean the PC board after  
soldering to prevent current leakage. This is  
most likely to show up as an issue in situations  
where water-soluble soldering fluxes are used.  
1. Place the MIC281 as close to the remote diode  
as possible, while taking care to avoid severe  
noise sources such as high frequency power  
transformers, CRTs, memory and data busses,  
etc.  
5. In general, wider traces for the ground and T1  
lines will help reduce susceptibility to radiated  
noise (wider traces are less inductive). Use trace  
widths and spacing of 10mm wherever possible  
and provide a ground plane under the MIC281  
and under the connections from the MIC281 to  
the remote diode. This will help guard against  
stray noise pickup.  
2. Since any conductance from the various volt-  
ages on the PC board and the T1 line can in-  
duce serious errors, it is good practice to guard  
the remote diode’s emitter trace with a pair of  
ground traces. These ground traces should be  
returned to the MIC281’s own ground pin. They  
should not be grounded at any other part of their  
run. However, it is highly desirable to use these  
guard traces to carry the diode’s own ground  
return back to the ground pin of the MIC281,  
thereby providing a Kelvin connection for the  
base of the diode. See Figure 3.  
6. Always place a good quality power supply  
bypass capacitor directly adjacent to, or un-  
derneath, the MIC281. This should be a 0.1µF  
ceramic capacitor. Surface mount parts provide  
the best bypassing because of their low  
inductance.  
3. When using the MIC281 to sense the tempera-  
ture of a processor or other device which has an  
integral thermal diode, e.g., Intel’s Pentium III,  
connect the emitter and base of the remote sen-  
sor to the MIC281 using the guard traces and  
Kelvin return shown in Figure 3. The collector of  
the remote diode is typically inaccessible to the  
user on these devices.  
MIC281  
VDD  
GND  
T1  
NC  
DATA  
CLK  
1
2
3
6
5
4
GUARD/RETURN  
REMOTE DIODE (T1)  
GUARD/RETURN  
Figure 3. Guard Traces/Kelvin Ground Returns  
November 2004  
11  
MIC281  
MIC281  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.00 (0.118)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
6-Lead SOT23 (M6)  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2004 Micrel Incorporated  
MIC281  
12  
November 2004  

相关型号:

MIC281-3BM6

Low-Cost IttyBitty Thermal Sensor IttyBitty
MICREL

MIC281-3BM6TR

Analog Circuit, 1 Func, PDSO6, SOT-23, 6 PIN
MICROCHIP

MIC281-3YM6

Low-Cost IttyBitty Thermal Sensor IttyBitty
MICREL

MIC281-4BM6

Low-Cost IttyBitty Thermal Sensor IttyBitty
MICREL

MIC281-4BM6TR

Analog Circuit, 1 Func, PDSO6, SOT-23, 6 PIN
MICROCHIP

MIC281-4YM6

Low-Cost IttyBitty Thermal Sensor IttyBitty
MICREL

MIC281-4YM6-TR

SPECIALTY ANALOG CIRCUIT, PDSO6
MICROCHIP

MIC281-4YM6TR

暂无描述
MICREL

MIC281-5BM6

Low-Cost IttyBitty Thermal Sensor IttyBitty
MICREL

MIC281-5BM6TR

SPECIALTY ANALOG CIRCUIT, PDSO6, SOT-23, 6 PIN
ROCHESTER

MIC281-5YM6

Low-Cost IttyBitty Thermal Sensor IttyBitty
MICREL

MIC281-5YM6TR

SPECIALTY ANALOG CIRCUIT, PDSO6, LEAD FREE, SOT-23, 6 PIN
MICROCHIP