MIC2829-B0YAB [MICREL]

3G/4G HEDGE/LTE PMIC with Six Buck Converters, Eleven LDOs and SIM Card Level Translation; 3G / 4G HEDGE / LTE PMIC与六降压转换器, LDO的十一和SIM卡电平转换
MIC2829-B0YAB
型号: MIC2829-B0YAB
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

3G/4G HEDGE/LTE PMIC with Six Buck Converters, Eleven LDOs and SIM Card Level Translation
3G / 4G HEDGE / LTE PMIC与六降压转换器, LDO的十一和SIM卡电平转换

转换器 开关 集成电源管理电路 输出元件 LTE
文件: 总52页 (文件大小:3646K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2829  
3G/4G HEDGE/LTE PMIC with  
Six Buck Converters, Eleven LDOs  
and SIM Card Level Translation  
General Description  
Features  
The MIC2829 is a highly integrated Power Management  
Integrated Circuit (PMIC) designed for 3G/4G  
(HEDGE/LTE and WiMAX) USB wireless applications. It is  
a complete power management solution which provides  
power to processors, dual standard RF (such as  
HEDGE/LTE or WiMAX) transceivers and power  
amplifiers, memory, USB-PHY associated I/O interfaces  
and other system requirements.  
Input voltage range: 2.7V to 5.5V  
Six DC Step-Down Regulators  
Four HyperLight LoadTM step-down regulators  
- Low quiescent current – typical 40µA  
- DC1: 4MHz / 1000mA  
- DC2: 4MHz / 300mA (with voltage scaling)  
- DC3: 2.5MHz / 600mA  
The MIC2829 incorporates six DC/DC buck converters,  
eleven LDOs and digital level shifters for SIM Card support  
inside a single package. Four of the six integrated DC/DC  
buck converters incorporate HyperLight LoadTM (HLL)  
technology. Each of these buck regulators operate at high  
switching speed in PWM mode (4MHz/2.5MHz) and  
maintain high efficiency in light load conditions. The high  
speed PWM operation allows the use of very small  
inductors and capacitors minimizing board area while the  
HLL mode enables 87% efficiency at 1mA. HyperLight  
LoadTM technology also has unmatched load transient  
response to support advance portable processor  
requirements.  
- DC4: 4MHz / 600mA (with adjustable delay POR)  
Two PWM step-down regulators  
- DC5 and DC6: Fixed 2MHz / 800mA  
- 100% duty cycle  
Eleven Low Dropout Regulators (LDOs)  
Five general purpose 200mA LDOs (LDO1-4, LDO11)  
- LDO3: 38mV dropout at 100mA  
- LDO2 and LDO4: 80mV dropout at 100mA  
- LDO1 and LDO11: 115mV dropout at 100mA  
- Output accuracy ± 3%  
- 40µA ground current  
Six high performance 200mA LNRs (LDO5-10)  
- High PSRR 70dB at 1kHz  
The remaining two DC/DC buck converters support 100%  
duty cycle operation and can deliver greater than 96%  
efficiency. This allows pre-regulation of system LDOs for  
high efficiency power system partitioning.  
- Low noise: 20µVRMS  
- 40mV dropout at 100mA  
- Output accuracy ± 3%  
- 20µA ground current  
The MIC2829 has eleven low dropout regulators (LDOs).  
Five general purpose LDOs provide low dropout, excellent  
output accuracy of ±3% and only require 40µA of ground  
current for each to operate. The remaining six are high  
performance Low Noise Regulators (LNRs) which provide  
high PSRR and low output noise for sensitive RF  
subsystems. Each LNR requires only 20µA of ground  
current to operate. The MIC2829 also has three high  
speed level shifters for digital SIM Card signal translation  
and a 50mA SIM power supply.  
SIM card level translator  
SIM card power supply (50mA)  
Thermal shutdown and current limit protection  
UVLO – under voltage lockout protection  
76-pin 5.5mm x 5.5mm LGA package  
85-pin 5.5mm x 5.5mm FBGA package  
–40°C to +125°C operating junction temperature range  
Applications  
4G LTE USB modems  
3G/4G (HEDGE/LTE) wireless chipsets  
WiMAX modems  
Express card modems  
The MIC2829 is available in a 76-pin 5.5mm x 5.5mm LGA  
and an 85-pin 5.5mm x 5.5mm FBGA package. The  
operating junction temperature range for both packages is  
from –40°C to +125°C.  
Data sheets and support documentation can be found on  
Micrel’s website at: www.micrel.com.  
UMPC/notebook PC wireless data communications  
Portable applications  
HyperLight Load is a trademark of Micrel, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-051410-B  
May 2010  
MIC2829  
Micrel Inc.  
Typical Application  
VIN  
AVIN1  
AGND1  
AVIN2  
AGND2  
AVIN3  
AGND3  
AVIN4  
AGND4  
C1  
BYP  
1µF  
C7  
0.1µF  
LDO10  
LDO9  
C18  
1µF  
C10  
2.2µF  
C8  
2.2µF  
ENL910  
C23  
1µF  
INLDO910  
C9  
1µF  
C28  
1µF  
PVIN6  
SW6  
ENGLB  
C32  
1µF  
L6  
2.2µH  
DC6  
PVIN1  
SW1  
FB6  
PGND6  
ENDC6  
C40  
120pF  
R10  
20k  
C20  
1µF  
L1  
2.2µH  
DC1  
C31  
4.7µF  
R16  
20k  
FB1  
C19  
4.7µF  
PGND1  
PVIN2  
SW2  
C21  
1µF  
L2  
2.2µH  
DC2  
INLDO8  
ENL8  
FB2  
C14  
1µF  
C22  
4.7µF  
PGND2  
ENDC2  
VSC2  
LDO8  
C13  
2.2µF  
PVIN3  
SW3  
INLDO7  
ENL7  
L3  
1µH  
C25  
1µF  
C12  
1µF  
MIC2829  
DC3  
FB3  
LDO7  
C24  
4.7µF  
C11  
2.2µF  
PGND3  
PVIN4  
SW4  
PVIN5  
SW5  
FB5  
C26  
1µF  
L4  
C29  
1µF  
L5  
DC4  
2.2µH  
2.2µH  
DC5  
FB4  
R7  
C39  
120pF  
R23  
10k  
46.4k  
C27  
4.7µF  
PGND4  
C30  
4.7µF  
PGND5  
ENDC5  
R8  
20k  
RESETB  
SETDLY  
C35  
1µF  
LDO1  
INLDO6  
ENL6  
C34  
1µF  
C2  
1µF  
LDO11  
INLDO23  
LDO2  
C33  
1µF  
LDO6  
C3  
C16  
1µF  
2.2µF  
C17  
INLDO45  
ENL5  
1µF  
LDO3  
ENL3  
C5  
1µF  
C15  
1µF  
LDO5  
C6  
LDO4  
ENL4  
2.2µF  
C4  
1µF  
SIMRST  
SIMCLK  
SIMIO  
LSPWR  
RSTIN  
CLKIN  
DATA  
VSLS  
C37  
1µF  
SIMPWR  
C36  
1µF  
SUB1  
SUB2  
ENLS  
M9999-051410-B  
May 2010  
2
MIC2829  
Micrel Inc.  
Ordering Information  
Part Number  
Junction  
Temperature Range  
Marking Code  
Package  
Lead Finish  
MIC2829-A0YAL  
MIC2829-B0YAB(1)  
MIC2829-A0  
MIC2829-B0  
-40°C to +125°C  
-40°C to +125°C  
76-Pin 5.5mm x 5.5mm LGA  
85-Pin 5.5mm x 5.5mm FBGA  
Pb-Free  
Pb-Free  
Output  
Output Voltage  
(A0 Option)  
Output Voltage  
(B0 Option)  
DC1  
DC2  
1.2V  
1.0V / 1.2V  
3.0V  
1.15V  
1.0V / 1.2V  
3.0V  
DC3  
DC4  
1.8V  
1.8V  
DC5  
ADJ  
ADJ  
DC6  
ADJ  
ADJ  
LDO1  
LDO2  
LDO3  
LDO4  
LNR5  
LNR6  
LNR7  
LNR8  
LNR9  
LNR10  
LDO11  
Note:  
3.3V  
3.3V  
2.5V  
2.5V  
2.8V  
2.8V  
2.85V  
2.8V  
2.85V  
2.8V  
2.5V  
2.5V  
1.8V  
1.8V  
1.5V  
1.35V  
1.2V  
1.2V  
1.2V  
1.2V  
2.8V  
2.8V  
1. Contact Micrel Marketing for details.  
M9999-051410-B  
May 2010  
3
MIC2829  
Micrel Inc.  
Pin Configuration  
76-Pin 5.5mm x 5.5mm LGA Package (AL)  
(Top View)  
85-Pin 5.5mm x 5.5mm FBGA Package (AB)  
(Top View)  
Pin Description  
Pin # A Pin # B Pin # G  
Pin name  
AVIN1  
INLDO6  
LDO6  
Description  
A1  
A2  
A3  
B1  
A4  
B2  
A5  
B3  
A6  
B4  
A7  
B5  
A8  
B6  
A9  
A10  
A11  
A12  
Analog supply to chip. All AVIN pins should be tied together.  
Supply input to LNR6.  
LNR6 output.  
LDO4  
LDO4 output.  
INLDO45  
LDO5  
Supply input to LDO4 and LNR5.  
LNR5 output.  
BYP  
Reference bypass pin. Connect a 0.1µF capacitor-to-ground.  
LNR9 output.  
LDO9  
INLDO910  
LDO10  
LDO7  
Supply input to LNR9 and LNR10.  
LNR10 output.  
LNR7 output.  
INLDO7  
LDO8  
Supply input to LNR7.  
LNR8 output.  
INLDO8  
LDO3  
Supply input to LNR8.  
LDO3 output.  
INLDO23  
LDO2  
Supply input to LDO2 and LDO3.  
LDO2 output.  
AVIN2  
Analog supply to chip. All AVIN pins should be tied together.  
M9999-051410-B  
May 2010  
4
MIC2829  
Micrel Inc.  
Pin # A Pin # B Pin # G  
Pin name  
SETDLY  
AGND2  
ENL6  
Description  
B7  
A13  
B8  
Set delay pin for RESETB output (1sec/µF).  
Analog ground. Connect all AGND pins together.  
Enable LNR6. Do not leave floating.  
Enable LNR7. Do not leave floating.  
Guard ring ground connection. Connect to AGND1 and AGND2.  
Enable LNR8. Do not leave floating.  
Open drain RESETB output (POR function).  
Power ground of DC1.  
A14  
ENL7  
B9  
SUB2  
A15  
B10  
A16  
B11  
A17  
B12  
A18  
B13  
A19  
B14  
A20  
B15  
A21  
B16  
A22  
A23  
A24  
A25  
B17  
A26  
B18  
A27  
B19  
A28  
B20  
A29  
B21  
A30  
B22  
A31  
A32  
A33  
A34  
B23  
A35  
B24  
A36  
ENL8  
RESETB  
PGND1  
FB1  
Output sense pin of DC1.  
SW1  
Switch output of DC1.  
ENL910  
PVIN1  
AGND3  
PVIN2  
ENDC2  
SW2  
Enable LNR9 and LNR 10. Do not leave floating.  
Power input of DC1.  
Analog ground. Connect all AGND pins together.  
Power input of DC2.  
Enable DC2. Do not leave floating.  
Switch output of DC2.  
FB2  
Output sense pin of DC2.  
PGND2  
FB3  
Power ground of DC2.  
Output sense pin of DC3.  
AVIN3  
PGND3  
SW3  
Analog supply to chip. All AVIN pins should be tied together.  
Power ground of DC3.  
Switch output of DC3.  
PVIN3  
VSC2  
Power input of DC3.  
Voltage Scaling pin DC2 (High sets 1.2V, Low sets 1.0V). Do not leave floating.  
Power input of DC4.  
PVIN4  
ENLS  
Enable level shifter. Do not leave floating.  
Switch output of DC4.  
SW4  
FB4  
Output sense pin of DC4.  
PGND4  
LSPWR  
DATA  
CLKIN  
SIMCLK  
SIMIO  
AGND4  
SIMRST  
SIMPWR  
AVIN4  
VSLS  
Power ground of DC4.  
Power input for level shifter input (1.8V).  
Digital data for SIM card.  
Digital input clock for SIM card.  
Level shifted Clock to SIM card.  
Level shifted digital input/output to SIM card.  
Analog ground. Connect all AGND pins together.  
Level shifted reset to SIM card.  
Power supply to SIM card  
Analog supply to chip. All AVIN pins should be tied together.  
Level shift voltage select for SIM card. Do not leave floating.  
Power input of DC5.  
PVIN5  
FB5  
Output sense pin of DC5 (Adjustable regulator).  
Switch output of DC5.  
SW5  
M9999-051410-B  
May 2010  
5
MIC2829  
Micrel Inc.  
Pin # A Pin # B Pin # G  
Pin name  
ENDC5  
PGND5  
RSTIN  
PGND6  
ENDC6  
SW6  
Description  
B25  
A37  
B26  
A38  
B27  
A39  
B28  
A40  
B29  
A41  
B30  
A42  
B31  
A43  
B32  
A44  
G1  
Enable DC5. Do not leave floating.  
Power ground of DC5.  
Digital reset input for SIM card.  
Power ground of DC6.  
Enable DC6. Do not leave floating.  
Switch output of DC6.  
FB6  
Output sense pin of DC6 (Adjustable regulator).  
Power input of DC6.  
PVIN6  
ENL3  
Enable LDO3. Do not leave floating.  
ENGLB  
SUB1  
Global enable for DC1, DC3, DC4 and LDO1, LDO2, LDO11. Do not leave floating.  
Guard ring ground connection. Connect to AGND1 and AGND2.  
Enable LNR5. Do not leave floating.  
ENL5  
ENL4  
Enable LDO4. Do not leave floating.  
AGND1  
LDO11  
LDO1  
Analog ground. Connect all AGND pins together.  
LDO11 output.  
LDO1 output.  
Thermal Via Thermal via. Connect to ground.  
Thermal Via Thermal via. Connect to ground.  
Thermal Via Thermal via. Connect to ground.  
Thermal Via Thermal via. Connect to ground.  
Thermal Via Thermal via. Connect to ground.  
Thermal Via Thermal via. Connect to ground.  
Thermal Via Thermal via. Connect to ground.  
Thermal Via Thermal via. Connect to ground.  
Thermal Via Thermal via. Connect to ground.  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
M9999-051410-B  
May 2010  
6
MIC2829  
Micrel Inc.  
Absolute Maximum Ratings(1)  
All Power Input Supplies……………………….….-0.3 to 6V  
All Logic Inputs…….............................................-0.3 to 6V  
Operating Ratings(2)  
Supply and Bias Voltage (VPVIN, VAVIN).………..2.7V to 5.5V  
Supply Voltage (VINLDO).. ……………………….1.8V to VAVIN  
Supply Voltage (VLSPWR) ........………………….1.6V to VAVIN  
All Logic Inputs .........................………………….0V to VAVIN  
All Feedback Inputs ..................………………….0V to VAVIN  
Junction Temperature Range (TJ)... ….-40°C TJ +125°C  
Thermal Resistance  
All Feedback Inputs  
.....................-0.3 to (VAVIN + 0.3V)  
Ambient Storage Temperature ……………-65°C to +150°C  
ESD Rating(3).................................................ESD Sensitive  
ESD Rating (SIMRST, CLK, IO, PWR pins)......8kV to GND  
5.5mm x 5.5mm LGA (θJA)..............................38.7°C/W  
5.5mm x 5.5mm FBGA (θJA)...........................38.7°C/W  
Electrical Characteristics – General(4)  
TA = 25°C; AVINX = 4.3V unless otherwise specified. Bold values indicate –40°C TJ +125°C, unless noted.  
Parameter  
Condition  
Min  
2.7  
Typ  
Max  
5.5  
Unit  
Supply Voltage Range  
All VAVIN and VPVIN  
V
V
IN = 5.0V  
Shutdown Current  
1
μA  
All outputs disabled  
High  
1.1  
V
V
Enable (ENx) & Voltage Scaling  
Threshold (VSC2, VSLS)  
0.2  
Low  
VIL < 0.2V  
VIH > 1.1V  
2
2
μA  
μA  
Enable & Voltage Scaling Input  
Current  
Over-Temperature Shutdown  
Threshold  
150  
°C  
Over-Temperature Hysteresis  
Under-voltage Lockout  
10  
°C  
V
VAVIN rising  
2.4  
2.55  
300  
2.7  
When Out_x disabled; IOUT = 3mA.  
Auto-Discharge NFET  
Resistance(5)  
When Out_x disabled; IOUT = 3mA.  
DC5 & 6 pull down on feedback pin.  
700  
Electrical Characteristics – Quiescent Current(6)  
TA=25oC, AVINx = PVINx = INLDOx = ENGLB = 4.3V; ENx = 0V ; All IOUT = 0mA unless otherwise noted.  
Bold values indicate -40°C TJ 125°C.  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
DC1, 3, 4 Non switching, No loads  
LDO 1, 2, 11 IOUT = 100μA  
Initial Sequence IQ  
220  
μA  
DC2 enabled. ENDC2 = 4.3V  
VFB > VOUTNOM x 1.2 (Non switching)  
Per enabled DC. ENDCx = 4.3V  
DC2 Additional IQ  
10  
945  
40  
μA  
μA  
μA  
μA  
DC 5, 6 Additional IQ  
V
FB > 1.2V; IOUT = 0mA (Non switching)  
Per enabled LDO. ENLx = 4.3V  
OUT =100µA  
LDO 3, 4, LSPWR Additional IQ  
LNR 5 – 10 Additional IQ  
I
Per enabled LNR. ENLx = 4.3V  
IOUT =100µA  
20  
M9999-051410-B  
May 2010  
7
MIC2829  
Micrel Inc.  
Electrical Characteristics – Buck Regulator (DC1 – DC4)  
TA=25°C, AVINx = VSC2 = ENGLB = ENDC2 = 4.3V, L3 = 1.0µH, L1, 2, 4 = 2.2µH, COUT = 4.7µF, IOUT = 20mA, unless  
noted. Bold values indicate -40°C TJ 125°C.  
Parameter  
Condition  
Min  
1
Typ  
1.4  
1.5  
1.1  
Max  
Unit  
VOUT = VOUTNOM x 0.9, DC1  
VOUT = VOUTNOM x 0.9, DC3 & 4  
Switch Current Limit  
0.65  
0.33  
-3  
A
VOUT = VOUTNOM x 0.9, DC2  
Output Voltage Accuracy  
Line Regulation  
3
%
%/V  
%
4.3V AVIN 5.5V, Iout = 20mA  
150mA IOUT 400mA  
0.4  
0.5  
Load Regulation  
ISW1,3 = -100mA NMOS, DC1 & 3  
ISW4 = -100mA NMOS, DC4  
ISW2 = -100mA NMOS, DC2  
0.4  
0.45  
0.6  
HLL Buck Switch ON Resistance  
I
I
SW3 = +100mA PMOS, DC3  
0.5  
SW1, 4 = +100mA PMOS, DC1 & 4  
0.6  
ISW2 = +100mA PMOS, DC2  
VOUT = 90%  
1.1  
Soft Start Time  
600  
100  
4
µs  
µs  
Scale Transition Time DC2  
DC2 only. Time to reach 90% target.  
DC1, 2, 4 ILOAD = 120mA  
Frequency  
MHz  
DC3  
ILOAD = 120mA  
2.5  
RESETB on DC4  
VTH Falling  
Low Threshold, % of nominal DC4 output (Flag ON)  
High Threshold, % of nominal DC4 output (Flag OFF)  
RESETB logic low voltage; IL = 250µA  
85  
%
%
V
96  
0.05  
+1  
VTH Rising  
VOL  
0.02  
0.1  
IRESETB  
Flag Leakage Current, Flag OFF  
-1  
µA  
SETDLY input on DC4  
SETDLY Current Source  
SETDLY Threshold Voltage  
VSETDLY = 0V  
0.75  
1.45  
1.75  
µA  
V
RESETB = High  
1.241  
M9999-051410-B  
May 2010  
8
MIC2829  
Micrel Inc.  
Electrical Characteristics – Buck Regulator (DC5, DC6)  
TA=25oC, AVINx = ENGLB = ENDC5 = ENDC6 = 4.3V, L = 2.2µH, COUT = 2.2µF, IOUT = 100mA, unless otherwise noted.  
Bold values indicate -40°C TJ 125°C.  
Parameter  
Condition  
Min  
0.86  
0.97  
Typ  
1.3  
1.0  
0.12  
0.2  
100  
0.4  
0.5  
2
Max  
Unit  
A
Switch Current Limit  
FB Voltage Accuracy  
Line Regulation  
Load Regulation  
Soft Start Time  
VFB = 0.9 V  
1.03  
V
3.0V AVIN 5V , ILOAD = 100mA  
20mA IOUT 300mA  
%
%
VOUT = 90%; ILOAD = 5mA  
ISW = +100mA PMOS  
µs  
DC Switch ON Resistance  
I
SW = -100mA NMOS  
Switching Frequency  
FB Pin Input Current  
1.6  
2.4  
MHz  
nA  
1
Electrical Characteristics – Low Dropout Regulators (LDO1 – LDO4, LDO11)  
TA=25oC, AVINx = ENGLB = ENLx = 4.3V, VINLDOx = Vout+1V, COUT = 1µF, IOUT = 100µA, unless noted.  
Bold values indicate -40°C TJ 125°C.  
Parameter  
Condition  
Min  
1.8  
200  
-3  
Typ  
Max  
Unit  
V
AVIN  
Supply Voltage Range  
Current Limit  
mA  
%
Output Voltage Accuracy  
3
125  
100  
210  
LDO2, 4; IOUT = 100mA;  
LDO3; IOUT = 100mA;  
LDO1, 11; IOUT = 100mA;  
80  
38  
Dropout Voltage  
mV  
115  
0.2  
2
Line Regulation  
Load Regulation  
VOUT + 1V VINLDO 5.5V  
0.02  
0.4  
%/V  
%
100µA IOUT 100mA  
100Hz to 100kHz;  
Output Noise  
65  
µVrms  
COUT = 2.2µF  
Ripple Rejection  
Turn On Time  
f = 1kHz, COUT = 2.2µF  
55  
25  
dB  
µs  
Enable to 90% nominal VOUT  
M9999-051410-B  
May 2010  
9
MIC2829  
Micrel Inc.  
Electrical Characteristics – Low Noise Regulators (LNR5 – LNR10)  
TA=25oC, AVINx = ENx= 4.3V, VINLDOx = Vout+1V, COUT = 2.2µF, IOUT = 100µA, unless noted.  
Bold values indicate -40°C TJ 125°C.  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
AVIN  
AVIN  
LNR5, 6, 7  
1.8  
1.7  
Supply Voltage Range  
V
LNR8, 9 ,10  
200  
Current Limit  
mA  
%
Output Voltage Accuracy  
-3  
3
75  
LNR5, 6, 7; IOUT = 100mA;  
LNR8, 9, 10  
40  
Dropout Voltage  
mV  
N/A  
0.2  
Line Regulation  
Load Regulation  
Output Noise  
VOUT + 1V VINLDOx VAVIN  
0.02  
0.4  
20  
%/V  
%
100µA IOUT 100mA  
2
100Hz to 100kHz; COUT = 2.2µF, CBYP = 0.1µF  
f = 1kHz, COUT = 2.2µF, CBYP = 0.1µF  
Enable to 90% nominal VOUT  
µVrms  
dB  
Ripple Rejection  
Turn On Time  
70  
100  
µs  
Electrical Characteristics – SIM power supply and level translator  
TA=25oC, AVINx = ENGLB = ENLS = 4.3V, COUT = 1.0µF, IOUT = 100µA, unless otherwise noted.  
Bold values indicate -40°C TJ 125°C.  
Parameter  
Condition  
Min  
1.62  
60  
Typ  
Max  
Unit  
V
Controller Voltage Input  
Current Limit (SIMPWR)  
1.8  
1.98  
mA  
2.7  
1.7  
3.3  
2.0  
3V Output , IOUT = 50mA  
1.8V Output, IOUT = 50mA  
3
Output Voltage Accuracy  
V
1.8  
SIMPWR Turn On Time  
High Input Threshold  
Low Input Threshold  
500  
µs  
V
0.7*Y  
RSTIN, CLKIN (Y = VLSPWR  
)
)
0.2*Y  
0.8*X  
RSTIN, CLKIN (Y = VLSPWR  
V
SIMIO (VOH  
SIMIO (VOL  
SIMRST, SIMCLK (VOH  
SIMRST, SIMCLK (VOL  
DATA (VOH  
DATA (VOL  
)
IOH = 20µA, DATA = VLSPWR (X = VSIMPWR  
)
V
0.4  
0.4  
)
IOL = -1mA, DATA = 0V  
V
0.9*X  
0.7*Y  
)
IOH = 20µA, (X = VSIMPWR  
)
V
)
IOL = -200µA  
V
)
IOH = 20µA, SIMIO = VSIMPWR (Y = VLSPWR  
)
V
0.4  
30  
14  
)
IOL = -200µA, SIMIO = 0V  
V
DATA Pull Up Resistance  
SIMIO Pull Up Resistance  
SIMCLK Rise/Fall Time  
Between DATA and LSPWR  
Between SIMIO and SIMPWR  
CRSTIN, CSMIIO = 30pF (20-80%)  
CRSTIN, CSMIIO = 30pF (20-80%)  
13  
20  
10  
18  
25  
kꢀ  
kꢀ  
ns  
ns  
6.5  
SIMRST, SIMIO Rise/Fall Time  
M9999-051410-B  
May 2010  
10  
MIC2829  
Micrel Inc.  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kin series with 100pF.  
4. Specification for packaged product only.  
5. All outputs are auto discharged with an internal NMOS when output is disabled.  
6. Quiescent current is the total supply current minus any enabled LDO/LNR/LSPWR load current.  
M9999-051410-B  
May 2010  
11  
MIC2829  
Micrel Inc.  
Typical Characteristics  
DC1 HLL Buck Efficiency  
DC2 HLL Buck Efficiency  
vs. Output Current  
DC3 HLL Buck Efficiency  
vs. Output Current  
vs. Output Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 4.3V  
V
IN = 3.6V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
V
IN = 5V  
V
IN = 5V  
V
IN = 3.6V  
VIN = 4.3V  
VIN = 4.3V  
VOUT_NOM = 3V  
L = 1.0µH  
VOUT_NOM = 1.2V  
L = 2.2µH  
VOUT_NOM = 1V  
L = 2.2µH  
C
OUT = 4.7µF  
COUT = 4.7µF  
COUT = 4.7µF  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
DC4 HLL Buck Efficiency  
vs. Output Current  
DC5 PWM Buck Efficiency  
vs. Output Current  
DC6 PWM Buck Efficiency  
vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 4.3V  
VIN = 3.6V  
VIN = 3.6V  
VIN = 4.3V  
VIN = 5V  
VIN = 5V  
VIN = 3.6V  
VIN = 5V  
VOUT_NOM = 1.8V  
L = 2.2µH  
VOUT_NOM = 3.3V  
L = 2.2µH  
VOUT_NOM = 2V  
L = 2.2µH  
VIN = 4.3V  
C
OUT = 4.7µF  
C
OUT = 4.7µF  
C
OUT = 4.7µF  
1
10  
100  
1000  
1000  
800  
1
10  
100  
1000  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
DC1 Output Voltage  
vs. Output Current  
DC2 Output Voltage  
vs. Output Current  
DC3 Output Voltage  
vs. Output Current  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
VSC2 = VIN  
VPVIN = 5V  
VPVIN = 5V  
VPVIN = 5V  
VOUT_NOM = 1V / 1.2V  
V
OUT_NOM = 3V  
VOUT_NOM = 1.2V  
VSC2 = 0V  
L = 1µH  
L = 2.2µH  
L = 2.2µH  
COUT = 4.7µF  
COUT = 4.7µF  
COUT = 4.7µF  
0
100 200 300 400 500 600 700 800  
0
200  
400  
600  
800  
0
50  
100  
150  
200  
250  
300  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
DC4 Output Voltage  
vs. Output Current  
DC5 Output Voltage  
vs. Output Current  
DC6 Output Voltage  
vs. Output Current  
2.20  
2.10  
2.00  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
VPVIN = 5V  
VPVIN = 5V  
VPVIN = 5V  
V
OUT_NOM = 3.3V  
V
OUT_NOM = 1.8V  
VOUT_NOM = 2V  
L = 2.2µH  
L = 2.2µH  
L = 2.2µH  
C
OUT = 4.7µF  
COUT = 4.7µF  
C
OUT = 4.7µF  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
0
200  
400  
600  
800  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
M9999-051410-B  
May 2010  
12  
MIC2829  
Micrel Inc.  
Typical Characteristics (Continued)  
Typical HLL Output Voltage  
vs. Input Voltage  
Typical PWM Output Voltage  
vs. Input Voltage  
Typical PWM Output Voltage  
vs. Input Voltage  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
2.010  
2.008  
2.010  
2.008  
2.006  
2.004  
2.002  
2.000  
1.998  
1.996  
1.994  
1.992  
1.990  
VOUT_NOM = 2V  
VOUT_NOM = 1.2V  
L = 2.2µH  
VOUT_NOM = 2V  
L = 2.2µH  
COUT = 4.7µF  
IOUT = 1mA  
IOUT = 800mA  
L = 2.2µH  
2.006  
2.004  
2.002  
2.000  
1.998  
1.996  
1.994  
1.992  
1.990  
COUT = 4.7µF  
C
OUT = 4.7µF  
IOUT = 1mA  
IOUT = 350mA  
IOUT = 600mA  
IOUT = 100mA  
IOUT = 100mA  
IOUT = 450mA  
IOUT = 800mA  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LDO1 Output Voltage  
vs. Input Voltage  
LDO2 Output Voltage  
vs. Input Voltage  
LDO3 Output Voltage  
vs. Input Voltage  
2.84  
2.82  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
2.54  
IOUT = 1mA  
IOUT = 100mA  
2.52 IOUT = 1mA  
IOUT = 1mA  
2.50  
2.48  
2.46  
2.44  
2.42  
IOUT = 200mA  
2.40  
IOUT = 100mA  
IOUT = 100mA  
IOUT = 200mA  
IOUT = 200mA  
2.38  
2.36  
2.34  
2.32  
2.30  
VOUT_NOM = 2.8V  
VOUT_NOM = 3.3V  
COUT = 1µF  
VOUT_NOM = 2.5V  
COUT = 1µF  
C
OUT = 1µF  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
3
3.5  
4
4.5  
5
5.5  
3.6  
4
4.4  
4.8  
5.2  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LNR5 Output Voltage  
vs. Input Voltage  
LNR6 Output Voltage  
vs. Input Voltage  
LDO4 Output Voltage  
vs. Input Voltage  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.91  
2.89  
2.87  
2.85  
2.83  
2.81  
2.79  
2.77  
2.75  
2.73  
2.71  
2.84  
2.82  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
IOUT = 1mA  
IOUT = 1mA  
IOUT = 1mA  
IOUT = 100mA  
IOUT = 200mA  
IOUT = 100mA  
IOUT = 200mA  
IOUT = 200mA  
IOUT = 100mA  
VOUT_NOM = 2.5V  
COUT = 2.2µF  
VOUT_NOM = 2.8V  
COUT = 2.2µF  
VOUT_NOM = 2.85V  
OUT = 1µF  
C
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LNR7 Output Voltage  
vs. Input Voltage  
LNR9/10 Output Voltage  
vs. Input Voltage  
LNR8 Output Voltage  
vs. Input Voltage  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
IOUT = 1mA  
IOUT = 1mA  
IOUT = 1mA  
IOUT = 100mA  
IOUT = 200mA  
IOUT = 200mA  
IOUT = 200mA  
IOUT = 100mA  
IOUT = 100mA  
VOUT_NOM = 1.8V  
OUT = 2.2µF  
VOUT_NOM = 1.5V  
COUT = 2.2µF  
VOUT_NOM = 1.2V  
COUT = 2.2µF  
C
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
M9999-051410-B  
May 2010  
13  
MIC2829  
Micrel Inc.  
Typical Characteristics (Continued)  
LDO11 Output Voltage  
vs. Input Voltage  
DC1 Output Voltage  
vs. Temperature  
DC2 Output Voltage  
vs. Temperature  
1.40  
1.36  
1.32  
1.28  
1.24  
1.20  
1.16  
1.12  
1.08  
1.04  
1.00  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
2.84  
2.82  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
VIN = 5V  
IOUT = 1mA  
IOUT = 100mA  
IOUT = 120mA  
VOUT_NOM = 1.2V  
L = 2.2µH  
IOUT = 120mA  
COUT = 4.7µF  
VIN = 5V  
VOUT_NOM = 1V  
IOUT = 300mA  
VSC2 = 0V  
L = 2.2µH  
IOUT = 400mA  
IOUT = 200mA  
VOUT_NOM = 2.8V  
IOUT = 800mA  
C
OUT = 2.2µF  
COUT = 4.7µF  
-40 -20  
0
20 40 60 80 100 120  
3
3.5  
4
4.5  
5
5.5  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
DC3 Output Voltage  
vs. Temperature  
DC4 Output Voltage  
vs. Temperature  
DC5/6 Output Voltage  
vs. Temperature  
3.20  
3.16  
3.12  
3.08  
3.04  
3.00  
2.96  
2.92  
2.88  
2.84  
2.80  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
VIN = 5V  
VIN = 5V  
VOUT_NOM = 3V  
L = 1µH  
IOUT = 120mA  
VOUT_NOM = 1.8V  
L = 2.2µH  
IOUT = 120mA  
IOUT = 800mA  
COUT = 4.7µF  
C
OUT = 4.7µF  
VIN = 5V  
IOUT = 120mA  
VOUT_NOM = 3.3V  
L = 2.2µH  
IOUT = 300mA  
IOUT = 400mA  
IOUT = 800mA  
IOUT = 600mA  
C
OUT = 4.7µF  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Typical LDO Output Voltage  
vs. Temperature  
Typical LNR Output Voltage  
vs. Temperature  
SIMPWR Output Voltage  
vs. Temperature  
2.90  
2.88  
2.86  
2.84  
2.82  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
2.90  
2.88  
2.86  
2.84  
2.82  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
3.10  
3.08  
3.06  
3.04  
3.02  
3.00  
2.98  
2.96  
2.94  
2.92  
2.90  
IOUT = 100µA  
IOUT = 50mA  
IOUT = 100µA  
VIN = 5V  
IOUT = 100mA  
VOUT_NOM = 2.8V  
COUT = 1µF  
IOUT = 100mA  
VOUT_NOM = 2.8V  
COUT = 2.2µF  
VOUT_NOM = 3V  
VSLS = HIGH  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
ENGLB Quiescent Current  
vs. Input Voltage  
DC2 Quiescent Current  
vs. Input Voltage  
SIMPWR Output Voltage  
vs. Temperature  
20  
18  
16  
14  
12  
10  
8
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
300  
250  
200  
150  
100  
ENGLB = V  
IN  
All other enables = 0V  
IOUT = 50mA  
6
VIN = 5V  
Switching, No Load  
DC1, DC3, DC4, LDO1,  
LDO2, LDO11 = ON  
4
VOUT_NOM = 1.8V  
Not Switching  
No Load  
2
VSLS = LOW  
0
3.3  
3.7  
4.1  
4.5  
4.9  
5.3  
-40 -20  
0
20 40 60 80 100 120  
3.3  
3.7  
4.1  
4.5  
4.9  
5.3  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
M9999-051410-B  
May 2010  
14  
MIC2829  
Micrel Inc.  
Typical Characteristics (Continued)  
DC5/6 Quiescent Current  
vs. Input Voltage  
Typical LDO Quiescent  
Current vs. Input Voltage  
Typical LNR Quiescent  
Current vs. Input Voltage  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
1200  
1100  
1000  
900  
800  
700  
Not Switching  
No Load  
IOUT = 100µA  
IOUT = 100µA  
600  
3.3  
3.8  
4.3  
4.8  
5.3  
3.3  
3.7  
4.1  
4.5  
4.9  
5.3  
3.3  
3.8  
4.3  
4.8  
5.3  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LDO1/11 Dropout  
vs. Temperature  
LDO3 Dropout  
vs. Temperature  
LNR5/6/7 Dropout  
vs. Temperature  
180  
160  
140  
120  
100  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
IOUT = 100mA  
IOUT = 100mA  
IOUT = 100mA  
60  
40  
VOUT = 2.8V  
OUT = 1µF  
20  
C
COUT = 1µF  
20 40 60 80 100 120  
COUT = 2.2µF  
0
-40 -20  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LDO2/4 Dropout  
vs. Temperature  
DC1 Current Limit  
vs. Temperature  
DC2 Current Limit  
vs. Temperature  
140  
120  
100  
80  
2200  
2100  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1400  
1300  
1200  
1100  
1000  
900  
IOUT = 100mA  
60  
800  
V
IN = 5V  
OUT_NOM = 1.2V  
L = 2.2µH  
OUT = 4.7µF  
V
IN = 5V  
OUT_NOM = 1V  
L = 2.2µH  
COUT = 4.7µF  
40  
700  
V
V
600  
20  
C
COUT = 1µF  
500  
0
400  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DC3/4 Current Limit  
vs. Temperature  
DC5/6 Current Limit  
vs. Temperature  
Typical LDO Current Limit  
vs. Temperature  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
1500  
1400  
1300  
1200  
1100  
1000  
900  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VIN = 5V  
800  
V
IN = 5V  
V
IN = 5V  
VIN = 4.3V  
700  
L = 2.2µH  
L = 2.2µH  
COUT = 1µF  
C
OUT = 4.7µF  
600  
C
OUT = 4.7µF  
800  
500  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
M9999-051410-B  
May 2010  
15  
MIC2829  
Micrel Inc.  
Typical Characteristics (Continued)  
Typical LNR Current Limit  
vs. Temperature  
SIMPWR Current Limit  
vs. Temperature  
Typical LDO Current Limit  
vs. Input Voltage  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
200  
180  
160  
140  
120  
100  
80  
VIN = 5V  
60  
VIN = 4.3V  
V
IN = 5V  
40  
COUT = 2.2µF  
VOUT_NOM = 1.8V  
20  
COUT = 1µF  
0
-40 -20  
0
20 40 60 80 100 120  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Typical LNR Current Limit  
vs. Input Voltage  
DC1 HLL SW Frequency  
vs. Output Current  
DC2 HLL SW Frequency  
vs. Output Current  
7.0  
7.0  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VOUT = 1.2V  
VOUT = 1.0V  
VIN = 3.6V  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VIN = 3.6V  
L = 2.2µH  
L = 2.2µH  
COUT = 4.7µF  
COUT = 4.7µF  
VSC2 = 0V  
VIN = 4.3V  
VIN = 4.3V  
VIN = 5V  
VIN = 5V  
COUT = 2.2µF  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
1
10  
100  
1000  
1
10  
100  
1000  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
DC3 HLL SW Frequency  
vs. Output Current  
DC4 HLL SW Frequency  
vs. Output Current  
4MHz HLL SW Frequency  
vs. Temperature  
4.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0  
VIN = 3.6V  
IOUT = 800mA  
IOUT = 400mA  
VOUT = 3V  
L = 1.0µH  
VOUT = 1.8V  
L = 2.2µH  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0 COUT = 4.7µF  
COUT = 4.7µF  
VIN = 4.3V  
2.0  
1.0  
0.0  
VIN = 4.3V  
IOUT = 120mA  
V
IN = 5V  
OUT_NOM = 1.2V  
L = 2.2µH  
OUT = 4.7µF  
V
VIN = 5V  
C
VIN = 5V  
1
10  
100  
1000  
-40 -20  
0
20 40 60 80 100 120  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
2.5MHz HLL SW Frequency  
vs. Temperature  
DC5/6 PWM SW Frequency  
vs. Temperature  
Typical LDO PSRR  
-100  
5.0  
2.20  
2.16  
2.12  
2.08  
2.04  
2.00  
1.96  
1.92  
1.88  
1.84  
1.80  
IOUT = 100µA  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
IOUT = 600mA  
IOUT = 400mA  
IOUT = 800mA  
IOUT = 100mA  
VIN = 5V  
VIN = 5V  
V
IN = 4.3V  
V
OUT_NOM = 3.3V  
V
OUT_NOM = 3V  
IOUT = 120mA  
IOUT = 800mA  
VOUT_NOM = 2.5V  
COUT = 1µF  
L = 2.2µH  
L = 1µH  
COUT = 4.7µF  
COUT = 4.7µF  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
10  
1000  
100000  
10000000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
M9999-051410-B  
May 2010  
16  
MIC2829  
Micrel Inc.  
Typical Characteristics (Continued)  
Typical LDO Output Noise  
Spectral Density  
Typical LNR Output Noise  
Spectral Density  
Typical LNR PSRR  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
10  
Noise (10Hz- 100kHz) = 64.9µVrms  
Noise (10Hz- 100kHz) = 17.7µVrms  
IOUT = 100µA  
1
0.1  
IOUT = 100mA  
1
VIN = 5V  
V
OUT = 2.5V  
Load = 36  
COUT = 2.2µF  
0.1  
0.01  
VIN = 5V  
0.01  
0.001  
V
IN = 4.3V  
VOUT = 2.5V  
Load = 36  
COUT = 2.2µF  
VOUT_NOM = 2.8V  
COUT = 2.2µF  
C
BYP = 0.1µF  
10  
100  
1,000  
10,000 100,000  
10  
100  
1,000  
10,000 100,000  
10  
1000  
100000  
10000000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
M9999-051410-B  
May 2010  
17  
MIC2829  
Micrel Inc.  
Functional Characteristics  
M9999-051410-B  
May 2010  
18  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
19  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
20  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
21  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
22  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
23  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
24  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
25  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
26  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
27  
MIC2829  
Micrel Inc.  
Functional Characteristics (Continued)  
M9999-051410-B  
May 2010  
28  
MIC2829  
Micrel Inc.  
Functional Diagram  
AVIN1,2,3,4  
ENGLB  
BYP  
MIC2829  
PVIN1  
LDO10  
LDO10  
SW1  
FB1  
DC1  
Low Noise  
PGND1  
LDO9  
LDO9  
ENL910  
Low Noise  
IN
V2  
2
F2  
W
INLDO910  
B
DC2  
G
N
D
2
S 6  
B6  
W
ENDC2  
SC2
DC6
VIN6  
PGND6  
NDC6  
PVIN3
INLDO8  
3
SW
FB3
DC3  
G
N
D
3  
LDO8
ENL8
owNoise
LDO8  
IN
V4  
4
W  
B4
LDO7
ENL7  
LowNoise
LDO7  
DC4  
GND4
INLDO7  
POR  
Delay  
RESETB  
SETDLY  
5
5  
SW
AVIN1  
FB
LDO1 LDO1  
DC5
PGVIN5  
ND5  
LDO11  
ENDC5  
LDO11  
INLDO23  
INLDO6  
LDO2
LDO6  
ENL6
LowNoise
LDO2  
LDO6  
LDO3
LDO5  
LDO3  
LDO5  
ENL3  
ENL5  
Low Noise  
LDO4  
ENL4  
INLDO45  
LDO4  
LSPWR  
RSTIN  
CLKIN  
DATA  
SIMRST  
SIMCLK  
SIMIO  
Level  
Shifter  
1.8V/3.0V  
VSLS  
ENLS  
SIMPWR  
AGND1,2,3,4  
SUB1,2  
MIC2829 Simplified Block Diagram  
M9999-051410-B  
May 2010  
29  
MIC2829  
Micrel Inc.  
the layout, AGND3 should be connected to the PGND  
plane near the PGND3 pin. Similarly, AGND4 should be  
connected to the PGND plane near the PGND4 pin. This  
allows the AGND3 and AGND4 ground voltage to be as  
close to the PGND ground voltage as possible. Should  
the AGND3 and AGND4 connect further from the  
PGND3 and PGND4 pins, then the effects of parasitic  
inductance and resistance would reduce the  
performance by altering the accuracy of ground. Refer to  
the layout recommendations for more details.  
Functional Description  
AVIN1 and AVIN2  
The input supply pins (AVIN1 and AVIN2) provide bias to  
the internal LDO circuitry and the input voltage to LDO1  
and LDO11. The AVIN operating range is 2.7V to 5.5V  
so a minimum 1µF input capacitor with a 6.3V voltage  
rating placed as close to the AVIN and ground (AGND1  
and AGND2) is required. Capacitance decreases as the  
DC bias across the capacitor increases and should be  
considered when selecting a suitable capacitor. AVIN1  
and AVIN2 are internally connected. All AVINs should be  
tied together and connected to the PVINs of the device.  
Refer to the layout recommendations for details.  
PGND1 to PGND6  
The power ground pins (PGND1 to PGND6) are the  
ground path for the high current ground path for DC1  
through DC6. The current loop for the power ground  
should be as small as possible and separate from the  
analog ground (AGND3, AGND4) loop. All power  
grounds (PGND1 to PGND6) should be connected on  
the same plane. Refer to the layout recommendations  
for more details.  
AVIN3 and AVIN4  
The input supply pins (AVIN3 and AVIN4) provide bias to  
the internal circuitry for the switch mode regulators (DC1  
through DC6) and power to SIMPWR. The AVIN  
operating range is 2.7V to 5.5V, so a minimum 1µF input  
capacitor with a minimum voltage rating of 6.3V placed  
close to AVIN and ground (AGND3 and AGND4) is  
required. AVIN3 and AVIN4 are internally connected. All  
AVINs should be tied together and connected to the  
PVINs of the device. Refer to the layout  
recommendations for details.  
INLDO  
The INLDO pins (INLDO23, INLDO45, INLDO6,  
INLDO7, INLDO8, and INLDO910) are the power input  
for the respective LDOs. Due to line inductance, a  
minimum of 1µF input capacitor with a minimum voltage  
rating of 6.3V should be placed as close as possible to  
the INLDO pin and ground (AGND1, AGND2). Refer to  
the layout recommendations for more details.  
PVIN1 to PVIN6  
The power input supply pins (PVIN1 to PVIN6) provide  
power to the switch mode regulators (DC1 to DC6). Due  
to high switching currents, a minimum 1µF input  
capacitor with a minimum voltage rating of 6.3V placed  
close to PVIN and the power ground is required. The  
PVIN tracks should be as wide as possible and the 1µF  
capacitor should be placed from PVIN1 to PGND1 due  
to the proximity of their pin location. The same should be  
done with each PVIN and PGND combination. All AVINs  
should be tied together and connected to the PVINs of  
the device. Refer to the layout recommendations for  
details.  
LDO  
The LDO pins (LDO1 to LDO11) are the output of the  
LDO and LNR regulators. For LDO1, LDO2, LDO3,  
LDO4 and LDO11, a minimum of 1µF output capacitor  
with a minimum voltage rating of 6.3V placed as close to  
the LDO pin and ground (AGND1 and AGND2) as  
possible is required. For the LNRs (LDO5 to LDO10), a  
2.2µF output capacitor with a minimum voltage rating of  
6.3V placed as close as possible to the LDO pin and  
ground (AGND1 and AGND2) is recommended. Refer to  
the layout recommendations for more details.  
AGND1 and AGND2  
BYP  
The ground pins (AGND1 and AGND2) are the ground  
path for the biasing, the control circuitry and the power  
ground for all LDOs. AGND1 and AGND2 are internally  
connected. The current loop for the ground should be  
kept as short as possible. Connect AGND1 and AGND2  
together. Refer to the layout recommendations for more  
details.  
The reference bypass pin (BYP) acts as a filter for the  
reference voltage of LNR5 to LNR10. A 0.1µF bypass  
capacitor connected to ground (AGND1 and AGND2) is  
recommended.  
SUB  
The SUB pin (SUB1, SUB2) is connected internally to  
the guard ring ground protection. The guard ring  
prevents interaction between regulators inside the die  
package. Connect SUB1 and SUB2 pins to ground  
(AGND1, AGND2) externally.  
AGND3 and AGND4  
The analog ground pins (AGND3 and AGND4) are the  
ground path for the biasing and the control circuitry for  
all buck regulators. This is a low current ground path and  
should not be mixed with high current paths such as  
PGND. To reduce the effects of parasitic interference in  
M9999-051410-B  
May 2010  
30  
MIC2829  
ENDC HIGH (>1.1V) LOW (<0.2V)  
Micrel Inc.  
ENGLB  
ENDC2  
ENDC5  
ENDC6  
DC2 ON  
DC5 ON  
DC6 ON  
DC2 OFF  
DC5 OFF  
DC6 OFF  
The global enable pin (ENGLB) must be pulled high in  
order for the MIC2829 to function. When ENGLB is  
pulled high, a startup sequence begins. The regulators  
DC1, DC3, DC4/LDO2, LDO1/LDO11 turn on in  
sequence. See Turn-ON Sequence Flow Chart in Figure  
1.  
Table 1. Buck Regulator Enable  
ENL  
ENGLB needs to be high in order for any other enables  
to function. A logic high signal on the enable pin (ENL3  
to ENL8, ENL910) activates the output voltage of LDO3,  
LDO4 and LNR5 to LNR10 as shown in Table 2. A logic  
low signal on the enable pin deactivates the output of the  
respective LDO. Do not leave floating, as it would leave  
the regulator in an unknown state.  
ENL  
HIGH (>1.1V)  
LOW (<0.2V)  
ENL3  
LDO3 ON  
LDO3 OFF  
ENL4  
ENL5  
ENL6  
ENL7  
ENL8  
LDO4 ON  
LNR5 ON  
LNR6 ON  
LNR7 ON  
LNR8 ON  
LDO4 OFF  
LNR5 OFF  
LNR6 OFF  
LNR7 OFF  
LNR8 OFF  
ENL910 LNR9, LNR10 ON LNR9, LNR10 OFF  
Table 2. LDO Regulator Enable  
SETDLY  
If the output voltage of DC4 is greater than 90% of  
nominal, the Power On Reset (POR) delay circuit begins  
to source a current to the set-delay pin (SETDLY). The  
SETDLY pin is used to adjust the delay time of the  
RESETB flag. A capacitor may be placed from SETDLY  
to ground (AGND1, AGND2) to adjust the delay time at a  
rate of 1 second/µF.  
RESETB  
The RESETB is an open drain output and can, for  
instance, be tied to the output of DC4 through a 100k  
resistor. When DC4 output voltage is greater than 96%,  
then the RESETB voltage will be pulled high after a  
delay set by the capacitor on the SETDLY pin. A  
capacitor at the SETDLY pin will delay the RESETB flag  
at a rate of 1 second / µF. When the output of DC4 is  
below 90%, RESETB is pulled low.  
Figure 1. Turn-ON Sequence Flow Chart  
ENDC  
FB1 to FB4  
The feedback pin (FB1 to FB4) is connected to the  
output of the HyperLight LoadTM circuit to provide  
feedback to the control circuitry. The FB connection  
should be connected close to the output capacitor. Refer  
to the layout recommendations for more details.  
ENGLB needs to be high in order for any other enables  
to function. A logic high signal on the enable pin  
(ENDC2, ENDC5, ENDC6) activates the output voltage  
of its respective buck regulator shown in Table 1. A logic  
low signal on the enable pin deactivates the output of the  
buck regulator. Do not leave floating, as it would leave  
the regulator in an unknown state.  
M9999-051410-B  
May 2010  
31  
MIC2829  
Micrel Inc.  
FB5 and FB6  
VSLS  
The feedback pin (FB5, FB6) allows DC5 and DC6  
output voltage to be set by applying an external resistor  
network. The internal reference voltage is 1V and the  
recommended value of RBOTTOM is 20kΩ or below. A  
feed-forward capacitor (CFF) of 120pF should be placed  
parallel to RTOP to improve stability and transient  
response. This does not impact the output voltage  
setting. The output voltage is calculated from the  
equation below.  
VSLS selects the level shifted voltage for the SIM Card.  
A high logic voltage on VSLS selects the level shifter to  
3V. A low logic voltage on VSLS selects the level shifter  
to 1.8V. Do not leave floating.  
RSTIN, SIMRST  
RSTIN is the digital reset input for the SIM Card and  
translates to SIMRST through the digital level shifter. It is  
one directional. If VSLS is low, then the input at RSTIN  
will be level shifted to 1.8V at the SIMRST output. If  
VSLS is high, then the input at RSTIN will be level  
shifted to 3V at the SIMRST output.  
R
TOP  
VOUT =1V  
+1  
20k  
CLKIN, SIMCLK  
CLKIN is the digital input clock for SIM card. The CLKIN  
translates to SIMCLK and is one directional. If VSLS is  
low, then the input at CLKIN will be level shifted to 1.8V  
at the SIMCLK output. If VSLS is high, then the input at  
CLKIN will be level shifted to 3V at the SIMCLK output.  
V
OUT  
C
FF  
R
TOP  
R
BOTTOM  
DATA, SIMIO  
DATA is the digital data for the SIM Card. The DATA  
translate to SIMIO through the digital level shifter and is  
bi-directional using internal pull ups. If VSLS is low, then  
the level shifted output is 1.8V at the SIMIO output. If  
VSLS is high, then the level shifted output is 3V at the  
SIMIO output. Since DATA and SIMIO are bi-directional,  
the input at SIMIO is level shifted to equal the LSPWR  
voltage at the DATA output.  
Figure 2. Feedback Resistor Network  
SW  
The switch pin (SW1 to SW6) connects directly to one  
end of the inductor and provides the current path during  
switching cycles. The other end of the inductor is  
connected to the output of the buck regulator. Due to the  
high speed switching on this pin, the switch node should  
be routed away from sensitive nodes whenever possible.  
G1 – G9  
The G1 through G9 pins are not internally connected.  
They serve as thermal relief and should be connected to  
ground (AGND1, AGND2) to maximize the heat  
dissipation. See layout recommendations for details.  
VSC2  
The voltage scaling pin (VSC2) is used to switch the  
output of DC2 between two different voltage levels. A  
high on the VSC2 pin will set the output voltage of DC2  
to the higher voltage. A low on the VSC2 pin will set the  
output voltage to the lower voltage. Do not leave floating.  
LSPWR  
The level shifter input supply pin (LSPWR) provides  
power to the level shifter. A minimum 1µF input capacitor  
with a minimum voltage rating of 6.3V placed close to  
LSPWR and ground (AGND1, AGND2) is required.  
Refer to the layout recommendations for details.  
SIMPWR  
SIM power (SIMPWR) provides power to the SIM Card.  
A minimum 1µF input capacitor with a minimum voltage  
rating of 6.3V to ground (AGND1, AGND2) is required.  
Refer to the layout recommendations for details.  
M9999-051410-B  
May 2010  
32  
MIC2829  
Ideal Ground  
Micrel Inc.  
Pin Name Capacitance  
Application Information  
PVIN2  
PVIN3  
PVIN4  
PVIN5  
PVIN6  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
PGND2  
PGND3  
PGND4  
PGND5  
PGND6  
The MIC2829 is a Power Management Integrated Circuit  
(PMIC) designed for 3G/4G (HEDGE/LTE or WiMAX)  
modules. It incorporates six buck converters, eleven  
LDOs and a SIM card level translator in a 5.5mm x  
5.5mm package designed to support 3G/4G  
(HEDGE/LTE or WiMAX) wireless modems. A typical  
power source for the MIC2829 can be from a USB host  
or a single cell lithium ion battery.  
Table 3. Recommended Input Capacitance  
A case size 0402, 1µF ceramic capacitor (Samsung  
CL05A105KP5NNN) is recommended based upon  
performance, size and cost. A X5R or X7R temperature  
rating is recommended for the input capacitor. Y5V  
temperature rating capacitors, aside from losing most of  
their capacitance over temperature, can also become  
resistive at high frequencies. This reduces their ability to  
filter out high frequency noise.  
The MIC2829 has six integrated step-down regulators.  
Four of the six integrated step-down converters  
incorporate HyperLight LoadTM (HLL) technology. The  
DC1, DC2, and DC4 operate at 4MHz switching  
frequency range and can support 1A, 300mA and  
600mA respectively. DC3 operates at 2.5MHz and can  
support up to 600mA.  
DC5 and DC6 operate at a 2MHz switching frequency,  
can support 100% duty cycle operation and can maintain  
800mA on each output. They both have adjustable  
output voltages using external resistors.  
Output Capacitor  
The buck regulators (DC1 to DC6) are designed for use  
with a 4.7µF or greater ceramic output capacitor. A case  
size 0402, 4.7µF ceramic capacitor (Samsung,  
CL05A475MQ5NRN) is recommended based upon  
performance, size and cost. A case size 0402, 1µF  
ceramic capacitor (Samsung, CL05A105KP5NNN) is  
recommended for each LDO (LDO1 to LDO4, LDO11,  
and SIMPWR) output. Each LNR (LNR5 to LNR10) is  
designed for low noise operation; therefore, a case size  
The MIC2829 has eleven low dropout regulators (LDOs).  
Five general purpose LDOs (LDO1 to LDO4, LDO11)  
have low dropout, output accuracy of ±3% and drawing  
40µA of ground current. The other six are high  
performance LNRs (LNR5-LNR10) with a PSRR of over  
70dB at 1kHz and 20µVrms Output Noise. The LNRs  
require just 20µA to operate.  
0402,  
2.2µF  
ceramic  
capacitor  
(Samsung,  
The MIC2829 also has three level shifters and a 50mA  
power supply for digital SIM Card signal translations.  
CL05A225MP5NSN) is recommended. Table 4 below  
indicates the recommended capacitance needed for  
each output and their ideal grounding points.  
Input Capacitor  
Output Capacitance  
Ideal Ground  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
PGND1  
The MIC2829 has many input pins that are externally  
connected. A 1µF ceramic capacitor or greater should  
be placed close to the power input pin and ground. The  
following chart indicates the minimum capacitance  
needed for each input pin and their ideal grounding  
points.  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
LDO8  
LDO9  
LDO10  
LDO11  
SIMPWR  
DC1  
1 µF  
1 µF  
1 µF  
1 µF  
2.2 µF  
2.2 µF  
2.2 µF  
2.2 µF  
2.2 µF  
2.2 µF  
1 µF  
Pin Name Capacitance  
Ideal Ground  
AGND1  
AVIN1  
AVIN2  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
AGND2  
AVIN3  
AGND3  
AVIN4  
AGND4  
INLDO23  
INLDO45  
INLDO6  
INLDO7  
INLDO8  
INLDO910  
LSPWR  
PVIN1  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
AGND1 or AGND2  
PGND1  
1 µF  
4.7 µF  
4.7 µF  
4.7 µF  
4.7 µF  
4.7 µF  
4.7 µF  
DC2  
PGND2  
DC3  
PGND3  
DC4  
PGND4  
DC5  
PGND5  
DC6  
PGND6  
Table 4. Recommended Output Capacitance  
M9999-051410-B  
May 2010  
33  
MIC2829  
Micrel Inc.  
Although all grounds eventually connect externally, it is  
important to place the capacitors close to their ideal  
ground for the load to minimize parasitic inductance and  
resistance. This is especially important for a PMIC with  
multiple regulators. Increasing the output capacitance  
will lower output ripple and improve load transient  
response, but could increase solution size or cost. Both  
the X7R or X5R temperature rated capacitors are  
recommended. The Y5V and Z5U temperature rated  
capacitors are not recommended due to their wide  
variation in capacitance over temperature and increased  
resistance at high frequencies.  
Efficiency Considerations  
Efficiency is defined as the amount of useful output  
power, divided by the amount of power supplied.  
VOUT × IOUT  
VIN × IIN  
Efficiency % =  
×100  
Maintaining high efficiency serves two purposes. It  
reduces power dissipation in the power supply, reducing  
the need for heat sinks and thermal design  
considerations and it reduces consumption of current for  
battery powered applications. Reduced current draw  
from a battery increases the devices operating time  
which is critical in hand held devices.  
Inductor Selection  
When selecting an inductor, it is important to consider  
the following factors (not necessarily in the order of  
importance):  
There are two types of losses in switching converters;  
DC losses and switching losses. DC losses are simply  
the power dissipation of I2R. Power is dissipated in the  
high side switch during the on cycle. Power loss is equal  
to the high side MOSFET RDSON multiplied by the Switch  
Current squared. During the off cycle, the low side N-  
channel MOSFET conducts, also dissipating power.  
Device operating current also reduces efficiency. The  
product of the quiescent (operating) current and the  
supply voltage represents another DC loss. The current  
required for driving the gates on and off at the constant  
switching frequency and other internal switching  
transitions make up the switching losses.  
Inductance  
Rated current value  
Size requirements  
DC resistance (DCR)  
The MIC2829 was designed for use with an inductance  
range from 1µH to 2.2µH. Typically, a 2.2µH inductor is  
recommended for a balance of transient response,  
efficiency and output ripple. For faster transient  
response, a 1µH inductor will yield the best result. For  
lower output ripple, a 2.2µH inductor is recommended.  
Maximum current ratings of the inductor are generally  
given in two methods; permissible DC current and  
saturation current. Permissible DC current can be rated  
either for a 40°C temperature rise or a 10% to 20% loss  
in inductance. Ensure the inductor selected can handle  
the maximum operating current. When saturation current  
is specified, make sure that there is margin so that the  
peak current does not cause the inductor to saturate.  
Peak current can be calculated as follows:  
DC4 Buck Efficiency  
vs. Output Current  
100  
V
IN = 4.3V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
V
IN = 3.6V  
VOUT_NOM = 1.8V  
L = 2.2µH  
COUT = 4.7µF  
1 VOUT /VIN  
2 ×f × L  
IPEAK = I  
OUT  
+VOUT  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
As shown by the calculation above, the peak inductor  
current is inversely proportional to the switching  
frequency (f) and the inductance (L); the lower the  
switching frequency or the inductance the higher the  
peak current. As input voltage increases, the peak  
current also increases.  
Figure 3. HLL Efficiency vs. Output Current  
Figure 3 shows an efficiency curve. From an output  
current of 1mA to 100mA, efficiency losses are  
dominated by quiescent current losses, gate drive and  
transition losses. By lowering the switching frequency,  
the HyperLight Load™ buck regulator (DC1 to DC4) is  
able to maintain high efficiency at low output currents.  
The size of the inductor depends on the requirements of  
the application. Refer to the Typical Application Circuit  
and Bill of Materials for details.  
DC resistance (DCR) is also important. While DCR is  
inversely proportional to size, DCR can represent a  
significant efficiency loss. Refer to the Efficiency  
Considerations.  
Over 100mA, efficiency loss is dominated by MOSFET  
RDSON and inductor losses. Higher input supply voltages  
will increase the Gate-to-Source overdrive on the  
internal MOSFETs, thereby reducing the internal RDSON  
.
This improves efficiency by reducing conduction losses  
in the device. All but the inductor losses are inherent to  
the device. For higher current levels, inductor selection  
M9999-051410-B  
May 2010  
34  
MIC2829  
Micrel Inc.  
becomes increasingly critical in efficiency calculations.  
As the inductors are reduced in size, the DC resistance  
(DCR) can become quite significant. The DCR losses  
can be calculated as follows:  
If each regulator on the MIC2829 is turned on at its  
maximum load capability, the power dissipation into the  
device will cause excessive temperature rise. In order to  
avoid excessive temperature rise and unexpected  
thermal shutdown the total power dissipation should be  
considered.  
PL_LOSS IOUT2 × DCR  
From that, the loss in efficiency due to inductor  
resistance can be calculated as follows:  
LDO Power Dissipation  
The power dissipation of a LDO can be calculated with  
the input voltage, the output voltage and the output  
current, as shown in the following equation.  
VOUT × IOUT  
VOUT × IOUT + P  
Efficiency Loss 1−  
×100  
L _ LOSS  
PD_LDO (VIN – VOUT) IOUT + VIN IGND  
Efficiency loss due to DCR is minimal at light loads and  
gains significance as the load is increased. Inductor  
selection becomes a trade-off between efficiency and  
size in this case.  
Since the ground current (IGND) is relatively low, it can be  
ignored for this calculation. For example, if the input  
voltage is 3.3V, the output voltage is 2.8V and the output  
current of the LDO is 200mA, the power dissipation of the  
LDO can be calculated as follow:  
Partitioning for Optimal System Efficiency  
PD_LDO (3.3V – 2.8V) × 200mA  
Many of the LDOs can be post-regulated from the DC  
regulator output to increase system efficiency. For  
example, DC4 output can be used to power low output  
voltage LNRs in order to reduce power loss during  
voltage conversion.  
PD_LDO 0.1W  
Buck Regulator Power Dissipation  
Neglecting some minor losses, the power dissipation in a  
MIC2829 buck regulator (DC1 to DC6) is approximately  
the switcher’s input power minus the switcher’s output  
power and minus the power loss in the inductor.  
Thermal Considerations  
Whenever there is power dissipation, there will be  
thermal considerations. In order to account for the  
temperature rise in a PMIC with multiple regulators, the  
power dissipation in each regulator must be accounted  
for. The current rating of each regulator is shown below:  
PD_SWITCHER PIN x IIN – POUT x IOUT – PL_LOSS  
Total Power Dissipation  
The total power dissipation in the MIC2829 package is  
equal to the sum of the power loss of each regulator.  
Output  
DC1  
Maximum Load (mA)  
PD_TOTAL SUM (PD_LDOS + PD_SWITCHERS  
)
1000  
300  
600  
600  
800  
800  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
50  
The maximum power dissipation of the package can be  
calculated by the following equation.  
DC2  
DC3  
DC4  
T
TA  
J( max )  
PD( max )  
DC5  
θJA  
DC6  
TJ(MAX) is the maximum junction temperature (125°C), TA  
is the ambient temperature and θJA is the junction-to-  
ambient thermal resistance of the package (38.7°C/W).  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
LDO8  
LDO9  
LDO10  
LDO11  
SIMPWR  
The following table shows the  
maximum power  
dissipation versus the ambient temperature.  
Table 5. Output Current Rating  
M9999-051410-B  
May 2010  
35  
MIC2829  
Micrel Inc.  
switching frequency versus the output current. Since the  
inductance range of MIC2829 is from 1µH to 2.2µH, the  
device may then be tailored to enter HyperLight Load™  
mode or PWM mode at a specific load current by  
selecting the appropriate inductance. For example, in  
Figure 4, when the inductance is 2.2µH the HLL  
regulator will transition into PWM mode at a load of  
approximately 30mA. Under the same condition, if 1µH  
inductance is used, the MIC2829 will transition into PWM  
mode at approximately 100mA.  
PD(MAX) (W) TA (°C)  
4.26  
3.75  
3.23  
2.71  
2.20  
1.68  
1.16  
0.65  
0.13  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
DC4 Switching Frequency  
vs. Output Current  
7.0  
VIN = 5V  
6.0  
Table 6. Maximum Power Dissipation  
L = 2.2µH  
VOUT = 1.8V  
COUT = 4.7µF  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
It is good practice to not exceed the maximum power  
dissipation of the device in order to avoid excessive  
temperature rise or unexpected thermal shutdown.  
HyperLight Load™ Mode  
L = 1µH  
The HyperLight Load™ (HLL) buck regulators on the  
MIC2829 use a proprietary control loop (patented by  
Micrel). It has two modes of operation (HLL mode and  
PWM mode).  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
Figure 4. Switching Frequency with Various Inductance  
The transition from HLL mode to PWM mode is  
determined by the inductor ripple current. If the inductor  
ripple current reaches below zero it is considered to be  
in discontinuous mode (DCM). The HLL control loop will  
control the switching in DCM using pulse frequency  
modulation (PFM). As the load pulls the output voltage  
below the monitored threshold, the HLL control loop  
In CCM, the HLL regulator works in pulse width  
modulation (PWM) by controlling the PMOS transistor  
off-time. To regulate the output voltage, the PMOS  
transistor off-time is controlled. As the output voltage  
decreases, the PMOS transistor off-time is decreased.  
As the output voltage increases, the off-time is  
increased. This method of controlling the off-time  
achieves the same goal as controlling the on-time as in  
other PWM regulators by increasing or decreasing the  
duty cycle of the PMOS transistor. In CCM, the  
synchronous switching between the PMOS and the  
NMOS is modulated at 4MHz for DC1, DC2 and DC4.  
Due to the higher output voltage of DC3 (3V), the  
switching frequency in CCM is at 2.5MHz. The HLL  
regulators may reach the minimum-off-time limit at lower  
input voltage and higher load currents. In order to  
regulate at such high duty cycles, the HLL regulator  
transitions into the on-time control scheme. During the  
on-time control scheme, the off-time is set constant at  
around (65ns), and the on-time is increased to deliver  
more energy. By doing so, the duty cycle is increased,  
and the output voltage maintains regulation even at  
lower input voltages and extreme load situations. As a  
result of increasing the on-time and fixing the off-time,  
the switching frequency is lowered. In CCM, the  
switching frequency is relatively constant, but at higher  
output voltage and output current levels, the control may  
transition into on-time control to regulate the output and  
thus, lower the switching frequency.  
turns on the topside PMOS transistor for  
a
predetermined time until the output voltage rises above  
the monitored threshold. Once the upper threshold is  
reached, the topside PMOS is switched off and the  
voltage will then be slowly pulled down by the load. As  
the load increases, the switching frequency increases.  
By varying the switching frequency, the regulator only  
switches when needed which improves efficiency by  
reducing switching losses.  
As the load increases and the inductor ripple current  
rises above zero, the HLL regulator switches into  
continuous conduction mode (CCM). The equation to  
calculate the load when the HLL regulator goes into  
continuous conduction mode may be approximated by  
the following formula:  
(VIN VOUT )× D ⎞  
ILOAD  
>
2L × f  
As shown in the equation, the load at which HLL  
regulators transitions from HyperLight Load™ mode to  
PWM mode is a function of the input voltage (VIN), the  
output voltage (VOUT), the duty cycle (D), the inductance  
(L) and the switching frequency (f). Note that the duty  
cycle is approximately VOUT divided by VIN for buck  
converters. The following graph shows the HLL regulator  
M9999-051410-B  
May 2010  
36  
MIC2829  
Micrel Inc.  
Typical Application Circuit  
VIN  
AVIN1  
AGND1  
AVIN2  
C1  
BYP  
1µF  
C7  
0.1µF  
LDO10  
LDO9  
C18  
1µF  
AGND2  
AVIN3  
AGND3  
AVIN4  
C10  
2.2µF  
C8  
2.2µF  
ENL910  
C23  
1µF  
INLDO910  
C9  
1µF  
C28  
1µF  
AGND4  
PVIN6  
SW6  
ENGLB  
C32  
1µF  
L6  
2.2µH  
DC6  
PVIN1  
SW1  
FB6  
PGND6  
ENDC6  
C40  
120pF  
R10  
20k  
C20  
1µF  
L1  
2.2µH  
DC1  
C31  
4.7µF  
R16  
20k  
FB1  
C19  
4.7µF  
PGND1  
PVIN2  
SW2  
C21  
1µF  
L2  
2.2µH  
DC2  
INLDO8  
ENL8  
FB2  
C14  
1µF  
C22  
4.7µF  
PGND2  
ENDC2  
VSC2  
LDO8  
C13  
2.2µF  
PVIN3  
SW3  
INLDO7  
ENL7  
L3  
1µH  
C25  
1µF  
C12  
1µF  
MIC2829  
DC3  
FB3  
LDO7  
C24  
4.7µF  
C11  
2.2µF  
PGND3  
PVIN4  
SW4  
PVIN5  
SW5  
FB5  
C26  
1µF  
L4  
C29  
1µF  
L5  
DC4  
2.2µH  
2.2µH  
DC5  
FB4  
R7  
C39  
120pF  
R23  
10k  
46.4k  
C27  
4.7µF  
PGND4  
C30  
PGND5  
ENDC5  
4.7µF  
R8  
20k  
RESETB  
SETDLY  
C35  
1µF  
LDO1  
INLDO6  
ENL6  
C34  
1µF  
C2  
1µF  
LDO11  
INLDO23  
LDO2  
C33  
1µF  
LDO6  
C3  
C16  
1µF  
2.2µF  
C17  
1µF  
INLDO45  
ENL5  
LDO3  
ENL3  
C5  
1µF  
C15  
1µF  
LDO5  
C6  
LDO4  
ENL4  
2.2µF  
C4  
1µF  
SIMRST  
SIMCLK  
SIMIO  
LSPWR  
RSTIN  
CLKIN  
DATA  
VSLS  
C37  
1µF  
SIMPWR  
C36  
1µF  
SUB1  
SUB2  
ENLS  
M9999-051410-B  
May 2010  
37  
MIC2829  
Micrel Inc.  
Bill of Material  
Item  
Part Number  
Manufacturer  
Samsung(1)  
Description  
Qty.  
C1, C2, C4, C9,  
CL05A105KP5NNN  
1.0µF Ceramic Capacitor, 10V, X5R, Size 0402  
22  
C14 – C18, C20,  
C21, C23, C25, C26,  
C28, C29, C32 – C37  
C3, C5, C6, C8,  
C10 – C13  
CL05A225MP5NSN  
CL05A475MQ5NRN  
Samsung  
Samsung  
2.2µF Ceramic Capacitor, 10V, X5R, Size 0402  
8
C19, C22, C24, C27,  
C30, C31  
4.7µF Ceramic Capacitor, 6.3V, X5R, Size 0402  
100nF Ceramic Capacitor, 16V, X7R, Size 0402  
6
1
C7  
CL05B104K05NNNC  
CL05C121JB5NNNC  
CIG21L2R2MNE  
Samsung  
Samsung  
Samsung  
C39, C40  
L1, L2, L4, L5, L6  
120pF, Ceramic Capacitor, 50V, C0G, Size 0402  
2
5
2.2µH 950mA, 160m, L2.0mm x W1.25mm x  
H1.0mm  
L3  
CIG21L1R0MNE  
Samsung  
1.0µH 1.15A 110m, L2.0mm x W1.25mm x  
1
H1.0mm  
R7, R10  
R8, R16  
R23  
CRCW040246K4FKED  
CRCW040220KFKED  
CRCW040210KFKED  
MIC2829-xxYAL  
or  
Vishay(2)  
Vishay  
Vishay  
46.4 k, 1%, 0402  
20 k, 1%, 0402  
10k, 1%, 0402  
1
3
1
U1  
Micrel, Inc.(3)  
3G/4G HEDGE/LTE PMIC  
1
MIC2829-xxYAB  
Notes:  
1. Samsung: www.sem.samsung.com.  
2. Vishay: www.vishay.com.  
3. Micrel, Inc: www.micrel.com.  
M9999-051410-B  
May 2010  
38  
MIC2829  
Micrel Inc.  
PCB Layout Recommendations  
FBGA Top (Layer 1)  
M9999-051410-B  
May 2010  
39  
MIC2829  
Micrel Inc.  
LGA Top (Layer 1)  
M9999-051410-B  
May 2010  
40  
MIC2829  
Micrel Inc.  
FBGA/LGA LDO GND (Layer 2)  
M9999-051410-B  
May 2010  
41  
MIC2829  
Micrel Inc.  
FBGA/LGA Power and Signal (Layer 3)  
M9999-051410-B  
May 2010  
42  
MIC2829  
Micrel Inc.  
FBGA/LGA DC Regulator PGND (Layer 4)  
M9999-051410-B  
May 2010  
43  
MIC2829  
Micrel Inc.  
FBGA/LGA DC Regulator AGND (Layer 5)  
M9999-051410-B  
May 2010  
44  
MIC2829  
Micrel Inc.  
FBGA/LGA Signal (Layer 6)  
M9999-051410-B  
May 2010  
45  
MIC2829  
Micrel Inc.  
FBGA/LGA LDO GND (Layer 7)  
M9999-051410-B  
May 2010  
46  
MIC2829  
Micrel Inc.  
FBGA/LGA Bottom (Layer 8)  
M9999-051410-B  
May 2010  
47  
MIC2829  
Micrel Inc.  
Package Information (LGA)  
76-pin 5.5mm x 5.5mm LGA Package (AL)  
M9999-051410-B  
May 2010  
48  
MIC2829  
Micrel Inc.  
Package Information (FBGA)  
85-pin 5.5mm x 5.5mm FBGA Package (AB)  
M9999-051410-B  
May 2010  
49  
MIC2829  
Micrel Inc.  
Recommended Land Pattern (LGA)  
76-pin 5.5mm x 5.5mm LGA Land Pattern  
M9999-051410-B  
May 2010  
50  
MIC2829  
Micrel Inc.  
Recommended Land Pattern (FBGA)  
85-pin 5.5mm x 5.5mm FBGA Land Pattern  
M9999-051410-B  
May 2010  
51  
MIC2829  
Micrel Inc.  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2010 Micrel, Incorporated.  
M9999-051410-B  
May 2010  
52  

相关型号:

MIC28303

50V, 3A Power Module
MICROCHIP

MIC28303-1

50V 3A Power Module
MICREL

MIC28303-1YMP

50V 3A Power Module
MICREL

MIC28303-1YMP

50V, 3A Power Module
MICROCHIP

MIC28303-1YMP-T1

PWR MODULE REG 50V 3A 64QFN
MICROCHIP

MIC28303-2YMP

SWITCHING REGULATOR
MICROCHIP

MIC28303-2YMP-T1

PWR MODULE REG 50V 3A 64QFN
MICROCHIP

MIC28303-2YMP-TR

PWR MODULE REG 50V 3A 64QFN
MICROCHIP

MIC28304

70V 3A Power Module
MICREL

MIC28304-1-12V-EV

BOARD EVAL FOR 12V MIC28304-1
MICROCHIP

MIC28304-1-5V-EV

BOARD EVAL FOR 5V MIC28304-1
MICROCHIP

MIC28304-1YMP

70V 3A Power Module
MICREL