MIC3975-1.65BMM [MICREL]

750mA UCap Low-Voltage Low-Dropout Regulator; 750毫安UCAP低电压低压差稳压器
MIC3975-1.65BMM
型号: MIC3975-1.65BMM
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

750mA UCap Low-Voltage Low-Dropout Regulator
750毫安UCAP低电压低压差稳压器

稳压器 调节器 光电二极管 输出元件
文件: 总12页 (文件大小:107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC3975  
750mA µCap Low-Voltage Low-Dropout Regulator  
Final Information  
General Description  
Features  
The MIC3975 is a 750mA low-dropout linear voltage regula-  
tors that provide low-voltage, high-current output from an  
extremely small package. Utilizing Micrel’s proprietary Super  
βeta PNP™ pass element, the MIC3975 offers extremely low  
dropout (typically 300mV at 750mA) and low ground current  
(typically 6.5mA at 750mA).  
• Fixed and adjustable output voltages to 1.24V  
• 300mV typical dropout at 750mA  
Ideal for 3.0V to 2.5V conversion  
Ideal for 2.5V to 1.8V or 1.65V conversion  
• Stable with ceramic capacitor  
• 750mA minimum guaranteed output current  
• 1% initial accuracy  
• Low ground current  
• Current limiting and thermal shutdown  
• Reversed-battery protection  
TheMIC3975isidealforPCadd-incardsthatneedtoconvert  
fromstandard5Vto3.3Vor3.0V, 3.3Vto2.5Vor2.5Vto1.8V  
or 1.65V. A guaranteed maximum dropout voltage of 500mV  
over all operating conditions allows the MIC3975 to provide  
2.5V from a supply as low as 3.0V and 1.8V or 1.65V from a  
supply as low as 2.25V.  
• Reversed-leakage protection  
• Fast transient response  
• Low-profile MSOP-8  
The MIC3975 is fully protected with overcurrent limiting,  
thermal shutdown, and reversed-battery protection. Fixed  
voltages of 5.0V, 3.3V, 3.0, 2.5V, 1.8V, and 1.65V are  
available. An adjustable output voltage option is available for  
voltages down to 1.24V.  
Applications  
• Fiber optic modules  
• LDO linear regulator for PC add-in cards  
• PowerPC™ power supplies  
For other voltages, contact Micrel.  
• High-efficiency linear power supplies  
• SMPS post regulator  
• Multimedia and PC processor supplies  
• Battery chargers  
• Low-voltage microcontrollers and digital logic  
Ordering Information  
Part Number  
Voltage Junction Temp. Range  
Package  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
MIC3975-1.65BMM  
MIC3975-1.8BMM  
MIC3975-2.5BMM  
MIC3975-3.0BMM  
MIC3975-3.3BMM  
MIC3975-5.0BMM  
MIC3975BMM  
1.65V  
1.8V  
2.5V  
3.0V  
3.3V  
5.0V  
Adj.  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Typical Applications  
100k  
MIC3975-2.5BMM  
Error  
Flag  
Output  
MIC3975BMM  
VIN  
3.3V  
VIN  
2.5V  
IN  
OUT  
2.5V  
IN  
OUT  
1.5V  
R1  
R1  
R2  
ENABLE  
SHUTDOWN  
ENABLE  
SHUTDOWN  
EN  
FLG  
EN  
ADJ  
10µF  
ceramic  
10µF  
ceramic  
GND  
GND  
2.5V/750mA Regulator with Error Flag  
1.5V/750mA Adjustable Regulator  
Super βeta PNP is a trademark of Micrel, Inc.  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
February 2003  
1
MIC3975  
MIC3975  
Micrel  
Pin Configuration  
EN  
IN  
1
2
3
4
8
7
6
5
GND  
GND  
GND  
GND  
EN  
IN  
1
2
3
4
8
7
6
5
GND  
GND  
GND  
GND  
FLG  
OUT  
ADJ  
OUT  
MIC3975-x.x  
Fixed  
Adjustable  
MSOP-8 (MM)  
MSOP-8 (MM)  
Pin Description  
Pin No.  
Fixed  
Pin No.  
Pin Name  
Pin Function  
Adjustable  
1
1
EN  
Enable (Input): CMOS-compatible control input. Logic high = enable, logic  
low or open = shutdown.  
2
3
2
3
IN  
Supply (Input)  
FLG  
Flag (Output): Open-collector error flag output. Active low = output under-  
voltage.  
ADJ  
Adjustment Input: Feedback input. Connect to resistive voltage-divider  
network.  
4
4
OUT  
GND  
Regulator Output  
Ground  
58  
58  
MIC3975  
2
February 2003  
MIC3975  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V ) ..................................... 20V to +20V  
Supply Voltage (V ) .................................. +2.25V to +16V  
IN  
IN  
Enable Voltage (V ) ..................................................+20V  
Enable Voltage (V ) ..................................................+16V  
EN  
EN  
Storage Temperature (T ) ....................... 65°C to +150°C  
Maximum Power Dissipation (P  
) .................... Note 4  
S
D(max)  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
ESD, Note 3  
Junction Temperature (T ) ....................... 40°C to +125°C  
J
Package Thermal Resistance  
MSOP-8 ) ......................................................80°C/W  
JA  
Electrical Characteristics(Note 12)  
VIN = VOUT + 1V; VEN = 2.25V; TJ = 25°C, bold values indicate 40°C TJ +125°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOUT  
Output Voltage  
10mA  
1  
2  
1
2
%
%
10mA IOUT 750mA, VOUT + 1V VIN 8V  
Line Regulation  
Load Regulation  
IOUT = 10mA, VOUT + 1V VIN 16V  
VIN = VOUT + 1V, 10mA IOUT 750mA,  
0.06  
0.2  
40  
0.5  
1
%
%
VOUT/T  
Output Voltage Temp. Coefficient,  
100 ppm/°C  
Note 5  
VDO  
Dropout Voltage, Note 6  
IOUT = 100mA, VOUT = 1%  
140  
200  
250  
mV  
mV  
IOUT = 500mA, VOUT = 1%  
IOUT = 750mA, VOUT = 1%  
IOUT = 100mA, VIN = VOUT + 1V  
IOUT = 500mA, VIN = VOUT + 1V  
IOUT = 750mA, VIN = VOUT + 1V  
VOUT = 0V, VIN = VOUT + 1V  
225  
300  
400  
4
mV  
mV  
µA  
mA  
mA  
A
500  
IGND  
Ground Current, Note 7  
7.5  
1.8  
15  
IOUT(lim)  
Enable Input  
VEN  
Current Limit  
2.5  
Enable Input Voltage  
Enable Input Current  
logic low (off)  
logic high (on)  
VEN = 2.25V  
0.8  
V
V
2.25  
IEN  
1
15  
30  
75  
µA  
µA  
VEN = 0.8V  
2
4
µA  
µA  
Flag Output  
IFLG(leak)  
Output Leakage Current  
Output Low Voltage  
VOH = 16V  
0.01  
210  
1
2
µA  
µA  
VFLG(do)  
VFLG  
VIN = 2.250V, IOL, = 250µA, Note 9  
300  
400  
mV  
mV  
Low Threshold  
High Threshold  
Hysteresis  
% of VOUT  
% of VOUT  
93  
%
%
%
99.2  
1
February 2003  
3
MIC3975  
MIC3975  
Micrel  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Adjustable Output Only  
Reference Voltage  
1.228 1.240 1.252  
V
V
V
1.215  
1.203  
1.265  
1.277  
Note 10  
Note 11  
Adjust Pin Bias Current  
40  
20  
80  
120  
nA  
nA  
Reference Voltage  
Temp. Coefficient  
ppm/°C  
Adjust Pin Bias Current  
Temp. Coefficient  
0.1  
nA/°C  
Note 1. Exceeding the absolute maximum ratings may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended.  
Note 4.  
P
= (T  
T ) ÷ θ , where θ depends upon the printed circuit layout. See Applications Information.”  
J(max) A JA JA  
D(max)  
Note 5. Output voltage temperature coefficient is V  
÷ (T  
T  
) where T  
is +125°C and T is 40°C.  
J(min)  
OUT(worst case)  
J(max)  
J(min)  
J(max)  
Note 6.  
V
= V V  
when V  
decreases to 98% of its nominal output voltage with V = V  
+ 1V. For output voltages below 2.25V, dropout  
OUT  
DO  
IN  
OUT  
OUT  
IN  
voltage is the input-to-output voltage differential with the minimum input voltage being 2.25V. Minimum input operating voltage is 2.25V.  
Note 7.  
Note 8.  
I
is the quiescent current. I = I + I  
.
OUT  
GND  
IN  
GND  
V
0.8V, V 8V, and V  
= 0V.  
OUT  
EN  
IN  
Note 9. For a 2.5V device, V = 2.250V (device is in dropout).  
IN  
Note 10. V  
V  
(V 1V), 2.25V V 16V, 10mA I 750mA, T = T  
.
REF  
OUT  
IN  
IN  
L
J
MAX  
Note 11. Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied, excluding load or line  
regulation effects. Specifications are for a 200mA load pulse at V = 16V for t = 10ms.  
IN  
Note 12. Specification for packaged product only.  
MIC3975  
4
February 2003  
MIC3975  
Micrel  
Typical Characteristics  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
80  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
VIN = 5V  
VOUT = 3.3V  
VIN = 5V  
VOUT = 3.3V  
VIN = 3.3V  
VOUT = 2.5V  
60  
40  
IOUT = 750mA  
20  
IOUT = 750mA  
COUT = 47µF  
CIN = 0  
IOUT = 750mA  
COUT = 10µF  
CIN = 0  
COUT = 10µF  
CIN = 0  
0
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k  
10k 1M  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k  
10k  
1M  
1k  
10k  
1M  
10  
100  
100k  
10  
100  
100k  
10  
100  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Power Supply  
Dropout Voltage  
Dropout Voltage  
vs. Temperature  
Rejection Ratio  
vs. Output Current  
80  
350  
400  
VIN = 3.3V  
VOUT = 2.5V  
300  
250  
200  
150  
100  
50  
2.5V  
2.5V  
60  
40  
20  
0
350  
300  
250  
200  
1.8V  
3.3V  
1.8V  
IOUT = 750mA  
COUT = 47µF  
CIN = 0  
3.3V  
TA = 25°C  
500  
ILOAD = 750mA  
0
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k  
10k  
0
250  
750  
-40 -20  
0
20 40 60 80 100120140  
1M  
3.5  
8
10  
100  
100k  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Dropout Characteristics  
(2.5V)  
Dropout Characteristics  
(3.3V)  
Ground Current  
vs. Output Current  
2.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
10  
9
8
7
6
5
4
3
2
1
0
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
I
=100mA  
I
=100mA  
LOAD  
LOAD  
1.8V  
2.5V  
I
LOAD  
=750mA  
3.3V  
I
LOAD  
=750mA  
0
250  
500  
750  
2
2.3  
2.6  
2.9  
3.2  
2.8  
3.2  
3.6  
4.0  
4.4  
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Ground Current  
vs. Supply Voltage (2.5V)  
Ground Current  
vs. Supply Voltage (3.3V)  
Ground Current  
vs. Supply Voltage (2.5V)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
30  
25  
20  
15  
10  
5
I
=100mA  
LOAD  
I
=100mA  
=10mA  
LOAD  
I
LOAD  
I
=10mA  
LOAD  
I
= 750mA  
LOAD  
0
0
2
4
6
0
2
4
6
8
0
2
4
6
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
February 2003  
5
MIC3975  
MIC3975  
Micrel  
Ground Current  
vs. Supply Voltage (3.3V)  
Ground Current  
vs. Temperature  
Ground Current  
vs. Temperature  
30  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
=750mA  
LOAD  
2.5V  
3.3V  
25  
20  
15  
10  
5
I
=10mA  
LOAD  
1.8V  
3.3V  
2.5V  
1.8V  
ILOAD = 500mA  
0
0
1
2
3
4
5
6
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Output Voltage  
vs. Temperature  
Ground Current  
vs. Temperature  
Short Circuit  
vs. Temperature  
9
8
8
7
7
6
6
5
3.40  
3.35  
3.30  
3.25  
3.20  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5V  
3.3V  
Typical 3.3V  
Device  
1.8V  
2.5V  
1.8V  
3.3V  
ILOAD = 750mA  
-40 -20  
0 20 40 60 80 100120140  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Error Flag  
Pull-Up Resistor  
Enable Current  
vs. Temperature  
Flag-Low Voltage  
vs. Temperature  
12  
10  
8
250  
200  
150  
100  
50  
6
5
4
3
2
1
VIN = 5V  
VIN = VOUT + 1V  
FLAG-LOW  
VOLTAGE  
VEN = 2.4V  
FLAG HIGH  
(OK)  
6
VIN = 2.25V  
RPULL-UP = 22kΩ  
4
FLAG LOW  
(FAULT)  
2
0
0
0
0.01 0.1  
1
10 100 100010000  
-40 -20  
0
20 40 60 80 100120140  
-40 -20  
0
20 40 60 80 100120140  
RESISTANCE (k)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MIC3975  
6
February 2003  
MIC3975  
Micrel  
Functional Characteristics  
Load Transient Response  
Load Transient Response  
VIN = 3.3V  
VOUT = 2.5V  
COUT = 10µF Ceramic  
VIN = 3.3V  
VOUT = 2.5V  
COUT = 10µF Ceramic  
750mA  
750mA  
100mA  
10mA  
TIME (200µs/div.)  
TIME (200µs/div.)  
Line Transient Response  
5.0V  
3.3V  
VOUT = 2.5V  
COUT = 10µF Ceramic  
ILOAD = 10mA  
TIME (200µs/div.)  
February 2003  
7
MIC3975  
MIC3975  
Micrel  
Functional Diagrams  
OUT  
IN  
O.V.  
ILIMIT  
18V  
1.180V  
1.240V  
Ref.  
FLAG  
EN  
Thermal  
Shut-  
down  
GND  
MIC3975 Fixed Regulator with Flag and Enable Block Diagram  
OUT  
IN  
O.V.  
ILIMIT  
18V  
1.240V  
Ref.  
ADJ  
EN  
Thermal  
Shut-  
down  
GND  
MIC3975 Adjustable Regulator Block Diagram  
MIC3975  
8
February 2003  
MIC3975  
Micrel  
Input Capacitor  
Applications Information  
An input capacitor of 1µF or greater is recommended when  
thedeviceismorethan4inchesawayfromthebulkacsupply  
capacitance or when the supply is a battery. Small, surface  
mount, ceramic chip capacitors can be used for bypassing.  
Larger values will help to improve ripple rejection by bypass-  
ing the input to the regulator, further improving the integrity of  
the output voltage.  
The MIC3975 is a high-performance low-dropout voltage  
regulator suitable for moderate to high-current voltage regu-  
lator applications. Its 500mV dropout voltage at full load and  
overtemperature makes it especially valuable in battery-  
powered systems and as high-efficiency noise filters in post-  
regulator applications. Unlike older NPN-pass transistor de-  
signs, where the minimum dropout voltage is limited by the  
base-to-emitter voltage drop and collector-to-emitter satura-  
tion voltage, dropout performance of the PNP output of these  
Error Flag  
The MIC3975 features an error flag (FLG), which monitors  
the output voltage and signals an error condition when this  
voltage drops 5% below its expected value. The error flag is  
an open-collector output that pulls low under fault conditions  
and may sink up to 10mA. Low output voltage signifies a  
number of possible problems, including an overcurrent fault  
(the device is in current limit) or low input voltage. The flag  
output is inoperative during overtemperature conditions. A  
devices is limited only by the low V saturation voltage.  
CE  
A trade-off for the low dropout voltage is a varying base drive  
requirement. Micrels Super βeta PNPprocess reduces  
this drive requirement to only 2% of the load current.  
The MIC3975 regulator is fully protected from damage due to  
fault conditions. Linear current limiting is provided. Output  
current during overload conditions is constant. Thermal shut-  
down disables the device when the die temperature exceeds  
the maximum safe operating temperature. Transient protec-  
tion allows device (and load) survival even when the input  
voltage spikes above and below nominal. The output struc-  
ture of these regulators allows voltages in excess of the  
desired output voltage to be applied without reverse current  
flow.  
pull-up resistor from FLG to either V or V  
is required for  
IN  
OUT  
properoperation.Forinformationregardingtheminimumand  
maximum values of pull-up resistance, refer to the graph in  
the typical characteristics section of the data sheet.  
Enable Input  
The MIC3975 features an active-high enable input (EN) that  
allows on-off control of the regulator. Current drain reduces  
to zerowhen the device is shutdown, with only microam-  
peres of leakage current. The EN input has TTL/CMOS  
compatiblethresholdsforsimplelogicinterfacing. ENmaybe  
MIC3975x.x  
VIN  
VOUT  
IN  
OUT  
GND  
directly tied to V and pulled up to the maximum supply  
CIN  
COUT  
IN  
voltage  
Transient Response and 3.3V to 2.5V or 2.5V to 1.8V or  
1.65V Conversion  
Figure 1. Capacitor Requirements  
Output Capacitor  
The MIC3975 has excellent transient response to variations  
in input voltage and load current. The device has been  
designed to respond quickly to load current variations and  
input voltage variations. Large output capacitors are not  
required to obtain this performance. A standard 10µF output  
capacitor, isallthatisrequired. Largervalueshelptoimprove  
performance even further.  
The MIC3975 requires an output capacitor for stable opera-  
tion. As aµCap LDO, the MIC3975 can operate with ceramic  
output capacitors as long as the amount of capacitance is  
10µF or greater. For values of output capacitance lower than  
10µF, the recommended ESR range is 200mto 2. The  
minimum value of output capacitance recommended for the  
MIC3975 is 4.7µF.  
By virtue of its low-dropout voltage, this device does not  
saturate into dropout as readily as similar NPN-based de-  
signs. When converting from 3.3V to 2.5V or 2.5V to 1.8V or  
1.65V, the NPN based regulators are already operating in  
dropout, with typical dropout requirements of 1.2V or greater.  
Toconvertdownto2.5Vor1.8Vwithoutoperatingindropout,  
NPN-based regulators require an input voltage of 3.7V at the  
very least. The MIC3975 regulator will provide excellent  
performance with an input as low as 3.0V or 2.5V respec-  
tively. This gives the PNP based regulators a distinct advan-  
tage over older, NPN based linear regulators.  
For10µForgreatertheESRrangerecommendedislessthan  
1. Ultra-low ESR ceramic capacitors are recommended for  
output capacitance of 10µF or greater to help improve tran-  
sient response and noise reduction at high frequency.  
X7R/X5R dielectric-type ceramic capacitors are recom-  
mended because of their temperature performance. X7R-  
type capacitors change capacitance by 15% over their oper-  
ating temperature range and are the most stable type of  
ceramiccapacitors.Z5UandY5Vdielectriccapacitorschange  
value by as much as 50% and 60% respectively over their  
operatingtemperatureranges. Touseaceramicchipcapaci-  
torwithY5Vdielectric, thevaluemustbemuchhigherthanan  
X7R ceramic capacitor to ensure the same minimum capaci-  
tance over the equivalent operating temperature range.  
Minimum Load Current  
The MIC3975 regulator is specified between finite loads. If  
the output current is too small, leakage currents dominate  
and the output voltage rises. A 10mA minimum load current  
is necessary for proper regulation.  
February 2003  
9
MIC3975  
MIC3975  
Micrel  
Adjustable Regulator Design  
sink thermal resistance) and θ  
(sink-to-ambient thermal  
SA  
resistance).  
Using the power MSOP-8 reduces the θ dramatically and  
JC  
MIC3975  
allows the user to reduce θ . The total thermal resistance,  
VIN  
IN  
OUT  
VOUT  
COUT  
CA  
R1  
R2  
θ
(junction-to-ambient thermal resistance) is the limiting  
JA  
ENABLE  
SHUTDOWN  
EN  
ADJ  
factor in calculating the maximum power dissipation capabil-  
GND  
ity of the device. Typically, the power MSOP-8 has a θ of  
JA  
80°C/W, this is significantly lower than the standard MSOP-8  
R1  
R2  
which is typically 160°C/W. θ is reduced because pins 5  
V
= 1.240V 1+  
CA  
OUT  
through 8 can now be soldered directly to a ground plane  
which significantly reduces the case-to-sink thermal resis-  
tance and sink to ambient thermal resistance.  
Figure 2. Adjustable Regulator with Resistors  
The MIC3975 allows programming the output voltage any-  
wherebetween1.24Vandthe16Vmaximumoperatingrating  
of the family. Two resistors are used. Resistors can be quite  
large, up to 1M, because of the very high input impedance  
and low bias current of the sense comparator: The resistor  
values are calculated by:  
Low-dropout linear regulators from Micrel are rated to a  
maximum junction temperature of 125°C. It is important not  
to exceed this maximum junction temperature during opera-  
tionofthedevice.Topreventthismaximumjunctiontempera-  
ture from being exceeded, the appropriate ground plane heat  
sink must be used.  
VOUT  
R1= R2  
1  
1.240  
Where V is the desired output voltage. Figure 2 shows  
MSOP-8  
O
component definition. Applications with widely varying load  
currents may scale the resistors to draw the minimum load  
current required for proper operation (see above).  
Power MSOP-8 Thermal Characteristics  
θJA  
One of the secrets of the MIC3975s performance is its power  
MSO-8 package featuring half the thermal resistance of a  
standard MSO-8 package. Lower thermal resistance means  
more output current or higher input voltage for a given  
package size.  
ground plane  
heat sink area  
θJC  
θCA  
AMBIENT  
printed circuit board  
Lower thermal resistance is achieved by joining the four  
ground leads with the die attach paddle to create a single-  
piece electrical and thermal conductor. This concept has  
been used by MOSFET manufacturers for years, proving  
very reliable and cost effective for the user.  
Figure 3. Thermal Resistance  
Figure 4 shows copper area versus power dissipation with  
each trace corresponding to a different temperature rise  
above ambient.  
From these curves, the minimum area of copper necessary  
for the part to operate safely can be determined. The maxi-  
mum allowable temperature rise must be calculated to deter-  
mine operation along which curve.  
Thermal resistance consists of two main elements, θ  
JC  
(junction-to-casethermalresistance)andθ (case-to-ambi-  
CA  
ent thermal resistance). See Figure 3. θ is the resistance  
JC  
from the die to the leads of the package. θ is the resistance  
CA  
from the leads to the ambient air and it includes θ (case-to-  
CS  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
T
= 125°C  
85°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
J
50°C 25°C  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
Figure 4. Copper Area vs. Power-MSOP  
Power Dissipation (T  
Figure 5. Copper Area vs. Power-MSOP  
)
Power Dissipation (T )  
JA  
A
MIC3975  
10  
February 2003  
MIC3975  
T = T  
Micrel  
Quick Method  
T  
J(max)  
A(max)  
Determine the power dissipation requirements for the design  
along with the maximum ambient temperature at which the  
device will be operated. Refer to Figure 5, which shows safe  
operating curves for three different ambient temperatures:  
25°C, 50°C and 85°C. From these curves, the minimum  
amount of copper can be determined by knowing the maxi-  
mum power dissipation required. If the maximum ambient  
temperature is 50°C and the power dissipation is as above,  
625mW, the curve in Figure 5 shows that the required area of  
T
T
= 125°C  
J(max)  
A(max)  
= maximum ambient operating temperature  
Forexample, themaximumambienttemperatureis50°C, the  
T is determined as follows:  
T = 125°C 50°C  
T = 75°C  
Using Figure 4, the minimum amount of required copper can  
be determined based on the required power dissipation.  
Power dissipation in a linear regulator is calculated as fol-  
lows:  
2
copper is 160mm .  
The θ of this package is ideally 80°C/W, but it will vary  
JA  
depending upon the availability of copper ground plane to  
which it is attached.  
P = (V V  
) I  
+ V × I  
D
IN  
OUT OUT IN GND  
If we use a 2.5V output device and a 3.3V input at an output  
current of 750mA, then our power dissipation is as follows:  
P = (3.3V 2.5V) × 750mA + 3.3V × 7.5mA  
D
P = 600mW + 25mW  
D
P = 625mW  
D
From Figure 4, the minimum amount of copper required to  
2
operate this application at a T of 75°C is 160mm .  
February 2003  
11  
MIC3975  
MIC3975  
Micrel  
Package Information  
0.122 (3.10)  
0.112 (2.84)  
0.199 (5.05)  
0.187 (4.74)  
DIMENSIONS:  
INCH (MM)  
0.120 (3.05)  
0.116 (2.95)  
0.036 (0.90)  
0.032 (0.81)  
0.043 (1.09)  
0.038 (0.97)  
0.012 (0.30) R  
0.007 (0.18)  
0.005 (0.13)  
0.008 (0.20)  
0.004 (0.10)  
5° MAX  
0° MIN  
0.012 (0.3)  
0.012 (0.03) R  
0.039 (0.99)  
0.0256 (0.65) TYP  
0.035 (0.89)  
0.021 (0.53)  
8-Lead MSOP (MM)  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchasers  
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchasers own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2003 Micrel, Incorporated.  
MIC3975  
12  
February 2003  

相关型号:

MIC3975-1.65BMMTR

Fixed Positive LDO Regulator 1.65V 0.5V Dropout PDSO8
MICROCHIP

MIC3975-1.65YMM

750mA μCap Low-Voltage Low-Dropout Regulator
MICREL

MIC3975-1.65YMM

1.65V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8
MICROCHIP

MIC3975-1.65YMM-TR

1.65V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8
MICROCHIP

MIC3975-1.65YMMTR

1.65V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8, LEAD FREE, MSOP-8
MICROCHIP

MIC3975-1.8BMM

750mA UCap Low-Voltage Low-Dropout Regulator
MICREL

MIC3975-1.8BMM

Fixed Positive LDO Regulator, 1.8V, 0.5V Dropout, BIPolar, PDSO8, MSOP-8
MICROCHIP

MIC3975-1.8YMM

750mA μCap Low-Voltage Low-Dropout Regulator
MICREL

MIC3975-1.8YMM

1.8V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8
MICROCHIP

MIC3975-1.8YMM-TR

1.8V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8
MICROCHIP

MIC3975-1.8YMMTR

1.8V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8, LEAD FREE, MSOP-8
MICREL

MIC3975-2.5BMM

750mA UCap Low-Voltage Low-Dropout Regulator
MICREL