MIC4426AM [MICREL]

Dual 1.5A-Peak Low-Side MOSFET Driver; 双1.5A峰值低侧MOSFET驱动器
MIC4426AM
型号: MIC4426AM
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Dual 1.5A-Peak Low-Side MOSFET Driver
双1.5A峰值低侧MOSFET驱动器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管 信息通信管理
文件: 总8页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC4426/4427/4428  
Dual 1.5A-Peak Low-Side MOSFET Driver  
General Description  
Features  
The MIC4426/4427/4428 family are highly-reliable dual low-  
side MOSFET drivers fabricated on a BiCMOS/DMOS pro-  
cess for low power consumption and high efficiency. These  
drivers translate TTL or CMOS input logic levels to output  
voltage levels that swing within 25mV of the positive supply  
orground. Comparablebipolardevicesarecapableofswing-  
ing only to within 1V of the supply. The MIC4426/7/8 is  
available in three configurations: dual inverting, dual nonin-  
verting, and one inverting plus one noninverting output.  
• Bipolar/CMOS/DMOS construction  
• Latch-up protection to >500mA reverse current  
• 1.5A-peak output current  
• 4.5V to 18V operating range  
• Low quiescent supply current  
4mA at logic 1 input  
400µA at logic 0 input  
• Switches 1000pF in 25ns  
• Matched rise and rall times  
• 7output impedance  
• < 40ns typical delay  
The MIC4426/4427/4428 are pin-compatible replacements  
for the MIC426/427/428 and MIC1426/1427/1428 with im-  
proved electrical performance and rugged design (Refer to  
the Device Replacement lists on the following page). They  
canwithstandupto500mAofreversecurrent(eitherpolarity)  
without latching and up to 5V noise spikes (either polarity) on  
ground pins.  
• Logic-input threshold independent of supply voltage  
• Logic-input protection to –5V  
• 6pF typical equivalent input capacitance  
• 25mV max. output offset from supply or ground  
• Replaces MIC426/427/428 and MIC1426/1427/1428  
• Dual inverting, dual noninverting, and inverting/  
noninverting configurations  
PrimarilyintendedfordrivingpowerMOSFETs,MIC4426/7/8  
drivers are suitable for driving other loads (capacitive, resis-  
tive, or inductive) which require low-impedance, high peak  
current, and fast switching time. Other applications include  
driving heavily loaded clock lines, coaxial cables, or piezo-  
electrictransducers.Theonlyloadlimitationisthattotaldriver  
power dissipation must not exceed the limits of the package.  
• ESD protection  
Applications  
• MOSFET driver  
• Clock line driver  
• Coax cable driver  
• Piezoelectic transducer driver  
Functional Diagram  
VS  
INVERTING  
0.6mA  
0.1mA  
OUTA  
INA  
2k  
NONINVERTING  
INVERTING  
0.6mA  
0.1mA  
OUTB  
INB  
2kΩ  
NONINVERTING  
GND  
September 1999  
1
MIC4426/4427/4428  
MIC4426/4427/4428  
Micrel  
Ordering Information  
Part Number  
MIC4426AM  
MIC4426BM  
MIC4426BMM  
MIC4426BN  
MIC4427AM  
MIC4427BM  
MIC4427BMM  
MIC4427BN  
MIC4428AM  
MIC4428BM  
MIC4428BMM  
MIC4428BN  
Temperature Range  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package  
8-lead SOIC  
Configuration  
Dual Inverting  
8-lead SOIC  
Dual Inverting  
8-lead MSOP  
8-lead Plastic DIP  
8-lead SOIC  
Dual Inverting  
Dual Inverting  
Dual Noninverting  
Dual Noninverting  
Dual Noninverting  
Dual Noninverting  
Inverting + Noninverting  
Inverting + Noninverting  
Inverting + Noninverting  
Inverting + Noninverting  
8-lead SOIC  
8-lead MSOP  
8-pin Plastic DIP  
8-lead SOIC  
8-lead SOIC  
8-lead MSOP  
8-lead Plastic DIP  
MIC426/427/428 Device Replacement  
MIC1426/1427/1428 Device Replacement  
Discontinued Number Replacement  
Discontinued Number Replacement  
MIC426CM  
MIC426BM  
MIC426CN  
MIC426BN  
MIC427CM  
MIC427BM  
MIC427CN  
MIC427BN  
MIC428CM  
MIC428BM  
MIC428CN  
MIC428BN  
MIC4426BM  
MIC4426BM  
MIC4426BN  
MIC4426BN  
MIC4427BM  
MIC4427BM  
MIC4427BN  
MIC4427BN  
MIC4428BM  
MIC4428BM  
MIC4428BN  
MIC4428BN  
MIC1426CM  
MIC1426BM  
MIC1426CN  
MIC1426BN  
MIC1427CM  
MIC1427BM  
MIC1427CN  
MIC1427BN  
MIC1428CM  
MIC1428BM  
MIC1428CN  
MIC1428BN  
MIC4426BM  
MIC4426BM  
MIC4426BN  
MIC4426BN  
MIC4427BM  
MIC4427BM  
MIC4427BN  
MIC4427BN  
MIC4428BM  
MIC4428BM  
MIC4428BN  
MIC4428BN  
Pin Configuration  
MIC4426  
MIC4426  
MIC4427  
MIC4427  
MIC4428  
MIC4428  
NC  
INA  
NC  
NC  
NC  
NC  
INA  
NC  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
2
4
A
B
7
5
2
4
A
B
7
5
2
4
A
B
7
5
OUTA  
VS  
INA  
GND  
INB  
OUTA  
VS  
OUTA  
VS  
GND  
INB  
GND  
INB  
OUTB  
OUTB  
OUTB  
Dual  
Inverting  
Dual  
Noninverting  
Inverting +  
Noninverting  
Pin Description  
Pin Number  
Pin Name  
NC  
Pin Function  
not internally connected  
1, 8  
2
INA  
Control Input A: TTL/CMOS compatible logic input.  
Ground  
3
GND  
INB  
4
Control Input B: TTL/CMOS compatible logic input.  
Output B: CMOS totem-pole output.  
Supply Input: +4.5V to +18V  
5
OUTB  
VS  
6
7
OUTA  
Output A: CMOS totem-pole output.  
MIC4426/4427/4428  
2
September 1999  
MIC4426/4427/4428  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V ) ....................................................+22V  
Supply Voltage (V ) ..................................... +4.5V to +18V  
S
S
Input Voltage (V ) ......................... V + 0.3V to GND – 5V  
Temperature Range (T )  
IN  
S
A
Junction Temperature (T ) ........................................ 150°C  
(A) ........................................................ –55°C to +125°C  
(B) .......................................................... –40°C to +85°C  
Package Thermal Resistance  
J
Storage Temperature ............................... –65°C to +150°C  
Lead Temperature (10 sec.)...................................... 300°C  
ESD Rating, Note 3  
PDIP θ ............................................................130°C/W  
JA  
PDIP θ .............................................................42°C/W  
JC  
SOIC θ ...........................................................120°C/W  
JA  
SOIC θ .............................................................75°C/W  
JC  
MSOP θ .........................................................250°C/W  
JC  
Electrical Characteristics  
4.5V Vs 18V; TA = 25°C, bold values indicate full specified temperature range; unless noted.  
Symbol  
Input  
VIH  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Logic 1 Input Voltage  
Logic 0 Input Voltage  
Input Current  
2.4  
2.4  
1.4  
1.5  
V
V
VIL  
1.1  
1.0  
0.8  
0.8  
V
V
IIN  
0 VIN VS  
–1  
1
µA  
Output  
VOH  
VOL  
RO  
High Output Voltage  
Low Output Voltage  
Output Resistance  
V –0.025  
V
V
S
0.025  
IOUT = 10mA, VS = 18V  
withstand reverse current  
6
8
10  
12  
IPK  
I
Switching Time  
Peak Output Current  
1.5  
A
Latch-Up Protection  
>500  
mA  
tR  
Rise Time  
test Figure 1  
test Figure 1  
test Flgure 1  
test Figure 1  
test Figure 1  
18  
20  
30  
40  
ns  
ns  
tF  
Fall Time  
15  
29  
20  
40  
ns  
ns  
tD1  
tD2  
Delay Tlme  
Delay Time  
Pulse Width  
17  
19  
30  
40  
ns  
ns  
23  
27  
50  
60  
ns  
ns  
tPW  
400  
ns  
Power Supply  
IS  
Power Supply Current  
Power Supply Current  
VINA = VINB = 3.0V  
VINA = VINB = 0.0V  
1.4  
1.5  
4.5  
8
mA  
mA  
IS  
0.18  
0.19  
0.4  
0.6  
mA  
mA  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended.  
September 1999  
3
MIC4426/4427/4428  
MIC4426/4427/4428  
Micrel  
Test Circuits  
VS = 18V  
VS = 18V  
0.1µF  
4.7µF  
0.1µF  
4.7µF  
6
6
INA 2  
INB 4  
INA 2  
INB 4  
7
5
7
5
OUTA  
1000pF  
OUTA  
1000pF  
A
A
MIC4426  
MIC4427  
B
OUTB  
1000pF  
B
OUTB  
1000pF  
Figure 1a. Inverting Configuration  
Figure 2a. Noninverting Configuration  
5V  
90%  
5V  
2.5V  
90%  
2.5V  
tD2  
INPUT  
INPUT  
10%  
0V  
10%  
0V  
tPW  
tPW  
tD1  
tF  
tR  
tD1  
tF  
tR  
tD2  
VS  
VS  
90%  
90%  
OUTPUT  
10%  
OUTPUT  
10%  
0V  
0V  
Figure 1b. Inverting Timing  
Figure 2b. Noninverting Timing  
MIC4426/4427/4428  
4
September 1999  
MIC4426/4427/4428  
Micrel  
Electrical Characteristics  
Rise and Fall Time  
vs. Temperature  
Rise and Fall Time vs.  
Supply Voltage  
Delay Time vs. Supply Voltage  
70  
40  
30  
20  
10  
35  
30  
CL = 1000pF  
TA = 25°C  
CL = 1000pF  
TA = 25°C  
CL = 1000pF  
VS = 18V  
60  
50  
40  
30  
25  
20  
15  
10  
5
t F  
t D2  
tR  
t D1  
tR  
20  
t F  
10  
0
0
-50 -25  
0
25 50 75 100  
125150  
-75  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Supply Current vs.  
Capacitive Load  
Rise and Fall Time vs.  
Capacitive Load  
Delay Time vs. Temperature  
35  
30  
80  
70  
1k  
400kHz  
TA = 25°C  
VS = 18V  
CL = 1000pF  
VS = 18V  
TA = 25°C  
VS = 18V  
t D2  
60  
50  
40  
30  
tR  
25  
20  
15  
10  
5
100  
t F  
t D1  
10  
1
200  
kHz  
20  
10  
0
20kHz  
0
-50 -25  
0
25 50 75 100 125 150  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
-75  
TEMPERATURE (°C)  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Supply Current vs. Frequency  
High Output vs. Current  
Low Output vs. Current  
1.20  
0.96  
0.72  
0.48  
30  
1.20  
0.96  
0.72  
0.48  
VS = 18V  
TA = 25°C  
VC = 5V  
TA = 25°C  
CL = 1000pF  
TA = 25°C  
VS = 5V  
20  
10 V  
10 V  
10 V  
10  
0
15 V  
15 V  
5 V  
0.24  
0
0.24  
0
0
10 20 30 40 50 60 70 80 90 100  
CURRENT SOURCED (mA)  
0
10 20 30 40 50 60 70 80 90 100  
CURRENT SUNK (mA)  
1
10  
100  
1000  
FREQUENCY (kHz)  
Quiescent Power Supply  
Current vs. Supply Voltage  
Quiescent Power Supply  
Current vs. Supply Voltage  
Package Power Dissipation  
400  
300  
200  
2.5  
2.0  
1250  
1000  
SOIC  
PDIP  
1.5  
1.0  
750  
500  
250  
0
150  
100  
50  
NO LOAD  
BOTH INPUTS LOGIC "0"  
TA = 25°C  
NO LOAD  
BOTH INPUTS LOGIC "1"  
TA = 25°C  
0.5  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
25  
50  
75  
100  
125  
150  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
September 1999  
5
MIC4426/4427/4428  
MIC4426/4427/4428  
Micrel  
Power Dissipation  
Applications Information  
Power dissipation should be calculated to make sure that the  
driver is not operated beyond its thermal ratings. Quiescent  
power dissipation is negligible. A practical value for total  
power dissipation is the sum of the dissipation caused by the  
load and the transition power dissipation (P + P ).  
Supply Bypassing  
Large currents are required to charge and discharge large  
capacitive loads quickly. For example, changing a 1000pF  
load by 16V in 25ns requires 0.8A from the supply input.  
L
T
To guarantee low supply impedance over a wide frequency  
range, parallel capacitors are recommended for power sup-  
ply bypassing. Low-inductance ceramic MLC capacitors with  
short lead lengths (< 0.5") should be used. A 1.0µF film  
capacitor in parallel with one or two 0.1µF ceramic MLC  
capacitors normally provides adequate bypassing.  
Load Dissipation  
Power dissipation caused by continuous load current (when  
driving a resistive load) through the driver’s output resistance  
is:  
2
P = I  
R
O
L
L
For capacitive loads, the dissipation in the driver is:  
Grounding  
2
P = f C V  
S
WhenusingtheinvertingdriversintheMIC4426orMIC4428,  
individual ground returns for the input and output circuits or a  
groundplanearerecommendedforoptimumswitchingspeed.  
Thevoltagedropthatoccursbetweenthedriver’sgroundand  
theinputsignalground,duringnormalhigh-currentswitching,  
will behave as negative feedback and degrade switching  
speed.  
L
L
Transition Dissipation  
Inapplicationsswitchingatahighfrequency,transitionpower  
dissipation can be significant. This occurs during switching  
transitions when the P-channel and N-channel output FETs  
are both conducting for the brief moment when one is turning  
on and the other is turning off.  
Control Input  
P = 2 f V Q  
T
S
Unused driver inputs must be connected to logic high (which  
Charge (Q) is read from the following graph:  
can be V ) or ground. For the lowest quiescent current  
S
-8  
1×10  
(< 500µA) , connect unused inputs to ground. A logic-high  
signal will cause the driver to draw up to 9mA.  
-9  
8×10  
-9  
6×10  
The drivers are designed with 100mV of control input hyster-  
esis. This provides clean transitions and minimizes output  
stage current spikes when changing states. The control input  
voltage threshold is approximately 1.5V. The control input  
-9  
4×10  
-9  
3×10  
recognizes 1.5V up to V as a logic high and draws less than  
-9  
2×10  
S
1µA within this range.  
The MIC4426/7/8 drives the TL494, SG1526/7, MIC38C42,  
TSC170 and similar switch-mode power supply integrated  
circuits.  
-9  
1×10  
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE (V)  
Crossover Energy Loss per Transition  
MIC4426/4427/4428  
6
September 1999  
MIC4426/4427/4428  
Micrel  
Package Information  
0.026 (0.65)  
MAX)  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
TYP  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0.010 (0.25)  
0.007 (0.18)  
0°–8°  
0.197 (5.0)  
0.189 (4.8)  
0.050 (1.27)  
0.016 (0.40)  
SEATING  
PLANE  
0.064 (1.63)  
0.045 (1.14)  
0.244 (6.20)  
0.228 (5.79)  
8-lead SOP (M)  
0.122 (3.10)  
0.112 (2.84)  
0.199 (5.05)  
0.187 (4.74)  
DIMENSIONS:  
INCH (MM)  
0.120 (3.05)  
0.116 (2.95)  
0.036 (0.90)  
0.032 (0.81)  
0.043 (1.09)  
0.038 (0.97)  
0.012 (0.30) R  
0.007 (0.18)  
0.005 (0.13)  
0.008 (0.20)  
0.004 (0.10)  
5° MAX  
0° MIN  
0.012 (0.03)  
0.012 (0.03) R  
0.039 (0.99)  
0.0256 (0.65) TYP  
0.035 (0.89)  
0.021 (0.53)  
8-lead MM8™ MSOP (MM)  
PIN 1  
DIMENSIONS:  
INCH (MM)  
0.380 (9.65)  
0.370 (9.40)  
0.255 (6.48)  
0.245 (6.22)  
0.135 (3.43)  
0.125 (3.18)  
0.300 (7.62)  
0.013 (0.330)  
0.010 (0.254)  
0.380 (9.65)  
0.320 (8.13)  
0.018 (0.57)  
0.100 (2.54)  
0.130 (3.30)  
0.0375 (0.952)  
8-lead Plastic DIP (N)  
September 1999  
7
MIC4426/4427/4428  
MIC4426/4427/4428  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 1999 Micrel Incorporated  
MIC4426/4427/4428  
8
September 1999  

相关型号:

MIC4426AY

1.5A 2 CHANNEL, BUF OR INV BASED MOSFET DRIVER, UUC6
MICROCHIP

MIC4426BJ

Buffer/Inverter Based MOSFET Driver, 1.5A, BICMOS, CDIP8, CERDIP-8
MICROCHIP

MIC4426BM

Dual 1.5A-Peak Low-Side MOSFET Driver
MICREL

MIC4426BMM

Dual 1.5A-Peak Low-Side MOSFET Driver
MICREL

MIC4426BMMT&R

Buffer/Inverter Based MOSFET Driver, 1.5A, BICMOS, PDSO8, MSOP-8
MICREL

MIC4426BMT&R

Buffer/Inverter Based MOSFET Driver, 1.5A, BICMOS, PDSO8, SOIC-8
MICROCHIP

MIC4426BN

Dual 1.5A-Peak Low-Side MOSFET Driver
MICREL

MIC4426CM

Dual 1.5A-Peak Low-Side MOSFET Driver
MICREL

MIC4426CMT&R

Buffer/Inverter Based MOSFET Driver, 1.5A, BICMOS, PDSO8, SOIC-8
MICROCHIP

MIC4426CN

Dual 1.5A-Peak Low-Side MOSFET Driver
MICREL

MIC4426YMM

Dual 1.5A-Peak Low-Side MOSFET Driver
MICREL

MIC4426YMM-TR

1.5A 2 CHANNEL, BUF OR INV BASED MOSFET DRIVER, PDSO8
MICROCHIP