MIC4680 [MICREL]

1A 200kHz SuperSwitcher⑩ Buck Regulator Final Information; 1A 200kHz的SuperSwitcher⑩降压稳压器最终信息
MIC4680
型号: MIC4680
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

1A 200kHz SuperSwitcher⑩ Buck Regulator Final Information
1A 200kHz的SuperSwitcher⑩降压稳压器最终信息

稳压器
文件: 总16页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC4680  
1A 200kHz SuperSwitcher™ Buck Regulator  
Final Information  
General Description  
Features  
The MIC4680 SuperSwitcher™ is an easy-to-use fixed or  
adjustable output voltage step-down (buck) switch-mode  
voltage regulator. The 200kHz MIC4680 achieves up to 1.3A  
of continuous output current over a wide input range in a  
8-lead SOP (small outline package).  
SO-8 package with up to 1.3A output current  
All surface mount solution  
Only 4 external components required  
Fixed 200kHz operation  
3.3V, 5V, and adjustable output versions  
Internally compensated with fast transient response  
Wide 4V to 34V operating input voltage range  
Less than 2µA typical shutdown-mode current  
Up to 90% efficiency  
The MIC4680 is available in 3.3V and 5V fixed output ver-  
sions or adjustable output down to 1.25V.  
The MIC4680 has an input voltage range of 4V to 34V, with  
excellent line, load, and transient response. The regulator  
performs cycle-by-cycle current limiting and thermal shut-  
down for protection under fault conditions. In shutdown  
mode, the regulator draws less than 2µA of standby current.  
Thermal shutdown  
Overcurrent protection  
Applications  
The MIC4680 SuperSwitcher™ regulator requires a mini-  
mum number of external components and can operate using  
a standard series of inductors and capacitors. Frequency  
compensation is provided internally for fast transient re-  
sponse and ease of use.  
Simple 1A high-efficiency step-down (buck) regulator  
Replacement of TO-220 and TO-263 designs  
Efficient preregulator (5V to 2.5V, 12V to 3.3V, etc.)  
On-card switching regulators  
Positive-to-negative converter (inverting buck-boost)  
Simple battery charger  
Negative boost converter  
The MIC4680 is available in the 8-lead SOP with a  
–40°C to +125°C junction temperature range.  
Higher output current regulator using external FET  
Typical Applications  
MIC4680-3.3BM  
L1  
+6V to +34V  
3.3V/1A  
2
3
4
IN  
SW  
C1  
15µF  
68µH  
C2  
220µF  
16V  
35V  
SHUTDOWN  
ENABLE  
1
SHDN  
GND  
FB  
D1  
B260A or  
SS26  
Power  
SOP-8  
58  
Fixed Regulator Circuit  
MIC4680BM  
L1  
+5V to +34V  
2.5V/1A  
2
1
3
4
IN  
SW  
C1  
15µF  
35V  
68µH  
R1  
C2  
220µF  
16V  
3.01k  
SHUTDOWN  
ENABLE  
SHDN  
FB  
D1  
R2  
2.94k  
GND  
58  
B260A or  
SS26  
Power  
SOP-8  
Adjustable Regulator Circuit  
SuperSwitcher is a trademark of Micrel, Inc.  
Micrel, Inc. 1849 Fortune Drive San Jose, CA 95131 USA tel + 1 (408) 944-0800 fax + 1 (408) 944-0970 http://www.micrel.com  
June 2000  
1
MIC4680  
MIC4680  
Micrel  
Ordering Information  
Part Number  
Voltage  
Adjustable  
3.3V  
Junction Temp. Range  
40°C to +125°C  
Package  
8-lead SOP  
8-lead SOP  
8-lead SOP  
MIC4680BM  
MIC4680-3.3BM  
MIC4680-5.0BM  
40°C to +125°C  
5.0V  
40°C to +125°C  
Pin Configuration  
SHDN  
1
2
3
4
8
7
6
5
GND  
GND  
GND  
GND  
IN  
SW  
FB  
SOP-8 (M)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
SHDN  
Shutdown (Input): Logic low enables regulator. Logic high (>1.6V) shuts  
down regulator.  
2
3
VIN  
SW  
Supply Voltage (Input): Unregulated +4V to +34V supply voltage.  
Switch (Output): Emitter of NPN output switch. Connect to external storage  
inductor and Shottky diode.  
4
FB  
Feedback (Input): Connect to output on fixed output voltage versions, or to  
1.23V-tap of voltage-divider network for adjustable version.  
58  
GND  
Ground  
MIC4680  
2
June 2000  
MIC4680  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V ), Note 3 ......................................+38V  
Supply Voltage (V ), Note 4 .......................... +4V to +34V  
IN  
IN  
Shutdown Voltage (V  
) .......................... 0.3V to +38V  
Junction Temperature (T ) ...................................... +125°C  
SHDN  
J
Steady-State Output Switch Voltage (V ) ..................1V  
Package Thermal Resistance (θ ), Note 6............63°C/W  
SW  
JA  
Feedback Voltage [Adjustable] (V ) ..........................+12V  
FB  
Storage Temperature (T ) ....................... 65°C to +150°C  
S
ESD, Note 5  
Electrical Characteristics  
VIN = 12V; ILOAD = 500mA; TJ = 25°C, bold values indicate 40°C TJ +125°C, Note 7; unless noted.  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
MIC4680 [Adjustable]  
Feedback Voltage  
(±1%)  
(±2%)  
1.217 1.230 1.243  
1.205 1.255  
V
V
8V VIN 34V, 0.1A ILOAD 1A, VOUT = 5V  
1.193 1.230 1.267  
V
V
1.180  
1.280  
Maximum Duty Cycle  
VFB = 1.0V  
93  
97  
50  
4
%
Output Leakage Current  
VIN = 34V, VSHDN = 5V, VSW = 0V  
VIN = 34V, VSHDN = 5V, VSW = 1V  
VFB = 1.5V  
500  
20  
µA  
mA  
mA  
Quiescent Current  
MIC4680-3.3  
7
12  
Output Voltage  
(±1%)  
(±3%)  
3.266  
3.201  
3.3  
3.3  
3.333  
3.399  
V
V
6V VIN 34V, 0.1A ILOAD 1A  
3.168  
3.135  
3.432  
3.465  
V
V
Maximum Duty Cycle  
VFB = 2.5V  
93  
97  
50  
4
%
Output Leakage Current  
VIN = 34V, VSHDN = 5V, VSW = 0V  
VIN = 34V, VSHDN = 5V, VSW = 1V  
VFB = 4.0V  
500  
20  
µA  
mA  
mA  
Quiescent Current  
MIC4680-5.0  
7
12  
Output Voltage  
(±1%)  
(±3%)  
4.950  
4.85  
5.0  
5.0  
5.05  
5.15  
V
V
8V VIN 34V, 0.1A ILOAD 1A  
4.800  
4.750  
5.200  
5.250  
V
V
Maximum Duty Cycle  
VFB = 4.0V  
93  
97  
50  
4
%
Output Leakage Current  
VIN = 34V, VSHDN = 5V, VSW = 0V  
VIN = 34V, VSHDN = 5V, VSW = 1V  
VFB = 6.0V  
500  
20  
µA  
mA  
mA  
Quiescent Current  
7
12  
June 2000  
3
MIC4680  
MIC4680  
Micrel  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
MIC4680/-3.3/-5.0  
Frequency Fold Back  
Oscillator Frequency  
Saturation Voltage  
30  
50  
200  
1.4  
100  
220  
1.8  
kHz  
kHz  
180  
I
OUT = 1A  
V
V
Short Circuit Current Limit  
Standby Quiescent Current  
VFB = 0V, see Test Circuit  
VSHDN = VIN  
1.3  
2
1.8  
1.5  
2.5  
A
µA  
µA  
V
VSHDN = 5V (regulator off)  
regulator off  
30  
100  
Shutdown Input Logic Level  
Shutdown Input Current  
Thermal Shutdown  
1.6  
regulator on  
1.0  
0.8  
10  
10  
V
VSHDN = 5V (regulator off)  
VSHDN = 0V (regulator on)  
10  
10  
0.5  
1.5  
160  
µA  
µA  
°C  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Absolute maximum rating is intended for voltage transients only, prolonged dc operation is not recommended.  
Note 4. = V + 2.5V or 4V whichever is greater.  
V
IN(min)  
OUT  
Note 5. Devices are ESD sensitive. Handling precautions recommended.  
Note 6. Measured on 1" square of 1 oz. copper FR4 printed circuit board connected to the device ground leads.  
Note 7. Test at T = +85°C, guaranteed by design, and characterized to T = +125°C.  
A
J
Test Circuit  
Device Under Test  
68µH  
+12V  
2
1
3
4
IN  
SW  
SHUTDOWN  
ENABLE  
SHDN  
FB  
I
GND  
58  
SOP-8  
Current Limit Test Circuit  
Shutdown Input Behavior  
OFF  
ON  
GUARANTEED  
GUARANTEED  
ON  
OFF  
0.8V  
1V  
2V  
TYPICAL  
ON  
TYPICAL  
OFF  
0V  
1.6V  
VIN(max)  
Shutodwn Hysteresis  
MIC4680  
4
June 2000  
MIC4680  
Micrel  
Typical Characteristics  
Shutdown Current  
vs. Input Voltage  
Line Regulation  
Load Regulation  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
100  
80  
60  
40  
20  
0
IOUT = 1.0A  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
VIN = 12V  
VOUT = 5V  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
OUTPUT CURRENT (A)  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
Shutdown Current  
vs. Temperature  
Current Limit  
Characteristic  
Frequency vs.  
Supply Voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
5
4
3
2
1
0
202  
201  
200  
199  
198  
197  
196  
VIN = 12V  
SHDN = VIN  
V
VIN = 12V  
-50 -25  
0
25 50 75 100 125  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
OUTPUT CURRENT (A)  
0
5
10 15 20 25 30 35  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Frequency vs.  
Temperature  
Feedback Voltage  
vs. Temperature  
Saturation Voltage  
vs. Temperature  
220  
1.242  
1.240  
1.238  
1.236  
1.234  
1.232  
1.230  
1.228  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
210  
200  
190  
180  
VIN = 12V  
VOUT = 5V  
ILOAD = 1A  
VIN = 12V  
VOUT = 5V  
IOUT = 1A  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3.3V Output  
Efficiency  
5V Output  
Efficiency  
12V Output  
Efficiency  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
7V  
6V  
24V  
15V  
24V  
24V  
12V  
12V  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
OUTPUT CURRENT (A)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
OUTPUT CURRENT (A)  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4  
OUTPUT CURRENT (A)  
June 2000  
5
MIC4680  
MIC4680  
Micrel  
Safe  
Operating Area  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Minimum  
Current Limit  
Note  
VOUT = 5V  
A = 60°C  
Demonstration  
board layout  
T
0
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE (V)  
Note. For increased output current, see Applications Information:  
Increasing the Maximum Output Currentand Figure 3.  
Functional Characteristics  
Switching Frequency Foldback  
Load Transient  
VIN = 12V  
VOUT = 5V  
IOUT = 1.0A to 0.1A  
Normal  
5.1V  
Operation  
5V  
1A  
0A  
200kHz  
Short  
Circuit  
Operation  
60kHz  
TIME  
TIME (100ms/div.)  
Frequency Foldback  
The MIC4680 folds the switching frequency back during a hard  
short-circuit condition to reduce the energy per cycle and  
protect the device.  
MIC4680  
6
June 2000  
MIC4680  
Micrel  
Bode Plots  
The following bode plots show that the MIC4680 is stable over all conditions using a 68µF inductor (L) and a 220µF output  
capacitor (C ). To assure stability, it is a good practice to maintain a phase margin of greater than 35°.  
OUT  
No-Load Stability  
Full-Load Stability  
Phase Margin = 106°  
Phase Margin = 114°  
L = 68µF  
COUT = 220µF  
L = 68µF  
COUT = 220µF  
VIN = 7V  
VOUT = 5.0V  
IOUT = 1.0A  
VIN = 7V  
VOUT = 5.0V  
IOUT = 0.0A  
TIME (100ms/div.)  
TIME (100ms/div.)  
No-Load Stability  
Full-Load Stability  
Phase Margin = 117°  
Phase Margin = 69°  
L = 68µF  
COUT = 220µF  
L = 68µF  
COUT = 220µF  
VIN = 12V  
VIN = 12V  
VOUT = 5.0V  
IOUT = 0.0A  
VOUT = 5.0V  
IOUT = 1.0A  
TIME (100ms/div.)  
TIME (100ms/div.)  
No-Load Stability  
Full-Load Stability  
Phase Margin = 125°  
Phase Margin = 71°  
L = 68µF  
COUT = 220µF  
L = 68µF  
COUT = 220µF  
VIN = 34V  
VOUT = 5.0V  
IOUT = 1.0A  
VIN = 34V  
VOUT = 5.0V  
IOUT = 1.0A  
TIME (100ms/div.)  
TIME (100ms/div.)  
June 2000  
7
MIC4680  
MIC4680  
Micrel  
Block Diagrams  
VIN  
IN  
SHDN  
Internal  
Regulator  
200kHz  
Oscillator  
Thermal  
Shutdown  
Current  
Limit  
Com-  
parator  
VOUT  
COUT  
SW  
FB  
Driver  
1A  
Switch  
Reset  
Error  
Amp  
1.23V  
Bandgap  
Reference  
MIC4680-x.x  
GND  
Fixed Regulator  
VIN  
IN  
SHDN  
Internal  
Regulator  
R1  
R2  
V
= V  
REF  
+1  
OUT  
V
OUT  
R1= R2  
1  
200kHz  
Oscillator  
Thermal  
Shutdown  
Current  
Limit  
V
REF  
V
= 1.23V  
REF  
Com-  
parator  
VOUT  
COUT  
SW  
Driver  
1A  
Switch  
Reset  
R1  
R2  
FB  
Error  
Amp  
1.23V  
Bandgap  
Reference  
MIC4680 [adj.]  
Adjustable Regulator  
MIC4680  
8
June 2000  
MIC4680  
Micrel  
A higher feedback voltage increases the error amplifier  
output voltage. A higher error amplifier voltage (comparator  
inverting input) causes the comparator to detect only the  
peaks of the sawtooth, reducing the duty cycle of the com-  
parator output. A lower feedback voltage increases the duty  
cycle. The MIC4680 uses a voltage-mode control architec-  
ture.  
Functional Description  
The MIC4680 is a variable duty cycle switch-mode regulator  
with an internal power switch. Refer to the block diagrams.  
Supply Voltage  
The MIC4680 operates from a +4V to +34V unregulated  
input. Highest efficiency operation is from a supply voltage  
around +15V. See the efficiency curves.  
Output Switching  
Enable/Shutdown  
When the internal switch is on, an increasing current flows  
from the supply V through external storage inductor L1, to  
The shutdown (SHDN) input is TTL compatible. Ground the  
input if unused. A logic-low enables the regulator. A logic-  
high shuts down the internal regulator which reduces the  
IN,  
output capacitor C  
and the load. Energy is stored in the  
OUT  
inductor as the current increases with time.  
current to typically 1.5µA when V  
= V = 12V and 30µA  
When the internal switch is turned off, the collapse of the  
magnetic field in L1 forces current to flow through fast  
SHDN  
IN  
whenV  
=5V. SeeShutdownInputBehavior:Shutdown  
SHDN  
Hysteresis.”  
recovery diode D1, charging C  
.
OUT  
Feedback  
Output Capacitor  
Fixed-voltage versions of the regulator have an internal  
resistive divider from the feedback (FB) pin. Connect FB  
directly to the output voltage.  
External output capacitor C  
reduces ripple. See Bode Plotsfor additional information.  
provides stabilization and  
OUT  
Return Paths  
Adjustable versions require an external resistive voltage  
dividerfromtheoutputvoltagetoground,centertappedtothe  
FB pin. See Figure 6b for recommended resistor values.  
During the on portion of the cycle, the output capacitor and  
load currents return to the supply ground. During the off  
portion of the cycle, current is being supplied to the output  
capacitor and load by storage inductor L1, which means that  
D1 is part of the high-current return path.  
Duty Cycle Control  
A fixed-gain error amplifier compares the feedback signal  
with a 1.23V bandgap voltage reference. The resulting error  
amplifier output voltage is compared to a 200kHz sawtooth  
waveform to produce a voltage controlled variable duty cycle  
output.  
June 2000  
9
MIC4680  
MIC4680  
Micrel  
Applications Information  
Adjustable Regulators  
Adjustable regulators require a 1.23V feedback signal. Rec-  
ommended voltage-divider resistor values for common out-  
put voltages are included in Figure 1b.  
MIC4680BM  
VIN  
CIN  
L1  
VOUT  
2
1
3
4
For other voltages, the resistor values can be determined  
using the following formulas:  
IN  
SW  
R1  
R2  
SHUTDOWN  
ENABLE  
SHDN  
GND  
FB  
COUT  
D1  
R1  
V
= V  
+1  
58  
OUT  
REF  
R2  
V
OUT  
R1= R2  
1  
Figure 1a. Adjustable Regulator Circuit  
V
REF  
V
= 1.23V  
REF  
VOUT R1*  
R2*  
CIN  
D1  
L1  
COUT  
68µH 1.5A  
1.8V 3.01k 6.49k  
2.5V 3.01k 2.94k  
3.3V 3.01k 1.78k  
5.0V 3.01k 976  
6.0V 3.01k 787Ω  
2A 60V Schottky  
Coiltronics UP2B-680  
15µF 35V  
AVX TPSE156035R0200  
220µF 10V  
AVX TPSE227010R0060  
B260A Vishay-Diode, Inc.***  
or  
SS26 General Semiconductor  
or  
Sumida CDRH125-680MC**  
or  
Sumida CDRH124-680MC**  
*
All resistors 1%  
** shielded magnetics for low RFI applications  
*** Vishay-Diode, Inc. (805) 446-4800  
Figure 1b. Recommended Components for Common Ouput Voltages  
MIC4680  
10  
June 2000  
MIC4680  
Micrel  
Thermal Considerations  
Minimum Copper/Maximum Current Method  
The MIC4680 SuperSwitcher features the power-SOP-8.  
This package has a standard 8-lead small-outline package  
profile but with much higher power dissipation than a stan-  
dardSOP-8.TheMIC4680SuperSwitcheristhefirstdc-to-dc  
converter to take full advantage of this package.  
UsingFigure3, foragiveninputvoltagerange, determinethe  
minimum ground-plane heat-sink area required for the  
applications maximum output current. Figure 3 assumes a  
constant die temperature of 75°C above ambient.  
1.5  
12V  
8V  
The reason that the power SOP-8 has higher power dissipa-  
tion (lower thermal resistance) is that pins 5 though 8 and the  
die-attach paddle are a single piece of metal. The die is  
attached to the paddle with thermally conductive adhesive.  
This provides a low thermal resistance path from the junction  
of the die to the ground pins. This design significantly im-  
proves package power dissipation by allowing excellent heat  
transfer through the ground leads to the printed circuit board.  
1.0  
0.5  
0
24V  
34V  
TA = 50°C  
Minimum Current Limit = 1.3A  
0
5
10  
15  
20  
25  
2
One of the limitation of the maximum output current on any  
MIC4680 design is the junction-to-ambient thermal resis-  
AREA (cm )  
Figure 3. Output Current vs. Ground Plane Area  
tance (θ ) of the design (package and ground plane).  
JA  
When designing with the MIC4680, it is a good practice to  
connect pins 5 through 8 to the largest ground plane that is  
practical for the specific design.  
Examining θ in more detail:  
JA  
θ
= (θ + θ  
)
CA  
JA  
JC  
where:  
Checking the Maximum Junction Temperature:  
θ
θ
= junction-to-case thermal resistance  
= case-to-ambient thermal resistance  
JC  
For this example, with an output power (P  
) of 5W, (5V  
OUT  
output at 1A maximum with V = 12V) and 65°C maximum  
CA  
IN  
ambient temperature, what is the maximum junction tem-  
perature?  
θ
θ
is a relatively constant 20°C/W for a power SOP-8.  
JC  
is dependent on layout and is primarily governed by the  
CA  
Referring to the Typical Characteristics: 5V Output Effi-  
ciencygraph, read the efficiency (η) for 1A output current at  
connection of pins 5 though 8 to the ground plane. The  
purpose of the ground plane is to function as a heat sink.  
V
= 12V or perform you own measurement.  
IN  
θ
isideally63°C/Wbutwillvarydependingonthesizeofthe  
JA  
η = 79%  
ground plane to which the power SOP-8 is attached.  
The efficiency is used to determine how much of the output  
Determining Ground-Plane Heat-Sink Area  
power (P  
) is dissipated in the regulator circuit (P ).  
OUT  
D
There are two methods of determining the minimum ground  
plane area required by the MIC4680.  
P
OUT  
P =  
P  
OUT  
D
Quick Method  
η
Make sure that MIC4680 pins 5 though 8 are connected to a  
ground plane with a minimum area of 6cm . This ground  
5W  
2
PD =  
5W  
0.79  
plane should be as close to the MIC4680 as possible. The  
area maybe disributed in any shape around the package or  
on any pcb layer as long as there is good thermal contact to  
pins 5 though 8. This ground plane area is more than  
sufficient for most designs.  
P = 1.33W  
D
A worst-case rule of thumb is to assume that 80% of the total  
output power dissipation is in the MIC4680 (P  
is in the diode-inductor-capacitor circuit.  
) and 20%  
D(IC)  
P
P
P
= 0.8 P  
D
D(IC)  
D(IC)  
D(IC)  
= 0.8 × 1.33W  
= 1.064W  
SOP-8  
Calculate the worst-case junction temperature:  
T = P + (T T ) + T  
θ
J
D(IC) JC  
C
A
A(max)  
where:  
T = MIC4680 junction temperature  
J
P
= MIC4680 power dissipation  
D(IC)  
θJA  
θ
= junction-to-case thermal resistance.  
ground plane  
heat sink area  
JC  
θJC  
θCA  
AM  
BIENT  
The θ for the MIC4680s power-SOP-8 is  
JC  
approximately 20°C/W. (Also see Figure 1.)  
T = pintemperature measurement taken at the  
C
entry point of pins 6 or 7 into the plastic package  
MIC4680  
printed circuit board  
Figure 2. Power SOP-8 Cross Section  
June 2000  
11  
MIC4680  
at the ambient temperature (T ) at which T is  
Micrel  
components shown in Figure 4 will reduce the overall loss in  
A
C
measured.  
the MIC4680 by about 20% at high V and high I  
.
IN  
OUT  
T = ambient temperature at which T is measured.  
Even higher output current can be achieved by using the  
MIC4680 to switch an external FET. See Figure 9 for a 5A  
supply with current limiting.  
A
C
T
= maximum ambient operating temperature  
A(max)  
for the specific design.  
Layout Considerations  
Calculating the maximum junction temperature given a  
maximum ambient temperature of 65°C:  
Layout is very important when designing any switching regu-  
lator.Rapidlychangingswitchingcurrentsthroughtheprinted  
circuit board traces and stray inductance can generate volt-  
age transients which can cause problems.  
T = 1.064 × 20°C/W + (45°C 25°C) + 65°C  
J
T = 106.3°C  
J
This value is less than the allowable maximum operating  
junction temperature of 125°C as listed in Operating Rat-  
ings.Typical thermal shutdown is 160°C and is listed in  
Electrical Characteristics.”  
To minimize stray inductance and ground loops, keep trace  
lengths, indicated by the heavy lines in Figure 5, as short as  
possible. For example, keep D1 close to pin 3 and pins 5  
through 8, keep L1 away from sensitive node FB, and keep  
Increasing the Maximum Output Current  
C
close to pin 2 and pins 5 though 8. See Applications  
IN  
The maximum output current at high input voltages can be  
increased for a given board layout. The additional three  
Information: Thermal Considerationsfor ground plane lay-  
out.  
Thefeedbackpinshouldbekeptasfarwayfromtheswitching  
elements (usually L1 and D1) as possible.  
A circuit with sample layouts are provided. See Figure 6a  
though 6e.  
MIC4680BM  
3
IN  
SW  
D1  
1N4148 82Ω  
SHDN  
FB  
2.2nF  
GND  
5
6 7 8  
Figure 4. Increasing Maximum Output Current at High Input Voltages  
VIN  
MIC4680BM  
L1  
VOUT  
COUT R1  
+4V to +34V  
2
1
3
4
IN  
SW  
68µH  
CIN  
SHDN  
GND  
FB  
D1  
R2  
Power  
SOP-8  
5
6 7 8  
GND  
Figure 5. Critical Traces for Layout  
J1  
VIN  
J2  
VOUT  
1A  
U1 MIC4680BM  
L1  
4V to +34V  
2
1
3
4
IN  
SW  
C2  
0.1µF  
50V  
68µH  
C3*  
optional  
R1  
C1  
15µF  
35V  
J3  
GND  
3.01k  
OFF  
ON  
SHDN  
FB  
C4  
220µF  
10V  
C5  
0.1µF  
50V  
S1  
NKK G12AP  
D1  
R6  
R2  
R3  
2.94k  
R4  
1.78k  
R5  
GND  
58  
B260A optional 6.49k  
or  
976Ω  
SOP-8  
1
3
5
SS26  
JP1a  
1.8V  
JP1b  
JP1c7 JP1d  
3.3V 5.0V  
2.5V  
J4  
GND  
8
2
4
6
* C3 can be used to provide additional stability  
and improved transient response.  
Figure 6a. Evaluation Board Schematic Diagram  
MIC4680  
12  
June 2000  
MIC4680  
Micrel  
Printed Circuit Board Layouts  
Figure 6d. Bottom-Side Silk Screen  
Figure 6b. Top-Side Silk Screen  
Figure 6c. Top-Side Copper  
Figure 6e. Bottom-Side Copper  
Abbreviated Bill of Material (Critical Components)  
Reference  
Part Number  
Manufacturer  
Description  
Qty  
C1  
TPSD156M035R0300  
ECE-A1HFS470  
AVX1  
Panasonic2  
15µF 35V  
47µF 50V, 8mm × 11.5mm  
1
C4  
D1  
TPSD227M010R0150  
AVX  
220µF 10V  
1
1
B260A  
SS26  
Vishay-Diodes, Inc.3  
General Semiconductor  
Schottky  
L1  
UP2B-680  
CDH115-680MC  
CDRH124-680MC  
Coiltronics4  
Sumida5  
68µH, 1.5A, nonshielded  
68µH, 1.5A, nonshielded  
68µH, 1.5A, shielded  
1
1
Sumida5  
U1  
MIC4680BM  
Micrel Semiconductor6  
1A 200kHz power-SO-8 buck regulator  
1
2
3
4
5
6
AVX: http://www.avxcorp.com  
Panasonic: http://www.maco.panasonic.co.jp/eccd/index.html  
Vishay-Diodes, Inc., tel: (805) 446-4800, http://www.diodes.com  
Coiltronics, tel: (561) 241-7876, http://www.coiltronics.com  
Sumida, tel: (408) 982-9960, http://www.sumida.com  
Micrel, tel: (408) 944-0800, http://www.micrel.com  
June 2000  
13  
MIC4680  
MIC4680  
Micrel  
Applications Circuits*  
For continuously updated circuits using the MIC4680, see Application Hint 37 at www.micrel.com.  
C5  
D3  
1N4148  
220nF  
J2  
J1  
R1  
5V ±2%  
MIC4680BM  
L1  
+34V max.  
0.100Ω  
800mA ±5%  
2
1
3
4
IN  
SW  
C4  
10nF  
100µH  
R7  
4.99k  
C2  
100nF  
C1  
22µF  
35V  
J3  
GND  
C3  
220µF  
OFF  
ON  
D1  
SHDN  
GND  
FB  
MMBR140LT3  
10V  
S1  
NKK G12AP  
D2  
4
5
2
R2  
1N4148  
lphone  
3.01k  
e
T
SOP-8  
58  
R4  
U2  
16.2k  
3
R3  
976Ω  
U3  
MIC6211BM5  
R5  
221k  
LM4041DIM3-1.2  
Ceular  
o
T
R6  
10k  
J4  
GND  
Figure 7. Constant Current and Constant Voltage Battery Charger  
J1  
J3  
U1 MIC4680BM  
L1  
+12V  
GND  
2
1
3
4
IN  
SW  
33µH  
C3  
0.022µF  
50V  
R1  
8.87k  
C4  
68µF  
20V  
C5  
33µF  
35V  
C1  
68µF  
20V  
C2  
0.1µF  
SHDN  
FB  
D1  
R2  
1k  
GND  
58  
ES1B  
1A 100V  
J4  
SOP-8  
12V/150mA  
J2  
GND  
Figure 8. +12V to 12V/150mA Buck-Boost Converter  
+4.5V to +17V  
U2  
U1 MIC4680BM MIC4417BM4  
Si4425DY  
L1*  
2
3
R2  
IN  
SW  
C1  
330µF  
25V  
20mΩ  
3.3V/5A  
50µH  
C4  
SHUTDOWN  
ENABLE  
1
4
SHDN  
FB  
C2  
C3  
220µF  
16V  
1000pF  
D1  
5A  
220µF  
R3  
1k  
1%  
R4  
1k  
1%  
R7  
3.01k  
1%  
R1  
1k  
GND  
16V  
SOP-8  
58  
C5  
0.1µF  
R6  
16k 1%  
D2  
* ISAT = 8A  
1N4148  
U3  
R8  
R5  
16k  
1%  
MIC6211BM5 1.78k  
1%  
GND  
Figure 9. 5V to 3.3V/5A Power Supply  
* See Application Hint 37 for bills of material.  
MIC4680  
14  
June 2000  
MIC4680  
Micrel  
June 2000  
15  
MIC4680  
MIC4680  
Micrel  
Package Information  
0.026 (0.65)  
MAX)  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
TYP  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0.010 (0.25)  
0.007 (0.18)  
0°8°  
0.197 (5.0)  
0.189 (4.8)  
0.050 (1.27)  
0.016 (0.40)  
SEATING  
PLANE  
0.064 (1.63)  
0.045 (1.14)  
0.244 (6.20)  
0.228 (5.79)  
8-Lead SOP (M)  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
MIC4680  
16  
June 2000  

相关型号:

MIC4680-3.3BM

1A 200kHz SuperSwitcher⑩ Buck Regulator Final Information
MICREL

MIC4680-3.3BM

Switching Regulator, Voltage-mode, 1.3A, 220kHz Switching Freq-Max, PDSO8, PLASTIC, SOIC-8
MICROCHIP

MIC4680-3.3BMTR

Switching Regulator, Voltage-mode, 1A, 220kHz Switching Freq-Max, PDSO8, PLASTIC, SOIC-8
MICROCHIP

MIC4680-3.3YM

1A 200kHz SuperSwitcher Buck Regulator
MICREL

MIC4680-3.3YM

1.3A SWITCHING REGULATOR, 220kHz SWITCHING FREQ-MAX, PDSO8
MICROCHIP

MIC4680-3.3YM-TR

1.3A SWITCHING REGULATOR, 220kHz SWITCHING FREQ-MAX, PDSO8
MICROCHIP

MIC4680-3.3YMTR

1.3A SWITCHING REGULATOR, 220kHz SWITCHING FREQ-MAX, PDSO8, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MIC4680-5.0BM

1A 200kHz SuperSwitcher⑩ Buck Regulator Final Information
MICREL

MIC4680-5.0BM

Switching Regulator, Voltage-mode, 1.3A, 220kHz Switching Freq-Max, PDSO8, PLASTIC, SOIC-8
MICROCHIP

MIC4680-5.0BMTR

Switching Regulator, Voltage-mode, 1.3A, 220kHz Switching Freq-Max, PDSO8, PLASTIC, SOIC-8
MICROCHIP

MIC4680-5.0YM

1A 200kHz SuperSwitcher Buck Regulator
MICREL

MIC4680-5.0YM

暂无描述
MICROCHIP