MIC5018BM4 [MICREL]

IttyBitty⑩ High-Side MOSFET Driver Preliminary Information; IttyBitty⑩高边MOSFET驱动器的初步信息
MIC5018BM4
型号: MIC5018BM4
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

IttyBitty⑩ High-Side MOSFET Driver Preliminary Information
IttyBitty⑩高边MOSFET驱动器的初步信息

驱动器 接口集成电路 光电二极管
文件: 总7页 (文件大小:62K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5018  
IttyBitty™ High-Side MOSFET Driver  
Preliminary Information  
General Description  
Features  
The MIC5018 IttyBitty™ high-side MOSFET driver is de-  
signed to switch an N-channel enhancement-type MOSFET  
from a TTL compatible control signal in high- or low-side  
switch applications. This driver features the tiny 4-lead  
SOT-143 package.  
• +2.7V to +9V operation  
• 150µA typical supply current at 5V supply  
1µA typical standby (off) current  
• Charge pump for high-side low-voltage applications  
• Internal zener diode gate-to-ground MOSFET protection  
• Operates in low- and high-side configurations  
• TTL compatible input  
The MIC5018 is powered from a +2.7V to +9V supply and  
features extremely low off-state supply current. An internal  
charge pump drives the gate output higher than the driver  
supply voltage and can sustain the gate voltage indefinitely.  
An internal zener diode limits the gate-to-source voltage to a  
safe level for standard N-channel MOSFETs.  
• ESD protected  
Applications  
• Battery conservation  
• Power bus switching  
• Solenoid and motion control  
• Lamp control  
In high-side configurations, the source voltage of the MOS-  
FET approaches the supply voltage when switched on. To  
keep the MOSFET turned on, the MIC5018’s output drives  
the MOSFET gate voltage higher than the supply voltage. In  
a typical high-side configuration, the driver is powered from  
theloadsupplyvoltage. Undersomeconditions,theMIC5018  
and MOSFET can switch a load voltage that is slightly higher  
than the driver supply voltage.  
Ordering Information  
Part Number  
Temp. Range  
Package  
Marking  
MIC5018BM4  
–40°C to +85°C  
SOT-143  
H10  
5
In a low-side configuration, the driver can control a MOSFET  
that switches any voltage up to the rating of the MOSFET.  
The gate output voltage is higher than the typical 3.3V or 5V  
logic supply and can fully enhance a standard MOSFET.  
The MIC5018 is available in the SOT-143 package and  
is rated for –40°C to +85°C ambient temperature range.  
Typical Applications  
+5V  
VLOAD SUPPLY  
Load voltage limited only by  
MOSFET drain-to-source rating  
* Siliconix  
30m, 7A max., 30V VDS max.  
8-lead SOIC package  
MIC5018  
IRFZ24*  
N-Channel  
MOSFET  
4.7µF  
2
4
3
1
VS  
G
+2.7 to +9V  
CTL GND  
On  
Off  
MIC5018  
4.7µF  
Si9410DY*  
N-channel  
MOSFET  
2
4
3
1
VS  
G
* International Rectifier  
100m, 17A max.  
TO-220 package  
CTL GND  
On  
Off  
Low-Voltage High-Side Power Switch  
Low-Side Power Switch  
1997  
5-155  
MIC5018  
Micrel  
Pin Configuration  
VS  
2
GND  
1
Part  
Identification  
H10  
Early production identification:  
MH10  
3
4
G
CTL  
SOT-143 (M4)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
2
3
4
GND  
VS  
Ground: Power return.  
Supply (Input): +2.7V to +9V supply.  
Gate (Output): Gate connection to external MOSFET.  
G
CTL  
Control (Input): TTL compatible on/off control input. Logic high drives the  
gate output above the supply voltage. Logic low forces the gate output near  
ground.  
5-156  
1997  
MIC5018  
Micrel  
Absolute Maximum Ratings  
Supply Voltage (V  
) ...........................................+10V  
Lead Temperature, Soldering 10sec......................... 300°C  
SUPPLY  
Control Voltage (V  
) ................................. –0.6V to +16V  
Package Thermal Resistance  
CTL  
SOT-143 θ .....................................................220°C/W  
Gate Voltage (V ) .......................................................+16V  
JA  
G
SOT-143 θ .....................................................130°C/W  
JC  
Ambient Temperature Range (T ) ............. –40°C to +85°C  
A
Electrical Characteristics  
Parameter  
Condition (Note 1)  
Min  
Typ  
Max  
Units  
Supply Current  
VSUPPLY = 3.3V  
VCTL = 0V  
VCTL = 3.3V  
0.01  
70  
1
140  
µA  
µA  
V
SUPPLY = 5V  
VCTL = 0V  
VCTL = 5V  
0
150  
1
300  
µA  
µA  
Control Input Voltage  
2.7V VSUPPLY 9V  
2.7V VSUPPLY 5V  
5V VSUPPLY 9V  
2.7V VSUPPLY 9V  
VCTL for logic 0 input  
VCTL for logic 1 input  
VCTL for logic 1 input  
0
0.8  
VSUPPLY  
VSUPPLY  
1
V
V
2.0  
2.4  
V
Control Input Current  
0.01  
5
µA  
pF  
V
Control Input Capacitance  
Zener Diode Output Clamp  
Gate Output Voltage  
Note 2  
VSUPPLY = 9V  
VSUPPLY = 2.7V  
VSUPPLY = 3.0V  
VSUPPLY = 4.5V  
VSUPPLY = 5V  
13  
6.3  
16  
19  
7.1  
8.2  
13.4  
9.5  
V
7.1  
V
11.4  
V
5
Gate Output Current  
Gate Turn-On Time  
VOUT = 10V, Note 3  
µA  
VSUPPLY = 4.5V  
CL = 1000pF, Note 4  
CL = 3000pF, Note 4  
0.75  
2.1  
1.5  
4.2  
ms  
ms  
Gate Turn-Off Time  
V
SUPPLY = 4.5V  
CL = 1000pF, Note 5  
CL = 3000pF, Note 5  
10  
30  
20  
60  
µs  
µs  
General Note: Devices are ESD protected, however handling precautions are recommended.  
Note 1: Typical values at T = 25°C. Minimum and maximum values indicate performance at –40°C T +85°C. Parts production tested at 25°C.  
A
A
Note 2: Guaranteed by design.  
Note 3: Resistive load selected for V  
= 10V.  
OUT  
Note 4: Turn-on time is the time required for gate voltage to rise to 4V greater than the supply voltage. This represents a typical MOSFET gate  
threshold voltage.  
Note 5: Turn-off time is the time required for the gate voltage to fall to 4V above the supply voltage. This represents a typical MOSFET gate threshold  
voltage.  
Test Circuit  
VSUPPLY  
0.1µF  
MIC5018  
VS  
2
4
3
1
G
VOUT  
CL  
CTL GND  
5V  
0V  
1997  
5-157  
MIC5018  
Micrel  
Typical Characteristics Note 4  
Full Turn-Off Time  
vs. Load Capacitance  
Full Turn-On Time  
vs. Load Capacitance  
Supply Current  
vs. Supply Voltage  
20  
15  
10  
5
1.0  
8
7
6
5
4
3
2
1
0
Note 6  
Note 5  
0.8  
-40°C  
VSUPPLY = 3V  
VSUPPLY = 3V  
0.6  
25°C  
5V  
0.4  
5V  
0.2  
125°C  
9V  
9V  
0
0
0
1000 2000 3000 4000 5000  
CAPACITANCE (pF)  
0
2
4
6
8
10  
0
1000 2000 3000 4000 5000  
CAPACITANCE (pF)  
SUPPLY VOLTAGE (V)  
Gate Output Voltage  
vs. Supply Voltage  
Gate Output Current  
vs. Output Voltage  
Gate Output Current  
vs. Output Voltage  
20  
15  
10  
5
160  
120  
80  
40  
0
120  
100  
80  
60  
40  
20  
0
125°C  
25°C  
-40°C  
TA = -55°C  
VSUPPLY = 9V  
25°C  
125°C  
5V  
3V  
0
0
2
4
6
8
10  
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Note 4:  
T
= 25°C, V  
= 5V unless noted.  
SUPPLY  
A
Note 5: Full turn-on time is the time between V  
Note 6: Full turn-off time is the time between V  
rising to 2.5V and the V rising to 90% of its steady on-state value.  
G
CTL  
CTL  
falling to 0.5V and the V falling to 10% of its steady on-state value.  
G
5-158  
1997  
MIC5018  
Micrel  
Functional Diagram  
+2.7V to +9V  
VS  
MIC5018  
I1  
20µA  
D2  
35V  
Q1  
R1 2k  
CTL  
On  
Off  
G
Q2  
EN  
CHARGE  
PUMP  
D1  
16V  
D3 16V  
R2  
15k  
Q3  
GND  
Functional Diagram with External Components  
(High-Side Driver Configuration)  
5
Functional Description  
Refer to the functional diagram.  
(4×). Output voltage is limited to 16V by a zener diode. The  
charge pump output voltage will be approximately:  
The MIC5018 is a noninverting device. Applying a logic high  
signal to CTL (control input) produces gate drive output. The  
G (gate) output is used to turn on an external N-channel  
MOSFET.  
V = 4 × V  
– 2.8V, but not exceeding 16V.  
SUPPLY  
G
Theoscillatoroperatesfromapproximately70kHztoapproxi-  
mately 100kHz depending upon the supply voltage and  
temperature.  
Supply  
VS (supply) is rated for +2.7V to +9V. An external capacitor  
is recommended to decouple noise.  
Gate Output  
The charge pump output is connected directly to the G (gate)  
output. The charge pump is active only when CTL is high.  
When CTL is low, Q3 is turned on by the second inverter and  
discharges the gate of the external MOSFET to force it off.  
Control  
CTL (control) is a TTL compatible input. CTL must be forced  
high or low by an external signal. A floating input may cause  
unpredictable operation.  
IfCTLishigh, andthevoltageappliedtoVSdropstozero, the  
gate output will be floating (unpredictable).  
A high input turns on Q2, which sinks the output of current  
source I1, making the input of the first inverter low. The  
inverter output becomes high enabling the charge pump.  
ESD Protection  
D1 and D2 clamp positive and negative ESD voltages. R1  
isolates the gate of Q2 from sudden changes on the CTL  
input. Q1 turns on if the emitter (CTL input) is forced below  
ground to provide additional input protection. Zener D3 also  
clamps ESD voltages for the gate (G) output.  
Charge Pump  
The charge pump is enabled when CTL is logic high. The  
charge pump consists of an oscillator and voltage quadrupler  
1997  
5-159  
MIC5018  
Micrel  
across an IRFZ24 is less than 0.1V with a 1A load and 10V  
enhancement. Higher current increases the drain-to-source  
voltage drop, increasing the gate-to-source voltage.  
Application Information  
Supply Bypass  
A capacitor from VS to GND is recommended to control  
switching and supply transients. Load current and supply  
lead length are some of the factors that affect capacitor  
size requirements.  
+5V  
MIC5018  
4.7µF  
2
4
3
1
15V  
10V  
IRFZ24* approx. 0V  
VS  
G
A 4.7µF or 10µF aluminum electrolytic or tantalum capacitor  
is suitable for many applications.  
CTL GND  
Logic  
High  
To demonstrate  
this circuit, try a  
2, 20W  
The low ESR (equivalent series resistance) of tantalum  
capacitors makes them especially effective, but also makes  
them susceptible to uncontrolled inrush current from low  
impedance voltage sources (such as NiCd batteries or auto-  
matic test equipment). Avoid instantaneously applying volt-  
age, capableofhighpeakcurrent, directlytoorneartantalum  
capacitors without additional current limiting. Normal power  
supply turn-on (slow rise time) or printed circuit trace resis-  
tance is usually adequate for normal product usage.  
Voltages are approximate  
5V  
load resistor .  
* International Rectifier  
standard MOSFET  
Figure 2. Using a Standard MOSFET  
The MIC5018 has an internal zener diode that limits the gate-  
to-ground voltage to approximately 16V.  
Lower supply voltages, such as 3.3V, produce lower gate  
output voltages which will not fully enhance standard  
MOSFETs. This significantly reduces the maximum current  
thatcanbeswitched. AlwaysrefertotheMOSFETdatasheet  
to predict the MOSFET’s performance in specific applica-  
tions.  
MOSFET Selection  
The MIC5018 is designed to drive N-channel enhancement-  
type MOSFETs. The gate output (G) of the MIC5018 pro-  
vides a voltage, referenced to ground, that is greater than the  
supply voltage. Refer to the “Typical Characteristics: Gate  
Output Voltage vs. Supply Voltage” graph.  
Logic-Level MOSFET  
Logic-level N-channel MOSFETs are fully enhanced with a  
gate-to-source voltage of approximately 5V and generally  
have an absolute maximum gate-to-source voltage of ±10V.  
The supply voltage and the MOSFET drain-to-source  
voltage drop determine the gate-to-source voltage.  
V
= V – (V  
– V  
)
GS  
G
SUPPLY  
DS  
+3.3V  
where:  
V
= gate-to-source voltage (enhancement)  
GS  
MIC5018  
4.7µF  
V = gate voltage (from graph)  
2
4
3
1
9V  
5.7V  
G
IRLZ44* approx. 0V  
VS  
G
V
V
= supply voltage  
= drain-to-source voltage (approx. 0V at  
SUPPLY  
CTL GND  
Logic  
High  
DS  
To demonstrate  
this circuit, try  
5, 5W or  
47, 1/4W  
load resistors.  
low current, or when fully enhanced)  
Voltages are approximate  
3.3V  
VSUPPLY  
* International Rectifier  
logic-level MOSFET  
MIC5018  
D
Figure 3. Using a Logic-Level MOSFET  
VG  
2
4
3
1
G
VS  
G
VDS  
S
Refer to figure 3 for an example showing nominal voltages.  
The maximum gate-to-source voltage rating of a logic-level  
MOSFET can be exceeded if a higher supply voltage is used.  
An external zener diode can clamp the gate-to-source volt-  
age as shown in figure 4. The zener voltage, plus its  
tolerance, must not exceed the absolute maximum gate  
voltage of the MOSFET.  
VGS  
CTL GND  
VLOAD  
Figure 1. Voltages  
The performance of the MOSFET is determined by the gate-  
to-source voltage. Choose the type of MOSFET according to  
the calculated gate-to-source voltage.  
VSUPPLY  
MIC5018  
Logic-level  
N-channel  
MOSFET  
2
4
3
1
Standard MOSFET  
VS  
G
StandardMOSFETsarefullyenhancedwithagate-to-source  
voltage of about 10V. Their absolute maximum gate-to-  
source voltage is ±20V.  
CTL GND  
5V < VZ < 10V  
Protects gate of  
logic-level MOSFET  
With a 5V supply, the MIC5018 produces a gate output of  
approximately 15V. Figure 2 shows how the remaining  
voltages conform. The actual drain-to-source voltage drop  
Figure 4. Gate-to-Source Protection  
5-160  
1997  
MIC5018  
Micrel  
A gate-to-source zener may also be required when the  
maximum gate-to-source voltage could be exceeded due to  
normal part-to-part variation in gate output voltage. Other  
conditions can momentarily increase the gate-to-source volt-  
age, such as turning on a capacitive load or shorting a load.  
Split Power Supply  
Refer to figure 6. The MIC5018 can be used to control a 12V  
load by separating the driver supply from the load supply.  
+5V  
+12V  
MIC5018  
VS  
CTL GND  
4.7µF  
Inductive Loads  
2
4
3
1
15V  
3V  
IRLZ44* approx. 0V  
G
Inductive loads include relays, and solenoids. Long leads  
may also have enough inductance to cause adverse effects  
in some circuits.  
Logic  
High  
To demonstrate  
this circuit, try a  
40, 5W or  
100, 2W  
load resistor.  
Voltages are approximate  
12V  
* International Rectifier  
logic-level MOSFET  
+2.7V to +9V  
MIC5018  
4.7µF  
Figure 6. 12V High-Side Switch  
2
4
3
1
VS  
G
Alogic-levelMOSFETisrequired. TheMOSFET’smaximum  
current is limited slightly because the gate is not fully en-  
hanced. To predict the MOSFETs performance for any pair  
of supply voltages, calculate the gate-to-source voltage and  
refer to the MOSFET data sheet.  
CTL GND  
On  
Off  
Schottky  
Diode  
V
= V – (V  
– V  
)
GS  
G
LOAD SUPPLY  
DS  
Figure 5. Switching an Inductive Load  
V is determined from the driver supply voltage using the  
G
“Typical Characteristics: Gate Output Voltage vs. Supply  
Voltage” graph.  
Switching off an inductive load in a high-side application  
momentarily forces the MOSFET source negative (as the  
inductoropposeschangestocurrent). Thisvoltagespikecan  
be very large and can exceed a MOSFET’s gate-to-source  
and drain-to-source ratings. A Schottky diode across the  
inductive load provides a discharge current path to minimize  
thevoltagespike. Thepeakcurrentratingofthediodeshould  
be greater than the load current.  
Low-Side Switch Configuration  
The low-side configuration makes it possible to switch a  
voltage much higher than the MIC5018’s maximum supply  
voltage.  
5
+80V  
* International Rectifier  
standard MOSFET  
To demonstrate  
BVDSS = 100V  
In a low-side application, switching off an inductive load will  
momentarily force the MOSFET drain higher than the supply  
voltage. The same precaution applies.  
this circuit, try  
1k, 10W or  
33k, 1/4W  
+2.7 to +9V  
load resistors.  
MIC5018  
4.7µF  
IRF540*  
N-channel  
MOSFET  
2
4
3
1
VS  
G
CTL GND  
On  
Off  
Figure 7. Low-Side Switch Configuration  
The maximum switched voltage is limited only by the  
MOSFET’s maximum drain-to-source ratings.  
1997  
5-161  

相关型号:

MIC5018BM4T&R

Buffer/Inverter Based MOSFET Driver, MOS, PDSO4, SOT-143, 4 PIN
MICROCHIP

MIC5018YM4TR

BUF OR INV BASED MOSFET DRIVER, PDSO4, LEAD FREE, SOT-143, 4 PIN
MICROCHIP

MIC5018_06

IttyBitty™ High-Side MOSFET Driver
MICREL

MIC5019

Ultra-Small High-Side N-Channel MOSFET Driver with Integrated Charge Pump
MICREL

MIC5019YFT

Ultra-Small High-Side N-Channel MOSFET Driver with Integrated Charge Pump
MICREL

MIC5019YFT-T5

IC MOSFET DVR HIGH-SIDE 4TDFN
MICROCHIP

MIC5019YFT-TR

BUF OR INV BASED MOSFET DRIVER
MICROCHIP

MIC5019_EB

Ultra-Small High-Side N-Channel MOSFET Driver with Integrated Charge Pump
MICREL

MIC502

Fan Management IC Advance Information
MICREL

MIC5020

Current-Sensing Low-Side MOSFET Driver
MICREL

MIC5020AJ

Buffer/Inverter Based MOSFET Driver, BIMOS, CDIP8, CERDIP-8
MICREL

MIC5020AJB

Buffer/Inverter Based MOSFET Driver, BIMOS, CDIP8, CERDIP-8
MICREL