MIC5207-1.8BM5 [MICREL]

180mA Low-Noise LDO Regulator; 180毫安低噪声LDO稳压器
MIC5207-1.8BM5
型号: MIC5207-1.8BM5
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

180mA Low-Noise LDO Regulator
180毫安低噪声LDO稳压器

稳压器 调节器 光电二极管 输出元件
文件: 总12页 (文件大小:81K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5207  
180mA Low-Noise LDO Regulator  
General Description  
Features  
TheMIC5207isanefficientlinearvoltageregulatorwithultra-  
low-noise output, very low dropout voltage (typically 17mV at  
light loads and 165mV at 150mA), and very low ground  
current (720µA at 100mA output). The MIC5207 offers better  
than 3% initial accuracy.  
Ultra-low-noise output  
High output voltage accuracy  
Guaranteed 180mA output  
Low quiescent current  
Low dropout voltage  
Extremely tight load and line regulation  
Very low temperature coefficient  
Current and thermal limiting  
Reverse-battery protection  
• “Zerooff-mode current  
Designedespeciallyforhand-held,battery-powereddevices,  
the MIC5207 includes a CMOS or TTL compatible enable/  
shutdown control input. When shutdown, power consump-  
tion drops nearly to zero.  
Key MIC5207 features include a reference bypass pin to  
improve its already low-noise performance, reversed-battery  
protection, current limiting, and overtemperature shutdown.  
Logic-controlled electronic enable  
Applications  
The MIC5207 is available in fixed and adjustable output  
voltage versions in a small SOT-23-5 package. Contact  
Micrel for details.  
Cellular telephones  
Laptop, notebook, and palmtop computers  
Battery-powered equipment  
PCMCIA V and V regulation/switching  
Consumer/personal electronics  
SMPS post-regulator/dc-to-dc modules  
High-efficiency linear power supplies  
For low-dropout regulators that are stable with ceramic  
output capacitors, see the µCap MIC5245/6/7 family.  
CC  
PP  
Ordering Information  
Part Number*  
Marking Voltage  
Junction Temp. Range  
–40°C to +125°C  
0°C to +125°C  
Package  
MIC5207BM5  
LEAA  
LE18  
LE25  
LE30  
LE33  
LE36  
LE38  
LE40  
LE50  
Adj  
1.8  
2.5  
3.0  
3.3  
3.6  
3.8  
4.0  
5.0  
3.3  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
TO-92  
MIC5207-1.8BM5  
MIC5207-2.5BM5  
MIC5207-3.0BM5  
MIC5207-3.3BM5  
MIC5207-3.6BM5  
MIC5207-3.8BM5  
MIC5207-4.0BM5  
MIC5207-5.0BM5  
MIC5207-3.3BZ  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
* Other voltages available. Contact Micrel Marketing for information.  
Typical Application  
MIC5207-x.xBM5  
VIN  
VOUT  
1
2
3
5
COUT = 2.2µF  
tantalum  
4
Enable  
Shutdown  
Enable  
EN (pin 3) may be  
connected directly  
to IN (pin 1).  
CBYP  
(OPTIONAL)  
Low-Noise Operation:  
CBYP = 470pF, COUT 2.2µF  
Battery-Powered Regulator Application  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
January 2000  
1
MIC5207  
MIC5207  
Micrel  
Pin Configuration  
EN GND IN  
EN GND IN  
3
2
1
3
2
1
Part  
Identification  
LEAA  
LExx  
4
5
4
5
ADJ  
OUT  
BYP  
OUT  
MIC5207BM5  
SOT-23-5  
MIC5207-x.xBM5  
SOT-23-5  
(Adjustable Voltage)  
(Fixed Voltages)  
1
2
3
IN GND OUT  
(Bottom View)  
MIC5207-x.xBZ  
TO-92  
(Fixed Voltages)  
Pin Description  
Pin No.  
SOT-23-5  
Pin No.  
TO-92  
Pin Name  
Pin Function  
1
2
3
1
2
IN  
GND  
EN  
Supply Input  
Ground  
Enable/Shutdown (Input): CMOS compatible input. Logic high = enable,  
logic low or open = shutdown.  
4 (fix)  
BYP  
Reference Bypass: Connect external 470pF capacitor to GND to reduce  
output noise. May be left open. For 1.8V or 2.5V operation, see Applications  
Information.”  
4 (adj)  
5
ADJ  
Adjust (Input): Adjustable regulator feedback input. Connect to resistor  
voltage divider.  
3
OUT  
Regulator Output  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Input Voltage (V ) ............................ 20V to +20V  
Input Voltage (V ) ....................................... +2.5V to +16V  
IN  
IN  
Enable Input Voltage (V ) .................................. 0V to V  
Enable Input Voltage (V ) ........................... 20V to +20V  
EN  
IN  
EN  
Junction Temperature (T )  
J
Power Dissipation (P ) ............... Internally Limited, Note 3  
D
all except 1.8V...................................... 40°C to +125°C  
1.8V only .................................................. 0°C to +125°C  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
Junction Temperature (T )  
J
Thermal Resistance )......................................... Note 3  
JA  
all except 1.8V...................................... 40°C to +125°C  
1.8V only .................................................. 0°C to +125°C  
Storage Temperature (T ) ....................... 65°C to +150°C  
S
MIC5207  
2
January 2000  
MIC5207  
Micrel  
Electrical Characteristics  
VIN = VOUT + 1V; IL = 100µA; CL = 1.0µF; VEN 2.0V; TJ = 25°C, bold values indicate 40°C TJ +125°C except  
0°C TJ +125°C for 1.8V version; unless noted.  
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VO  
Output Voltage Accuracy  
variation from specified VOUT  
3  
4  
3
4
%
%
VO/T  
VO/VO  
VO/VO  
VIN VO  
Output Voltage  
Temperature Coefficient  
Note 4  
40  
ppm/°C  
Line Regulation  
VIN = VOUT + 1V to 16V  
IL = 0.1mA to 150mA, Note 5  
0.005  
0.05  
0.05  
0.10  
%/V  
%/V  
Load Regulation  
0.5  
0.7  
%
%
Dropout Voltage, Note 6  
IL = 100µA  
IL = 50mA  
IL = 100mA  
IL = 150mA  
17  
60  
80  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
115  
140  
165  
175  
250  
280  
325  
300  
400  
IGND  
IGND  
Quiescent Current  
V
V
EN 0.4V (shutdown)  
EN 0.18V (shutdown)  
0.01  
1
5
µA  
µA  
Ground Pin Current, Note 7  
VEN 2.0V, IL = 100µA  
80  
350  
720  
1800  
130  
170  
650  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
IL = 50mA  
IL = 100mA  
IL = 150mA  
900  
1100  
2000  
2500  
3000  
PSRR  
ILIMIT  
Ripple Rejection  
Current Limit  
75  
dB  
mA  
VOUT = 0V  
320  
0.05  
260  
500  
VO/PD  
eno  
Thermal Regulation  
Output Noise  
Note 8  
%/W  
nV Hz  
IL = 50mA, CL = 2.2µF,  
470pF from BYP to GND  
ENABLE Input  
VIL  
Enable Input Logic-Low Voltage  
regulator shutdown  
regulator enabled  
0.4  
0.18  
V
V
VIH  
IIL  
Enable Input Logic-High Voltage  
Enable Input Current  
2.0  
V
VIL 0.4V  
VIL 0.18V  
VIH 2.0V  
VIH 2.0V  
0.01  
5
1  
2  
20  
25  
µA  
µA  
µA  
µA  
IIH  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3: The maximum allowable power dissipation at any T (ambient temperature) is P  
= (T  
T ) ÷ θ . Exceeding the maximum  
A
D(max)  
J(max) A JA  
allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. The θ of the SOT-23-5  
JA  
(M5) is 235°C/W and the TO-92 (Z) is 180°C/W (0.4" leads) or 160°C/W (0.25" leads) soldered to a PC board. See Thermal Considerations.”  
Note 4: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
Note 5: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load  
range from 0.1mA to 180mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.  
Note 6: Dropout voltage is the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.  
Note 7: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of  
the load current plus the ground pin current.  
Note 8: Thermal regulation is defined as the change in output voltage at a time tafter a change in power dissipation is applied, excluding load or line  
regulation effects. Specifications are for a 180mA load pulse at V = 16V for t = 10ms.  
IN  
January 2000  
3
MIC5207  
MIC5207  
Micrel  
Typical Characteristics  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply Ripple Rejection  
vs. Voltage Drop  
0
0
-20  
60  
VIN = 6V  
VIN = 6V  
OUT = 5V  
V
OUT = 5V  
50  
40  
30  
20  
10  
0
V
-20  
-40  
1mA  
-40  
10mA  
IOUT = 100mA  
-60  
-60  
IOUT = 100µA  
-80  
-80  
IOUT = 100µA  
OUT = 1µF  
C
OUT = 2.2µF  
BYP = 0.01µF  
COUT = 1µF  
C
C
-100  
-100  
1E+11E+21E+31E+41E+51E+6 E+7  
1E+11E+21E+31E+41E+51E+6 E+7  
1k 10k  
1M  
10 100 100k  
10M  
1k 10k  
1M  
10 100  
100k  
10M  
0
0.1  
0.2  
0.3  
0.4  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
VOLTAGE DROP (V)  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply Ripple Rejection  
vs. Voltage Drop  
0
0
100  
VIN = 6V  
OUT = 5V  
VIN = 6V  
OUT = 5V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
-20  
-40  
-20  
-40  
1mA  
IOUT = 100mA  
-60  
-60  
10mA  
IOUT = 1mA  
COUT = 2.2µF  
-80  
-80  
C
OUT = 2.2µF  
BYP = 0.01µF  
IOUT = 1mA  
OUT = 1µF  
CBYP = 0.01µF  
C
C
-100  
-100  
1E+11E+21E+31E+41E+51E+6 E+7  
1E+11E+21E+31E+41E+51E+6 E+7  
1k 10k  
1M  
10 100 100k  
10M  
1k 10k  
1M  
10 100  
100k  
10M  
0
0.1  
0.2  
0.3  
0.4  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
VOLTAGE DROP (V)  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Turn-On Time  
vs. Bypass Capacitance  
0
0
10000  
1000  
100  
VIN = 6V  
OUT = 5V  
VIN = 6V  
VOUT = 5V  
V
-20  
-40  
-20  
-40  
-60  
-60  
IOUT = 10mA  
-80  
-80  
IOUT = 10mA  
OUT = 1µF  
C
OUT = 2.2µF  
BYP = 0.01µF  
C
C
-100  
-100  
10  
10  
1E+11E+21E+31E+41E+51E+6 E+7  
1E+11E+21E+31E+41E+51E+6 E+7  
1k 10k  
1M  
10 100 100k  
10M  
1k 10k  
1M  
10 100  
100k  
10M  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Dropout Voltage  
vs. Output Current  
0
0
320  
VIN = 6V  
OUT = 5V  
VIN = 6V  
VOUT = 5V  
280  
240  
200  
160  
120  
80  
V
-20  
-40  
-20  
-40  
+125°C  
+25°C  
-60  
-60  
40°C  
IOUT = 100mA  
IOUT = 100mA  
OUT = 1µF  
-80  
-80  
COUT = 2.2µF  
BYP = 0.01µF  
40  
C
C
-100  
-100  
0
1E+11E+21E1+k31E+41E+51E+6 E+7  
1E+11E+21E1+k31E+41E+51E+6 E+7  
10k 1M 10M  
10 100 100k  
10k  
1M 10M  
0
40  
80  
120  
160  
10 100  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
MIC5207  
4
January 2000  
MIC5207  
Micrel  
Typical Characteristics  
Noise Performance  
Noise Performance  
Noise Performance  
10  
10  
1
10  
1
10mA, COUT = 1µF  
1
100mA  
10mA  
10mA  
0.1  
0.01  
0.1  
0.1  
1mA  
OUT = 1µF  
BYP = 10nF  
100mA  
C
C
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
VOUT = 5V  
OUT = 22µF  
tantalum  
BYP = 10nF  
VOUT = 5V  
OUT = 10µF  
electrolytic  
1mA  
C
1mA  
0.001  
0.0001  
C
C
VOUT = 5V  
1E1+011E+21E+31E+41E+51E+61E+7  
1k  
1E10+11E+21E1k+31E+41E+51E1M+61E+7  
1E10+11E+21E1k+31E+41E+51E1M+61E+7  
100  
10k 100k 10M  
100  
10k 100k  
10M  
100  
10k 100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Noise Performance  
Noise Performance  
Noise Performance  
10  
1
10  
1
10  
1
10mA  
100mA  
100mA  
100mA  
1mA  
0.1  
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
1mA  
1mA  
VOUT = 5V  
OUT = 10µF  
electrolytic  
BYP = 1nF  
VOUT = 5V  
OUT = 10µF  
electrolytic  
BYP = 100pF  
VOUT = 5V  
OUT = 10µF  
electrolytic  
BYP = 10nF  
C
C
C
10mA  
10mA  
C
C
C
1E10+11E+21E1k+31E+41E+51E1M+61E+7  
1E10+11E+21E1k+31E+41E+51E1M+61E+7  
1E1+011E+21E+31E+41E+51E+61E+7  
10M  
1M  
100  
10k 100k  
10M  
100  
10k 100k  
10M  
100 1k 10k 100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
January 2000  
5
MIC5207  
MIC5207  
Micrel  
Block Diagrams  
OUT  
IN  
VOUT  
COUT  
VIN  
Bandgap  
Ref.  
Current Limit  
Thermal Shutdown  
MIC5207-x.xBZ  
GND  
Low-Noise Fixed Regulator (TO-92 version only)  
OUT  
IN  
VOUT  
COUT  
VIN  
BYP  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
Current Limit  
Thermal Shutdown  
MIC5207-x.xBM5  
GND  
Ultra-Low-Noise Fixed Regulator  
OUT  
IN  
VOUT  
COUT  
VIN  
R1  
R2  
ADJ  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
Current Limit  
Thermal Shutdown  
MIC5207BM5  
GND  
Ultra-Low-Noise Adjustable Regulator  
MIC5207  
6
January 2000  
MIC5207  
Micrel  
drop across the part. To determine the maximum power  
dissipation of the package, use the junction-to-ambient ther-  
malresistanceofthedeviceandthefollowingbasicequation:  
Applications Information  
Enable/Shutdown  
Forcing EN (enable/shutdown) high (> 2V) enables the regu-  
lator. EN is compatible with CMOS logic gates.  
T
TA  
(
)
J(max)  
PD  
=
If the enable/shutdown feature is not required, connect EN  
(pin 3) to IN (supply input, pin 1). See Figure 1.  
(max)  
θJA  
T
is the maximum junction temperature of the die,  
J(max)  
Input Capacitor  
125°C, and T is the ambient operating temperature. θ is  
layout dependent; Table 1 shows examples of junction-to-  
ambient thermal resistance for the MIC5207.  
A
JA  
A 1µF capacitor should be placed from IN to GND if there is  
morethan10inchesofwirebetweentheinputandtheacfilter  
capacitor or if a battery is used as the input.  
Package  
θJA Recommended θJA 1" Square  
Minimum Footprint Copper Clad  
θJC  
Reference Bypass Capacitor  
BYP (reference bypass) is connected to the internal voltage  
reference. A 470pF capacitor (C  
SOT-23-5 (M5)  
235°C/W  
170°C/W  
130°C/W  
) connected from BYP to  
BYP  
GNDquietsthisreference,providingasignificantreductionin  
Table 1. SOT-23-5 Thermal Resistance  
output noise. C  
when using C  
reduces the regulator phase margin;  
, output capacitors of 2.2µF or greater are  
BYP  
The actual power dissipation of the regulator circuit can be  
determined using the equation:  
BYP  
generally required to maintain stability.  
P = (V V  
) I  
+ V I  
IN GND  
D
IN  
OUT OUT  
The start-up speed of the MIC5207 is inversely proportional  
to the size of the reference bypass capacitor. Applications  
requiring a slow ramp-up of output voltage should consider  
Substituting P  
for P and solving for the operating  
D(max)  
D
conditions that are critical to the application will give the  
maximum operating conditions for the regulator circuit. For  
example, when operating the MIC5207-3.3BM5 at room  
temperature with a minimum footprint layout, the maximum  
input voltage for a set output current can be determined as  
follows:  
larger values of C  
consider omitting C  
. Likewise, if rapid turn-on is necessary,  
.
BYP  
BYP  
If output noise is not a major concern, omit C  
BYP open.  
and leave  
BYP  
Output Capacitor  
125˚C 25˚C  
An output capacitor is required between OUT and GND to  
prevent oscillation. The minimum size of the output capacitor  
is dependent upon whether a reference bypass capacitor is  
P
=
D(max)  
235  
PD(max) = 425mW  
used. 1.0µF minimum is recommended when C  
is not  
BYP  
The junction-to-ambient thermal resistance for the minimum  
footprint is 220°C/W, from Table 1. The maximum power  
dissipationmustnotbeexceededforproperoperation. Using  
the output voltage of 3.3V and an output current of 150mA,  
the maximum input voltage can be determined. From the  
Electrical Characteristics table, the maximum ground current  
for 150mA output current is 3000µA or 3mA.  
used (see Figure 2). 2.2µF minimum is recommended when  
is 470pF (see Figure 1). Larger values improve the  
regulators transient response. The output capacitor value  
C
BYP  
may be increased without limit.  
The output capacitor should have an ESR (effective series  
resistance) of about 5or less and a resonant frequency  
above 1MHz. Ultra-low-ESR capacitors can cause a low  
amplitude oscillation on the output and/or underdamped  
transient response. Most tantalum or aluminum electrolytic  
capacitors are adequate; film types will work, but are more  
expensive. Since many aluminum electrolytics have electro-  
lytes that freeze at about 30°C, solid tantalums are recom-  
mended for operation below 25°C.  
455mW = (V 3.3V) 150mA + V ·3mA  
IN  
IN  
455mW = V ·150mA 495mW + V ·3mA  
IN  
IN  
920mW = V ·153mA  
IN  
V
= 6.01V  
IN(max)  
Therefore, a 3.3V application at 150mA of output current can  
accept a maximum input voltage of 6V in a SOT-23-5 pack-  
age. For a full discussion of heat sinking and thermal effects  
on voltage regulators, refer to the Regulator Thermals sec-  
tion of Micrels Designing with Low-Dropout Voltage Regula-  
tors handbook.  
At lower values of output current, less output capacitance is  
required for output stability. The capacitor can be reduced to  
0.47µF for current below 10mA or 0.33µF for currents below  
1mA.  
No-Load Stability  
Low-Voltage Operation  
TheMIC5207willremainstableandinregulationwithnoload  
(other than the internal voltage divider) unlike many other  
voltage regulators. This is especially important in CMOS  
RAM keep-alive applications.  
The MIC5207-1.8 and MIC5207-2.5 require special consid-  
eration when used in voltage-sensitive systems. They may  
momentarily overshoot their nominal output voltages unless  
appropriate output and bypass capacitor values are chosen.  
Thermal Considerations  
During regulator power up, the pass transistor is fully satu-  
rated for a short time, while the error amplifier and voltage  
reference are being powered up more slowly from the output  
The MIC5207 is designed to provide 180mA of continuous  
current in a very small package. Maximum power dissipation  
canbecalculatedbasedontheoutputcurrentandthevoltage  
January 2000  
7
MIC5207  
MIC5207  
Micrel  
(see Block Diagram). Selecting larger output and bypass  
capacitors allows additional time for the error amplifier and  
reference to turn on and prevent overshoot.  
Adjustable Regulator Applications  
The MIC5207BM5 can be adjusted to a specific output  
voltage by using two external resistors (figure 3). The resis-  
tors set the output voltage based on the following equation:  
To ensure that no overshoot is present when starting up into  
a light load (100µA), use a 4.7µF output capacitance and  
470pF bypass capacitance. This slows the turn-on enough to  
allow the regulator to react and keep the output voltage from  
exceeding its nominal value. At heavier loads, use a 10µF  
output capacitance and 470pF bypass capacitance. Lower  
values of output and bypass capacitance can be used,  
depending on the sensitivity of the system.  
R2  
V
= V  
1+  
, V  
= 1.242V  
OUT  
REF  
REF  
R1  
This equation is correct due to the configuration of the  
bandgap reference. The bandgap voltage is relative to the  
output, as seen in the block diagram. Traditional regulators  
normally have the reference voltage relative to ground;  
therefore, their equations are different from the equation for  
the MIC5207BM5.  
Applications that can withstand some overshoot on the  
output of the regulator can reduce the output capacitor and/  
orreduceoreliminatethebypasscapacitor. Applicationsthat  
are not sensitive to overshoot due to power-on reset delays  
can use normal output and bypass capacitor configurations.  
Resistor values are not critical because ADJ (adjust) has a  
high input impedance, but for best results use resistors of  
470kor less. A capacitor from ADJ to ground provides  
greatly improved noise performance.  
Please note the junction temperature range of the regulator  
at 1.8V output (fixed and adjustable) is 0˚C to +125˚C.  
MIC5207BM5  
VIN  
VOUT  
2.2µF  
1
2
3
5
Fixed Regulator Applications  
R1  
R2  
MIC5207-x.xBM5  
4
VIN  
VOUT  
2.2µF  
1
2
3
5
4
470pF  
470pF  
Figure 3. Ultra-Low-Noise  
Adjustable Voltage Regulator  
Figure 1. Ultra-Low-Noise Fixed Voltage Regulator  
Figure 3 includes the optional 470pF noise bypass capacitor  
from ADJ to GND to reduce output noise.  
Figure 1 includes a 470pF capacitor for ultra-low-noise op-  
eration and shows EN (pin 3) connected to IN (pin 1) for an  
Dual-Supply Operation  
application where enable/shutdown is not required. C  
2.2µF minimum.  
=
When used in dual-supply systems where the regulator load  
is returned to a negative supply, the output voltage must be  
diode clamped to ground.  
OUT  
MIC5207-x.xBM5  
VIN  
VOUT  
1.0µF  
1
2
3
5
USB Application  
4
Enable  
Shutdown  
Figure 4 shows the MIC5207-3.3BZ (3-terminal, TO-92) in a  
EN  
USB application. Since the V  
supply may be greater than  
BUS  
10 inches from the regulator, a 1µF input capacitor is in-  
cluded.  
Figure 2. Low-Noise Fixed Voltage Regulator  
Figure 2 is an example of a basic low-noise configuration.  
C
= 1µF minimum.  
OUT  
VCC  
5.0V  
10k  
Upstream  
VBUS  
100mA max.  
Ferrite  
Beads  
MIC5207-3.3BZ  
IN OUT  
USB Controller  
ON/OFF  
OVERCURRENT  
MIC2525  
VBUS  
VBUS  
EN  
OUT  
IN  
D+  
D+  
D–  
FLG  
GND  
USB  
Port  
D–  
GND  
OUT  
IN  
1µF  
1µF  
150µF  
GND  
GND  
0.1µF  
Data  
Data  
Figure 4. Single-Port Self-Powered Hub  
MIC5207  
8
January 2000  
MIC5207  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-5 (M5)  
0.090 (2.286) Radius, typ.  
1
2
3
0.145 (3.683)  
0.135 (3.429)  
0.055 (1.397)  
0.045 (1.143)  
10° typ.  
BOTTOM VIEW  
0.085 (2.159) Diam.  
0.185 (4.699)  
0.175 (4.445)  
5° typ.  
0.185 (4.699)  
0.175 (4.445)  
0.090 (2.286) typ.  
5° typ.  
Seating Plane  
0.025 (0.635) Max  
Uncontrolled  
Lead Diameter  
0.500 (12.70) Min.  
0.016 (0.406)  
0.014 (0.356)  
0.0155 (0.3937)  
0.0145 (0.3683)  
0.055 (1.397)  
0.045 (1.143)  
0.105 (2.667)  
0.095 (2.413)  
TO-92 (Z)  
January 2000  
9
MIC5207  
MIC5207  
Micrel  
MIC5207  
10  
January 2000  
MIC5207  
Micrel  
January 2000  
11  
MIC5207  
MIC5207  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
MIC5207  
12  
January 2000  

相关型号:

MIC5207-1.8BM5T&R

Fixed Positive LDO Regulator, 1.8V, 0.4V Dropout, BIPolar, PDSO5, SOT-23, 5 PIN
MICROCHIP

MIC5207-1.8BM5TX

Regulator, 1 Output, 1.8V1, BIPolar, PDSO5
MICROCHIP

MIC5207-1.8YD5

180mA Low-Noise LDO Regulator
MICREL

MIC5207-1.8YD5-TR

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MIC5207-1.8YD5-TX

Fixed Positive LDO Regulator
MICROCHIP

MIC5207-1.8YD5TR

IC,VOLT REGULATOR,FIXED,+1.8V,BIPOLAR,TSOP,5PIN,PLASTIC
MICREL

MIC5207-1.8YD5TX

IC,VOLT REGULATOR,FIXED,+1.8V,BIPOLAR,TSOP,5PIN,PLASTIC
MICROCHIP

MIC5207-1.8YM5

180mA Low-Noise LDO Regulator
MICREL

MIC5207-1.8YM5-TR

IC REG LDO 1.8V 0.18A SOT23-5
MICROCHIP

MIC5207-1.8YM5-TX

Fixed Positive LDO Regulator
MICROCHIP

MIC5207-1.8YM5T&R

1.8V FIXED POSITIVE LDO REGULATOR, 0.4V DROPOUT, PDSO5
MICROCHIP

MIC5207-1.8YM5TX

IC,VOLT REGULATOR,FIXED,+1.8V,BIPOLAR,TSOP,5PIN,PLASTIC
MICROCHIP