MIC5209 [MICREL]

500mA Low-Noise LDO Regulator; 500毫安低噪声LDO稳压器
MIC5209
型号: MIC5209
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

500mA Low-Noise LDO Regulator
500毫安低噪声LDO稳压器

稳压器
文件: 总13页 (文件大小:93K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5209  
500mA Low-Noise LDO Regulator  
General Description  
Features  
The MIC5209 is an efficient linear voltage regulator with very  
low dropout voltage, typically 10mV at light loads and less  
than 500mV at full load, with better than 1% output voltage  
accuracy.  
• Meets Intel® Slot 1 and Slot 2 requirements  
• Guaranteed 500mA output over the full operating  
temperature range  
• Low 500mV maximum dropout voltage at full load  
• Extremely tight load and line regulation  
• Thermally-efficient surface-mount package  
• Low temperature coefficient  
• Current and thermal limiting  
• Reversed-battery protection  
• No-load stability  
• 1% output accuracy  
• Ultra-low-noise capability in SO-8 and TO-263-5  
Designedespeciallyforhand-held,battery-powereddevices,  
the MIC5209 features low ground current to help prolong  
battery life. An enable/shutdown pin on SO-8 and TO-263-5  
versions can further improve battery life with near-zero shut-  
down current.  
Key features include reversed-battery protection, current  
limiting, overtemperature shutdown, ultra-low-noise capabil-  
ity (SO-8 and TO-263-5 versions), and availability in ther-  
mallyefficientpackaging. TheMIC5209isavailableinadjust-  
able or fixed output voltages.  
Applications  
• Pentium II Slot 1 and Slot 2 support circuits  
• Laptop, notebook, and palmtop computers  
• Cellular telephones  
• Consumer and personal electronics  
• SMPS post-regulator/dc-to-dc modules  
• High-efficiency linear power supplies  
For space-critical applications where peak currents do not  
exceed 500mA, see the MIC5219.  
Typical Applications  
Ordering Information  
Part Number  
Voltage  
2.5V  
3.0V  
3.3V  
3.6V  
4.2V  
5.0V  
1.8V  
2.5V  
3.0V  
3.3V  
3.6V  
5.0V  
Adj.  
Junct. Temp. Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
0°C to +125°C  
Package  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
SO-8  
MIC5209-2.5BS  
MIC5209-2.5BS  
MIC5209-3.0BS  
MIC5209-3.3BS  
MIC5209-3.6BS  
MIC5209-4.2BS  
MIC5209-5.0BS  
MIC5209-1.8BM  
MIC5209-2.5BM  
MIC5209-3.0BM  
MIC5209-3.3BM  
MIC5209-3.6BM  
MIC5209-5.0BM  
MIC5209BM  
1
2
3
VIN  
3.0V  
VOUT  
2.5V ±1%  
0.1µF  
22µF  
tantalum  
3.3V Nominal-Input Slot-1  
Power Supply  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
SO-8  
SO-8  
SO-8  
SO-8  
MIC5209-5.0BM  
ENABLE  
SHUTDOWN  
1
2
3
4
8
7
6
5
SO-8  
VIN  
6V  
SO-8  
VOUT  
5V  
MIC5209-2.5BU  
MIC5209-3.0BU  
MIC5209-3.3BU  
MIC5209-3.6BU  
MIC5209-5.0BU  
MIC5209BU  
2.5V  
3.0V  
3.3V  
3.6V  
5.0V  
Adj.  
TO-263-5  
TO-263-5  
TO-263-5  
TO-263-5  
TO-263-5  
TO-263-5  
2.2µF  
tantalum  
470pF  
(OPTIONAL)  
Ultra-Low-Noise 5V Regulator  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
August 2, 2000  
1
MIC5209  
MIC5209  
Micrel  
Pin Configuration  
GND  
TAB  
1
2
3
IN GND OUT  
MIC5209-x.xBS  
SOT-223  
Fixed Voltages  
EN  
IN  
GND  
GND  
GND  
GND  
1
2
3
4
8
7
6
5
5 BYP  
4 OUT  
3 GND  
2 IN  
OUT  
BYP  
1 EN  
MIC5209-x.xBU  
TO-263-5  
Fixed Voltages  
MIC5209-x.xBM  
SO-8  
Fixed Voltages  
EN  
IN  
GND  
GND  
GND  
GND  
1
2
3
4
8
7
6
5
5 ADJ  
4 OUT  
3 GND  
2 IN  
OUT  
ADJ  
1 EN  
MIC5209BU  
TO-263-5  
Adjustable Voltage  
MIC5209BM  
SO-8  
Adjustable Voltage  
Pin Description  
Pin No.  
SOT-223  
Pin No.  
SO-8  
Pin No.  
TO-263-5  
Pin Name  
Pin Function  
1
2
2
3
IN  
Supply Input  
2, TAB  
58  
GND  
Ground: SOT-223 pin 2 and TAB are internally connected. SO-8 pins 5  
through 8 are internally connected.  
3
3
1
4
1
OUT  
EN  
Regulator Output  
Enable (Input): CMOS compatible control input. Logic high = enable; logic  
low or open = shutdown.  
4 (fixed)  
4 (adj.)  
5 (fixed)  
5 (adj.)  
BYP  
ADJ  
Reference Bypass: Connect external 470pF capacitor to GND to reduce  
output noise. May be left open. For 1.8V or 2.5V operation, see Applica-  
tions Information.”  
Adjust (Input): Feedback input. Connect to resistive voltage-divider network.  
MIC5209  
2
August 2, 2000  
MIC5209  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Input Voltage (V ) ............................ 20V to +20V  
Supply Input Voltage (V ) ........................... +2.5V to +16V  
IN  
IN  
Power Dissipation (P ) ............... Internally Limited, Note 3  
Enable Input Voltage (V ) .................................. 0V to V  
D
EN  
IN  
Junction Temperature (T )  
Junction Temperature (T )  
J
J
all except 1.8V...................................... 40°C to +125°C  
1.8V only .................................................. 0°C to +125°C  
all except 1.8V...................................... 40°C to +125°C  
1.8V only .................................................. 0°C to +125°C  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
Package Thermal Resistance .................................. Note 3  
Storage Temperature (T ) ....................... 65°C to +150°C  
S
Electrical Characteristics  
VIN = VOUT + 1.0V; COUT = 4.7µF, IOUT = 100µA; TJ = 25°C, bold values indicate 40°C TJ +125°C except  
0°C TJ +125°C for 1.8V version; unless noted.  
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VOUT  
Output Voltage Accuracy  
variation from nominal VOUT  
1  
–2  
1
2
%
%
VOUT/T  
Output Voltage  
Temperature Coefficient  
Note 4  
40  
0.009  
0.05  
10  
ppm/°C  
VOUT/VOUT Line Regulation  
VIN = VOUT + 1V to 16V  
IOUT = 100µA to 500mA, Note 5  
IOUT = 100µA  
0.05  
0.1  
%/V  
%/V  
VOUT/VOUT Load Regulation  
0.5  
0.7  
%
%
VIN VOUT  
Dropout Voltage, Note 6  
60  
80  
mV  
mV  
I
I
I
OUT = 50mA  
OUT = 150mA  
OUT = 500mA  
115  
165  
350  
80  
175  
250  
mV  
mV  
300  
400  
mV  
mV  
500  
600  
mV  
mV  
IGND  
Ground Pin Current, Notes 7, 8  
V
V
V
V
EN 3.0V, IOUT = 100µA  
EN 3.0V, IOUT = 50mA  
EN 3.0V, IOUT = 150mA  
EN 3.0V, IOUT = 500mA  
130  
170  
µA  
µA  
350  
1.8  
650  
900  
µA  
µA  
2.5  
3.0  
mA  
mA  
8
20  
25  
mA  
mA  
IGND  
Ground Pin Quiescent Current,  
Note 8  
V
EN 0.4V (shutdown)  
EN 0.18V (shutdown)  
0.05  
0.10  
75  
3
8
µA  
µA  
dB  
V
PSRR  
ILIMIT  
Ripple Rejection  
Current Limit  
f = 120Hz  
VOUT = 0V  
700  
900  
1000  
mA  
mA  
VOUT/PD  
Thermal Regulation  
Note 9  
0.05  
500  
%/W  
eno  
Output Noise  
VOUT = 2.5V, IOUT = 50mA,  
nV/ Hz  
Note 10  
COUT = 2.2µF, CBYP = 0  
IOUT = 50mA, COUT = 2.2µF, CBYP = 470pF  
300  
nV/ Hz  
August 2, 2000  
3
MIC5209  
MIC5209  
Micrel  
ENABLE Input  
VENL  
Enable Input Logic-Low Voltage  
VEN = logic low (regulator shutdown)  
VEN = logic high (regulator enabled)  
0.4  
0.18  
V
V
2.0  
V
IENL  
Enable Input Current  
VENL 0.4V  
VENL 0.18V  
VENH 2.0V  
0.01  
0.01  
5
1  
µA  
µA  
–2  
IENH  
20  
25  
µA  
µA  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3: The maximum allowable power dissipation at any T (ambient temperature) is calculated using: P  
= (T  
T ) ÷ θ . Exceeding the  
A
D(max)  
J(max) A JA  
maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See Table 1  
and the Thermal Considerationssection for details.  
Note 4: Output voltage temperature coefficient is the worst case voltage change divided by the total temperature range.  
Note 5: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load  
range from 100µA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.  
Note 6: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V  
differential.  
Note 7: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of  
the load current plus the ground pin current.  
Note 8:  
V
is the voltage externally applied to devices with the EN (enable) input pin. [SO-8 (M) and TO-263-5 (U) packages only.]  
EN  
Note 9: Thermal regulation is the change in output voltage at a time tafter a change in power dissipation is applied, excluding load or line regulation  
effects. Specifications are for a 500mA load pulse at V = 16V for t = 10ms.  
IN  
Note 10: C  
is an optional, external bypass capacitor connected to devices with a BYP (bypass) or ADJ (adjust) pin. [SO-8 (M) and TO-263-5 (U)  
BYP  
packages only].  
MIC5209  
4
August 2, 2000  
MIC5209  
Micrel  
Block Diagrams  
OUT  
IN  
VOUT  
COUT  
VIN  
Bandgap  
Ref.  
Current Limit  
Thermal Shutdown  
MIC5209-x.xBS  
GND  
Low-Noise Fixed Regulator (SOT-223 version only)  
OUT  
IN  
VOUT  
COUT  
VIN  
BYP  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
Current Limit  
Thermal Shutdown  
MIC5209-x.xBM/U  
GND  
Ultra-Low-Noise Fixed Regulator  
OUT  
IN  
VOUT  
COUT  
VIN  
R1  
R2  
ADJ  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
Current Limit  
Thermal Shutdown  
MIC5209BM/U [adj.]  
GND  
Ultra-Low-Noise Adjustable Regulator  
August 2, 2000  
5
MIC5209  
MIC5209  
Micrel  
Typical Characteristics  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
0
0
-20  
0
-20  
VIN = 6V  
VIN = 6V  
VOUT = 5V  
VIN = 6V  
OUT = 5V  
V
OUT = 5V  
V
-20  
-40  
-40  
-40  
-60  
-60  
-60  
IOUT = 100mA  
OUT = 1µF  
-80  
-80  
-80  
IOUT = 100µA  
OUT = 1µF  
IOUT = 1mA  
OUT = 1µF  
C
C
C
-100  
-100  
-100  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
10 100 100k  
10M  
10 100  
100k  
10M  
10 100  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
0
0
0
VIN = 6V  
OUT = 5V  
VIN = 6V  
OUT = 5V  
VIN = 6V  
VOUT = 5V  
V
V
-20  
-40  
-20  
-40  
-20  
-40  
-60  
-60  
-60  
IOUT = 1mA  
IOUT = 100µA  
IOUT = 100mA  
COUT = 2.2µF  
BYP = 0.01µF  
-80  
-80  
-80  
COUT = 2.2µF  
BYP = 0.01µF  
COUT = 2.2µF  
BYP = 0.01µF  
C
C
C
-100  
-100  
-100  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
10 100 100k  
10M  
10 100  
100k  
10M  
10 100  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Power Supply Ripple Rejection  
vs. Voltage Drop  
Power Supply Ripple Rejection  
vs. Voltage Drop  
Noise Performance  
60  
100  
10  
1
500mA pending  
500mA pending  
1mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10mA, COUT = 1µF  
50  
40  
30  
20  
10  
0
1mA  
0.1  
IOUT = 100mA  
10mA  
IOUT = 100mA  
500mA Pending  
0.01  
0.001  
0.0001  
10mA  
COUT = 2.2µF  
C
BYP = 0.01µF  
COUT = 1µF  
VOUT = 5V  
0
0.1  
0.2  
0.3  
0.4  
10  
1E+11E+21E1+k31E+41E+51E+61E+7  
0
0.1  
0.2  
0.3  
0.4  
100 10k 100k 1M 10M  
VOLTAGE DROP (V)  
VOLTAGE DROP (V)  
FREQUENCY (Hz)  
Dropout Voltage  
vs. Output Current  
Noise Performance  
Noise Performance  
10  
1
10  
1
400  
300  
200  
100  
0
500mA Pending  
100mA  
100mA  
10mA  
0.1  
0.1  
500mA Pending  
VOUT = 5V  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
1mA  
VOUT = 5V  
OUT = 10µF  
electrolytic  
BYP = 100pF  
1mA  
C
C
OUT = 10µF  
electrolytic  
10mA  
C
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
10  
1k 10k 100k 1M 10M  
1E+111E0+021E+31E+41E+51E+61E+7  
FREQUENCY (Hz)  
10  
1k 10k 100k 1M 10M  
1E+111E0+021E+31E+41E+51E+61E+7  
FREQUENCY (Hz)  
MIC5209  
6
August 2, 2000  
MIC5209  
Micrel  
Dropout Characteristics  
Ground Current  
vs. Output Current  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12  
10  
8
I
=100µA  
L
6
I =100mA  
L
4
I =500mA  
L
2
0
0
1
2
3
4
5
6
7
8
9
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
Ground Current  
vs. Supply Voltage  
Ground Current  
vs. Supply Voltage  
25  
20  
15  
10  
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I =100 mA  
L
I =500mA  
L
0
I =100µA  
0
1
2
3
4
5
6
7
8
9
L
INPUT VOLTAGE (V)  
0
2
4
6
8
INPUT VOLTAGE (V)  
August 2, 2000  
7
MIC5209  
MIC5209  
Micrel  
Thermal Considerations  
Applications Information  
The SOT-223 has a ground tab which allows it to dissipate  
morepowerthantheSO-8. RefertoSlot-1PowerSupplyfor  
details. At 25°C ambient, it will operate reliably at 2W dissipa-  
tion with worst-casemounting (no ground plane, minimum  
trace widths, and FR4 printed circuit board).  
Enable/Shutdown  
Enable is available only on devices in the SO-8 (M) and  
TO-263-5 (U) packages.  
Forcing EN (enable/shutdown) high (> 2V) enables the regu-  
lator. EN is compatible with CMOS logic. If the enable/  
shutdown feature is not required, connect EN to IN (supply  
input).  
Thermal resistance values for the SO-8 represent typical  
mounting on a 1"-square, copper-clad, FR4 circuit board. For  
greater power dissipation, SO-8 versions of the MIC5209  
feature a fused internal lead frame and die bonding arrange-  
ment that reduces thermal resistance when compared to  
standard SO-8 packages.  
Input Capacitor  
A 1µF capacitor should be placed from IN to GND if there is  
morethan10inchesofwirebetweentheinputandtheacfilter  
capacitor or if a battery is used as the input.  
Package  
θJA  
50°C/W  
50°C/W  
θJC  
Output Capacitor  
SOT-223 (S)  
SO-8 (M)  
8°C/W  
25°C/W  
2°C/W  
An output capacitor is required between OUT and GND to  
prevent oscillation. The minimum size of the output capacitor  
is dependent upon whether a reference bypass capacitor is  
TO-263-5 (U)  
used. 1µF minimum is recommended when C  
(see Figure 1). 2.2µF minimum is recommended when C  
is not used  
BYP  
Table 1. MIC5209 Thermal Resistance  
BYP  
Multilayer boards with a ground plane, wide traces near the  
pads, and large supply-bus lines will have better thermal  
conductivity and will also allow additional power dissipation.  
is470pF(seeFigure2).Largervaluesimprovetheregulators  
transient response.  
The output capacitor should have an ESR (equivalent series  
resistance) of about 5and a resonant frequency above  
1MHz. Ultra-low-ESR capacitors can cause a low amplitude  
oscillation on the output and/or underdamped transient re-  
sponse. Most tantalum or aluminum electrolytic capacitors  
are adequate; film types will work, but are more expensive.  
Since many aluminum electrolytics have electrolytes that  
freeze at about 30°C, solid tantalums are recommended for  
operation below 25°C.  
For additional heat sink characteristics, please refer to Micrel  
Application Hint 17, Designing P.C. Board Heat Sinks,  
included in Micrels Databook. For a full discussion of heat  
sinking and thermal effects on voltage regulators, refer to  
Regulator Thermals section of Micrels Designing with Low-  
Dropout Voltage Regulators handbook.  
Low-Voltage Operation  
The MIC5209-1.8 and MIC5209-2.5 require special consid-  
eration when used in voltage-sensitive systems. They may  
momentarily overshoot their nominal output voltages unless  
appropriate output and bypass capacitor values are chosen.  
At lower values of output current, less output capacitance is  
needed for output stability. The capacitor can be reduced to  
0.47µF for current below 10mA or 0.33µF for currents below  
1mA.  
During regulator power up, the pass transistor is fully satu-  
rated for a short time, while the error amplifier and voltage  
reference are being powered up more slowly from the output  
(see Block Diagram). Selecting larger output and bypass  
capacitors allows additional time for the error amplifier and  
reference to turn on and prevent overshoot.  
No-Load Stability  
TheMIC5209willremainstableandinregulationwithnoload  
(other than the internal voltage divider) unlike many other  
voltage regulators. This is especially important in CMOS  
RAM keep-alive applications.  
To ensure that no overshoot is present when starting up into  
a light load (100µA), use a 4.7µF output capacitance and  
470pF bypass capacitance. This slows the turn-on enough to  
allow the regulator to react and keep the output voltage from  
exceeding its nominal value. At heavier loads, use a 10µF  
output capacitance and 470pF bypass capacitance. Lower  
values of output and bypass capacitance can be used,  
depending on the sensitivity of the system.  
Reference Bypass Capacitor  
BYP (reference bypass) is available only on devices in SO-8  
and TO-263-5 packages.  
BYP is connected to the internal voltage reference. A 470pF  
capacitor (C  
) connected from BYP to GND quiets this  
BYP  
reference, providing a significant reduction in output noise  
(ultra-low-noise performance). Because C reduces the  
phase margin, the output capacitor should be increased to at  
BYP  
Applications that can withstand some overshoot on the  
output of the regulator can reduce the output capacitor and/  
orreduceoreliminatethebypasscapacitor. Applicationsthat  
are not sensitive to overshoot due to power-on reset delays  
can use normal output and bypass capacitor configurations.  
least 2.2µF to maintain stability.  
The start-up speed of the MIC5209 is inversely proportional  
to the size of the reference bypass capacitor. Applications  
requiring a slow ramp-up of output voltage should consider  
larger values of C  
consider omitting C  
. Likewise, if rapid turn-on is necessary,  
.
BYP  
Please note the junction temperature range of the regulator  
at 1.8V output (fixed and adjustable) is 0˚C to +125˚C.  
BYP  
If output noise is not critical, omit C  
and leave BYP open.  
BYP  
MIC5209  
8
August 2, 2000  
MIC5209  
Micrel  
Fixed Regulator Circuits  
Although ADJ is a high-impedance input, for best perfor-  
mance, R2 should not exceed 470k.  
MIC5209-x.xBM  
VIN  
VOUT  
1µF  
2
3
MIC5209BM  
IN  
OUT  
BYP  
GND  
VIN  
VOUT  
2
1
3
4
1
4
IN  
OUT  
ADJ  
EN  
R1  
R2  
EN  
58  
GND  
2.2µF  
58  
470pF  
Figure 1. Low-Noise Fixed Voltage Regulator  
Figure1showsabasicMIC5209-x.xBM(SO-8)fixed-voltage  
regulator circuit. See Figure 5 for a similar configuration  
usingthemorethermally-efficientMIC5209-x.xBS(SOT-223).  
A 1µF minimum output capacitor is required for basic fixed-  
voltage applications.  
Figure 4. Ultra-Low-Noise Adjustable Application.  
Figure 4 includes the optional 470pF bypass capacitor from  
ADJ to GND to reduce output noise.  
Slot-1 Power Supply  
MIC5209-x.xBM  
Intels Pentium II processors have a requirement for a 2.5V  
±5% power supply for a clock synthesizer and its associated  
loads. The current requirement for the 2.5V supply is depen-  
dant upon the clock synthesizer used, the number of clock  
outputs, and the type of level shifter (from core logic levels to  
2.5V levels). Intel estimates a worst-case load of 320mA.  
VIN  
VOUT  
2
3
IN  
OUT  
BYP  
GND  
1
4
EN  
2.2µF  
58  
470pF  
The MIC5209 was designed to provide the 2.5V power  
requirement for Slot-1 applications. Its guaranteed perfor-  
mance of 2.5V ±3% at 500mA allows adequate margin for all  
systems, and its dropout voltage of 500mV means that it  
operates from a worst-case 3.3V supply where the voltage  
can be as low as 3.0V.  
Figure 2. Ultra-Low-Noise Fixed Voltage Regulator  
Figure 2 includes the optional 470pF noise bypass capacitor  
between BYP and GND to reduce output noise. Note that the  
minimum value of C  
capacitor is used.  
must be increased when the bypass  
OUT  
MIC5209-x.xBS  
Adjustable Regulator Circuits  
VIN  
VOUT  
1
3
IN  
OUT  
MIC5209BM  
VIN  
VOUT  
1µF  
2
1
3
IN  
OUT  
ADJ  
GND  
GND  
CIN  
0.1µF  
COUT  
22µF  
4
R1  
R2  
EN  
2,TAB  
58  
Figure 5. Slot-1 Power Supply  
A Slot-1 power supply (Figure 5) is easy to implement. Only  
twocapacitorsarenecessary,andtheirvaluesarenotcritical.  
Figure 3. Low-Noise Adjustable Voltage Regulator  
C
bypasses the internal circuitry and should be at least  
IN  
The MIC5209BM/U can be adjusted to a specific output  
voltage by using two external resistors (Figure 3). The resis-  
tors set the output voltage based on the equation:  
0.1µF. C  
provides output filtering, improves transient  
OUT  
response, and compensates the internal regulator control  
loop. Its value should be at least 22µF. C and C  
may be  
IN  
OUT  
increased as much as desired.  
R2  
VOUT = 1.242V 1 +  
R1  
Slot-1 Power Supply Power Dissipation  
Powered from a 3.3V supply, the Slot-1 power supply of  
Figure 5 has a nominal efficiency of 75%. At the maximum  
anticipated Slot 1 load (320mA), the nominal power dissipa-  
tion is only 256mW.  
This equation is correct due to the configuration of the  
bandgap reference. The bandgap voltage is relative to the  
output, as seen in the block diagram. Traditional regulators  
normally have the reference voltage relative to ground;  
therefore, their equations are different from the equation for  
the MIC5209BM/U.  
The SOT-223 package has sufficient thermal characteristics  
for wide design margins when mounted on a single layer  
copper-clad printed circuit board. The power dissipation of  
August 2, 2000  
9
MIC5209  
MIC5209  
Micrel  
the MIC5209 is calculated using the voltage drop across the  
device × output current plus supply voltage × ground current.  
Considering worst case tolerances, the power dissipation  
could be as high as:  
Table 2 and Figure 6 show that the Slot-1 power supply  
application can be implemented with a minimum footprint  
layout. Figure 6 shows the necessary copper pad area to  
obtainspecificheatsinkthermalresistance(θ )values. The  
SA  
2
θ
values in Table 2 require much less than 500mm of  
(V  
V  
) × I  
+ V  
× I  
IN(max) GND  
SA  
IN(max)  
OUT(max)  
OUT  
copper, according to Figure 6, and can easily be accom-  
plished with the minimum footprint.  
[(3.6V 2.375V) × 320mA] + (3.6V × 4mA)  
P = 407mW  
D
70  
60  
50  
40  
30  
20  
10  
0
Using the maximum junction temperature of 125°C and a θ  
JC  
of 8°C/W for the SOT-223, 25°C/W for the SO-8, or 2°C/W for  
the TO-263 package, the following worst-case heat-sink  
thermal resistance (θ ) requirements are:  
SA  
T
T  
A
J(max)  
θ
=
JA  
P
D
θSA = θJA θJC  
0
2000  
4000  
6000  
2
COPPER HEAT SINK AREA (mm )  
TA  
θJA (limit)  
θSA SOT-223 201°C/W  
θSA SO-8 184°C/W  
θSA TO-263-5 207°C/W  
40°C  
50°C  
60°C  
75°C  
Figure 6. PCB Heat Sink Thermal Resistance  
209°C/W  
184°C/W 160°C/W 123°C/W  
176°C/W 152°C/W 115°C/W  
159°C/W 135°C/W 98°C/W  
182°C/W 158°C/W 121°C/W  
Table 2. Maximum Allowable Thermal Resistance  
MIC5209  
10  
August 2, 2000  
MIC5209  
Micrel  
Package Information  
3.15 (0.124)  
2.90 (0.114)  
C
L
7.49 (0.295)  
6.71 (0.264)  
3.71 (0.146)  
3.30 (0.130)  
C
L
2.41 (0.095)  
2.21 (0.087)  
1.04 (0.041)  
0.85 (0.033)  
4.7 (0.185)  
4.5 (0.177)  
DIMENSIONS:  
MM (INCH)  
1.70 (0.067)  
1.52 (0.060)  
16°  
10°  
6.70 (0.264)  
6.30 (0.248)  
0.10 (0.004)  
0.038 (0.015)  
10°  
MAX  
0.02 (0.0008)  
0.25 (0.010)  
0.84 (0.033)  
0.64 (0.025)  
0.91 (0.036) MIN  
SOT-223 (S)  
0.026 (0.65)  
MAX)  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
TYP  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0.010 (0.25)  
0.007 (0.18)  
0°8°  
0.197 (5.0)  
0.189 (4.8)  
0.050 (1.27)  
0.016 (0.40)  
SEATING  
PLANE  
0.064 (1.63)  
0.045 (1.14)  
0.244 (6.20)  
0.228 (5.79)  
8-Pin SOP (M)  
August 2, 2000  
11  
MIC5209  
MIC5209  
Micrel  
0.405±0.005  
0.176 ±0.005  
0.060 ±0.005  
0.050±0.005  
0.360±0.005  
0.065 ±0.010  
20°±2°  
0.600±0.025  
SEATING PLANE  
+0.004  
0.004  
0.008  
0.100±0.01  
8° MAX  
0.067±0.005  
DIM. = INCH  
0.032 ±0.003  
0.015 ±0.002  
TO-263-5 (U)  
MIC5209  
12  
August 2, 2000  
MIC5209  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
August 2, 2000  
13  
MIC5209  

相关型号:

MIC5209-1.8BM

500mA Low-Noise LDO Regulator
MICREL

MIC5209-1.8BM

Fixed Positive LDO Regulator, 2.5V, 0.6V Dropout, BIPolar, PDSO8, SOIC-8
MICROCHIP

MIC5209-1.8BMT&R

Fixed Positive LDO Regulator, 2.5V, 0.6V Dropout, PDSO8, SOIC-8
MICROCHIP

MIC5209-1.8YM

500mA Low-Noise LDO Regulator
MICREL

MIC5209-1.8YM-TR

IC REG LDO 1.8V 0.5A 8SOIC
MICROCHIP

MIC5209-1.8YU

500mA Low-Noise LDO Regulator
MICREL

MIC5209-1.8YU

2.5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PSSO5
MICROCHIP

MIC5209-1.8YUTR

暂无描述
MICREL

MIC5209-1.8YUTR

2.5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PSSO5, LEAD FREE, TO-263, 5 PIN
MICROCHIP

MIC5209-2.5BM

500mA Low-Noise LDO Regulator
MICREL

MIC5209-2.5BM

Fixed Positive LDO Regulator, 2.5V, 0.6V Dropout, BIPolar, PDSO8, SOIC-8
MICROCHIP

MIC5209-2.5BS

500mA Low-Noise LDO Regulator
MICREL