MIC5211-5.0BM6 [MICREL]

Dual レCap 80mA LDO Regulator Preliminary Information; 双レ帽80毫安LDO稳压器的初步信息
MIC5211-5.0BM6
型号: MIC5211-5.0BM6
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Dual レCap 80mA LDO Regulator Preliminary Information
双レ帽80毫安LDO稳压器的初步信息

稳压器 调节器 光电二极管 输出元件
文件: 总12页 (文件大小:72K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5211  
Dual µCap 80mA LDO Regulator  
Preliminary Information  
General Description  
Features  
The MIC5211 is a dual µCap 80mA linear voltage regulator  
with very low dropout voltage (typically 20mV at light loads),  
very low ground current (225µA at 20mA output current), and  
better than 3% initial accuracy. This dual device comes in the  
miniature SOT-23-6 package, featuring independent logic  
control inputs.  
Stable with low-value ceramic or tantalum capacitors  
Independent logic controls  
Low quiescent current  
Low dropout voltage  
Mixed voltages available  
Tight load and line regulation  
Low temperature coefficient  
Current and thermal limiting  
Reversed input polarity protection  
Zero off-mode current  
The µCap regulator design is optimized to work with low-  
value, low-cost ceramic capacitors. The outputs typically  
require only 0.1µF of output capacitance for stability.  
Designedespeciallyforhand-held,battery-powereddevices,  
ground current is minimized using Micrel’s proprietary Super  
ßeta PNP™ technology to prolong battery life. When dis-  
abled, power consumption drops nearly to zero.  
Dual regulator in tiny SOT-23 package  
2.5V to 16V input range  
Applications  
Cellular telephones  
Laptop, notebook, and palmtop computers  
Battery-powered equipment  
Bar code scanners  
SMPS post regulator/dc-to-dc modules  
High-efficiency linear power supplies  
Key features include SOT-23-6 packaging, current limiting,  
overtemperature shutdown, and protection against reversed  
battery conditions.  
The MIC5211 is available in dual 1.8V, 2.5V, 2.7V, 2.8V,  
3.0V, 3.3V, 3.6V, and 5.0V versions. Certain mixed voltages  
are also available. Contact Micrel for other voltages.  
Ordering Information  
Part Number  
Marking Voltage  
Junction Temp. Range  
0°C to +125°C  
Package  
SOT-23-6  
SOT-23-6  
SOT-23-6  
SOT-23-6  
SOT-23-6  
SOT-23-6  
SOT-23-6  
SOT-23-6  
MIC5211-1.8BM6  
MIC5211-2.5BM6  
MIC5211-2.7BM6  
MIC5211-2.8BM6  
MIC5211-3.0BM6  
MIC5211-3.3BM6  
MIC5211-3.6BM6  
MIC5211-5.0BM6  
LFBB  
LFCC  
LFDD  
LFEE  
LFGG  
LFLL  
1.8V  
2.5V  
2.7V  
2.8V  
3.0V  
3.3V  
3.6V  
5.0V  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
LFQQ  
LFXX  
Dual-Voltage Regulators  
MIC5211-1.8/2.5BM6  
MIC5211-1.8/3.3BM6  
MIC5211-2.5/3.3BM6  
MIC5211-3.3/5.0BM6  
LFBC  
LFBL  
LFCL  
LFLX  
1.8V/2.5V  
1.8V/3.3V  
2.5V/3.3V  
3.3V/5.0V  
0°C to +125°C  
0°C to +125°C  
SOT-23-6  
SOT-23-6  
SOT-23-6  
SOT-23-6  
40°C to +125°C  
40°C to +125°C  
Typical Application  
Other voltages available. Contact Micrel for details.  
VIN  
MIC5211  
1
2
3
6
5
4
Enable  
Shutdown  
VOUTA  
0.1µF  
Enable A  
Enable  
VOUTB  
Shutdown  
0.1µF  
Enable B  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
November 2000  
1
MIC5211  
MIC5211  
Micrel  
Pin Configuration  
OUTA IN OUTB  
6
5
4
Part  
Identification  
Pin 1  
Index  
LFxx  
1
2
3
ENA GND ENB  
Regulator A  
Regulator B  
Voltage Code  
Voltage Code  
(VOUTA  
)
(VOUTB)  
Voltage  
Code  
1.8V  
2.5V  
2.7V  
2.8V  
3V  
B
C
D
E
G
H
L
3.15V  
3.3V  
3.6V  
5V  
Q
X
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
ENA  
Enable/Shutdown A (Input): CMOS compatible input. Logic high = enable,  
logic low or open = shutdown.  
2
3
GND  
ENB  
Ground  
Enable/Shutdown B (Input): CMOS compatible input. Logic high = enable,  
logic low or open = shutdown.  
4
5
6
OUTB  
IN  
Regulator Output B  
Supply Input  
OUTA  
Regulator Output A  
MIC5211  
2
November 2000  
MIC5211  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Input Voltage (V ) ............................ 20V to +20V  
Supply Input Voltage (V ) ............................... 2.5V to 16V  
IN  
IN  
Enable Input Voltage (V ) ........................... 20V to +20V  
Enable Input Voltage (V ) ................................. 0V to 16V  
EN  
EN  
Power Dissipation (P ) ............................ Internally Limited  
Junction Temperature (T ) (except 1.8V). 40°C to +125°C  
D
J
1.8V only .................................................. 0°C to +125°C  
Storage Temperature Range ................... 60°C to +150°C  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
ESD, (Note 3) .....................................................................  
6-lead SOT-23-6 ).............................................. Note 4  
JA  
Electrical Characteristics  
VIN = VOUT + 1V; IL = 1mA; CL = 0.1µF, and VEN 2.0V; TJ = 25°C, bold values indicate 40°C to +125°C;  
for one-half of dual MIC5211; unless noted.  
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VO  
Output Voltage  
Accuracy  
variation from nominal VOUT  
3  
4  
3
4
%
%
VO/T  
VO/VO  
VO/VO  
VIN VO  
Output Voltage  
Temperature Coeffcient  
Note 5  
50  
200 ppm/°C  
Line Regulation  
VIN = VOUT +1V to 16V  
IL = 0.1mA to 50mA, Note 6  
0.008  
0.08  
0.3  
0.5  
%
%
Load Regulation  
0.3  
0.5  
%
%
Dropout Voltage, Note 7  
IL = 100µA  
IL = 20mA  
IL = 50mA  
20  
200  
250  
0.01  
90  
mV  
mV  
mV  
µA  
450  
500  
10  
IQ  
Quiescent Current  
Ground Pin Current  
Note 8  
VEN 0.4V (shutdown)  
IGND  
VEN 2.0V, IL = 100µA (active)  
µA  
IL = 20mA (active)  
IL = 50mA (active)  
VOUT = 0V  
225  
750  
140  
0.05  
450  
1200  
250  
µA  
µA  
ILIMIT  
Current Limit  
mA  
%/W  
VO/PD  
Enable Input  
Thermal Regulation  
Note 9  
Enable Input Voltage Level  
Enable Input Current  
VIL  
VIH  
logic low (off)  
logic high (on)  
0.6  
V
V
2.0  
IIL  
V
IL 0.6V  
IH 2.0V  
0.01  
3
1
µA  
µA  
IIH  
V
50  
Note 1: Exceeding the absolute maximum rating may damage the device.  
Note 2: The device is not guareented to function outside itsperating rating.  
Note 3: Devices are ESD sensitive. Handling precautions recommended.  
Note 4: The maximum allowable power dissipation at any T (ambient temperature) is P  
= (T  
T ) / θ . Exceeding the maximum  
A
D(max)  
J(max) A JA  
allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The θ is 220°C/W for  
JA  
the SOT-23-6 mounted on a printed circuit board.  
Note 5: Output voltage temperature coeffiecient is defined as the worst case voltage change divided by the total temperature range.  
Note 6: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load  
range from 0.1mA to 50mA. Change in output voltage due to heating effects are covered by thermal regulation specification.  
Note 7: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V  
differential. For output voltages below 2.5V, dropout voltage is the input-to-output voltage differential with the minimum voltage being 2.5V.  
Minimum input opertating voltage is 2.5V.  
Note 8: Ground pin current is the quiescent current per regulator plus pass transistor base current. The total current drawn from the supply is the sum  
of the load current plus the ground pin current.  
Note 9: Thermal regulation is defined as the change in output voltage at a time tafter a change in power dissipation is applied, excluding load or line  
regulation effects. Specifications are for a 50mA load pulse at V = 16V for t = 10ms.  
IN  
November 2000  
3
MIC5211  
MIC5211  
Micrel  
Typical Characteristics  
Dropout Voltage  
vs. Output Current  
Dropout Voltage  
vs. Temperature  
Dropout Characteristics  
(MIC5211-3.3)  
1000  
400  
300  
200  
100  
0
4
3
2
1
0
CIN = 10µF  
CIN = 10µF  
OUT = 1µF  
COUT = 1µF  
C
IL = 100µA  
100  
10  
1
IL = 50mA  
IL = 50mA  
IL = 100µA  
IL = 1mA  
CIN = 10µF  
COUT = 1µF  
0.01  
0.1  
1
10  
100  
-60 -30  
0
30 60 90 120 150  
0
1
2
3
4
5
6
7
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Ground Current  
vs. Output Current  
Ground Current  
vs. Supply Voltage  
Ground Current  
vs. Temperature  
2000  
1500  
1000  
500  
0
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
CIN = 10µF  
OUT = 1µF  
IL = 50mA  
C
VOUT = 3.3V  
IL = 100µA  
IL = 50mA  
IL = 100µA  
VIN = VOUT + 1V  
0
10 20 30 40 50 60 70 80  
OUTPUT CURRENT (mA)  
0
1
2
3
4
5
6
7
-60 -30  
0
30 60 90 120 150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Output Voltage  
vs. Temperature  
Output Voltage  
vs. Output Current  
Short Circuit Current  
vs. Input Voltage  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
160  
140  
120  
100  
80  
CIN = 10µF  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
COUT = 1µF  
CIN = 10µF  
OUT = 1µF  
C
3 DEVICES  
60  
HI / AVG / LO  
CIN = 10µF  
40  
COUT = 1µF  
CURVES APPLICABLE  
20  
AT 100µA AND 50mA  
0
-60 -30  
0
30 60 90 120 150  
0
50  
100  
150  
200  
0
1
2
3
4
5
6
7
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
Short Circuit Current  
vs. Temperature  
200  
180  
160  
140  
120  
100  
CIN = 10µF  
COUT = 1µF  
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
MIC5211  
4
November 2000  
MIC5211  
Micrel  
Load Transient  
Load Transient  
200  
0
100  
0
COUT = 10µF  
COUT = 1µF  
IN = VOUT + 1  
-200  
-1400  
50  
-100  
-1200  
50  
V
IN = VOUT + 1  
V
0
0
-50  
-1  
-50  
-5  
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
TIME (ms)  
TIME (ms)  
Line Transient  
(MIC5211-3.3)  
Line Transient  
(MIC5211-3.3)  
3
2
2
1
CL = 1µF  
CL = 11µF  
I
L = 1mA  
1
I
L = 1mA  
0
0
-1  
-28  
-81  
6
6
4
2
4
2
-0.2 0.0 0.2 0.4 0.6 0.8 1.0  
TIME (ms)  
-0.2 0.0 0.2 0.4 0.6 0.8 1.0  
TIME (ms)  
Ripple Voltage  
vs. Frequency  
Ripple Voltage  
vs. Frequency  
Ripple Voltage  
vs. Frequency  
100  
100  
80  
100  
80  
80  
60  
40  
20  
0
60  
60  
40  
40  
IL = 100µA  
L = 1µF  
IN = VOUT + 1  
IL = 1mA  
L = 1µF  
IN = VOUT + 1  
IL = 50mA  
L = 1µF  
IN = VOUT + 1  
C
C
C
20  
0
20  
0
V
V
V
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
November 2000  
5
MIC5211  
MIC5211  
Micrel  
Output Impedance  
Enable Characteristics  
(MIC5211-3.3)  
Enable Characteristics  
(MIC5211-3.3)  
1000  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.40  
5
4
3
2
1
100  
10  
IL = 100µA  
IL = 1mA  
CL = 1µF  
CL = 1µF  
I
L = 100µA  
I
L = 100µA  
0
-41  
1
IL = 50mA  
0.1  
0.01  
2
0
2
0
-2  
-2  
-2  
0
2
4
6
8
10  
-0.2 0.0 0.2 0.4 0.6 0.8 1.0  
TIME (ms)  
TIME (µs)  
FREQUENCY (Hz)  
Minimum Supply Voltage  
vs. Temperature  
Enable Voltage  
vs. Temperature  
Enable Current  
vs. Temperature  
3.5  
3.4  
3.3  
1.50  
1.25  
1.00  
0.75  
0.50  
40  
CIN = 10µF  
OUT = 1µF  
L = 1mA  
CIN = 10µF  
OUT = 1µF  
L = 1mA  
C
C
IL = 1mA  
30  
20  
10  
0
I
I
V
= 3.3V  
OUT  
VEN = 5V  
VON  
VOFF  
CIN = 10µF  
OUT = 1µF  
VEN = 2V  
C
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Crosstalk Characteristic  
IOUTB = 100µA  
COUTB = 0.47µF  
COUTA = 0.47µF  
TIME (25ms/div.)  
MIC5211  
6
November 2000  
MIC5211  
Micrel  
Applications Information  
Enable/Shutdown  
T
J(max) TA  
PD(max)  
=
=
θJA  
ENA and ENB (enable/shutdown) may be controlled sepa-  
rately. Forcing ENA/B high (>2V) enables the regulator. The  
enable inputs typically draw only 15µA.  
125°C 25°C  
220°C/W  
P
D(max)  
While the logic threshold is TTL/CMOS compatible, ENA/B  
PD(max) = 455mW  
may be forced as high as 20V, independent of V . ENA/B  
IN  
The MIC5211-3.0 can supply 3V to two different loads inde-  
pendently from the same supply voltage. If one of the regu-  
latorsissupplying50mAat3Vfromaninputvoltageof4V,the  
total power dissipation in this portion of the regulator is:  
may be connected to the supply if the function is not required.  
Input Capacitor  
A 0.1µF capacitor should be placed from IN to GND if there  
is more than 10 inches of wire between the input and the ac  
filter capacitor or when a battery is used as the input.  
P
= V V  
I
+ V I  
IN GND  
(
)
D1  
IN  
OUT OUT  
Output Capacitor  
P
= 4V 3V 50mA + 4V 0.85mA  
(
)
D1  
Typical PNP based regulators require an output capacitor to  
preventoscillation.TheMIC5211isultrastable,requiringonly  
0.1µF of output capacitance per regulator for stability. The  
regulator is stable with all types of capacitors, including the  
tiny, low-ESR ceramic chip capacitors. The output capacitor  
value can be increased without limit to improve transient  
response.  
PD1 = 53.4mW  
Uptoapproximately400mWcanbedissipatedbytheremain-  
ing regulator (455mW 53.4mW) before reaching the ther-  
mal shutdown temperature, allowing up to 50mA of current.  
P
= V V  
I
+ V I  
IN GND  
(
)
D2  
IN  
OUT OUT  
The capacitor should have a resonant frequency above  
500kHz. Ceramic capacitors work, but some dielectrics have  
poor temperature coefficients, which will affect the value of  
the output capacitor over temperature. Tantalum capacitors  
are much more stable over temperature, but typically are  
larger and more expensive. Aluminum electrolytic capacitors  
will also work, but they have electrolytes that freeze at about  
30°C. Tantalum or ceramic capacitors are recommended  
for operation below 25°C.  
P
= 4V 3V 50mA + 4V 0.85mA  
(
)
D2  
P
= 53.4mW  
D2  
The total power dissipation is:  
D1 +PD2 = 53.4mW + 53.4mW  
+P = 106.8mW  
P
P
D1  
D2  
Therefore, with a supply voltage of 4V, both outputs can  
operate safely at room temperature and full load (50mA).  
No-Load Stability  
TheMIC5211willremainstableandinregulationwithnoload  
(other than the internal voltage divider) unlike many other  
voltage regulators. This is especially important in CMOS  
RAM keep-alive applications.  
VIN  
MIC5211  
VOUTA  
VOUTB  
IN  
OUTA  
ENA OUTB  
ENB GND  
Thermal Shutdown  
1µF 1µF  
Thermal shutdown is independent on both halves of the dual  
MIC5211, however, an overtemperature condition in one half  
may affect the other half because of proximity.  
Figure 1. Thermal Conditions Circuit  
Thermal Considerations  
In many applications, the ambient temperature is much  
higher. By recalculating the maximum power dissipation at  
70°Cambient, itcanbedeterminedifbothoutputscansupply  
full load when powered by a 4V supply.  
When designing with a dual low-dropout regulator, both  
sections must be considered for proper operation. The part is  
designed with thermal shutdown, therefore, the maximum  
junction temperature must not be exceeded. Since the dual  
regulators share the same substrate, the total power dissipa-  
tion must be considered to avoid thermal shutdown. Simple  
thermal calculations based on the power dissipation of both  
regulators will allow the user to determine the conditions for  
proper operation.  
T
J(max) TA  
PD(max)  
=
=
θJA  
125°C 70°C  
220°C/W  
P
D(max)  
The maximum power dissipation for the total regulator sys-  
temcanbedeterminedusingtheoperatingtemperaturesand  
thethermalresistanceofthepackage. Inaminimumfootprint  
configuration, the SOT-23-6 junction-to-ambient thermal re-  
PD(max) = 250mW  
At70°C, thedevicecanprovide250mWofpowerdissipation,  
suitable for the above application.  
sistance ) is 220°C/W. Since the maximum junction  
JA  
temperature for this device is 125°C, at an operating tem-  
perature of 25°C the maximum power dissipation is:  
When using supply voltages higher than 4V, do not exceed  
the maximum power dissipation for the device. If the device  
November 2000  
7
MIC5211  
MIC5211  
Micrel  
is operating from a 7.2V-nominal two-cell lithium-ion battery  
and both regulators are dropping the voltage to 3.0V, then  
output current will be limited at higher ambient temperatures.  
considerations must be taken to ensure proper functionality  
of the part. The input voltage must be high enough for the 5V  
section to operate correctly, this will ensure the 3.3V section  
proper operation as well.  
For example, at 70°C ambient the first regulator can supply  
3.0V at 50mA output from a 7.2V supply; however, the  
second regulator will have limitations on output current to  
avoid thermal shutdown. The dissipation of the first regulator  
is:  
Both regulators live off of the same input voltage, therefore  
the amount of output current each regulator supplies may be  
limited thermally. The maximum power the MIC5211 can  
dissipate at room temperature is 455mW, as shown in the  
Thermal Considerationssection. If we assume 6V input  
voltage and 50mA of output current for the 3.3V section of the  
regulator, then the amount of output current the 5V section  
can provide can be calculated based on the power dissipa-  
tion.  
P
= 7.2V 3V 50mA + 7.2V 0.85mA  
(
)
D1  
P
= 216mW  
D1  
Since maximum power dissipation for the dual regulator is  
250mW at 70°C, the second regulator can only dissipate up  
to 34mW without going into thermal shutdown. The amount  
of current the second regulator can supply is:  
P = (V  
V  
) I  
+ V · I  
GND GND  
D
GND  
OUT OUT  
P
= (6V 3.3V) 50mA + 6V · 0.85mA  
= 140.1mW  
D(3.3V)  
P
D(3.3V)  
P
= 34mW  
D2(max)  
P
= 455mW  
D(max)  
7.2V 3V I  
= 34mW  
(
)
OUT2(max)  
P
P  
= P  
D(max)  
D(3.3V) D(5V)  
4.2V I  
= 34mW  
OUT2(max)  
P
P
= 455mW 140.1mW  
D(5V)  
I
= 8mA  
OUT2(max)  
= 314.9mW  
D(5V)  
Based on the power dissipation allowed for the 5V section,  
theamountofoutputcurrentitcansourceiseasilycalculated.  
The second regulator can provide up to 8mA output current,  
suitable for the keep-alive circuitry often required in hand-  
held applications.  
P
= 314.9mW  
D(5V)  
Refer to Application Hint 17 for heat sink requirements when  
higher power dissipation capability is needed. Refer to De-  
signing with Low Dropout Voltage Regulators for a more  
thorough discussion of regulator thermal characteristics.  
314.9mW = (6V 5V) I  
6V · I  
GND  
MAX  
(I  
typically adds less than 5% to the total power dissipa-  
tion and in this case can be ignored)  
GND  
314.9mW = (6V 5V) I  
MAX  
Dual-Voltage Considerations  
I
= 314.9mA  
MAX  
Forconfigurationswheretwodifferentvoltagesareneededin  
the system, the MIC5211 has the option of having two  
independent output voltages from the same input. For ex-  
ample, a 3.3V rail and a 5.0V rail can be supplied from the  
MIC5211 for systems that require both voltages. Important  
I
exceeds the maximum current rating of the device.  
Therefore, for this condition, the MIC5211 can supply 50mA  
of output current from each section of the regulator.  
MAX  
MIC5211  
8
November 2000  
MIC5211  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.00 (0.118)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-6 (M6)  
November 2000  
9
MIC5211  
MIC5211  
Micrel  
MIC5211  
10  
November 2000  
MIC5211  
Micrel  
November 2000  
11  
MIC5211  
MIC5211  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
MIC5211  
12  
November 2000  

相关型号:

MIC5211-5.0BM6T&R

Fixed Positive LDO Regulator, 2 Output, 5V1, 5V2, PDSO6, MO-193C, SOT-23, 6 PIN
MICROCHIP

MIC5211-5.0YM6

Dual μCap 80mA LDO Regulator
MICREL

MIC5211-BCYM6

Dual μCap 80mA LDO Regulator
MICREL

MIC5211-BCYM6TR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO6, LEAD FREE, MO-193, SOT-23, 6 PIN
MICROCHIP

MIC5211-BLYM6

Dual μCap 80mA LDO Regulator
MICREL

MIC5211-BLYM6TR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO6, LEAD FREE, MO-193, SOT-23, 6 PIN
MICROCHIP

MIC5211-CLYM6

Dual μCap 80mA LDO Regulator
MICREL

MIC5211-CLYM6-TR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO6
MICROCHIP

MIC5211-CLYM6TR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO6, LEAD FREE, MO-193, SOT-23, 6 PIN
MICREL

MIC5211-LXYM6

Dual μCap 80mA LDO Regulator
MICREL

MIC5211-LXYM6-TR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO6
MICROCHIP

MIC5211_05

Dual μCap 80mA LDO Regulator
MICREL