MIC5219_01 [MICREL]

500mA-Peak Output LDO Regulator; 值为500mA的峰值输出LDO稳压器
MIC5219_01
型号: MIC5219_01
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

500mA-Peak Output LDO Regulator
值为500mA的峰值输出LDO稳压器

稳压器
文件: 总13页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5219  
500mA-Peak Output LDO Regulator  
General Description  
Features  
The MIC5219 is an efficient linear voltage regulator with high  
peak output current capability, very low dropout voltage, and  
better than 1% output voltage accuracy. Dropout is typically  
10mV at light loads and less than 500mV at full load.  
• 500mA Output current capability  
• SOT-23-5 package - 500mA peak  
• MSOP-8 package - 500mA continuous  
• Low 500mV maximum dropout voltage at full load  
• Extremely tight load and line regulation  
• Tiny SOT-23-5 and MM8™ power MSOP-8 package  
• Ultra-low-noise output  
• Low temperature coefficient  
• Current and thermal limiting  
• Reversed-battery protection  
• CMOS/TTL-compatible enable/shutdown control  
• Near-zero shutdown current  
TheMIC5219isdesignedtoprovideapeakoutputcurrentfor  
startup conditions where higher inrush current is demanded.  
It features a 500mA peak output rating. Continuous output  
current is limited only by package and layout.  
The MIC5219 can be enabled or shut down by a CMOS or  
TTL compatible signal. When disabled, power consumption  
drops nearly to zero. Dropout ground current is minimized to  
helpprolongbatterylife.Otherkeyfeaturesincludereversed-  
battery protection, current limiting, overtemperature shut-  
down, and low noise performance with an ultra-low-noise  
option.  
Applications  
• Laptop, notebook, and palmtop computers  
• Cellular telephones and battery-powered equipment  
• Consumer and personal electronics  
The MIC5219 is available in adjustable or fixed output volt-  
ages in space-saving SOT-23-5 and MM8™ 8-lead power  
MSOP packages. For higher power requirements see the  
MIC5209 or MIC5237.  
• PC Card V and V regulation and switching  
CC  
PP  
• SMPS post-regulator/dc-to-dc modules  
• High-efficiency linear power supplies  
Typical Applications  
MIC5219-5.0BMM  
1
2
3
4
8
7
6
5
ENABLE  
SHUTDOWN  
MIC5219-3.3BM5  
1
2
3
5
VIN 6V  
VOUT 5V  
VIN 4V  
VOUT 3.3V  
2.2µF  
tantalum  
4
ENABLE  
SHUTDOWN  
2.2µF  
tantalum  
470pF  
470pF  
5V Ultra-Low-Noise Regulator  
3.3V Ultra-Low-Noise Regulator  
Micrel, Inc. 1849 Fortune Drive San Jose, CA 95131 USA tel + 1 (408) 944-0800 fax + 1 (408) 944-0970 http://www.micrel.com  
April 2001  
1
MIC5219  
MIC5219  
Micrel  
Ordering Information  
Part Number  
Marking  
Volts  
3.0V  
3.3V  
3.6V  
5.0V  
Adj.  
Junction Temp. Range  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Package  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
MIC5219-3.0BMM  
MIC5219-3.3BMM  
MIC5219-3.6BMM  
MIC5219-5.0BMM  
MIC5219BMM  
MIC5219-2.5BM5  
MIC5219-2.6BM5  
MIC5219-2.7BM5  
MIC5219-2.8BM5  
MIC5219-2.9BM5  
MIC5219-3.0BM5  
MIC5219-3.1BM5  
MIC5219-3.3BM5  
MIC5219-3.6BM5  
MIC5219-5.0BM5  
MIC5219BM5  
LG25  
LG26  
LG27  
LG28  
LG29  
LG30  
LG31  
LG33  
LG36  
LG50  
LGAA  
2.5V  
2.6V  
2.7V  
2.8V  
2.9V  
3.0V  
3.1V  
3.3V  
3.6V  
5.0V  
Adj.  
Other voltages available. Consult Micrel for details.  
Pin Configuration  
EN GND IN  
EN  
IN  
GND  
GND  
GND  
GND  
1
2
3
4
8
7
6
5
3
2
1
LGxx  
OUT  
BYP  
4
5
BYP  
OUT  
MIC5219-x.xBMM  
MM8MSOP-8  
Fixed Voltages  
MIC5219-x.xBM5  
SOT-23-5  
Fixed Voltages  
EN GND IN  
EN  
IN  
GND  
GND  
GND  
GND  
1
2
3
4
8
7
6
5
3
2
1
Part  
Identification  
LGAA  
OUT  
ADJ  
4
5
ADJ  
OUT  
MIC5219BMM  
MM8MSOP-8  
Adjustable Voltage  
MIC5219BM5  
SOT-23-5  
Adjustable Voltage  
MIC5219  
2
April 2001  
MIC5219  
Micrel  
Pin Description  
Pin No.  
Pin No.  
Pin Name  
Pin Function  
MSOP-8  
SOT-23-5  
2
58  
3
1
2
5
3
IN  
Supply Input  
GND  
OUT  
EN  
Ground: MSOP-8 pins 5 through 8 are internally connected.  
Regulator Output  
1
Enable (Input): CMOS compatible control input. Logic high = enable; logic  
low or open = shutdown.  
4 (fixed)  
4 (adj.)  
4 (fixed)  
4 (adj.)  
BYP  
ADJ  
Reference Bypass: Connect external 470pF capacitor to GND to reduce  
output noise. May be left open.  
Adjust (Input): Feedback input. Connect to resistive voltage-divider network.  
April 2001  
3
MIC5219  
MIC5219  
Micrel  
Absolute Maximum Ratings  
Operating Ratings  
Supply Input Voltage (V ) ............................ 20V to +20V  
Supply Input Voltage (V ) ........................... +2.5V to +12V  
IN  
IN  
Power Dissipation (P ) ............................ Internally Limited  
Enable Input Voltage (V ) .................................. 0V to V  
D
EN  
IN  
Junction Temperature (T ) ....................... 40°C to +125°C  
Junction Temperature (T ) ....................... 40°C to +125°C  
J
J
Lead Temperature (Soldering, 5 sec.) ...................... 260°C  
Package Thermal Resistance ......................... see Table 1  
Electrical Characteristics  
VIN = VOUT + 1.0V; COUT = 4.7µF, IOUT = 100µA; TJ = 25°C, bold values indicate 40°C TJ +125°C; unless noted.  
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VOUT  
Output Voltage Accuracy  
variation from nominal VOUT  
1  
2  
1
2
%
%
VOUT/T  
Output Voltage  
Temperature Coefficient  
Note 2  
40  
0.009  
0.05  
10  
ppm/°C  
%/V  
%
VOUT/VOUT Line Regulation  
VIN = VOUT + 1V to 12V  
IOUT = 100µA to 500mA Note 3  
IOUT = 100µA  
0.05  
0.1  
VOUT/VOUT Load Regulation  
0.5  
0.7  
VIN VOUT  
Dropout Voltage, Note 4  
60  
80  
mV  
mV  
mV  
mV  
µA  
IOUT = 50mA  
115  
175  
350  
80  
175  
250  
IOUT = 150mA  
300  
400  
I
OUT = 500mA  
500  
600  
IGND  
Ground Pin Current, Notes 5, 6  
VEN 3.0V, IOUT = 100µA  
VEN 3.0V, IOUT = 50mA  
VEN 3.0V, IOUT = 150mA  
VEN 3.0V, IOUT = 500mA  
130  
170  
350  
1.8  
650  
900  
µA  
2.5  
3.0  
mA  
mA  
12  
20  
25  
Ground Pin Quiescent Current,  
Note 6  
V
EN 0.4V  
0.05  
0.10  
75  
3
8
µA  
µA  
VEN 0.18V  
PSRR  
ILIMIT  
Ripple Rejection  
Current Limit  
f = 120Hz  
dB  
VOUT = 0V  
700  
0.05  
500  
300  
1000  
mA  
VOUT/PD  
eno  
Thermal Regulation  
Output Noise  
Note 7  
%/W  
nV/ Hz  
nV/ Hz  
IOUT = 50mA, COUT = 2.2µF, CBYP = 0  
IOUT = 50mA, COUT = 2.2µF, CBYP = 470pF  
ENABLE Input  
VENL  
Enable Input Logic-Low Voltage  
VEN = logic low (regulator shutdown)  
VEN = logic high (regulator enabled)  
0.4  
0.18  
V
2.0  
2
V
IENL  
Enable Input Current  
VENL 0.4V  
VENL 0.18V  
VENH 2.0V  
0.01  
0.01  
5
1  
2  
µA  
µA  
µA  
IENH  
20  
25  
MIC5219  
4
April 2001  
MIC5219  
Micrel  
Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when  
operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction  
temperature, T  
, the junction-to-ambient thermal resistance, θ , and the ambient temperature, T . The maximum allowable power  
J(max)  
JA  
A
dissipation at any ambient temperature is calculated using: P  
= (T  
T ) ÷ θ . Exceeding the maximum allowable power dissipa-  
D(max)  
J(max)  
A
JA  
tion will result in excessive die temperature, and the regulator will go into thermal shutdown. See Table 1 and the Thermal Considerations”  
section for details.  
Note 2: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
Note 3: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load  
range from 100µA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.  
Note 4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V  
differential.  
Note 5: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of  
the load current plus the ground pin current.  
Note 6:  
V
is the voltage externally applied to devices with the EN (enable) input pin.  
EN  
Note 7: Thermal regulation is defined as the change in output voltage at a time tafter a change in power dissipation is applied, excluding load or line  
regulation effects. Specifications are for a 500mA load pulse at V = 12V for t = 10ms.  
IN  
Note 8:  
C
is an optional, external bypass capacitor connected to devices with a BYP (bypass) or ADJ (adjust) pin.  
BYP  
April 2001  
5
MIC5219  
MIC5219  
Micrel  
Typical Characteristics  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
0
0
-20  
0
-20  
VIN = 6V  
VIN = 6V  
VOUT = 5V  
VIN = 6V  
OUT = 5V  
V
OUT = 5V  
V
-20  
-40  
-40  
-40  
-60  
-60  
-60  
IOUT = 100mA  
OUT = 1µF  
-80  
-80  
-80  
IOUT = 100µA  
OUT = 1µF  
IOUT = 1mA  
OUT = 1µF  
C
C
C
-100  
-100  
-100  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
10 100 100k  
10M  
10 100  
100k  
10M  
10 100  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
0
0
0
VIN = 6V  
OUT = 5V  
VIN = 6V  
OUT = 5V  
VIN = 6V  
VOUT = 5V  
V
V
-20  
-40  
-20  
-40  
-20  
-40  
-60  
-60  
-60  
IOUT = 1mA  
IOUT = 100µA  
IOUT = 100mA  
COUT = 2.2µF  
BYP = 0.01µF  
-80  
-80  
-80  
COUT = 2.2µF  
BYP = 0.01µF  
COUT = 2.2µF  
BYP = 0.01µF  
C
C
C
-100  
-100  
-100  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
1E+11E+21E1+k311E0+k41E+51E1M+6 E+7  
10 100 100k  
10M  
10 100  
100k  
10M  
10 100  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Power Supply Ripple Rejection  
vs. Voltage Drop  
Power Supply Ripple Rejection  
vs. Voltage Drop  
Noise Performance  
60  
100  
10  
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10mA, COUT = 1µF  
50  
40  
30  
20  
10  
0
1mA  
1mA  
0.1  
IOUT = 100mA  
10mA  
IOUT = 100mA  
0.01  
0.001  
0.0001  
10mA  
COUT = 2.2µF  
CBYP = 0.01µF  
COUT = 1µF  
VOUT = 5V  
0
0.1  
0.2  
0.3  
0.4  
0
0.1  
0.2  
0.3  
0.4  
1E+11E+21E+31E+41E+51E+61E+7  
10  
1k  
100  
10k 100k 1M 10M  
VOLTAGE DROP (V)  
VOLTAGE DROP (V)  
FREQUENCY (Hz)  
Dropout Voltage  
vs. Output Current  
Noise Performance  
Noise Performance  
10  
1
10  
1
400  
300  
200  
100  
0
100mA  
100mA  
0.1  
10mA  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
1mA  
VOUT = 5V  
OUT = 10µF  
electrolytic  
BYP = 100pF  
VOUT = 5V  
OUT = 10µF  
electrolytic  
1mA  
C
C
10mA  
C
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
1E+11E+21E+31E+4 E+51E+61E+7  
1E+11E+21E+31E+4 E+51E+61E+7  
10  
100  
10  
1k 10k 100k 1M 10M  
100  
FREQUENCY (Hz)  
1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
MIC5219  
6
April 2001  
MIC5219  
Micrel  
Dropout Characteristics  
Ground Current  
vs. Output Current  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12  
10  
8
I
=100µA  
L
6
I =100mA  
L
4
I =500mA  
L
2
0
0
1
2
3
4
5
6
7
8
9
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
Ground Current  
vs. Supply Voltage  
Ground Current  
vs. Supply Voltage  
25  
20  
15  
10  
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I =100 mA  
L
I =100µA  
I =500mA  
L
L
0
0
1
2
3
4
5
6
7
8
9
0
2
4
6
8
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
April 2001  
7
MIC5219  
MIC5219  
Micrel  
Block Diagrams  
OUT  
IN  
VOUT  
COUT  
VIN  
BYP  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
Current Limit  
Thermal Shutdown  
MIC5219-x.xBM5/MM  
GND  
Ultra-Low-Noise Fixed Regulator  
OUT  
IN  
VOUT  
COUT  
VIN  
R1  
R2  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
Current Limit  
Thermal Shutdown  
MIC5219BM5/MM [adj.]  
GND  
Ultra-Low-Noise Adjustable Regulator  
MIC5219  
8
April 2001  
MIC5219  
Micrel  
Thermal Considerations  
Applications Information  
The MIC5219 is designed to provide 200mA of continuous  
current in two very small profile packages. Maximum power  
dissipationcanbecalculatedbasedontheoutputcurrentand  
the voltage drop across the part. To determine the maximum  
powerdissipationofthepackage,usethethermalresistance,  
junction-to-ambient, of the device and the following basic  
equation.  
TheMIC5219isdesignedfor150mAto200mAoutputcurrent  
applications where a high current spike (500mA) is needed  
for short, startup conditions. Basic application of the device  
will be discussed initially followed by a more detailed discus-  
sion of higher current applications.  
Enable/Shutdown  
Forcing EN (enable/shutdown) high (> 2V) enables the regu-  
lator. EN is compatible with CMOS logic. If the enable/  
shutdown feature is not required, connect EN to IN (supply  
input). See Figure 5.  
T
TA  
(
)
J(max)  
PD  
=
(max)  
θJA  
T
is the maximum junction temperature of the die,  
Input Capacitor  
J(MAX)  
125°C, and T is the ambient operating temperature. θ is  
layout dependent; table 1 shows examples of thermal resis-  
tance, junction-to-ambient, for the MIC5219.  
A
JA  
A 1µF capacitor should be placed from IN to GND if there is  
morethan10inchesofwirebetweentheinputandtheacfilter  
capacitor or if a battery is used as the input.  
Package  
θJA Recommended θJA 1" Square  
Minimum Footprint 2 oz. Copper  
θJC  
Output Capacitor  
An output capacitor is required between OUT and GND to  
prevent oscillation. The minimum size of the output capacitor  
is dependent upon whether a reference bypass capacitor is  
used. 1µF minimum is recommended when C  
(see Figure 5). 2.2µF minimum is recommended when C  
MM8(MM)  
160°C/W  
220°C/W  
70°C/W  
30°C/W  
SOT-23-5 (M5)  
170°C/W  
130°C/W  
is not used  
BYP  
Table 1. MIC5219 Thermal Resistance  
BYP  
is 470pF (see Figure 6). For applications <3V, the output  
capacitor should be increased to 22µF minimum to reduce  
start-up overshoot. Larger values improve the regulators  
transient response. The output capacitor value may be in-  
creased without limit.  
The actual power dissipation of the regulator circuit can be  
determined using one simple equation.  
P = (V V  
) I  
+ V I  
IN GND  
D
IN  
OUT OUT  
Substituting P  
for P and solving for the operating  
D(MAX)  
D
conditions that are critical to the application will give the  
maximum operating conditions for the regulator circuit. For  
example, if we are operating the MIC5219-3.3BM5 at room  
temperature, with a minimum footprint layout, we can deter-  
mine the maximum input voltage for a set output current.  
The output capacitor should have an ESR (equivalent series  
resistance) of about 5or less and a resonant frequency  
above 1MHz. Ultra-low-ESR capacitors could cause oscilla-  
tion and/or underdamped transient response. Most tantalum  
or aluminum electrolytic capacitors are adequate; film types  
willwork, butaremoreexpensive. Manyaluminumelectrolyt-  
ics have electrolytes that freeze at about 30°C, so solid  
tantalums are recommended for operation below 25°C.  
125°C 25°C  
(
)
P
=
D(max)  
220°C/W  
= 455mW  
P
D(max)  
At lower values of output current, less output capacitance is  
needed for stability. The capacitor can be reduced to 0.47µF  
for current below 10mA or 0.33µF for currents below 1mA.  
The thermal resistance, junction-to-ambient, for the mini-  
mum footprint is 220°C/W, taken from table 1. The maximum  
power dissipation number cannot be exceeded for proper  
operationofthedevice. Usingtheoutputvoltageof3.3V, and  
an output current of 150mA, we can determine the maximum  
input voltage. Ground current, maximum of 3mA for 150mA  
of output current, can be taken from the Electrical Character-  
istics section of the data sheet.  
No-Load Stability  
TheMIC5219willremainstableandinregulationwithnoload  
(other than the internal voltage divider) unlike many other  
voltage regulators. This is especially important in CMOS  
RAM keep-alive applications.  
Reference Bypass Capacitor  
455mW = (V 3.3V) × 150mA + V × 3mA  
IN  
IN  
BYP is connected to the internal voltage reference. A 470pF  
455mW = (150mA) × V + 3mA × V 495mW  
IN  
IN  
capacitor (C  
) connected from BYP to GND quiets this  
BYP  
950mW = 153mA × V  
IN  
reference, providing a significant reduction in output noise  
V
= 6.2V  
MAX  
IN  
(ultra-low-noise performance). C  
reduces the regulator  
BYP  
Therefore, a 3.3V application at 150mA of output current can  
accept a maximum input voltage of 6.2V in a SOT-23-5  
package. For a full discussion of heat sinking and thermal  
effectsonvoltageregulators, refertotheRegulatorThermals  
sectionofMicrelsDesigningwithLow-DropoutVoltageRegu-  
lators handbook.  
phase margin; when using C  
or greater are generally required to maintain stability.  
, output capacitors of 2.2µF  
BYP  
The start-up speed of the MIC5219 is inversely proportional  
to the size of the reference bypass capacitor. Applications  
requiring a slow ramp-up of output voltage should consider  
larger values of C  
consider omitting C  
. Likewise, if rapid turn-on is necessary,  
.
BYP  
BYP  
April 2001  
9
MIC5219  
MIC5219  
Micrel  
Peak Current Applications  
Figures3and4showsafeoperatingregionsfortheMIC5219-  
x.xBMM, the power MSOP package part. These graphs  
show three typical operating regions at different tempera-  
tures. The lower the temperature, the larger the operating  
region. The graphs were obtained in a similar way to the  
graphs for the MIC5219-x.xBM5, taking all factors into con-  
sideration and using two different board layouts, minimum  
footprint and 1" square copper PC board heat sink. (For  
furtherdiscussionofPCboardheatsinkcharacteristics, refer  
to Application Hint 17, Designing PC Board Heat Sinks.)  
The MIC5219 is designed for applications where high start-  
up currents are demanded from space constrained regula-  
tors. This device will deliver 500mA start-up current from a  
SOT-23-5 or MM8 package, allowing high power from a very  
low profile device. The MIC5219 can subsequently provide  
output current that is only limited by the thermal characteris-  
tics of the device. You can obtain higher continuous currents  
from the device with the proper design. This is easily proved  
with some thermal calculations.  
Theinformationusedtodeterminethesafeoperatingregions  
can be obtained in a similar manner to that used in determin-  
ing typical power dissipation, already discussed. Determin-  
ingthemaximumpowerdissipationbasedonthelayoutisthe  
first step, this is done in the same manner as in the previous  
two sections. Then, a larger power dissipation number  
multiplied by a set maximum duty cycle would give that  
maximum power dissipation number for the layout. This is  
bestshownthroughanexample. Iftheapplicationcallsfor5V  
at 500mA for short pulses, but the only supply voltage  
available is 8V, then the duty cycle has to be adjusted to  
determine an average power that does not exceed the  
maximum power dissipation for the layout.  
Ifwelookataspecificexample,itmaybeeasiertofollow. The  
MIC5219 can be used to provide up to 500mA continuous  
output current. First, calculate the maximum power dissipa-  
tion of the device, as was done in the thermal considerations  
section. Worst case thermal resistance (θ = 220°C/W for  
JA  
the MIC5219-x.xBM5), will be used for this example.  
T
TA  
(
)
J(max)  
PD  
=
(max)  
θJA  
Assuming a 25°C room temperature, we have a maximum  
power dissipation number of  
125°C 25°C  
(
)
P
=
D(max)  
220°C/W  
= 455mW  
% DC  
Avg.PD =  
455mW =  
455mW =  
0.274 =  
V
VOUT  
I
+ VIN IGND  
(
)
P
IN  
OUT  
D(max)  
100  
Then we can determine the maximum input voltage for a five-  
volt regulator operating at 500mA, using worst case ground  
current.  
% DC  
100  
8V 5V 500mA + 8V × 20mA  
(
)
P
I
= 455mW = (V V  
) I  
+ V I  
IN GND  
D(max)  
IN  
OUT OUT  
% Duty Cycle  
100  
1.66W  
= 500mA  
OUT  
V
= 5V  
OUT  
% Duty Cycle  
100  
I
= 20mA  
GND  
455mW = (V 5V) 500mA + V × 20mA  
IN  
IN  
% Duty Cycle Max = 27.4%  
2.995W = 520mA × V  
IN  
With an output current of 500mA and a three-volt drop across  
the MIC5219-xxBMM, the maximum duty cycle is 27.4%.  
2.955W  
V
=
= 5.683V  
IN(max)  
520mA  
Applications also call for a set nominal current output with a  
greater amount of current needed for short durations. This is  
a tricky situation, but it is easily remedied. Calculate the  
average power dissipation for each current section, then add  
the two numbers giving the total power dissipation for the  
regulator. For example, if the regulator is operating normally  
at 50mA, but for 12.5% of the time it operates at 500mA  
output, the total power dissipation of the part can be easily  
determined. First, calculate the power dissipation of the  
device at 50mA. We will use the MIC5219-3.3BM5 with 5V  
input voltage as our example.  
Therefore, to be able to obtain a constant 500mA output  
current from the 5219-5.0BM5 at room temperature, you  
need extremely tight input-output voltage differential, barely  
above the maximum dropout voltage for that current rating.  
You can run the part from larger supply voltages if the proper  
precautions are taken. Varying the duty cycle using the  
enable pin can increase the power dissipation of the device  
by maintaining a lower average power figure. This is ideal for  
applications where high current is only needed in short  
bursts. Figure 1 shows the safe operating regions for the  
MIC5219-x.xBM5 at three different ambient temperatures  
and at different output currents. The data used to determine  
this figure assumed a minimum footprint PCB design for  
minimum heat sinking. Figure 2 incorporates the same  
factors as the first figure, but assumes a much better heat  
sink. A 1" square copper trace on the PC board reduces the  
thermal resistance of the device. This improved thermal  
resistanceimprovespowerdissipationandallowsforalarger  
safe operating region.  
P × 50mA = (5V 3.3V) × 50mA + 5V × 650µA  
D
P × 50mA = 173mW  
D
However, this is continuous power dissipation, the actual  
on-time for the device at 50mA is (100%-12.5%) or 87.5% of  
the time, or 87.5% duty cycle. Therefore, P must be  
D
multiplied by the duty cycle to obtain the actual average  
power dissipation at 50mA.  
MIC5219  
10  
April 2001  
MIC5219  
Micrel  
10  
8
10  
8
10  
8
100mA  
100mA  
100mA  
200mA  
6
6
6
200mA  
200mA  
4
4
4
300mA  
300mA  
300mA  
400mA  
20  
2
2
2
500mA  
400mA  
400mA  
20  
500mA  
40  
500mA  
40  
DUTY CYCLE (%)  
0
0
0
0
60  
80  
100  
0
60  
80  
100  
0
20  
40  
60  
80  
100  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
a. 25°C Ambient  
b. 50°C Ambient  
c. 85°C Ambient  
Figure 1. MIC5219-x.xBM5 (SOT-23-5) on Minimum Recommended Footprint  
10  
8
10  
8
10  
8
100mA  
100mA  
100mA  
200mA  
6
6
6
200mA  
200mA  
300mA  
4
4
4
300mA  
80  
400mA  
20  
2
2
2
300mA  
400mA  
20  
400mA  
500mA  
20 40  
500mA  
40 60  
500mA  
40 60  
0
0
0
0
0
0
80  
100  
0
100  
0
60  
80  
100  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
a. 25°C Ambient  
b. 50°C Ambient  
c. 85°C Ambient  
2
Figure 2. MIC5219-x.xBM5 (SOT-23-5) on 1-inch Copper Cladding  
10  
8
10  
8
10  
8
100mA  
300mA  
100mA  
100mA  
200mA  
6
6
6
200mA  
200mA  
300mA  
300mA  
4
4
4
400mA  
20  
400mA  
20  
2
2
2
400mA  
500mA  
40 60  
500mA  
40  
500mA  
20 40  
DUTY CYCLE (%)  
0
0
0
80  
100  
0
60  
80  
100  
0
60  
80  
100  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
a. 25°C Ambient  
b. 50°C Ambient  
c. 85°C Ambient  
Figure 3. MIC5219-x.xBMM (MSOP-8) on Minimum Recommended Footprint  
10  
8
10  
8
10  
8
200mA  
300mA  
100mA  
200mA  
300mA  
200mA  
6
6
6
400mA  
300mA  
400mA  
4
4
4
400mA  
20  
500mA  
2
2
500mA  
2
500mA  
40 60  
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
80  
100  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
a. 25°C Ambient  
b. 50°C Ambient  
c. 85°C Ambient  
2
Figure 4. MIC5219-x.xBMM (MSOP-8) on 1-inch Copper Cladding  
April 2001  
11  
MIC5219  
MIC5219  
Micrel  
MIC5219-x.x  
P × 50mA = 0.875 × 173mW  
D
VIN  
VOUT  
P × 50mA = 151mW  
IN  
OUT  
BYP  
GND  
D
EN  
The power dissipation at 500mA must also be calculated.  
2.2µF  
P × 500mA = (5V 3.3V) 500mA + 5V × 20mA  
D
470pF  
P × 500mA = 950mW  
D
This number must be multiplied by the duty cycle at which it  
would be operating, 12.5%.  
Figure 6. Ultra-Low-Noise Fixed Voltage Regulator  
P × = 0.125 × 950mW  
Figure 6 includes the optional 470pF noise bypass capacitor  
between BYP and GND to reduce output noise. Note that the  
D
P × = 119mW  
D
minimum value of C  
capacitor is used.  
must be increased when the bypass  
OUT  
The total power dissipation of the device under these condi-  
tions is the sum of the two power dissipation figures.  
Adjustable Regulator Circuits  
P
P
P
= P × 50mA + P × 500mA  
D D  
D(total)  
D(total)  
D(total)  
MIC5219  
= 151mW + 119mW  
= 270mW  
VIN  
VOUT  
1µF  
IN  
OUT  
ADJ  
GND  
R1  
R2  
EN  
The total power dissipation of the regulator is less than the  
maximum power dissipation of the SOT-23-5 package at  
room temperature, on a minimum footprint board and there-  
fore would operate properly.  
Multilayer boards with a ground plane, wide traces near the  
pads, and large supply-bus lines will have better thermal  
conductivity.  
Figure 7. Low-Noise Adjustable Voltage Regulator  
Figure 7 shows the basic circuit for the MIC5219 adjustable  
regulator. The output voltage is configured by selecting  
values for R1 and R2 using the following formula:  
For additional heat sink characteristics, please refer to Micrel  
Application Hint 17, Designing P.C. Board Heat Sinks,  
included in Micrels Databook. For a full discussion of heat  
sinking and thermal effects on voltage regulators, refer to  
Regulator Thermals section of Micrels Designing with Low-  
Dropout Voltage Regulators handbook.  
R2  
V
= 1.242V  
+1  
OUT  
R1  
Although ADJ is a high-impedance input, for best perfor-  
Fixed Regulator Circuits  
MIC5219-x.x  
mance, R2 should not exceed 470k.  
MIC5219  
VIN  
VOUT  
1µF  
VIN  
VOUT  
IN  
OUT  
BYP  
IN  
OUT  
ADJ  
GND  
R1  
R2  
EN  
EN  
GND  
2.2µF  
470pF  
Figure 5. Low-Noise Fixed Voltage Regulator  
Figure 8. Ultra-Low-Noise Adjustable Application.  
Figure5showsabasicMIC5219-x.xBMXfixed-voltageregu-  
lator circuit. A 1µF minimum output capacitor is required for  
basic fixed-voltage applications.  
Figure 8 includes the optional 470pF bypass capacitor from  
ADJ to GND to reduce output noise.  
MIC5219  
12  
April 2001  
MIC5219  
Micrel  
Package Information  
0.122 (3.10)  
0.112 (2.84)  
0.199 (5.05)  
0.187 (4.74)  
DIMENSIONS:  
INCH (MM)  
0.120 (3.05)  
0.116 (2.95)  
0.036 (0.90)  
0.032 (0.81)  
0.043 (1.09)  
0.038 (0.97)  
0.012 (0.30) R  
0.007 (0.18)  
0.005 (0.13)  
0.008 (0.20)  
0.004 (0.10)  
5° MAX  
0° MIN  
0.012 (0.03)  
0.012 (0.03) R  
0.039 (0.99)  
0.0256 (0.65) TYP  
0.035 (0.89)  
0.021 (0.53)  
8-Pin MSOP (MM)  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-5 (M5)  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
April 2001  
13  
MIC5219  

相关型号:

MIC5219_09

500mA-Peak Output LDO Regulator
MICREL

MIC5225

Ultra-Low Quiescent Current 150mA μCap Low Dropout Regulator
MICREL

MIC5225-1.5YM5

Ultra-Low Quiescent Current 150mA μCap Low Dropout Regulator
MICREL

MIC5225-1.5YM5TR

1.5V FIXED POSITIVE LDO REGULATOR, 0.45V DROPOUT, PDSO5, LEAD FREE, SOT-23, 5 PIN
MICREL

MIC5225-1.8YM5

Ultra-Low Quiescent Current 150mA μCap Low Dropout Regulator
MICREL

MIC5225-1.8YM5-TR

1.8V FIXED POSITIVE LDO REGULATOR, 0.45V DROPOUT, PDSO5
MICROCHIP

MIC5225-1.8YM5TR

暂无描述
MICREL

MIC5225-2.5YM5

Ultra-Low Quiescent Current 150mA μCap Low Dropout Regulator
MICREL

MIC5225-2.5YM5

2.5 V FIXED POSITIVE LDO REGULATOR, 0.45 V DROPOUT, PDSO5, LEAD FREE, SOT-23, 5 PIN
ROCHESTER

MIC5225-2.5YM5-TR

2.5V FIXED POSITIVE LDO REGULATOR, 0.45V DROPOUT, PDSO5
MICROCHIP

MIC5225-2.7YM5

Ultra-Low Quiescent Current 150mA μCap Low Dropout Regulator
MICREL

MIC5225-2.7YM5

2.7V FIXED POSITIVE LDO REGULATOR, 0.45V DROPOUT, PDSO5, LEAD FREE, SOT-23, 5 PIN
ROCHESTER