MIC5238-1.1BD5 [MICREL]

Ultra-Low Quiescent Current, 150mA ?Cap LDO Regulator; 超低静态电流, 150毫安?帽LDO稳压器
MIC5238-1.1BD5
型号: MIC5238-1.1BD5
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Ultra-Low Quiescent Current, 150mA ?Cap LDO Regulator
超低静态电流, 150毫安?帽LDO稳压器

稳压器
文件: 总10页 (文件大小:123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5238  
Ultra-Low Quiescent Current, 150mA µCap LDO Regulator  
General Description  
Features  
The MIC5238 is an ultra-low voltage output, 150mA LDO  
regulator. Designed to operate in a single supply or dual  
supply mode, the MIC5238 consumes only 23µA of bias  
current, improving efficiency. When operating in the dual  
supply mode, the efficiency greatly improves as the higher  
voltage supply is only required to supply the 23µA bias  
currentwhiletheoutputandbasedrivecomesoffofthemuch  
lower input supply voltage.  
• Ultra-low input voltage range: 1.5V to 6V  
• Ultra-low output voltage: 1.1V minimum output voltage  
• Low dropout voltage: 310mV at 150mA  
• High output accuracy: ±2.0% over temperature  
µCap: stable with ceramic or tantalum capacitors  
• Excellent line and load regulation specifications  
• Zero shutdown current  
• Reverse leakage protection  
• Thermal shutdown and current limit protection  
• IttyBitty™ SOT-23-5 package  
As a µCap regulator, the MIC5238 operates with a 2.2µF  
ceramic capacitor on the output, offering a smaller overall  
solution. It also incorporates a logic-level enable pin that  
allows the MIC5238 to be put into a zero off-current mode  
when disabled.  
Applications  
• PDAs and pocket PCs  
• Cellular phones  
• Battery powered systems  
• Low power microprocessor power supplies  
The MIC5238 is fully protected with current limit and thermal  
shutdown. It is offered in the IttyBitty™ SOT-23-5 package  
with an operating junction temperature range of  
–40°C to +125°C.  
Ordering Information  
Part Number  
Marking Voltage* Junction Temp. Range  
Package*  
SOT-23-5  
SOT-23-5  
TSOT-23-5  
TSOT-23-5  
MIC5238-1.1BM5  
MIC5238-1.3BM5  
MIC5238-1.1BD5  
MIC5238-1.3BD5  
L411  
L413  
N411  
N413  
1.1V  
1.3V  
1.1V  
1.3V  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
* For other voltages and package option contact the factory  
Typical Application  
MIC5238-1.0BM5  
1
5
VIN=1.5V  
1.0V  
CIN  
2
3
COUT=2.2µF  
ceramic  
4
ENOFF  
ON  
VBIAS=2.5V  
CBIAS  
Ultra-Low Voltage Application  
IttyBitty is a trademark of Micrel, Inc.  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
August 2003  
1
MIC5238  
MIC5238  
Micrel  
Pin Configuration  
EN GND IN  
EN GND IN  
3
2
1
3
2
1
L4xx  
N4xx  
4
5
4
5
BIAS  
BIAS  
OUT  
OUT  
SOT-23-5 (M5)  
TSOT-23-5 (D5)  
Pin Description  
SOT-23-5  
Pin Name  
Pin Function  
Supply Input  
Ground  
1
2
3
IN  
GND  
EN  
Enable (Input): Logic low = shutdown; logic high = enable. Do no leave  
open.  
4
5
BIAS  
OUT  
BiasSupply Input  
Regulator Output  
MIC5238  
2
August 2003  
MIC5238  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Input Supply Voltage ........................................ 0.3V to 7V  
BIAS Supply Voltage........................................ 0.3V to 7V  
Enable Input Voltage........................................ 0.3V to 7V  
Power Dissipation .................................... Internally Limited  
Junction Temperature .............................. 40°C to +125°C  
Storage Temperature ............................... 65°C to +150°C  
ESD Rating, >1.5µA HBM, Note 3  
Input Supply Voltage .......................................... 1.5V to 6V  
BIAS Supply Voltage.......................................... 2.3V to 6V  
Enable Input Voltage............................................. 0V to 6V  
Junction Temperature (T ) ....................... 40°C to +125°C  
J
Package Thermal Resistance  
SOT-23-5 ) ..................................................235°C/W  
JA  
Electrical Characteristics (Note 4)  
TA = 25°C with VIN = VOUT + 1V; VBIAS = 3.3V; IOUT = 100µA; VEN = 2V, Bold values indicate 40°C < TJ < +125°C; unless otherwise specified.  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Output Voltage Accuracy  
Variation from nominal VOUT  
1.5  
2  
+1.5  
+2  
%
%
Line Regulation  
VBIAS = 2.3V to 6V, Note 5  
VIN = (VOUT + 1V) to 6V  
Load = 100µA to 150mA  
0.25  
0.04  
0.7  
0.5  
1
%
%
%
Input Line Regulation  
Load Regulation  
Dropout Voltage  
I
OUT = 100µA  
50  
230  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IOUT = 50mA  
IOUT = 100mA  
IOUT = 150mA  
300  
400  
270  
310  
450  
500  
BIAS Current, Note 6  
Input Current, Pin 1  
IOUT = 100µA  
23  
µA  
I
OUT = 100µA  
IOUT = 50mA, Note 7  
OUT = 100mA  
IOUT = 150mA  
7
0.35  
1
20  
µA  
mA  
mA  
mA  
I
2
2.5  
Ground Current in Shutdown  
V
EN 0.2V; VIN = 6V; VBIAS = 6V  
1.5  
0.5  
350  
5
5
µA  
µA  
mA  
µA  
VEN = 0V; VIN = 6V; VBIAS = 6V  
VOUT = 0V  
Short Circuit Current  
Reverse Leakage  
Enable Input  
500  
0.2  
VIN = 0V; VEN = 0V; VOUT = nom VOUT  
Input Low Voltage  
Input High Voltage  
Enable Input Current  
Regulator OFF  
Regulator ON  
V
V
2.0  
VEN = 0.2V; Regulator OFF  
1.0  
0.01  
0.1  
1.0  
1.0  
µA  
µA  
VEN = 2.0V; Regulator ON  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
Note 4. Specification for packaged product only.  
Note 5. Line regulation measures a change in output voltage due to a change in the bias voltage.  
Note 6. Current measured from bias input to ground.  
Note 7. Current differential between output current and main input current at rated load current.  
August 2003  
3
MIC5238  
MIC5238  
Micrel  
Typical Characteristics  
Output Voltage  
PSRR  
Output Voltage  
vs. V  
150mA Load  
vs. V  
BIAS  
IN  
1.15  
1.1  
80  
1.2  
1.1  
1
100µA  
150mA  
100µA  
150mA  
70  
60  
50  
40  
30  
1.05  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.95  
0.9  
COUT = 2.2µF ceramic  
20  
VIN = 2.1V  
0.85  
0.8  
10  
V
OUT = 1.1V  
0
1.11.21.31.41.51.61.71.81.9 2 2.1  
1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2  
INPUT BIAS (V)  
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
INPUT V (V)  
IN  
Ground Current (V  
)
IN  
Dropout Voltage  
vs. Load  
Ground Current (V  
)
IN  
vs. V Supply  
IN  
vs. Output Current  
VIN = VOUT + 1  
400  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VIN = VOUT + 1  
1.1V  
150mA  
350  
300  
250  
200  
150  
100  
50  
0
0
25 50 75 100 125 150  
OUTPUT CURRENT (A)  
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
0
0.5  
V
1.0  
SUPPLY (V)  
1.5  
2.0  
IN  
Ground Current (V  
)
BIAS  
Ground Current (V  
)
BIAS  
Shutdown Current of  
vs. Output Current  
VIN = VOUT + 1  
30  
25  
20  
15  
10  
5
vs. Input Voltage  
V
IN  
30  
25  
20  
15  
10  
5
7
6
5
4
3
2
1
0
ILOAD = 150mA  
No Load  
0
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
0
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
INPUT VOLTAGE (V)  
ENABLE (V)  
Ground Current (V  
vs Temperature  
)
Shutdown Current  
IN  
Shutdown Current of V  
V
+ V Tied  
BIAS  
BIAS  
IN  
10  
9
8
7
6
5
4
3
2
1
0
20  
30  
25  
20  
15  
10  
5
1.1V  
100µA  
No Load  
No Load  
18  
16  
14  
12  
10  
8
6
4
2
-40 -20  
0
20 40 60 80 100 120  
0
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
TEMPERATURE (°C)  
ENABLE (V)  
ENABLE (V)  
MIC5238  
4
August 2003  
MIC5238  
Micrel  
V
Ground Current  
V
Ground Current  
IN  
IN  
V
Ground Current  
BIAS  
vs. Temperature  
vs. Temperature  
2
2.4  
2.2  
2
vs. Temperature  
1.1V  
75mA  
1.1V  
150mA  
40  
35  
30  
25  
20  
15  
10  
5
1.8  
1.6  
1.4  
1.2  
1
1.1V  
100µA  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
0
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
V
Ground Current  
V
Ground Current  
BIAS  
BIAS  
Output Voltage  
vs. Temperature  
vs. Temperature  
vs. Temperature  
40  
40  
35  
30  
25  
20  
15  
10  
5
1.1025  
1.1020  
1.1015  
1.1010  
1.1005  
1.1000  
1.0995  
1.0990  
1.0985  
1.0980  
1.0975  
1.1V  
1.1V  
1.1V  
100µA  
150mA  
35  
30  
25  
20  
15  
10  
5
75mA  
0
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Short Circuit Current  
vs. Temperature  
Dropout Voltage  
vs. Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
Load = 150mA  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
August 2003  
5
MIC5238  
MIC5238  
Micrel  
Line Transient Response  
Load Transient Response  
3.1V  
2.1V  
1.1V output  
COUT = 4.7µF ceramic  
1.1V Output  
COUT = 4.7 F ceramic  
150mA  
1mA  
TIME (200 s/div.)  
TIME (400 s/div.)  
EN Turn-On Characteristic  
Load Transient Response  
150mA  
0mA  
VIN = 4V  
VOUT = 3V  
COUT = 4.7µF ceramic  
TIME (40 s/div.)  
TIME (400µs/div.)  
MIC5238  
6
August 2003  
MIC5238  
Micrel  
Functional Diagram  
OUT  
IN  
BIAS  
EN  
ENABLE  
VREF  
GND  
Block Diagram Fixed Output Voltage  
August 2003  
7
MIC5238  
MIC5238  
Micrel  
Recommended  
Applications Information  
Package  
θ
JA  
Minimum Footprint  
Enable/Shutdown  
SOT-23-5  
235°C/W  
The MIC5238 comes with an active-high enable pin that  
allowstheregulatortobedisabled.Forcingtheenablepinlow  
disables the regulator and sends it into a zerooff-mode-  
current state. In this state, current consumed by the regulator  
goes nearly to zero. Forcing the enable pin high enables the  
output voltage.  
Table 1. SOT-23-5 Thermal Resistance  
The actual power dissipation of the regulator circuit can be  
determined using the equation:  
P = (V V  
)I  
+ V I  
D
IN  
OUT OUT IN GND  
Substituting P  
for P and solving for the operating  
D
Input Bias Capacitor  
D(MAX)  
conditions that are critical to the application will give the  
maximum operating conditions for the regulator circuit. For  
example, when operating the MIC5238-1.0BM5 at 50°C with  
a minimum footprint layout, the maximum input voltage for a  
set output current can be determined as follows:  
The input capacitor must be rated to sustain voltages that  
may be used on the input. An input capacitor may be required  
when the device is not near the source power supply or when  
supplied by a battery. Small, surface mount, ceramic capaci-  
tors can be used for bypassing. Larger values may be  
required if the source supply has high ripple.  
125°C 50°C  
P
=
D(MAX)  
Output Capacitor  
235°C/W  
The MIC5238 requires an output capacitor for stability. The  
design requires 2.2µF or greater on the output to maintain  
stability. The design is optimized for use with low-ESR  
ceramic chip capacitors. High ESR capacitors may cause  
high frequency oscillation. The maximum recommended  
ESR is 3. The output capacitor can be increased without  
limit. Larger valued capacitors help to improve transient  
response.  
P
= 319mW  
D(MAX)  
The junction-to-ambient (θ ) thermal resistance for the  
JA  
minimum footprint is 235°C/W, from Table 1. It is important  
that the maximum power dissipation not be exceeded to  
ensure proper operation. With very high input-to-output volt-  
age differentials, the output current is limited by the total  
powerdissipation. Totalpowerdissipationiscalculatedusing  
the following equation:  
X7R/X5R dielectric-type ceramic capacitors are recom-  
mended because of their temperature performance. X7R-  
type capacitors change capacitance by 15% over their oper-  
ating temperature range and are the most stable type of  
ceramiccapacitors.Z5UandY5Vdielectriccapacitorschange  
value by as much as 50% and 60% respectively over their  
operatingtemperatureranges. Touseaceramicchipcapaci-  
tor with Y5V dielectric, the value must be much higher than a  
X7R ceramic capacitor to ensure the same minimum capaci-  
tance over the equivalent operating temperature range.  
P = (V V  
)I  
+ V x I  
+ V  
x I  
D
IN  
OUT OUT  
IN  
GND  
BIAS BIAS  
Since the bias supply draws only 18µA, that contribution can  
be ignored for this calculation.  
If we know the maximum load current, we can solve for the  
maximum input voltage using the maximum power dissipa-  
tion calculated for a 50°C ambient, 319mV.  
P
= (V V  
)I  
+ V x I  
DMAX  
IN  
OUT OUT IN GND  
319mW = (V 1V)150mA + V x 2.8mA  
IN  
IN  
Ground pin current is estimated using the typical character-  
istics of the device.  
No-Load Stability  
TheMIC5238willremainstableandinregulationwithnoload  
unlike many other voltage regulators. This is especially  
important in CMOS RAM keep-alive applications.  
469mW = V (152.8mA)  
IN  
V
= 3.07V  
IN  
Thermal Considerations  
For higher current outputs only a lower input voltage will work  
for higher ambient temperatures.  
The MIC5238 is designed to provide 150mA of continuous  
current in a very small package. Maximum power dissipation  
canbecalculatedbasedontheoutputcurrentandthevoltage  
drop across the part. To determine the maximum power  
dissipation of the package, use the junction-to-ambient ther-  
malresistanceofthedeviceandthefollowingbasicequation:  
Assumingaloweroutputcurrentof20mA,themaximuminput  
voltage can be recalculated:  
319mW = (V 1V)20mA + V x 0.2mA  
IN  
IN  
339mW = V x 20.2mA  
IN  
V
= 16.8V  
IN  
T
T  
A
J(MAX)  
Maximum input voltage for a 20mA load current at 50°C  
ambient temperature is 16.8V. Since the device has a 6V  
rating, it will operate over the whole input range.  
P
=
D(MAX)  
θ
JA  
T
is the maximum junction temperature of the die,  
J(MAX)  
Dual Suppy Mode Efficiency  
125°C, and T is the ambient operating temperature. θ is  
A
JA  
By utilizing a bias supply the conversion efficiency can be  
greatly enhanced. This can be realized as the higher bias  
supplywillonlyconsumeafewµAswhiletheinputsupplywill  
require a few mAs! This equates to higher efficiency saving  
valuable power in the system. As an example, consider an  
output voltage of 1V with an input supply of 2.5V at a load  
layout dependent; Table 1 shows the junction-to-ambient  
thermal resistance for the MIC5238.  
MIC5238  
8
August 2003  
MIC5238  
Micrel  
current of 150mA. The input ground current under these  
conditions is 2mA, while the bias current is only 20µA. If we  
calculate the conversion efficiency using the single supply  
approach, it is as follows:  
Input power = V × output current + V × V ground current  
IN  
IN  
IN  
+ V  
x V  
ground current  
BIAS  
BIAS  
Input power = 1.5 × 150mA + 1.5 × 0.002 + 2.5 × 0.0002 =  
225mW  
Input power = V × output current + V × (V  
ground  
Output power = 1V × 150mA = 150mW  
Efficiency = 150/225 × 100 = 66.6 %  
IN  
IN  
BIAS  
current + V ground current)  
IN  
Input power = 2.5V × 150mA + 2.5 × (0.0002+0.002) =  
380.5mW  
Therefore, by using the dual supply MIC5238 LDO the  
efficiency is nearly doubled over the single supply version.  
Output power = 1V × 0.15 = 150mW  
Efficiency = 150/380.5 × 100 = 39.4%  
This is a valuable asset in portable power management  
applications equating to longer battery life and less heat  
being generated in the application.  
Now, using a lower input supply of 1.5V, and powering the  
bias voltage only from the 2.5V input, the efficiency is as  
follows:  
This in turn will allow a smaller footprint design and an  
extended operating life.  
August 2003  
9
MIC5238  
MIC5238  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-5 (M5)  
1.90BSC  
2.90BSC  
1.90BSC  
0.30  
0.45  
DIMENSIONS:  
Millimeter  
0.90  
0.80  
1.00  
0.90  
2.9BSC  
1.60BSC  
1.60BSC  
0.20  
0.12  
0.30  
0.50  
0.10  
0.01  
1.90BSC  
TSOT-23-5 (D5)  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchasers  
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchasers own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2003 Micrel, Incorporated.  
MIC5238  
10  
August 2003  

相关型号:

MIC5238-1.1BD5TR

Fixed Positive LDO Regulator, 1.1V, 0.5V Dropout, BIPolar, PDSO5, MO-193, TSOT-23, 5 PIN
MICROCHIP

MIC5238-1.1BD5TX

IC,VOLT REGULATOR,FIXED,+1.1V,BIPOLAR,TSOP,5PIN,PLASTIC
MICROCHIP

MIC5238-1.1BM5

Ultra-Low Quiescent Current, 150mA ?Cap LDO Regulator
MICREL

MIC5238-1.1BM5

Fixed Positive LDO Regulator, 1.1V, 0.5V Dropout, BIPolar, PDSO6, SOT-23, 5 PIN
MICROCHIP

MIC5238-1.1BM5TR

1.1 V FIXED POSITIVE LDO REGULATOR, 0.5 V DROPOUT, PDSO5, SOT-23, 5 PIN
ROCHESTER

MIC5238-1.1BM5TR

Fixed Positive LDO Regulator, 1.1V, 0.5V Dropout, BIPolar, PDSO5, SOT-23, 5 PIN
MICROCHIP

MIC5238-1.1BM5TX

Regulator, 1 Output, 1.1V1, BIPolar, PDSO5
MICROCHIP

MIC5238-1.1YD5

Ultra-Low Quiescent Current, 150mA μCap LDO Regulator
MICREL

MIC5238-1.1YD5

1.1V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO6
MICROCHIP

MIC5238-1.1YD5-TR

1.1V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO5
MICROCHIP

MIC5238-1.1YD5TR

1.1V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO5, LEAD FREE, TSOT-23, 5 PIN
MICREL

MIC5238-1.1YD5TX

IC,VOLT REGULATOR,FIXED,+1.1V,BIPOLAR,TSOP,5PIN,PLASTIC
MICROCHIP