MIC5250 [MICREL]

Dual 150mA レCap CMOS LDO Regulator Preliminary Information; 双150毫安レ章CMOS LDO稳压器的初步信息
MIC5250
型号: MIC5250
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Dual 150mA レCap CMOS LDO Regulator Preliminary Information
双150毫安レ章CMOS LDO稳压器的初步信息

稳压器
文件: 总12页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5250  
Dual 150mA µCap CMOS LDO Regulator  
Preliminary Information  
General Description  
Features  
The MIC5250 is an efficient, precise dual CMOS voltage  
regulator optimized for ultra-low-noise applications. The  
MIC5250offersbetterthan1%initialaccuracy,extremelylow  
dropout voltage (typically 150mV at 150mA) and constant  
ground current over load (typically 100µA). The MIC5250  
provides a very-low-noise output, ideal for RF applications  
where quiet voltage sources are required. A noise bypass pin  
is also available for further reduction of output noise.  
• Ultralow dropout—100mV @ 100mA  
• Ultralow noise—30µV(rms)  
• Stability with ceramic, tantalum, or aluminum electrolytic  
capacitors  
• Load independent, ultralow ground current  
• 150mA output current  
• Current limiting  
• Thermal Shutdown  
• Tight load and line regulation  
• “Zero” off-mode current  
• Fast transient response  
Designed specifically for hand-held and battery-powered  
devices, the MIC5250 provides TTL logic compatible enable  
pins. When disabled, power consumption drops nearly to  
zero.  
• TTL-Logic-controlled enable input  
Applications  
• Cellular phones and pagers  
• Cellular accessories  
The MIC5250 also works with low-ESR ceramic capacitors,  
reducing the amount of board space necessary for power  
applications, critical in hand-held wireless devices.  
Key features include current limit, thermal shutdown, push-  
pull outputs for faster transient response, and active clamps  
to speed up device turnoff. Available in the 10-lead MSOP  
(micro-shrink-outline package), the MIC5250 also offers a  
range of fixed output voltages.  
• Battery-powered equipment  
• Laptop, notebook, and palmtop computers  
• PCMCIA V and V regulation/switching  
CC  
PP  
• Consumer/personal electronics  
• SMPS post-regulator/dc-to-dc modules  
• High-efficiency linear power supplies  
Ordering Information  
Part Number  
Voltage Junction Temp. Range  
Package  
MIC5250-2.7BMM  
MIC5250-2.8BMM  
MIC5250-3.0BMM  
MIC5250-3.3BMM  
2.7V  
2.8V  
3.0V  
3.3V  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
10-lead MSOP  
10-lead MSOP  
10-lead MSOP  
10-lead MSOP  
Other voltages available. Contact Micrel for details.  
Typical Application  
MIC5250-3.3BMM  
10  
OUTA  
3.3V  
COUTA  
9
2
1
3
VINA  
INA  
BYPA  
CBYPA  
(optional)  
ENABLE  
ENA GNDA  
SHUTDOWN  
7
5
8
4
6
VINB  
INB  
OUTB  
3.3V  
COUTB  
ENABLE  
SHUTDOWN  
ENB BYPB  
GNDB  
CBYPB  
(optional)  
ENA may be connected directly to INA.  
ENB may be connected directly to INB.  
GNDA and GND B may be connected to  
isolated grounds or the same ground.  
Dual Ultra-Low-Noise Regulator Circuit  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
March 2000  
1
MIC5250  
MIC5250  
Micrel  
Pin Configuration  
BYPA  
ENA  
1
2
3
4
5
10 OUTA  
9
8
7
6
INA  
GNDA  
BYPB  
ENB  
OUTB  
INB  
GNDB  
MIC5250-x.xBMM  
Pin Description  
Pin Number  
9 / 7  
Pin Name  
INA / B  
Pin Function  
Supply Input*  
Ground*  
3 / 6  
GNDA / B  
ENA / B  
2 / 4  
Enable/Shutdown (Input): CMOS compatible input. Logic high = enable;  
logic low = shutdown. Do not leave open.  
1 / 4  
BYPA / B  
Reference Bypass: Connect external 0.01µF capacitor to GND to reduce  
output noise. May be left open.  
10 / 8  
OUTA / B  
Regulator Output  
* Supply inputs and grounds are fully isolated.  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Input Voltage (V ) .................................. 0V to +7V  
Input Voltage (V ) ......................................... +2.7V to +6V  
IN  
IN  
Enable Input Voltage (V ) .................................. 0V to V  
Enable Input Voltage (V ) ................................. 0V to +7V  
EN  
IN  
EN  
Junction Temperature (T ) ....................... 40°C to +125°C  
J
Junction Temperature (T ) ...................................... +150°C  
J
Thermal Resistance )......................................200°C/W  
JA  
Storage Temperature ............................... 65°C to +150°C  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
ESD, Note 3  
MIC5250  
2
March 2000  
MIC5250  
Micrel  
Electrical Characteristics  
Each regulator: VIN = VOUT + 1V, VEN = VIN; OUT = 100µA; TJ = 25°C, bold values indicate 40°C TJ +125°C; unless noted.  
I
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VO  
Output Voltage Accuracy  
IOUT = 0mA  
1  
–2  
1
2
%
%
VLNR  
Line Regulation  
VIN = VOUT + 0.1V to 6V  
IOUT = 0.1mA to 150mA, Note 4  
IOUT = 100µA  
0.3  
0
0.3  
3.0  
5
%/V  
%
VLDR  
Load Regulation  
2.0  
1.5  
50  
VIN VOUT  
Dropout Voltage, Note 5  
mV  
mV  
mV  
IOUT = 50mA  
85  
IOUT = 100mA  
100  
150  
150  
I
OUT = 150mA  
200  
250  
mV  
mV  
IQ  
Quiescent Current  
V
EN 0.4V (shutdown)  
0.2  
100  
100  
50  
1
µA  
µA  
IGND  
Ground Pin Current, Note 6  
IOUT = 0mA  
150  
IOUT = 150mA  
µA  
PSRR  
ILIM  
Power Supply Rejection  
Current Limit  
f = 120Hz, COUT = 10µF, CBYP = 0.01µF  
VOUT = 0V  
dB  
160  
300  
30  
mA  
en  
Output Voltage Noise  
COUT = 10µF, CBYP = 0.01µF,  
µV(rms)  
f = 10Hz to 100kHz  
Enable Input  
VIL  
VIH  
IEN  
Enable Input Logic-Low Voltage  
Enable Input Logic-High Voltage  
Enable Input Current  
VIN = 2.7V to 5.5V, regulator shutdown  
VIN = 2.7V to 5.5V, regulator enabled  
0.8  
1
0.4  
V
V
2.0  
V
IL 0.4V  
IH 2.0V  
0.17  
1.5  
500  
µA  
µA  
V
Shutdown Resistance Discharge  
Thermal Protection  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
150  
10  
°C  
°C  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended.  
Note 4. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load  
range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.  
Note 5. Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V  
differential.  
Note 6. Ground pin current is the regulator quiescent current. The total current drawn from the supply is the sum of the load current plus the ground  
pin current.  
March 2000  
3
MIC5250  
MIC5250  
Micrel  
Typical Characteristics  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
100  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 4V  
IOUT = 10mA  
OUT = 1µF tant  
IOUT = 100µA  
VIN = 4V  
OUT = 3V  
IOUT = 100mA  
COUT = 1µF tant  
VIN = 4V  
VOUT = 3V  
V
OUT = 3V  
C
COUT = 1µF tant  
V
80  
60  
40  
20  
0
1E+11E+21E+31E+41E+51E+61E+7  
1E+11E+21E+31E+41E+51E+61E+7  
1k 10k  
1k 10k  
1M  
1M  
10M  
100k  
10 100  
100k  
FREQUENCY (Hz)  
10M  
10 100  
1E+11E+21E1+k31E+41E+51E+6 E+7  
10k 1M  
10 100  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
100  
100  
100  
VIN = 4V  
OUT = 3V  
VIN = 4V  
VOUT = 3V  
IOUT = 150mA  
OUT = 1µF tant  
V
C
80  
60  
40  
20  
0
80  
60  
40  
20  
0
80  
60  
40  
20  
0
IOUT = 10mA  
IOUT = 100µA  
COUT = 10µF cer.  
BYP = 0.01µF  
VIN = 4V  
OUT = 3V  
C
OUT = 10µF cer.  
BYP = 0.01µF  
C
V
C
1E+11E+21E+31E+41E+51E+61E+7  
1E+11E+21E+31E+41E+51E+61E+7  
1k 10k  
1M  
1E+11E+21E+31E+41E+51E+6 E+7  
10  
10 100  
100k  
FREQUENCY (Hz)  
10M  
100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
10  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply Ripple Rejection  
vs. Voltage Drop  
100  
100  
80  
100µA 10mA  
VIN = 4V  
OUT = 3V  
VIN = 4V  
VOUT = 3V  
70  
V
80  
60  
40  
20  
0
80  
60  
40  
20  
0
60  
50  
40  
30  
150mA  
IOUT = 150mA  
OUT = 10µF cer.  
BYP = 0.01  
IOUT = 100mA  
20  
IOUT = 100mA  
C
C
OUT = 10µF cer.  
BYP = 0.01µF  
10  
C
COUT = 1µF  
C
0
1E+11E+21E+31E+41E+51E+61E+7  
100 1k 10k 100k 1M 10M  
0
200 400 600 800 1000  
VOLTAGE DROP (mV)  
1E+11E+21E+31E+41E+51E+61E+7  
100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
10  
10  
FREQUENCY (Hz)  
Power Supply Ripple Rejection  
vs. Voltage Drop  
Noise Performance  
Noise Performance  
80  
10  
1
10  
IL = 100µA  
IL = 100µA  
70  
IOUT = 100mA  
100mA  
60  
1
0.1  
50  
40  
30  
20  
10  
0
10mA  
VIN = 4V  
OUT = 3V  
VIN = 4V  
0.1  
V
V
OUT = 3V  
COUT = 1µF cer.  
BYP = 0.01µF  
100µA  
COUT = 10µF cer.  
BYP = 0.01µF  
COUT = 10µF cer.  
BYP = 0.01µF  
C
C
C
0.01  
0.01  
0
200 400 600 800 1000  
VOLTAGE DROP (mV)  
10  
100  
1k 10k 100k 1M  
10  
1k 10k  
1M  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
FREQUENCY (Hz)  
100  
100k  
1E+1 1E+2 1E+3 E+4 E+5 1E+6  
FREQUENCY (Hz)  
MIC5250  
4
March 2000  
MIC5250  
Micrel  
Ground Pin Current  
Ground Pin Current  
95  
90  
85  
200  
150  
100  
50  
VIN = 4V  
OUT = 3V  
VIN = 4V  
VOUT = 3V  
V
IOUT = 100µA  
0
0.1  
1
10  
100 500  
-40 -20  
0
20 40 60 80 100  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Ground Pin Current  
Ground Pin Current  
Ground Pin Current  
150  
100  
100  
VIN = 4V  
OUT = 3V  
VOUT = 3V  
VOUT = 3V  
V
125  
100  
75  
75  
50  
25  
0
75  
50  
25  
0
IOUT = 150mA  
IOUT = 150mA  
IOUT = 100µA  
50  
-40 -20  
0
20 40 60 80 100  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Dropout Characteristics  
Dropout Voltage  
Dropout Voltage  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
8
300  
250  
200  
150  
100  
50  
IL = 150mA  
VOUT = 3V  
ILOAD = 100µA  
RL = 30kΩ  
6
4
2
0
RL = 30Ω  
0
0
1
2
3
4
5
-40 -20  
0
20 40 60 80 100120140  
-40 -20  
0
20 40 60 80 100120140  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Output Voltage  
vs. Temperature  
Dropout Voltage  
Short Circuit Current  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
3.05  
3.00  
2.95  
2.90  
2.85  
VIN = 4V  
TYPICAL 3V DEVICE  
TA = 125°C  
TA = 25°C  
VIN = 3.5V  
V
EN = 3V  
ILOAD = 100µA  
TA = -40°C  
0
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
-40 -20  
0
20 40 60 80 100120140  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
March 2000  
5
MIC5250  
MIC5250  
Micrel  
Enable Pin Bias Current  
Enable Threshold Voltage  
4
3
2
1
0
2.0  
1.5  
1.0  
0.5  
0
VIN = 4.0V  
VIN = 4.0V  
VEN = 100mV  
-40 -20  
0
20 40 60 80 100120140  
-40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Functional Characteristics  
Line Transient Response  
Load Transient Response  
6V  
4V  
150mA  
VIN = 4V  
VOUT = 3V  
COUT = 10µF cer.  
CBYP = 0.01µF  
VOUT = 3V  
COUT = 10µF  
CBYP = 0.01µF  
IOUT = 100µA  
100µA  
TIME (10ms/div.)  
TIME (100µs/div.)  
Enable Pin Delay  
Shutdown Delay  
VIN = 4V  
VOUT = 3V  
COUT = 10µF  
CBYP = 0.01µF  
IOUT = no load  
VOUT = 3V  
COUT = 10µF  
CBYP = 0.01µF  
IOUT = no load  
TIME (20µs/div.)  
TIME (1ms/div.)  
MIC5250  
6
March 2000  
MIC5250  
Micrel  
Crosstalk  
Crosstalk  
Characteristics  
Characteristics  
VOUTB = 3.3V  
COUTB = 10µF  
VOUTB = 3.3V  
COUTB = 10µF  
CBYPB = 0  
CBYPB = 0  
ILOAD = 100µA  
ILOAD = 100µA  
VOUTA = 3.3V  
COUTA = 10µF  
CBYPA = 0  
VOUTA = 3.3V  
COUTA = 10µF  
CBYPA = 0  
VIN = 4.3V  
separate supplies  
V
IN = 4.3V  
common supply  
I
LOAD = 100µA  
I
LOAD = 100µA  
ILOAD = 150mA  
ILOAD = 150mA  
TIME (25µs/div.)  
TIME (25µs/div.)  
Block Diagrams  
INA  
Startup/  
Shutdown  
Control  
Quickstart/  
Noise  
Cancellation  
Reference  
Voltage  
ENA  
BYPA  
OUTA  
PULL  
UP  
FAULT  
Thermal  
Sensor  
Error  
Amplifier  
Current  
Amplifier  
Under-  
voltage  
Lockout  
PULL  
DOWN  
ACTIVE SHUTDOWN  
GNDA  
INB  
Startup/  
Shutdown  
Control  
Quickstart/  
Reference  
Voltage  
Noise  
Cancellation  
ENB  
BYPB  
OUTB  
PULL  
UP  
FAULT  
Thermal  
Sensor  
Error  
Amplifier  
Current  
Amplifier  
Under-  
voltage  
Lockout  
PULL  
DOWN  
ACTIVE SHUTDOWN  
GNDB  
March 2000  
7
MIC5250  
MIC5250  
Micrel  
Thermal Considerations  
Applications Information  
The MIC5250 is a dual LDO voltage regulator designed to  
provide two output voltages from one package. Both regula-  
tor outputs are capable of sourcing 150mA of output current.  
Proper thermal evaluation needs to be done to ensure that  
the junction temperature does not exceed its maximum  
value, 125°C. Maximum power dissipation can be calculated  
basedontheoutputcurrentandthevoltagedropacrosseach  
regulator. The sum of the power dissipation of each regulator  
determines the total power dissipation. The maximum power  
dissipation that this package is capable of handling can be  
determined using thermal resistance, junction to ambient,  
and the following basic equation:  
Enable/Shutdown  
The MIC5250 comes with active-high enable pins that allows  
either regulator to be disabled. Forcing an enable pin low  
disables the respective regulator and places it into a zero”  
off-mode-currentstate. Inthisstate, currentconsumedbythe  
regulator goes nearly to zero. Forcing an enable pin high  
enables the output voltage. This part is CMOS therefore the  
enable pin cannot be left floating; a floating enable pin may  
cause an indeterminate state on the output.  
Input Capacitor  
Input capacitors are not required for stability. A 1µF input  
capacitor is recommended for either regulator when the bulk  
ac supply capacitance is more than 10 inches away from the  
device, or when the supply is a battery.  
T
T  
A
J(max)  
P
=
D(max)  
θ
JA  
Output Capacitor  
T
is the maximum junction temperature of the die,  
J(max)  
The MIC5250 requires output capacitors for stability. The  
design requires 1µF or greater on each output to maintain  
stability. Capacitors can be low-ESR ceramic chip capaci-  
tors. The MIC5250 has been designed to work specifically  
withlow-cost,smallchipcapacitors.Tantalumcapacitorscan  
also be used for improved capacitance over the operating  
temperature range. The value of the capacitor can be in-  
creased without bounds.  
125°CandT istheambientoperatingtemperatureofthedie.  
A
θ
is layout dependent. Table 1 shows the typical thermal  
JA  
resistance for a minimum footprint layout for the MIC5250.  
θ
at Recommended  
Minimum Footprint  
JA  
Package  
MSOP-10  
200° C/W  
Table 1. Thermal Resistance  
Bypass Capacitor  
The actual power dissipation of each regulator output can be  
calculated using the following simple equation:  
Capacitors can be placed from each noise bypass pin to their  
respective ground to reduce output voltage noise. These  
capacitors bypass the internal references. A 0.01µF capaci-  
tor is recommended for applications that require low-noise  
outputs.  
P
= V V  
I
+V I  
IN GND  
(
)
D
IN  
OUT OUT  
Each regulator contributes power dissipation to the overall  
power dissipation of the package.  
Transient Response  
P
= P  
+P  
D(total)  
D(reg1) D(reg2)  
The MIC5250 implements a unique output stage design  
which dramatically improves transient response recovery  
time. The output is a totem-pole configuration with a P-  
channel MOSFET pass device and an N-channel MOSFET  
clamp. The N-channel clamp is a significantly smaller device  
that prevents the output voltage from overshooting when a  
heavy load is removed. This feature helps to speed up the  
transient response by significantly decreasing transient re-  
sponse recovery time during the transition from heavy load  
(100mA) to light load (100µA).  
Each output is rated for 150mA of output current, but the  
application may limit the amount of output current based on  
the total power dissipation and the ambient temperature.  
A typical application may call for two 3.0V outputs from a  
single Li-ion battery input. This input can be as high as 4.2V.  
When operating at high ambient temperatures, the output  
current may be limited. When operating at an ambient of  
60°C, the maximum power dissipation of the package is  
calculated as follows:  
Active Shutdown  
125°C 60°C  
Each regulator also features an active shutdown clamp,  
which is an N-channel MOSFET that turns on when the  
device is disabled. This allows the output capacitor and load  
to discharge, de-energizing the load.  
P
=
D(max)  
200°C/W  
P
= 325mW  
D(max)  
Cross Talk  
Fortheapplicationmentionedabove,ifregulator1issourcing  
150mA, it contributes the following to the overall power  
dissipation:  
When a load transient occurs on one output of the MIC5250,  
the second output may couple a small amount of ripple to its  
output. This typically comes from a common input source or  
from poor grounding. Using proper grounding techniques  
such as star grounding as well as good bypassing directly at  
the inputs of each regulator will help to reduce the magnitude  
of the cross talk. See Functional Characteristicsfor an  
example of cross talk performance.  
P
= V V  
I
+V I  
IN GND  
(
)
D(reg1)  
IN  
OUT OUT  
P
= 4.2V 3.0V 150mA + 4.2V ×100µA  
(
)
D(reg1)  
PD(reg1) = 180.4mW  
MIC5250  
8
March 2000  
MIC5250  
Micrel  
Since the total power dissipation allowable is 325mW, the  
Fixed Regulator Applications  
maximumpowerdissipationofthesecondregulatorislimited  
to:  
MIC5250-3.3BMM  
10  
OUTA  
3.3V  
1µF  
9
2
1
3
PD(max) = PD(reg1) +PD(reg2)  
VINA  
INA  
BYPA  
0.01µF  
0.01µF  
ENA GNDA  
325mW = 180.4mW +P  
D(reg2)  
7
5
8
4
6
VINB  
INB  
OUTB  
3.3V  
1µF  
ENB BYPB  
GNDB  
P
= 144.6mW  
D(reg2)  
The maximum output current of the second regulator can be  
calculated using the same equations but solving for the  
output current (ground current is constant over load and  
simplifies the equation):  
Figure 1. Ultra-Low-Noise Dual 3.3V Application  
Figure 1 includes 0.01µF capacitors for low-noise operation  
and shows EN (pin 3) connected to IN (pin 1) for an applica-  
PD(reg2) = V VOUT  
I
+VIN IGND  
OUT  
(
)
IN  
tions where enable/shutdown is not required. C  
minimum.  
= 1µF  
OUT  
144.6mW = 4.2V 3.0V I  
+ 4.2V ×100µA  
(
)
OUT  
MIC5250-3.3BMM  
IOUT = 120.5mA  
10  
OUTA  
BYPA  
3.3V  
1µF  
9
2
1
3
VINA  
INA  
The second output is limited to 120mA due to the total power  
dissipation of the system when operating at 60°C ambient  
temperature.  
ENA GNDA  
7
5
8
4
6
VINB  
INB  
OUTB  
3.3V  
1µF  
ENB BYPB  
GNDB  
Figure 2. Low-Noise Fixed Voltage Application  
Figure 2 is an example of a low-noise configuration where  
C
is not required. C  
= 1µF minimum.  
BYP  
OUT  
Dual-Supply Operation  
When used in dual supply systems where the regulator load  
is returned to a negative supply, the output voltage must be  
diode clamped to ground.  
March 2000  
9
MIC5250  
MIC5250  
Micrel  
Package Information  
3.15 (0.122)  
2.85 (0.114)  
DIMENSIONS:  
MM (INCH)  
4.90 BSC (0.193)  
3.10 (0.122)  
2.90 (0.114)  
1.10 (0.043)  
0.94 (0.037)  
0.26 (0.010)  
0.10 (0.004)  
0.30 (0.012)  
0.15 (0.006)  
0.15 (0.006)  
0.05 (0.002)  
6° MAX  
0° MIN  
0.70 (0.028)  
0.40 (0.016)  
0.50 BSC (0.020)  
10-Lead MSOP (MM)  
MIC5250  
10  
March 2000  
MIC5250  
Micrel  
March 2000  
11  
MIC5250  
MIC5250  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
MIC5250  
12  
March 2000  

相关型号:

MIC5250-2.7BMM

Dual 150mA レCap CMOS LDO Regulator Preliminary Information
MICREL

MIC5250-2.7BMM

Fixed Positive LDO Regulator, 2 Output, 2.7V1, 2.7V2, CMOS, PDSO10, MSOP-10
MICROCHIP

MIC5250-2.8BMM

Dual 150mA レCap CMOS LDO Regulator Preliminary Information
MICREL

MIC5250-2.8BMM

Fixed Positive LDO Regulator, 2 Output, 2.8V1, 2.8V2, CMOS, PDSO10, MSOP-10
MICROCHIP

MIC5250-3.0BMM

Dual 150mA レCap CMOS LDO Regulator Preliminary Information
MICREL

MIC5250-3.0BMM

Fixed Positive LDO Regulator, 2 Output, 3V1, 3V2, CMOS, PDSO10, MSOP-10
MICROCHIP

MIC5250-3.3BMM

Dual 150mA レCap CMOS LDO Regulator Preliminary Information
MICREL

MIC5250-3.3BMM

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 3.3V2, CMOS, PDSO10, MSOP-10
MICROCHIP

MIC5250_03

Dual 150mA μCap CMOS LDO Regulator
MICREL

MIC5252

150MA HIGH PSRR LOW NOISE UCAP CMOS LDO
MICREL

MIC5252-1.8BM5

150MA HIGH PSRR LOW NOISE UCAP CMOS LDO
MICREL

MIC5252-1.8YM5

150mA High PSRR, Low Noise μCap CMOS LDO
MICREL