MIC5254 [MICREL]

DUAL 150MA UCAP LDO WITH ERROR FLAG OUTPUTS; 双150MA UCAP LDO提供错误标志产出
MIC5254
型号: MIC5254
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

DUAL 150MA UCAP LDO WITH ERROR FLAG OUTPUTS
双150MA UCAP LDO提供错误标志产出

输出元件
文件: 总11页 (文件大小:161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5254  
Dual 150mA µCap LDO with Error Flag Outputs  
General Description  
Features  
The MIC5254 is an efficient, precise, dual CMOS voltage  
regulator. It offers better than 1% initial accuracy, extremely  
low dropout voltage (typically 135mV at 150mA) and low  
ground current (typically 90µA) over load. The MIC5254  
features two independent LDOs with error flags that indicate  
an output fault condition such as overcurrent, thermal shut-  
down and dropout.  
• Input voltage range: 2.7V to 6.0V  
• Dual, independent 150mA LDOs  
• Error flags indicate fault condition  
• Stable with ceramic output capacitor  
• Ultra-low dropout: 135mV @ 150mA  
• High output accuracy:  
1.0% initial accuracy  
2.0% over temperature  
Designed specifically for handheld and battery-powered de-  
vices, the MIC5254 provides a TTL-logic-compatible enable  
pin.Whendisabled,powerconsumptiondropsnearlytozero.  
• Low quiescent current: 90µA each LDO  
• Tight load and line regulation  
• Thermal shutdown and current limit protection  
• “Zero” off-mode current  
• TTL logic-controlled enable input  
• MSOP-10 package  
The MIC5254 also works with low-ESR ceramic capacitors,  
reducing the amount of board space necessary for power  
applications, critical in handheld wireless devices.  
Key features include current limit, thermal shutdown, faster  
transient response, and an active clamp to speed up device  
turnoff. The MIC5254 is available in the MSOP-10 package  
and is rated over a –40°C to +125°C junction temperature  
range.  
Applications  
• Cellular phones and pagers  
• Cellular accessories  
• Battery-powered equipment  
• Laptop, notebook, and palmtop computers  
• Consumer/personal electronics  
Ordering Information  
Part Number  
VOUTA  
VOUTB  
Junction Temp. Range  
Package  
MIC5254-SJBMM  
3.3V  
2.5V  
–40°C to +125°C  
MSOP-10  
Other voltages available. Contact Micrel Marketing for details.  
Typical Application  
Dual Output LDO with Error Flags  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
September 2003  
1
MIC5254  
MIC5254  
Micrel  
Pin Configuration  
FLGA  
ENA  
1
2
3
4
5
10 OUTA  
9
8
7
6
INA  
GNDA  
FLGB  
ENB  
OUTB  
GNDB  
INB  
MSOP-10 (BMM)  
Pin Description  
Pin Number  
Pin Name  
Channel  
Pin Function  
1
FLGA  
A
Error Flag (Output): Open-drain output. Active low indicates an output  
undervoltage condition.  
2
ENA  
A
Enable/Shutdown (Input): CMOS compatible input. Logic high = enable;  
logic low = shutdown. Do not leave open.  
3
9
GNDA  
INA  
A
A
A
B
Ground.  
Supply Input.  
Regulator Output.  
10  
4
OUTA  
FLGB  
Error Flag (Output): Open-drain output. Active low indicates an output  
undervoltage condition.  
5
ENB  
B
Enable/Shutdown (Input): CMOS compatible input. Logic high = enable;  
logic low = shutdown. Do not leave open.  
7
6
8
GNDB  
INB  
B
B
B
Ground.  
Supply Input.  
Regulator Output.  
OUTB  
MIC5254  
2
September 2003  
MIC5254  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Input Voltage (V ) .................................. 0V to +7V  
Input Voltage (V ) ......................................... +2.7V to +6V  
IN  
IN  
Enable Input Voltage (V ) .................................. 0V to V  
Enable Input Voltage (V ) ................................. 0V to +7V  
EN  
IN  
EN  
Junction Temperature (T ) ....................... –40°C to +125°C  
J
Power Dissipation (P ) ............... Internally Limited, Note 3  
D
Thermal Resistance  
Junction Temperature (T ) ....................... –40°C to +125°C  
J
MSOP-10 (θ ) ..................................................200°C/W  
JA  
Storage Temperature ............................... –65°C to +150°C  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
ESD, Note 4.................................................................. 2kV  
Electrical Characteristics (Note 5)  
VIN = VOUT + 1V, VEN = VIN; OUT = 100µA; TJ = 25°C, bold values indicate –40°C TJ +125°C; unless noted.  
I
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VO  
Output Voltage Accuracy  
IOUT = 100µA  
–1  
–2  
+1  
+2  
%
%
VLNR  
Line Regulation  
VIN = VOUT + 1V to 6V  
IOUT = 0.1mA to 150mA, Note 6  
IOUT = 100µA  
0.02  
1.5  
0.1  
90  
0.075  
2.5  
%/V  
%
VLDR  
Load Regulation  
VIN – VOUT  
Dropout Voltage, Note 7  
mV  
mV  
IOUT = 100mA  
150  
I
OUT = 150mA  
135  
200  
250  
mV  
mV  
IQ  
Quiescent Current  
V
EN 0.4V (shutdown)  
0.2  
90  
1
µA  
µA  
IGND  
Ground Pin Current, Note 8  
IOUT = 0mA  
150  
IOUT = 150mA  
117  
60  
µA  
PSRR  
Power Supply Rejection  
f = 10Hz, VIN = VOUT + 1V; COUT = 1µF  
f = 100Hz, VIN = VOUT + 0.5V; COUT = 1µF  
f = 10kHz, VIN = VOUT + 0.5V  
VOUT = 0V  
dB  
60  
dB  
45  
dB  
ILIM  
Current Limit  
160  
425  
30  
mA  
en  
Output Voltage Noise  
µV(rms)  
Enable Input  
VIL  
VIH  
IEN  
Enable Input Logic-Low Voltage  
Enable Input Logic-High Voltage  
Enable Input Current  
VIN = 2.7V to 5.5V, regulator shutdown  
VIN = 2.7V to 5.5V, regulator enabled  
0.4  
V
V
1.6  
V
IL 0.4V, regulator shutdown  
IH 1.6V, regulator enabled  
0.01  
0.01  
500  
µA  
µA  
V
Shutdown Resistance Discharge  
Error Flag  
VFLG  
Low Threshold  
High Threshold  
% of VOUT (Flag ON)  
% of VOUT (Flag OFF)  
90  
%
%
96  
VOL  
IFL  
Output Logic-Low Voltage  
Flag Leakage Current  
IL = 100µA, fault condition  
0.02  
0.01  
0.1  
V
Flag OFF, VFLG = 6V  
µA  
Thermal Protection  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
150  
10  
°C  
°C  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. The maximum allowable power dissipation of any T (ambient temperature) is P  
= (T  
–T )/θ . Exceeding the maximum allowable  
J(max) A JA  
A
D(max)  
power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The θ of the MIC5254-SJBMM is  
JA  
200°C/W on a PC board (see “Thermal Considerations” section for further details).  
September 2003  
3
MIC5254  
MIC5254  
Micrel  
Note 4. Devices are ESD sensitive. Handling precautions recommended.  
Note 5. Specification for packaged product only.  
Note 6. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load  
range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.  
Note 7. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V  
differential. For outputs below 2.7V, dropout voltage is the input-to-output voltage differential with the minimum input voltage 2.7V. Minimum  
input operating voltage is 2.7V.  
Note 8. Ground pin current is the regulator quiescent current. The total current drawn from the supply is the sum of the load current plus the ground  
pin current.  
MIC5254  
4
September 2003  
MIC5254  
Micrel  
Typical Characteristics  
For each LDO Channel.  
Power Supply Rejection Ratio  
Power Supply Rejection Ratio  
PSRR vs. Voltage Drop  
70  
70  
70  
60  
50  
40  
30  
20  
10  
0
ILOAD = 100µA  
60  
50  
60  
50  
40  
30  
20  
10  
0
100µA*  
100µA*  
50mA*  
40  
ILOAD = 150mA  
50mA*  
30  
100mA*  
100mA*  
150mA*  
150mA*  
20  
*ILOAD  
*ILOAD  
COUT = 4.7µF Ceramic  
10  
COUT = 1.0µF Ceramic  
COUT = 1µF  
0
10  
0
200 400 600 800 1000  
VOLTAGE DROP (mV)  
100  
10k  
10  
100  
1k  
10k 100k 1M  
1k  
100k 1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Ground Pin Current  
Ground Pin Current  
Ground Pin Current  
130  
115  
113  
111  
109  
107  
105  
103  
101  
99  
125  
120  
115  
110  
105  
100  
95  
125  
120  
115  
110  
105  
100  
VIN = VOUT + 1V  
97  
ILOAD = 100µA  
ILOAD = 150mA  
95  
0.1  
1
10  
100  
1000  
-40 -20 0 20 40 60 80 100120140  
-40 -20 0 20 40 60 80 100120140  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Dropout  
Characteristics  
Ground Pin Current  
Ground Pin Current  
3.5  
140  
120  
100  
80  
140  
3
2.5  
2
120  
100  
80  
60  
40  
20  
0
100µA  
150mA  
1.5  
1
60  
40  
0.5  
0
20  
ILOAD = 100µA  
ILOAD = 150mA  
0
0
1
2
3
4
5
6
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5  
INPUT VOLTAGE (V)  
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Dropout Voltage  
Dropout Voltage  
Dropout Voltage  
0.14  
180  
180  
160  
140  
120  
100  
80  
T = –40°C  
160  
140  
120  
100  
80  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
T = 25°C  
T = 125°C  
60  
60  
40  
40  
20  
20  
ILOAD = 100µA  
ILOAD = 150mA  
0
0
-40 -20  
0
20 40 60 80 100120140  
-40 -20 0 20 40 60 80 100120140  
0
20 40 60 80 100 120 140 160  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
September 2003  
5
MIC5254  
MIC5254  
Micrel  
Typical Characteristics  
For each LDO Channel.  
Output Voltage vs.  
Temperature  
Short Circuit Current  
Short Circuit Current  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
600  
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
VIN = VOUT + 1V  
500  
400  
300  
200  
100  
0
ILOAD = 100µA  
-40 -20  
0
20 40 60 80 100 120  
3
3.5  
4
4.5  
5
5.5  
6
-40 -20 0 20 40 60 80 100120140  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Enable Threshold  
vs. Temperature  
Error Flag Pull-Up Resistor  
1.3  
4.5  
4
Power Good  
1.25  
1.2  
3.5  
3
1.15  
1.1  
2.5  
2
1.05  
1
VIN = 4V  
1.5  
1
0.95  
0.9  
0.5  
0
0.85  
0.8  
ILOAD = 100µA  
Power Fail  
-40 -20  
0
20 40 60 80 100120140  
0.1  
1
10  
100 1000 10000  
TEMPERATURE (°C)  
RESISTANCE (k)  
Test Circuit  
MIC5254  
VINA  
VOUTA  
9
10  
1
VINA OUTA  
47k  
1µF  
2
1µF  
Ceramic  
FLAGA  
0.01µF  
ENA FLGA  
GNDA OUTB  
VOUTB  
3
8
47kΩ  
VINB  
6
4
7
VINB FLGB  
ENB GNDB  
1µF  
Ceramic  
FLAGB  
5
1µF  
0.01µF  
MIC5254  
6
September 2003  
MIC5254  
Micrel  
Functional Characteristics  
For each LDO Channel  
Load Transient Response  
Line Transient Response  
CIN = 1µF Ceramic  
COUT = 1µF Ceramic  
IOUT = 100µA  
CIN = 1µF Ceramic  
COUT = 1µF Ceramic  
VIN = 4V  
150mA  
100µA  
TIME (4µs/div)  
TIME (400µs/div)  
Enable Pin Delay  
Shutdown Delay  
CIN = 1µF Ceramic  
COUT = 1µF Ceramic  
IOUT = 150mA  
CIN = 1µF Ceramic  
COUT = 1µF Ceramic  
IOUT = 150mA  
TIME (10µs/div)  
TIME (10µs/div)  
Error Flag Start-up*  
Error Flag Shutdown*  
TIME (400µs/div)  
TIME (400µs/div)  
* See Test Circuit  
* See Test Circuit  
September 2003  
7
MIC5254  
MIC5254  
Micrel  
Functional Diagram  
INA  
ENA  
Startup/  
Shutdown  
Control  
Reference  
Voltage  
Quickstart  
Thermal  
Sensor  
FAULT  
Error  
Amplifier  
Current  
Amplifier  
OUTA  
Under-  
voltage  
Lockout  
ACTIVE SHUTDOWN  
Out of  
Regulation  
Detection  
FLGA  
Overcurrent  
Dropout  
Detection  
GNDA  
INB  
ENB  
Startup/  
Shutdown  
Control  
Reference  
Voltage  
Quickstart  
Thermal  
Sensor  
FAULT  
Error  
Amplifier  
Current  
Amplifier  
OUTB  
Under-  
voltage  
Lockout  
ACTIVE SHUTDOWN  
Out of  
Regulation  
Detection  
FLGB  
Overcurrent  
Dropout  
Detection  
GNDB  
MIC5254  
8
September 2003  
MIC5254  
Micrel  
input without using a pull-down capacitor, there can be a  
glitch on the error flag upon start up of the device. This is due  
to the response time of the error flag circuit as the device  
starts up. When the device comes out of the “zero” off mode  
current state, all the various nodes of the circuit power up  
before the device begins supplying full current to the output  
capacitor. The error flag drives low immediately and then  
releases after a few microseconds. The intelligent circuit that  
triggers an error detects the output going into current limit  
ANDtheoutputbeinglowwhilechargingtheoutputcapacitor.  
The error output then pulls low for the duration of the turn-on  
time. Acapacitorfromtheerrorflagtogroundwillfilteroutthis  
glitch. The glitch does not occur if the error flag pulled up to  
the output.  
Applications Information  
Enable/Shutdown  
The MIC5254 comes with an active-high enable pin for each  
regulator that allows the regulator to be disabled. Forcing the  
enablepinlowdisablestheregulatorandsendsitintoazero”  
off-mode-currentstate. Inthisstate, currentconsumedbythe  
regulator goes nearly to zero. Forcing the enable pin high  
enablestheoutputvoltage. ThispartisCMOSandtheenable  
pin cannot be left floating; a floating enable pin may cause an  
indeterminate state on the output.  
Input Capacitor  
The MIC5254 is a high performance, high bandwidth device.  
Therefore, it requires a well-bypassed input supply for opti-  
mal performance. A 1µF capacitor is required from the input  
to ground to provide stability. Low ESR ceramic capacitors  
provide optimal performance at a minimum of space. Addi-  
tional high-frequency capacitors, such as small-valued NPO  
dielectric type capacitors, help filter out high frequency noise  
and are good practice in any RF based circuit.  
Active Shutdown  
The MIC5254 also features an active shutdown clamp, which  
is an N-Channel MOSFET that turns on when the device is  
disabled. This allows the output capacitor and load to dis-  
charge, de-energizing the load.  
No Load Stability  
Output capacitor  
TheMIC5254willremainstableandinregulationwithnoload  
unlike many other voltage regulators. This is especially  
important in CMOS RAM keep-alive applications.  
The MIC5254 requires an output capacitor for stability. The  
design requires 1µF or greater on the output to maintain  
stability. The design is optimized for use with low ESR  
ceramic chip capacitors. High ESR capacitors may cause  
high frequency oscillation. The maximum recommended  
ESR is 300m. The output capacitor can be increased, but  
performance has been optimized for a 1µF ceramic output  
capacitor and does not improve significantly with larger  
capacitance.  
Thermal Considerations  
The MIC5254 is a dual LDO voltage regulator designed to  
provide two output voltages from one package. Both regula-  
tor outputs are capable of sourcing 150mA of output current.  
Proper thermal evaluation needs to be done to ensure that  
the junction temperature does not exceed it’s maximum  
value, 125°C. Maximum power dissipation can be calculated  
basedontheoutputcurrentandthevoltagedropacrosseach  
regulator. The sum of the power dissipation of each regulator  
determines the total power dissipation. The maximum power  
dissipation that this package is capable of handling can be  
determined using thermal resistance, junction to ambient,  
and the following basic equation:  
X7R/X5R dielectric-type ceramic capacitors are recom-  
mended because of their temperature performance. X7R-  
type capacitors change capacitance by 15% over their oper-  
ating temperature range and are the most stable type of  
ceramiccapacitors.Z5UandY5Vdielectriccapacitorschange  
value by as much as 50% and 60% respectively over their  
operatingtemperatureranges. Touseaceramicchipcapaci-  
torwithY5Vdielectric, thevaluemustbemuchhigherthanan  
X7R ceramic capacitor to ensure the same minimum capaci-  
tance over the equivalent operating temperature range.  
T
T  
A
J(max)  
P
=
D(max)  
θ
JA  
Error Flag  
T
is the maximum junction temperature of the die,  
J(max)  
125°CandT istheambientoperatingtemperatureofthedie.  
The error flag output is an active-low, open-drain output that  
drives low when a fault condition AND an undervoltage  
detection occurs. Internal circuitry intelligently monitors  
overcurrent, overtemperature and dropout conditions and  
ORs these outputs together to indicate some fault condition.  
The output of that OR gate is ANDed with an output voltage  
monitor that detects an undervoltage condition. That output  
drives the open-drain transistor to indicate a fault. This  
prevents chattering or inadvertent triggering of the error flag.  
The error flag must be pulled-up using a resistor from the flag  
pin to either the input or the output.  
A
θ
is layout dependent. Table 1 shows the typical thermal  
JA  
resistance for a minimum footprint layout for the MIC5254.  
Package  
θJA at Recommended Minimum Footprint  
200°C/W  
MSOP-10  
Table 1. Thermal Resistance  
The actual power dissipation of each regulator output can be  
calculated using the following simple equation:  
P = (V – V  
)I  
+ V × I  
D
IN  
OUT OUT IN GND  
Each regulator contributes power dissipation to the overall  
power dissipation of the package.  
The error flag circuit was designed essentially to work with a  
capacitor to ground to act as a power-on reset generator,  
signaling a power-good situation once the regulated voltage  
was up and/or out of a fault condition. This capacitor delays  
the error signal from pulling high, allowing the downstream  
circuitstimetostabilize.Whentheerrorflagispulled-uptothe  
P
= P  
+ P  
D(reg1) D(reg2)  
D(total)  
September 2003  
9
MIC5254  
MIC5254  
Micrel  
Each output is rated for 150mA of output current, but the  
application may limit the amount of output current based on  
the total power dissipation and the ambient temperature. A  
typical application may call for one 3.3V output and one 2.5V  
output from a single Li-Ion battery input. This input can be as  
high as 4.2V.  
P
= 135.5mW  
D(reg1)  
Since the total power dissipation allowable is 325mW, the  
maximumpowerdissipationofthesecondregulatorislimited  
to:  
P
= P  
+ P  
D(max)  
D(reg1) D(reg2)  
325mW = 135.5mW + P  
D(reg2)  
When operating at high ambient temperatures, the output  
current may be limited. When operating at an ambient of  
60°C, the maximum power dissipation of the package is  
calculated as follows:  
P
= 189.5mW  
D(reg2)  
The maximum output current of the second regulator can be  
calculated using the same equations but solving for the  
output current (ground current is constant over load and  
simplifies the equation):  
125°C 60°C  
200°C/W  
P
=
D(max)  
P
= (V – V  
)I  
+ V × I  
D(reg2)  
IN  
OUT OUT IN GND  
189.5mW = (4.2V – 2.5V)I  
+ 4.2V × 100µA  
P = 325mW  
OUT  
D
I
= 111.2mA  
Fortheapplicationmentionedabove,ifregulator1issourcing  
150mA, it contributes the following to the overall power  
dissipation:  
OUT  
The second output is limited to 110mA due to the total power  
dissipation of the system when operating at 60°C ambient  
temperature.  
P
P
= (V – V  
)I  
+ V × I  
D(reg2)  
IN  
OUT OUT IN GND  
= (4.2V – 3.3V)150mA + 4.2V × 100µA  
D(reg1)  
MIC5254  
10  
September 2003  
MIC5254  
Micrel  
Package Information  
3.15 (0.122)  
2.85 (0.114)  
DIMENSIONS:  
MM (INCH)  
4.90 BSC (0.193)  
3.10 (0.122)  
2.90 (0.114)  
1.10 (0.043)  
0.94 (0.037)  
0.26 (0.010)  
0.10 (0.004)  
0.30 (0.012)  
0.15 (0.006)  
0.15 (0.006)  
0.05 (0.002)  
6° MAX  
0° MIN  
0.70 (0.028)  
0.40 (0.016)  
0.50 BSC (0.020)  
10-Pin MSOP (BMM)  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s  
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2003 Micrel, Incorporated.  
September 2003  
11  
MIC5254  

相关型号:

MIC5254-SJBMM

DUAL 150MA UCAP LDO WITH ERROR FLAG OUTPUTS
MICREL

MIC5254-SJBMM

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 2.5V2, CMOS, PDSO10, MSOP-10
MICROCHIP

MIC5254-SJBMMTR

暂无描述
MICREL

MIC5254-SJYMM

Dual 150mA μCap LDO with Error Flag Outputs
MICREL

MIC5254-SJYMM

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 2.5V2, CMOS, PDSO10, LEAD FREE, MSOP-10
MICROCHIP

MIC5254-SJYMM-TR

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 2.5V2, CMOS, PDSO10, LEAD FREE, MSOP-10
MICROCHIP

MIC5254-SJYMMTR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, LEAD FREE, MSOP-10
MICROCHIP

MIC5254_07

Dual 150mA μCap LDO with Error Flag Outputs
MICREL

MIC5255

150mA Low Noise UCap CMOS LDO
MICREL

MIC5255-2.5BD5

150mA Low Noise μCap CMOS LDO
MICREL

MIC5255-2.5BD5TR

Fixed Positive LDO Regulator, 2.5V, 0.25V Dropout, CMOS, PDSO5, 1 MM HEIGHT, MO-193, TSOT-23, 5 PIN
MICREL

MIC5255-2.5BM5

150mA Low Noise UCap CMOS LDO
MICREL