MIC5311-DKYML [MICREL]

LowQ? Mode Dual 300mA LDO; LOWQ ™模式双路,300mA LDO
MIC5311-DKYML
型号: MIC5311-DKYML
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

LowQ? Mode Dual 300mA LDO
LOWQ ™模式双路,300mA LDO

调节器 光电二极管 输出元件
文件: 总11页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5311  
LowQ™ Mode Dual 300mA LDO  
General Description  
Features  
Input voltage range: 2.5V to 5.5V  
LowQ™ Mode  
The MIC5311 is a high performance, dual µCap low  
dropout regulator offering ultra-low operating current  
and a second, even lower operating current mode,  
LowQ™ mode, reducing operating current by 75%.  
Each regulator can source up to 300mA of output  
current maximum.  
-
-
-
7µA total quiescent current  
10mA output current capable LowQ™ mode  
Logic level control with external pin  
Stable with ceramic output capacitor  
2 LDO Outputs – 300mA each  
Tiny 3mm x 3mm MLF™-10 package  
Low dropout voltage of 60mV @ 150mA  
Ideal for battery operated applications, the MIC5311  
offers 1% accuracy, extremely low dropout voltage  
(60mV @ 150mA), and low ground current (typically  
28µA total). When put into LowQ™ mode, the internal  
current draw drops down to 7µA total. The MIC5311  
also comes equipped with a TTL logic compatible  
enable pin that allows the part to be put into a zero-off-  
mode current state, drawing no current when disabled.  
Ultra-low quiescent current of 28µA total in Full  
Current Mode  
High output accuracy  
-
-
±1.0% initial accuracy  
±2.0% over temperature  
The MIC5311 is a µCap design, operating with very  
small ceramic output capacitors for stability, reducing  
required board space and component cost.  
Thermal Shutdown Protection  
Current Limit Protection  
The MIC5311 is available in fixed output voltages in the  
3mm x 3mm MLF-10 leadless package. Data sheets  
and support documentation can be found on Micrel’s  
web site at www.micrel.com.  
Applications  
Cellular/PCS phones  
Wireless modems  
PDAs  
MP3 Players  
Typical Application  
VIN  
VOUT1  
VOUT2  
VCORE  
VI/O  
EN1  
EN2  
Baseband  
µProcessor  
LOWQ  
BYP  
GND  
MIC5311-xxBML  
MLF and MicroLeadFrame are trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
Ordering Information  
Part Number  
Output  
Voltage*  
Junction Temp. Range  
Package  
Standard  
Pb-Free  
MIC5311-GMBML  
MIC5311-DKBML  
MIC5311-GMYML  
MIC5311-DKYML  
MIC5311-NLYML  
1.8V/2.8V  
1.85V/2.6V  
2.85V/2.7V  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
10-Pin 3×3 MLF™  
10-Pin 3×3 MLF™  
10-Pin 3×3 MLF™  
Note: *Other Voltage options available between 1.25V and 5V. Contact Micrel for details.  
Pin Configuration  
10 VOUT1  
9 VOUT2  
8 NC  
VIN  
EN1  
1
2
3
4
5
EN2  
7 NC  
LOWQ  
BYP  
6 GND  
MIC5311-xxBML (3x3)  
Pin Description  
Fixed  
Pin Name  
Pin Function  
Supply Input. (VIN1 and VIN2 are internally tied together)  
Enable Input (regulator 1). Active High Input. Logic High = On; Logic Low = Off;  
1
2
VIN  
EN1  
Do not leave floating  
3
4
5
EN2  
LowQ™  
BYP  
Enable Input (regulator 2). Active High Input. Logic High = On; Logic Low = Off;  
Do not leave floating  
LowQ™ Mode. Active Low Input. Logic High = Full Power Mode; Logic Low = Light  
Load Mode; Do not leave floating.  
Reference Bypass: Connect external 0.01µF to GND to reduce output noise. May  
be left open.  
6
7
GND  
NC  
Ground.  
8
NC  
9
10  
EP  
VOUT  
VOUT  
GND  
2
1
Output of regulator 2  
Output of regulator 1  
Ground. Internally connected to the Exposed Pad.  
2
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Input Voltage (VIN)..............................0V to 6V  
Enable Input Voltage (VEN).............................0V to 6V  
LowQ™ Input Voltage (VLowQ™)......................0V to 6V  
Power Dissipation (PD)..................Internally Limited (3)  
Junction Temperature ....................... -40°C to +125°C  
Lead Temperature (soldering, 5sec.).................260°C  
Storage Temperature (Ts) ................. -65°C to +150°C  
Supply Input Voltage (VIN)..........................2.5V to 5.5V  
Enable Input Voltage (EN1/EN2/LowQ™) ...... 0V to VIN  
Junction Temperature (TJ) ..................-40°C to +125°C  
Package Thermal Resistance  
MLF-10 (θJA)................................................. 63°C/W  
Electrical Characteristics (Full Power Mode)  
VIN = VOUT + 1.0V for higher output of the regulator pair; LowQ™ = VIN; COUT = 2.2µF, IOUT = 100µA; TJ = 25°C, bold  
values indicate -40°C to +125, unless noted.  
Parameter  
Output Voltage Accuracy  
Conditions  
Min  
-1.0  
-2.0  
Typ  
Max  
+1.0  
+2.0  
0.3  
0.6  
Units  
%
%
Variation from nominal VOUT  
Variation from nominal VOUT; -40°C to +125°C  
VIN = VOUT +1V to 5.5V  
Line Regulation  
Load Regulation  
Dropout Voltage  
0.02  
%/V  
I
OUT = 100  
µ
A to 150mA  
A to 300mA  
0.35  
0.7  
1.0  
1.5  
%
%
IOUT = 100  
µ
IOUT = 150mA  
OUT = 300mA  
60  
120  
mV  
mV  
240  
I
Ground Pin Current  
45  
50  
µA  
µA  
µA  
IOUT1 = IOUT2 = 100µA to 300mA  
28  
Ground Pin Current in  
Shutdown  
VEN < 0.2V  
0.1  
Ripple Rejection  
f = up to 1kHz; COUT = 2.2  
f = 1kHz – 20kHz; COUT = 2.2  
µ
F ceramic; CBYP = 10nF  
65  
35  
dB  
dB  
µF ceramic; CBYP = 10nF  
Current Limit  
Output Voltage Noise  
350  
450  
45  
700  
mA  
µVrms  
VOUT = 0V (Both Regulators)  
COUT = 2.2µF, CBYP = 0.01µF, 10Hz to 100kHz  
Enable and LowQ™ Input (EN1/EN2/LowQ)  
Enable Input Voltage  
Logic Low  
Logic High  
0.2  
V
1.0  
V
Enable Input Current  
VIL < 0.2V  
VIH > 1.0V  
COUT = 2.2µF; CBYP = 0.01µF  
0.1  
0.1  
300  
1
1
500  
µA  
µA  
µs  
Turn-on Time  
Light Load Response  
Response Time (4)  
Into Light Load  
50  
50  
µs  
µs  
Out of Light Load  
3
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
Electrical Characteristics (LowQ™ Mode)  
VIN = VOUT + 1.0V for higher output of the regulator pair; LowQ™ = 0V; COUT = 2.2µF, IOUT = 100µA; TJ = 25°C, bold  
values indicate -40°C to +125°C, unless noted.  
Parameter  
Output Voltage Accuracy  
Conditions  
Variation from nominal VOUT  
Min  
-2.0  
-3.0  
Typ  
Max Units  
+2.0  
%
%
+3.0  
Line Regulation  
Load Regulation  
Dropout Voltage  
VIN = VOUT +1V to 5.5V  
0.02  
0.1  
0.3  
0.6  
0.5  
%/V  
%
IOUT = 100µA to 10mA  
IOUT = 10mA  
100  
200  
mV  
Ground Pin Current  
Both outputs enabled  
7
10  
12  
1.0  
µA  
µA  
µA  
Ground Pin Current in  
Shutdown  
VEN < 0.2V  
0.01  
Ripple Rejection  
f = up to 1kHz; COUT = 2.2µF ceramic; CBYP = 10nF  
45  
30  
dB  
dB  
f = 1kHz – 20kHz; COUT = 2.2µF ceramic; CBYP = 10nF  
Current Limit  
VOUT = 0V (Both regulators)  
40  
75  
150  
mA  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. The maximum allowable power dissipation of any TA (ambient temperature) is PD(max) = TJ(max) – TA / θJA. Exceeding the maximum  
allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.  
4. Response time defined as the minimum hold-off time after the LowQcommand before applying load transients.  
4
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
Typical Characteristics  
Ripple Rejection  
vs. ILOAD (Normal Mode)  
90  
Ripple Rejection  
LowQ Mode  
Output Voltage  
vs. Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.7  
2.65  
2.6  
80  
70  
60  
2.55  
2.5  
50  
50mA  
40  
150mA  
2.45  
2.4  
VOUT=1.85V  
IN=VOUT+1V  
ILOAD=10mA  
OUT= 2.2 µF Ceramic  
VOUT=1.85V  
30  
V
=VOUT+1V  
VIN  
20  
10  
0
C
OUT=2.2µF  
CBYP= 10nF  
1k  
2.35  
2.3  
C
300mA  
1M  
100µA  
25  
0
50  
75  
100 125  
10  
1k  
1M  
10k 100k  
100  
10  
100  
10k 100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Dropout vs.  
Temperature (Normal Mode)  
Dropout vs.  
Temperature (LowQ Mode)  
140  
Dropout Characteristics  
3
2.5  
2
160  
300mA  
150mA  
100mA  
10mA  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
150mA  
300mA  
6mA  
3mA  
1.5  
1
60  
40  
50mA  
0.5  
20  
VOUT=2.6V  
0
0
0
1
2
3
4
5
6
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
SUPPLY VOLTAGE (V)  
Ground Current  
vs. Supply Voltage  
Ground Current  
vs. Temperature  
Ground Current  
vs. Temperature (LowQ Mode)  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
9
300mA  
300mA  
8
50mA  
10mA  
7
100µA  
100mA  
100mA  
6
5
4
3
2
1
0
150mA  
150mA  
10mA LowQ™  
0
0
-40 -20  
0
20 40 60 80 100120  
1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3  
SUPPLY VOLTAGE (V)  
-40 -20  
0
20 40 60 80 100 120  
Output Noise  
Spectral Density  
1
0.1  
VIN = 4.45V  
COUT = 2.2 µF  
CBYP = 0.01µF  
VOUT = 1.8V  
ROUT  
0.01  
0.001  
10M  
10k 100k 1M  
10 100  
FREQUENCY (Hz)  
1k  
5
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
Functional Characteristics  
Enable On- Normal  
Enable Off - Normal  
ILOAD = 200mA  
VOUT = 2.6V  
ILOAD = 200mA  
VOUT = 2.6V  
Time (40µs/div)  
Time (10µs/div)  
Line Transient - LowQ  
Line Transient - Normal  
5.5V  
5.5V  
4V  
4V  
VOUT = 2.6V  
VIN = VOUT + 1V  
COUT = 2.2µF  
LowQ = 0V  
ILOAD = 300mA  
VOUT = 2.6V  
COUT = 2.2µF  
LowQ = 5.5V  
ILOAD = 10mA  
Time (200µs/div)  
Time (40µs/div)  
Load Transient - LowQ  
Load Transient - Normal  
300mA  
10mA  
0mA  
100µA  
VOUT = 2.6V  
= VOUT + 1V  
COUT = 2.2µF  
VOUT = 2.6V  
VIN = VOUT + 1V  
COUT = 2.2µF  
V
IN  
Time (200µs/div)  
Time (1ms/div)  
6
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
Functional Characteristics (cont.)  
Normal to LowQ Transient  
LowQ to Normal Transient  
TM  
TM  
LowQ  
LowQ  
Normal  
Normal  
ILOAD = 10mA  
ILOAD = 10mA  
Time (40µs/div)  
Time (40µs/div)  
7
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
Functional Diagram  
VIN  
VOUT1  
VOUT2  
LDO1  
EN1  
LOWQ  
EN2  
LowQ™  
LDO2  
BYP  
Reference  
GND  
MIC5311 Block Diagram  
8
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
Functional Description  
Thermal Considerations  
The MIC5311 is designed to provide 300mA of  
continuous current per channel in a very small MLF  
package. Maximum power dissipation can be calculated  
based on the output current and the voltage drop across  
the part. To determine the maximum power dissipation  
of the package, use the junction-to-ambient thermal  
resistance of the device and the following basic  
equation:  
The MIC5311 is a high performance, low quiescent  
current power management IC consisting of two µCap  
low dropout regulators with a LowQ™ mode featuring  
lower operating current. Both regulators are capable of  
sourcing 300mA.  
Enable 1 and 2  
The enable inputs allow for logic control of both output  
voltages with individual enable inputs. The enable input  
is active high, requiring 1.0V for guaranteed operation.  
The enable input is CMOS logic and cannot be left  
floating.  
PD (max) = (TJ (max) - TA) /θJA  
TJ (max) is the maximum junction temperature of the  
die, 125°C, and TA is the ambient operating  
temperature. θJA is layout dependent; Table 1 shows  
examples of the junction-to-ambient thermal resistance  
for the MIC5311.  
LowQMode  
The LowQ™ pin is logic level low, requiring <0.2V to  
enter the LowQ™ mode. The LowQ™ pin cannot be left  
floating. Features of the LowQ™ mode include lower  
total quiescent current of typically 7uA.  
θ
JA Recommended  
Minimum Footprint  
Package  
θJC  
Input Capacitor  
3x3 MLF™-10  
63°C/W  
2°C/W  
Good bypassing is recommended from input to ground  
to help improve AC performance. A 1µF capacitor or  
greater located close to the IC is recommended. Larger  
load currents may require larger capacitor values.  
Table 1. MLF™ Thermal Resistance  
The actual power dissipation of the regulator circuit can  
be determined using the equation:  
P
P
P
DTOTAL = PD LDO1 + PD LDO2  
D LDO1 = (VIN-VOUT1) x IOUT1  
D LDO2 = (VIN-VOUT2) x IOUT2  
Bypass Capacitor  
The internal reference voltage of the MIC5311 can be  
bypassed with a capacitor to ground to reduce output  
noise and increase input ripple rejection (PSRR). A  
quick-start feature allows for quick turn-on of the output  
voltage. The recommended nominal bypass capacitor is  
0.01µF, but an increase will result in longer turn on  
times ton.  
Substituting PD(max) for PD and solving for the operating  
conditions that are critical to the application will give the  
maximum operating conditions for the regulator circuit.  
For example, when operating the MIC5311 at 60°C with  
a minimum footprint layout, the maximum load currents  
can be calculated as follows:  
Output Capacitor  
Each regulator output requires a 2.2µF ceramic output  
capacitor for stability. The output capacitor value can be  
increased to improve transient response, but  
performance has been optimized for a 2.2µF ceramic  
type output capacitor. X7R/X5R dielectric-type ceramic  
capacitors are recommended because of their  
temperature performance. X7R-type capacitors change  
capacitance by 15% over their operating temperature  
range and are the most stable type of ceramic  
capacitors. Z5U and Y5V dielectric capacitors change  
value by as much as 50% to 60% respectively over their  
operating temperature ranges. To use a ceramic chip  
capacitor with Y5V dielectric, the value must be much  
higher than a X7R ceramic capacitor to ensure the same  
minimum capacitance over the equivalent operating  
temperature range.  
PD (max) = (TJ (max) - TA) /θJA  
PD (max) = (125°C - 60°C) / 63°C/W  
PD (max) = 1.03W  
The junction-to-ambient thermal resistance for the  
minimum footprint is 63°C/W, from Table 1. The  
maximum power dissipation must not be exceeded for  
proper operation. Using a lithium-ion battery as the  
supply voltage of 4.2V, 1.8VOUT/150mA for channel 1  
and 2.8VOUT/100mA for channel 2, power dissipation  
can be calculated as follows:  
PD LDO1 = (VIN-VOUT1) x IOUT1  
PD LDO1 = (4.2V-1.8V) x 150mA  
PD LDO1 = 360mW  
PD LDO2 = (VIN-VOUT2) x IOUT2  
PD LDO1 = (4.2V-2.8V) x 100mA  
D LDO1 = 140mW  
P
9
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
PDTOTAL = PD LDO1 + PD LDO2  
PDTOTAL = 360mW + 140mW  
T
T
T
A(max) = TJ(max) – (PD x θJA)  
A(max) = 125°C – (500mW x 63°C/W)  
A(max) = 93.5°C  
PDTOTAL = 500mW  
The calculation shows that we are well below the  
maximum allowable power dissipation of 1.03W for a  
60° ambient temperature.  
For a full discussion of heat sinking and thermal effects  
on voltage regulators, refer to the “Regulator Thermals”  
section of Micrel’s Designing with Low-Dropout Voltage  
Regulators handbook.  
After the maximum power dissipation has been  
calculated, it is always a good idea to calculate the  
maximum ambient temperature for a 125° junction  
temperature. Calculating maximum ambient temperature  
as follows:  
This information can be found on Micrel's website at:  
http://www.micrel.com/_PDF/other/LDOBk_ds.pdf  
10  
M9999-032706  
(408) 955-1690  
March 2006  
Micrel, Inc.  
MIC5311  
Package Information  
10-Pin 3x3 MLF (MLF)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for  
its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a  
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for  
surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant  
injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk  
and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.  
© 2004 Micrel, Incorporated.  
11  
M9999-032706  
(408) 955-1690  
March 2006  

相关型号:

MIC5311-GMBML

LowQ Mode Dual 300mA LDO
MICREL

MIC5311-GMYML

LowQ? Mode Dual 300mA LDO
MICREL

MIC5311-NLYML

LowQ? Mode Dual 300mA LDO
MICREL

MIC5311-NLYML-TR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10
MICROCHIP

MIC5311-NLYMLTR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLF-10
MICREL

MIC5311_06

LowQ? Mode Dual 300mA LDO
MICREL

MIC5312

LowQ Mode Dual 300mA LDO with Integrated POR
MICREL

MIC5312-1.8/2.8BML

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, DSO10
MICROCHIP

MIC5312-1.85/2.6BML

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, DSO10
MICROCHIP

MIC5312-DKBML

LowQ Mode Dual 300mA LDO with Integrated POR
MICREL

MIC5312-DKBMLTR

Fixed Positive LDO Regulator, 2 Output, 1.85V1, 2.6V2, PDSO10, 3 X 3 MM, MLF-10
MICREL

MIC5312-DKYML-TR

IC REG LDO 1.85V/2.6V 0.3A 10MLF
MICROCHIP