MIC5320-3.0/2.6YML [MICREL]

Dual, High Performance 150mA uCap ULDO; 双通道,高性能150毫安UCAP ULDO
MIC5320-3.0/2.6YML
型号: MIC5320-3.0/2.6YML
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Dual, High Performance 150mA uCap ULDO
双通道,高性能150毫安UCAP ULDO

文件: 总13页 (文件大小:418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5320  
Dual, High Performance 150mA µCap ULDO™  
General Description  
Features  
The MIC5320 is a tiny Dual Ultra Low-Dropout  
(ULDO™) linear regulator ideally suited for portable  
electronics. It is ideal for general purpose/ digital  
applications which require high power supply ripple  
rejection (PSRR) >65dB, eliminating the need for a  
bypass capacitor and providing two enable pins for  
maximum flexibility. The MIC5320 integrates two high-  
performance; 150mA ULDOs into a tiny 6-pin 1.6mm x  
1.6mm leadless MLF® package, which provides  
exceptional thermal package characteristics.  
2.3V to 5.5V input voltage range  
Ultra-low dropout voltage ULDO™ 35mV @  
150mA  
Tiny 6-pin 1.6mm x 1.6mm MLF® leadless  
package  
Low cost TSOT-23-6 package  
Independent enable pins  
PSRR – >65dB on each LDO  
150mA output current per LDO  
µCap stable with 1µF ceramic capacitor  
Low quiescent current – 85µA per output  
Fast turn-on time – 30µs  
The MIC5320 is a µCap design which enables  
operation with very small ceramic output capacitors  
for stability, thereby reducing required board space  
and component cost. The combination of extremely  
low-drop-out voltage, high power supply rejection and  
exceptional thermal package characteristics makes it  
ideal for powering cellular phone camera modules,  
imaging sensors for digital still cameras, PDAs, MP3  
players and WebCam applications.  
Thermal shutdown protection  
Current limit protection  
Applications  
Mobile phones  
The MIC5320 ULDO™ is available in fixed-output  
voltages in the tiny 6-pin 1.6mm x 1.6mm leadless  
MLF® package which is only 2.56mm2 in area, less  
than 30% the area of the SOT-23, TSOP and MLF®  
3x3 packages. It’s also available in the thin SOT-23-6  
lead package. Additional voltage options are  
available. For more information, contact Micrel  
marketing department.  
PDAs  
GPS receivers  
Portable electronics  
Portable media players  
Digital still and video cameras  
Data sheets and supporting documentation can be  
found on Micrel’s web site at www.micrel.com.  
Typical Application  
MIC5320-x.xYML  
Rx/Synth  
Tx  
VIN  
VOUT 1  
VOUT 2  
EN 1  
EN 2  
1µF  
RF  
Transceiver  
GND  
1µF  
1µF  
RF Power Supply Circuit  
ULDO is a trademark of Micrel, Inc.  
MLF and MicroLeadFrame are registered trademarks of Amkor Technologies, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
Ordering Information  
Part number  
Manufacturing  
Part Number  
Voltage  
Junction Temperature  
Range  
Package  
MIC5320-1.8/1.5YML  
MIC5320-1.8/1.6YML  
MIC5320-2.5/1.8YML  
MIC5320-2.5/2.5YML  
MIC5320-2.6/1.85YML  
MIC5320-2.6/1.8YML  
MIC5320-2.7/2.7YML  
MIC5320-2.8/1.5YML  
MIC5320-2.8/1.8YML  
MIC5320-2.8/2.6YML  
MIC5320-2.8/2.8YML  
MIC5320-2.8/2.85YML  
MIC5320-2.85/1.85YML  
MIC5320-2.85/2.6YML  
MIC5320-2.85/2.85YML  
MIC5320-2.9/1.5YML  
MIC5320-2.9/1.8YML  
MIC5320-2.9/2.9YML  
MIC5320-3.0/1.8YML  
MIC5320-3.0/2.5YML  
MIC5320-3.0/2.6YML  
MIC5320-3.0/2.8YML  
MIC5320-3.0/2.85YML  
MIC5320-3.0/3.0YML  
MIC5320-3.3/1.5YML  
MIC5320-3.3/1.8YML  
MIC5320-3.3/2.5YML  
MIC5320-3.3/2.6YML  
MIC5320-3.3/2.7YML  
MIC5320-3.3/2.8YML  
MIC5320-3.3/2.85YML  
MIC5320-3.3/2.9YML  
MIC5320-3.3/3.0YML  
MIC5320-3.3/3.2YML  
MIC5320-3.3/3.3YML  
MIC5320-1.8/1.5YD6  
MIC5320-1.8/1.6YD6  
MIC5320-2.5/1.8YD6  
MIC5320-2.5/2.5YD6  
MIC5320-2.6/1.85YD6  
MIC5320-2.6/1.8YD6  
MIC5320-2.7/2.7YD6  
MIC5320-2.8/1.5YD6  
MIC5320-2.8/1.8YD6  
MIC5320-2.8/2.6YD6  
MIC5320-2.8/2.8YD6  
MIC5320-GFYML  
MIC5320-GWYML  
MIC5320-JGYML  
MIC5320-JJYML  
MIC5320-KDYML  
MIC5320-KGYML  
MIC5320-LLYML  
MIC5320-MFYML  
MIC5320-MGYML  
MIC5320-MKYML  
MIC5320-MMYML  
MIC5320-MNYML  
MIC5320-NDYML  
MIC5320-NKYML  
MIC5320-NNYML  
MIC5320-OFYML  
MIC5320-OGYML  
MIC5320-OOYML  
MIC5320-PGYML  
MIC5320-PJYML  
MIC5320-PKYML  
MIC5320-PMYML  
MIC5320-PNYML  
MIC5320-PPYML  
MIC5320-SFYML  
MIC5320-SGYML  
MIC5320-SJYML  
MIC5320-SKYML  
MIC5320-SLYML  
MIC5320-SMYML  
MIC5320-SNYML  
MIC5320-SOYML  
MIC5320-SPYML  
MIC5320-SRYML  
MIC5320-SSYML  
MIC5320-GFYD6  
MIC5320-GWYD6  
MIC5320-JGYD6  
MIC5320-JJYD6  
MIC5320-KDYD6  
MIC5320-KGYD6  
MIC5320-LLYD6  
MIC5320-MFYD6  
MIC5320-MGYD6  
MIC5320-MKYD6  
MIC5320-MMYD6  
1.8V/1.5V  
1.8V/1.6V  
2.5V/1.8V  
2.5V/2.5V  
2.6V/1.85  
2.6V/1.8V  
2.7V/2.7V  
2.8V/1.5V  
2.8V/1.8V  
2.8V/2.6V  
2.8V/2.8V  
2.8V/2.85V  
2.85V/1.85V  
2.85V/2.6V  
2.85V/2.85V  
2.9V/1.5V  
2.9V/1.8V  
2.9V/2.9V  
3.0V/1.8V  
3.0V/2.5V  
3.0V/2.6V  
3.0V/2.8V  
3.0V/2.85V  
3.0V/3.0V  
3.3V/1.5V  
3.3V/1.8V  
3.3V/2.5V  
3.3V/2.6V  
3.3V/2.7V  
3.3V/2.8V  
3.3V/2.85V  
3.3V/2.9V  
3.3V/3.0V  
3.3V/3.2V  
3.3V/3.3V  
1.8V/1.5V  
1.8V/1.6V  
2.5V/1.8V  
2.5V/2.5V  
2.6V/1.85  
2.6V/1.8V  
2.7V/2.7V  
2.8V/1.5V  
2.8V/1.8V  
2.8V/2.6V  
2.8V/2.8V  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin 1.6x1.6 MLF®  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
2
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
MIC5320-2.8/2.85YD6  
MIC5320-MNYD6  
MIC5320-NDYD6  
MIC5320-NKYD6  
MIC5320-NNYD6  
MIC5320-OFYD6  
MIC5320-OGYD6  
MIC5320-OOYD6  
MIC5320-PGYD6  
MIC5320-PJYD6  
MIC5320-PKYD6  
MIC5320-PMYD6  
MIC5320-PNYD6  
MIC5320-PPYD6  
MIC5320-SFYD6  
MIC5320-SGYD6  
MIC5320-SJYD6  
MIC5320-SKYD6  
MIC5320-SLYD6  
MIC5320-SMYD6  
MIC5320-SNYD6  
MIC5320-SOYD6  
MIC5320-SPYD6  
MIC5320-SRYD6  
MIC5320-SSYD6  
2.8V/2.85V  
2.85V/1.85V  
2.85V/2.6V  
2.85V/2.85V  
2.9V/1.5V  
2.9V/1.8V  
2.9V/2.9V  
3.0V/1.8V  
3.0V/2.5V  
3.0V/2.6V  
3.0V/2.8V  
3.0V/2.85V  
3.0V/3.0V  
3.3V/1.5V  
3.3V/1.8V  
3.3V/2.5V  
3.3V/2.6V  
3.3V/2.7V  
3.3V/2.8V  
3.3V/2.85V  
3.3V/2.9V  
3.3V/3.0V  
3.3V/3.2V  
3.3V/3.3V  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
6-Pin TSOT-23  
MIC5320-2.85/1.85YD6  
MIC5320-2.85/2.6YD6  
MIC5320-2.85/2.85YD6  
MIC5320-2.9/1.5YD6  
MIC5320-2.9/1.8YD6  
MIC5320-2.9/2.9YD6  
MIC5320-3.0/1.8YD6  
MIC5320-3.0/2.5YD6  
MIC5320-3.0/2.6YD6  
MIC5320-3.0/2.8YD6  
MIC5320-3.0/2.85YD6  
MIC5320-3.0/3.0YD6  
MIC5320-3.3/1.5YD6  
MIC5320-3.3/1.8YD6  
MIC5320-3.3/2.5YD6  
MIC5320-3.3/2.6YD6  
MIC5320-3.3/2.7YD6  
MIC5320-3.3/2.8YD6  
MIC5320-3.3/2.85YD6  
MIC5320-3.3/2.9YD6  
MIC5320-3.3/3.0YD6  
MIC5320-3.3/3.2YD6  
MIC5320-3.3/3.3YD6  
Note:  
1. Other Voltages available. Contact Micrel for detail.  
3
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
Pin Configuration  
GND  
2
VIN  
3
EN2  
1
VIN  
GND  
EN2  
1
2
3
6
5
4
VOUT1  
VOUT2  
EN1  
4
5
6
VOUT2  
VOUT1  
EN1  
6-Pin 1.6mm x 1.6mm MLF (ML)  
Top View  
TSOT-23-6 (D6)  
Top View  
Pin Description  
Pin Number  
MLF-6  
Pin Number  
TSOT-23-6  
Pin Name  
Pin Function  
1
2
3
3
2
1
VIN  
GND  
EN2  
Supply Input.  
Ground  
Enable Input (regulator 2). Active High Input. Logic High = On; Logic Low = Off;  
Do not leave floating.  
4
6
EN1  
Enable Input (regulator 1). Active High Input. Logic High = On; Logic Low = Off;  
Do not leave floating.  
5
6
5
4
VOUT2  
VOUT1  
Regulator Output – LDO2  
Regulator Output – LDO1  
4
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN).....................................0V to +6V  
Enable Input Voltage (VEN)...........................0V to +6V  
Power Dissipation………………… Internally Limited(3)  
Lead Temperature (soldering, 3sec)..................260°C  
Storage Temperature (TS)................ –65°C to +150°C  
ESD Rating(4) .........................................................2kV  
Supply Voltage (VIN).............................. +2.3V to +5.5V  
Enable Input Voltage (VEN).............................. 0V to VIN  
Junction Temperature (TJ) ................. –40°C to +125°C  
Junction Thermal Resistance  
MLF-6 (θJA)..............................................100°C/W  
TSOT-6 (θJA) ...........................................235°C/W  
Electrical Characteristics(5)  
VIN = EN1 = EN2 = VOUT + 1.0V; higher of the two regulator outputs, IOUTLDO1 = IOUTLDO2 = 100µA; COUT1 = COUT2 = 1µF;  
TJ = 25°C, bold values indicate –40°C TJ +125°C, unless noted.  
Parameter  
Conditions  
Min  
-2.0  
-3.0  
Typ  
Max  
+2.0  
+3.0  
Units  
%
Output Voltage Accuracy  
Variation from nominal VOUT  
Variation from nominal VOUT; –40°C to +125°C  
VIN = VOUT + 1V to 5.5V; IOUT = 100µA  
%
Line Regulation  
0.02  
0.3  
0.6  
%/V  
%/V  
Load Regulation  
Dropout Voltage (6)  
IOUT = 100µA to 150mA  
IOUT = 100µA  
0.5  
0.1  
12  
2
%
mV  
mV  
mV  
mV  
µA  
I
I
I
OUT = 50mA  
OUT = 100mA  
OUT = 150mA  
50  
75  
25  
35  
100  
120  
120  
190  
2
Ground Current  
EN1 = High; EN2 = Low; IOUT = 100µA to 150mA  
EN1 = Low; EN2 = High; IOUT = 100µA to 150mA  
EN1 = EN2 = High; IOUT1 = 150mA, IOUT2 = 150mA  
EN1 = EN2 = 0V  
85  
85  
µA  
150  
0.01  
65  
µA  
Ground Current in Shutdown  
Ripple Rejection  
µA  
f = 1kHz; COUT = 1.0µF  
dB  
f=20kHz; COUT = 1.0µF  
45  
dB  
Current Limit  
VOUT = 0V  
300  
550  
90  
950  
0.2  
mA  
µVRMS  
Output Voltage Noise  
Enable Inputs (EN1 / EN2)  
Enable Input Voltage  
COUT = 1.0µF; 10Hz to 100KHz  
Logic Low  
Logic High  
VIL 0.2V  
VIH 1.0V  
V
V
1.1  
Enable Input Current  
0.01  
0.01  
1
1
µA  
µA  
Turn-on Time (See Timing Diagram)  
Turn-on Time (LDO1 and 2)  
COUT = 1.0µF  
30  
100  
µs  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. The maximum allowable power dissipation of any TA (ambient temperature) is PD(max) = TJ(max) – TA) / θJA. Exceeding the maximum allowable  
power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.  
4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
5. Specification for packaged product only.  
6. Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal VOUT. For outputs below 2.3V,  
the dropout voltage is the input-to-output differential with the minimum input voltage 2.3V.  
5
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
Functional Diagram  
VOUT 1  
VOUT 2  
VIN  
LDO1  
LDO2  
EN 1  
EN 2  
Enable  
Reference  
GND  
MIC5320 Block Diagram  
6
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
Typical Characteristics  
Power Supply  
Rejection Ratio  
Dropout Voltage  
vs. Output Current  
Output Voltage  
vs. Temperature  
-80  
40  
35  
30  
25  
20  
15  
10  
5
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
-70  
-60  
-50  
150mA  
-40  
-30  
V
V
= V  
+ 1V  
V
V
= V  
+ 1V  
IN  
OUT  
IN  
OUT  
-20  
50mA  
= 2.8V  
= 1µF  
V
V
= V  
+1V  
= 2.8V  
= 1µF  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
C
= 2.8V  
= 1µF  
C
-10 OUT  
EN1 = V  
C
EN1 = V  
IN  
OUT  
IN  
0
0
0.1  
1
10  
100  
1,000  
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
20 40 60 80  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Ground Current  
vs. Temperature  
Ground Current  
vs. Temperature  
Output Voltage  
vs. Input Voltage  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.8V  
100µA  
150mA  
1.5V  
V
V
= V  
+ 1V  
V
V
= V  
+ 1V  
IN  
OUT  
IN  
OUT  
= 2.8V  
= 1µF  
= 2.8V  
= 1µF  
OUT  
OUT  
OUT  
OUT  
C
C
EN1 = V  
EN2 = GND  
EN1 = V  
EN2 = GND  
I = 100µA  
OUT  
IN  
IN  
C
= 1µF  
OUT  
20 40 60 80  
20 40 60 80  
0
1
2
3
4
5 6  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Dropout Voltage  
vs. Temperature  
Output Voltage  
vs. Output Current  
Output Voltage  
vs. Output Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.90  
2.85  
2.80  
1.60  
1.55  
1.50  
1.45  
1.40  
V
V
= V  
+ 1V  
IN  
OUT  
= 2.8V  
= 1µF  
150mA  
100mA  
OUT  
OUT  
C
50mA  
V
V
= V  
+ 1V  
V
V
= V  
+ 1V  
IN  
OUT  
C
OUT  
IN  
OUT  
= 1.5V  
= C  
= 2.8V  
= C  
2.75 OUT  
= 1µF  
OUT2  
C
= 1µF  
OUT2  
OUT1  
OUT1  
100µA  
10mA  
EN1 = GND  
EN1 = V  
IN  
EN2 = V  
EN2 = GND  
IN  
0
2.70  
20 40 60 80  
TEMPERATURE (°C)  
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
Ground Current  
Ground Current  
Current Limit  
vs. Output Current  
vs. Output Current  
vs. Input Voltage  
90  
85  
80  
75  
70  
162  
158  
154  
150  
146  
142  
610  
600  
590  
580  
570  
560  
550  
540  
530  
520  
510  
V
V
= V  
OUT  
+ 1V  
V
V
= V  
OUT  
EN1 = V  
+ 1V  
IN  
OUT  
IN  
OUT  
= 2.85V  
IN  
= 2.85V  
EN1 = EN2 = V  
EN1 = V  
IN  
IN  
C
= C  
= 1µF  
C
= 1µF  
C
= 1µF  
OUT1  
OUT2  
OUT  
OUT1  
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
7
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
Typical Characteristics (continued)  
Output Noise  
Spectral Density  
10  
0.1  
V
V
= 4V  
IN  
OUT  
0.01  
= 2.8V  
= 1µF  
C
OUT  
I
= 50mA  
LOAD  
0.001  
0.01 0.1  
1
10  
100 1,000  
FREQUENCY (kHz)  
8
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
Functional Characteristics  
Enable Turn-On  
Load Transient  
V
V
= V  
+ 1V  
OUT  
IN  
150mA  
= 2.8V  
= 1µF  
OUT  
C
OUT  
V
V
= V  
+ 1V  
OUT  
IN  
10mA  
= 2.8V  
= 1µF  
OUT  
C
OUT  
Time (10µs/div)  
Time (40µs/div)  
Line Transient  
5.5V  
4V  
V
V
= V  
+ 1V  
OUT  
IN  
= 2.8V  
= 1µF  
OUT  
C
OUT  
OUT  
I
= 10mA  
Time (40µs/div)  
9
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
Applications Information  
Enable/Shutdown  
Thermal Considerations  
The MIC5320 comes with dual active-high enable pins  
that allow each regulator to be disabled  
independently. Forcing the enable pin low disables the  
regulator and sends it into a “zero” off-mode-current  
state. In this state, current consumed by the regulator  
goes nearly to zero. Forcing the enable pin high  
enables the output voltage. The active-high enable pin  
uses CMOS technology and the enable pin cannot be  
left floating; a floating enable pin may cause an  
indeterminate state on the output.  
The MIC5320 is designed to provide 150mA of  
continuous current for both outputs in a very small  
package. Maximum ambient operating temperature  
can be calculated based on the output current and the  
voltage drop across the part. Given that the input  
voltage is 3.3V, the output voltage is 2.8V for VOUT1  
,
1.5V for VOUT2 and the output current = 150mA. The  
actual power dissipation of the regulator circuit can be  
determined using the equation:  
PD = (VIN – VOUT1) IOUT1 + (VIN – VOUT2) IOUT2+ VIN IGND  
Input Capacitor  
Because this device is CMOS and the ground current  
is typically <150µA over the load range, the power  
dissipation contributed by the ground current is < 1%  
and can be ignored for this calculation.  
The MIC5320 is a high-performance, high bandwidth  
device. Therefore, it requires a well-bypassed input  
supply for optimal performance. A 1µF capacitor is  
required from the input to ground to provide stability.  
Low-ESR ceramic capacitors provide optimal  
performance at a minimum of space. Additional high-  
frequency capacitors, such as small-valued NPO  
dielectric-type capacitors, help filter out high-  
frequency noise and are good practice in any RF-  
based circuit.  
PD = (3.3V – 2.8V) × 150mA + (3.3V -1.5) × 150mA  
PD = 0.345W  
To determine the maximum ambient operating  
temperature of the package, use the junction-to-  
ambient thermal resistance of the device and the  
following basic equation:  
Output Capacitor  
The MIC5320 requires an output capacitor of 1µF or  
greater to maintain stability. The design is optimized  
for use with low-ESR ceramic chip capacitors. High  
ESR capacitors may cause high frequency oscillation.  
The output capacitor can be increased, but  
performance has been optimized for a 1µF ceramic  
output capacitor and does not improve significantly  
with larger capacitance.  
T
J(MAX) - TA  
PD(MAX)  
=
JA  
TJ(max) = 125°C, the maximum junction temperature of  
the die θJA thermal resistance = 100°C/W.  
The table below shows junction-to-ambient thermal  
resistance for the MIC5320 in different packages.  
X7R/X5R dielectric-type ceramic capacitors are  
recommended because of their temperature  
θJA  
performance.  
X7R-type  
capacitors  
change  
Recommended  
capacitance by 15% over their operating temperature  
range and are the most stable type of ceramic  
capacitors. Z5U and Y5V dielectric capacitors change  
value by as much as 50% and 60%, respectively, over  
their operating temperature ranges. To use a ceramic  
chip capacitor with Y5V dielectric, the value must be  
much higher than an X7R ceramic capacitor to ensure  
the same minimum capacitance over the equivalent  
operating temperature range.  
Package  
θJC  
Minimum  
Footprint  
6-Pin 1.6x1.6 MLF®  
100°C/W  
2°C/W  
Thermal Resistance  
Substituting PD for PD(max) and solving for the ambient  
operating temperature will give the maximum  
operating conditions for the regulator circuit. The  
junction-to-ambient thermal resistance for the  
minimum footprint is 100°C/W.  
No-Load Stability  
Unlike many other voltage regulators, the MIC5320  
will remain stable and in regulation with no load. This  
is especially important in CMOS RAM keep-alive  
applications.  
The maximum power dissipation must not be  
exceeded for proper operation.  
10  
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
For example, when operating the MIC5320-MFYML at  
an input voltage of 3.3V and 150mA loads at each  
output with a minimum footprint layout, the maximum  
ambient operating temperature TA can be determined  
as follows:  
Therefore, a 2.8V/1.5V application with 150mA at  
each output current can accept an ambient operating  
temperature of 90.5°C in a 1.6mm x 1.6mm MLF®  
package. For a full discussion of heat sinking and  
thermal effects on voltage regulators, refer to the  
“Regulator Thermals” section of Micrel’s Designing  
with Low-Dropout Voltage Regulators handbook. This  
information can be found on Micrel's website at:  
0.345W = (125°C – TA)/(100°C/W)  
TA=90.5°C  
http://www.micrel.com/_PDF/other/LDOBk_ds.pdf  
11  
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
Package Information  
6-Pin 1.6mm x 1.6mm MLF (ML)  
6-Pin TSOT-23 (D6)  
12  
M9999-073106  
July 2006  
Micrel, Inc.  
MIC5320  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for  
its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a  
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for  
surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant  
injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk  
and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.  
© 2005 Micrel, Inc.  
13  
M9999-073106  
July 2006  

相关型号:

MIC5320-3.0/2.6YML-TR

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MIC5320-3.0/2.6YMT

High-Performance Dual 150mA μCap ULDO™
MICREL

MIC5320-3.0/2.6YMT-TR

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MIC5320-3.0/2.85YD6

Dual, High Performance 150mA uCap ULDO
MICREL

MIC5320-3.0/2.85YD6

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO6
MICROCHIP

MIC5320-3.0/2.85YD6TX

IC,VOLT REGULATOR,FIXED,+2.85V & +3.0V,CMOS,TSOP,6PIN,PLASTIC
MICROCHIP

MIC5320-3.0/2.85YML

Dual, High Performance 150mA uCap ULDO
MICREL

MIC5320-3.0/2.85YMT

High-Performance Dual 150mA μCap ULDO™
MICREL

MIC5320-3.0/2.85YMT-TR

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MIC5320-3.0/2.8YD6

Dual, High Performance 150mA uCap ULDO
MICREL

MIC5320-3.0/2.8YD6-TR

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MIC5320-3.0/2.8YML

Dual, High Performance 150mA uCap ULDO
MICREL