MIC913 [MICREL]

350MHz Low-Power SOT-23-5 Op Amp; 350MHz的低功耗SOT- 23-5运算放大器
MIC913
型号: MIC913
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

350MHz Low-Power SOT-23-5 Op Amp
350MHz的低功耗SOT- 23-5运算放大器

运算放大器
文件: 总12页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC913  
350MHz Low-Power SOT-23-5 Op Amp  
General Description  
Features  
The MIC913 is a high-speed, operational amplifier. It pro-  
vides a gain-bandwidth product of 350MHz with a very low,  
4.2mA supply current, and features the tiny SOT-23-5 pack-  
age.  
• 350MHz gain bandwidth product  
• 4.2mA supply current  
• SOT-23-5 package  
• 500V/µs slew rate  
• Drives any capacitive load  
• Low distortion  
• Stable with gain of +2 or –1  
Supply voltage range is from 2.5V to 9V, allowing the  
MIC913 to be used in low-voltage circuits or applications  
requiring large dynamic range.  
The MIC913 requires a minimum gain of +2 or –1 but is stable  
driving any capacitative load and achieves excellent PSRR,  
making it much easier to use than most conventional high-  
speed devices. Low supply voltage, low power consumption,  
and small packing make the MIC913 ideal for portable  
equipment. The ability to drive capacitative loads also makes  
it possible to drive long coaxial cables.  
Applications  
• Video  
• Imaging  
• Ultrasound  
• Portable equipment  
• Line drivers  
• XDSL  
Ordering Information  
Part Number  
Junction Temp. Range  
Package  
MIC913BM5  
–40°C to +85°C  
SOT-23-5  
Pin Configuration  
Functional Pinout  
IN+ V+ OUT  
IN+ V+ OUT  
3
2
1
3
2
1
Part  
Identification  
A24  
4
5
4
5
IN–  
V–  
IN–  
V–  
SOT-23-5  
SOT-23-5  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
2
3
4
5
OUT  
V+  
Output: Amplifier Output  
Positive Supply (Input)  
Noninverting Input  
IN+  
IN–  
V–  
Inverting Input  
Negative Supply (Input)  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
August 2000  
1
MIC913  
MIC913  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V V )...........................................20V  
Supply Voltage (V ) ....................................... 2.5V to 9V  
V+  
V–  
S
Differential Input Voltage (V  
V ) ..........4V, Note 3  
Junction Temperature (T ) ......................... 40°C to +85°C  
IN+  
IN–  
J
Input Common-Mode Range (V , V ) .......... V to V  
Package Thermal Resistance ...............................260°C/W  
IN+  
IN–  
V+  
V–  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
Storage Temperature (T ) ........................................ 150°C  
S
ESD Rating, Note 4 ................................................... 1.5kV  
Electrical Characteristics ( 5V)  
VV+ = +5V, VV= 5V, VCM = 0V, VOUT = 0V; RL = 10M; TJ = 25°C, bold values indicate 40°C TJ +85°C; unless noted.  
Symbol  
VOS  
Parameter  
Condition  
Min  
Typ  
1
Max  
16  
Units  
mV  
Input Offset Voltage  
VOS  
Input Offset Voltage  
Temperature Coefficient  
4
µV/°C  
IB  
Input Bias Current  
5.5  
9
15  
µA  
µA  
IOS  
Input Offset Current  
0.05  
3
µA  
V
VCM  
Input Common-Mode Range  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR > 60dB  
3.25  
+3.25  
CMRR  
PSRR  
2.0V < VCM < +2.0V  
5V < VS < 9V  
70  
85  
81  
dB  
70  
65  
dB  
dB  
AVOL  
Large-Signal Voltage Gain  
RL = 2k, VOUT = 2V  
RL = 200, VOUT = 2V  
positive, RL = 2kΩ  
60  
60  
71  
71  
dB  
dB  
VOUT  
Maximum Output Voltage Swing  
+3.3  
+3.0  
3.5  
V
V
negative, RL = 2kΩ  
positive, RL = 200Ω  
negative, RL = 200Ω  
3.5  
3.2  
3.3  
3.0  
V
V
+3.0  
+2.75  
V
V
2.8  
2.45  
2.2  
V
V
GBW  
BW  
Gain-Bandwidth Product  
f = 80MHz, RL = 1kΩ  
300  
213  
104  
0.01  
MHz  
MHz  
MHz  
%
3dB Bandwidth  
AV = 2, RL = 150Ω  
AV = 4 or AV = 3, RL = 400-  
THD  
Total Harmonic Distortion  
RF = RG = 470, AV = 2, VOUT = 2Vpp,  
f = 2MHz  
AV = 2, VOUT = 2Vpp, f = 2MHz, RL = 500Ω  
0.05  
350  
72  
%
SR  
Slew Rate  
V/µs  
mA  
mA  
IGND  
Short-Circuit Output Current  
source  
sink  
25  
IGND  
Supply Current  
4.1  
4.9  
5.4  
mA  
mA  
MIC913  
2
August 2000  
MIC913  
Micrel  
Electrical Characteristics  
VV+ = +9V, VV= 9V, VCM = 0V, VOUT = 0V; RL = 10M; TJ = 25°C, bold values indicate 40°C TJ +85°C; unless noted  
Symbol  
VOS  
Parameter  
Condition  
Min  
Typ  
1
Max  
16  
Units  
mV  
Input Offset Voltage  
VOS  
Input Offset Voltage  
Temperature Coefficient  
4
µV/°C  
IB  
Input Bias Current  
5.5  
9
15  
µA  
µA  
IOS  
Input Offset Current  
0.05  
3
µA  
V
VCM  
Input Common-Mode Range  
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
Maximum Output Voltage Swing  
CMRR > 60dB  
7.25  
70  
+7.25  
CMRR  
AVOL  
VOUT  
6.0V < VCM < 6.0V  
RL = 2k, VOUT = 6V  
positive, RL = 2kΩ  
88  
73  
dB  
dB  
60  
+7.2  
+6.8  
+7.4  
V
V
negative, RL = 2kΩ  
7.4  
7.2  
6.8  
V
V
GBW  
BW  
Gain-Bandwidth Product  
RL = 1k, f = 80MHz  
AV = 2 or AV = 1, RL = 150Ω  
AV = 4 or AV = 3  
350  
240  
140  
0.01  
MHz  
MHz  
MHz  
%
3dB Bandwidth  
THD  
Total Harmonic Distortion  
RF = RG = 470, AV = 2, VOUT = 2Vpp,  
f = 2MHz  
AV = 2, VOUT = 2Vpp, f = 2MHz, RL = 500Ω  
0.04  
500  
90  
%
SR  
Slew Rate  
V/µs  
mA  
mA  
IGND  
Short-Circuit Output Current  
source  
sink  
32  
IGND  
Supply Current  
4.2  
5.0  
5.5  
mA  
mA  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is  
likely to increase).  
Note 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
August 2000  
3
MIC913  
MIC913  
Micrel  
Test Circuits  
VCC  
10µF  
VCC  
0.1µF  
R2  
5k  
50Ω  
BNC  
Input  
10µF  
0.1µF  
2k  
BNC  
R1 5k  
R7c 2k  
10k  
4
3
0.1µF  
4
2
2
Input  
BNC  
BNC  
1
1
MIC913  
Output  
MIC913  
Output  
10k  
3
R7b 200Ω  
R7a 100Ω  
10k  
5
5
0.1µF  
50Ω  
R6  
5k  
0.1µF  
50Ω  
BNC  
R3  
200k  
R5  
5k  
10µF  
Input  
VEE  
All resistors 1%  
0.1µF  
10µF  
R4  
250Ω  
All resistors:  
1% metal film  
R2 R2 +R5 +R4  
V
=V  
1+  
+
OUT  
ERROR  
VEE  
R1  
R7  
CMRR vs. Frequency  
PSRR vs. Frequency  
100pF  
R2 4k  
VCC  
10µF  
10pF  
R1  
20Ω  
R3 27k  
4
0.1µF  
2
BNC  
To  
Dynamic  
Analyzer  
S1  
S2  
1
MIC913  
3
5
0.1µF  
R5  
20Ω  
R4 27k  
10pF  
10µF  
VEE  
Noise Measurement  
MIC913  
4
August 2000  
MIC913  
Micrel  
Electrical Characteristics  
Supply Current  
vs. Temperature  
Offset Voltage  
Supply Current  
vs. Temperature  
vs. Supply Voltage  
5.0  
4.5  
4.0  
3.5  
1.0  
0.5  
5.0  
VSUPPLY  
= 5V  
+85°C  
4.5  
VSUPPLY  
=
9V  
0.0  
+25°C  
4.0  
-0.5  
-1.0  
-1.5  
VSUPPLY  
= 5V  
VSUPPLY  
= 9V  
3.5  
-40°C  
3.0  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE ( V)  
Bias Current  
vs. Temperature  
Offset Voltage  
Offset Voltage  
vs. Common-Mode Voltage  
vs. Common-Mode Voltage  
10  
8
10  
8
10  
9
8
VSUPPLY  
=
9V  
VSUPPLY = 5V  
+85°C  
7
6
6
+85°C  
5
4
3
2
6
4
VSUPPLY  
= 5V  
= 9V  
2
-40°C  
VSUPPLY  
4
-40°C  
1
0
0
+25°C  
+25°C  
2
-2  
-1  
-40 -20  
0
20 40 60 80 100  
-5 -4 -3 -2 -1  
0 1 2 3 4 5  
-8 -6 -4 -2  
0
2
4
6
8
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
Short-Circuit Current  
vs. Temperature  
Short-Circuit Current  
vs. Temperature  
Short-Circuit Current  
vs. Supply Voltage  
90  
85  
80  
75  
70  
65  
60  
-20  
-25  
-30  
-35  
-40  
100  
80  
60  
40  
20  
-40°C  
VSUPPLY  
= 5V  
VSUPPLY  
=
9V  
+25°C  
+85°C  
SINKING  
CURRENT  
SOURCING  
CURRENT  
VSUPPLY  
= 9V  
VSUPPLY  
=
5V  
SOURCING  
CURRENT  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE ( V)  
Short-Circuit Current  
vs. Supply Voltage  
Output Voltage  
Output Voltage  
vs. Output Current  
vs. Output Current  
-10  
-15  
-20  
-25  
-30  
-35  
10  
9
8
7
6
5
4
3
2
1
0
0
-1  
SINKING  
CURRENT  
VSUPPLY  
=
9V  
-40°C  
-2  
-3  
+85°C  
-4  
-40°C  
-5  
+85°C  
-6  
+85°C  
+25°C  
VSUPPLY  
-7  
+25°C  
-40°C  
-8  
SINKING  
CURRENT  
SOURCING  
CURRENT  
=
9V  
-9  
+25°C  
-10  
0
20  
40  
60  
80  
100  
2
3
4
5
6
7
8
9
10  
-35 -30 -25 -20 -15 -10 -5  
OUTPUT CURRENT (mA)  
0
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE ( V)  
August 2000  
5
MIC913  
MIC913  
Micrel  
Output Voltage  
vs. Output Current  
Gain Bandwidth and  
Phase Margin vs. Load  
Output Voltage  
vs. Output Current  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
200  
160  
120  
80  
50  
SINKING  
+85°C  
VSUPPLY  
= 5V  
CURRENT  
Phase  
Margin  
40  
30  
20  
10  
0
-40°C  
-40°C  
+25°C  
+25°C  
VSUPPLY  
= 5V  
+85°C  
Gain  
Bandwidth  
40  
SOURCING  
CURRENT  
VSUPPLY  
= 5V  
0
-30 -25 -20 -15 -10 -5  
OUTPUT CURRENT (mA)  
0
0
20  
40  
60  
80  
0
200 400 600 800 1000  
CAPACITIVE LOAD (pF)  
OUTPUT CURRENT (mA)  
Gain Bandwidth and  
Gain Bandwidth and  
Common-Mode  
Rejection Ratio  
Phase Margin vs. Load  
Phase Margin vs. Supply Voltage  
200  
160  
120  
80  
50  
225  
200  
175  
150  
125  
100  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
Phase  
Margin  
40  
30  
20  
10  
0
Gain  
Bandwidth  
VSUPPLY  
= 9V  
Phase  
Margin  
VSUPPLY  
= 5V  
Gain  
Bandwidth  
40  
0
0
-5  
0
200 400 600 800 1000  
CAPACITIVE LOAD (pF)  
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE ( V)  
FREQUENCY (Hz)  
Positive Power Supply  
Rejection Ratio  
Negative Power Supply  
Rejection Ratio  
Common-Mode  
Rejection Ratio  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
VSUPPLY  
=
5V  
VSUPPLY = 5V  
VSUPPLY  
= 9V  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Positive Power Supply  
Rejection Ratio  
Negative Power Supply  
Rejection Ratio  
Closed-Loop  
Frequency Response  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
50  
40  
RL = 150  
GAIN = -1  
30  
20  
9V  
10  
0
2.5V  
-10  
-20  
-30  
-40  
-50  
VSUPPLY  
=
9V  
VSUPPLY = 9V  
5V  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MIC913  
6
August 2000  
MIC913  
Micrel  
Closed-Loop  
Closed-Loop  
Closed-Loop  
Frequency Response  
Frequency Response  
Frequency Response  
30  
90  
30  
20  
10  
0
90  
30  
20  
10  
0
90  
0
PHASE  
PHASE  
20  
10  
0
0
0
PHASE  
GAIN  
-90  
-180  
-270  
-360  
-90  
-180  
-270  
-360  
-90  
GAIN  
GAIN  
VSUPPLY  
V = 4  
=
2.5V  
VSUPPLY  
V = 4  
=
5V  
VSUPPLY  
AV = 4  
=
9V  
-180  
-270  
-360  
A
A
-10  
-20  
-10  
-20  
-10  
-20  
1
10  
100  
400  
1
10  
100  
400  
1
10  
100  
400  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Open-Loop  
Open-Loop  
Open-Loop  
Frequency Response  
Frequency Response  
Frequency Response  
50  
40  
200  
50  
40  
50  
40  
150  
100  
50  
100pF  
50pF  
100pF  
50pF  
PHASE  
30  
30  
30  
20  
20  
20  
0pF  
0pF  
GAIN  
10  
0
10  
10  
1000pF  
No Load  
0
-50  
0
1000pF  
471pF  
200pF  
0
471pF  
200pF  
VSUPPLY  
L = 1k  
-10  
-20  
-30  
-40  
-50  
-100  
-150  
-200  
-250  
-300  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
RL = 100  
VSUPPLY  
L = 1k  
=
5V  
= 9V  
VSUPPLY  
=
5V  
R
R
1
10  
100  
500  
1
10  
100  
500  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Open-Loop  
Closed-Loop  
Closed-Loop  
Frequency Response  
Frequency Response  
Frequency Response  
50  
40  
200  
50  
40  
50  
40  
VSUPPLY  
=
5V  
VSUPPLY = 9V  
150  
100  
50  
RL = 470Ω  
GAIN = -1  
PHASE  
RL = 470Ω  
GAIN = -1  
30  
30  
30  
20  
20  
20  
GAIN  
10  
0
10  
10  
No Load  
0
-50  
0
0
-10  
-20  
-30  
-40  
-50  
-100  
-150  
-200  
-250  
-300  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
CL = 1000pF  
CL = 1000pF  
CL = 470pF  
RL = 100  
CL = 470pF  
CL = 100pF  
CL = 100pF  
VSUPPLY  
=
9V  
CL = 1.7pF  
100 500  
CL = 1.7pF  
1
10  
100  
500  
1
10  
100 500  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Closed-Loop  
Frequency Response  
Test Circuit  
VCC  
Positive  
Slew Rate  
Negative  
Slew Rate  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
10µF  
VCC  
=
5V  
VCC = 5V  
0.1µF  
FET probe  
MIC913  
CL  
RF  
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
50Ω  
10µF  
VEE  
August 2000  
7
MIC913  
MIC913  
Micrel  
Positive  
Slew Rate  
Negative  
Slew Rate  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
VCC  
=
9V  
VCC = 9V  
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
MIC913  
8
August 2000  
MIC913  
Micrel  
Functional Characteristics  
Small-Signal  
Small-Signal  
Pulse Response  
Pulse Response  
VCC  
AV = 2  
CL = 1.7pF  
R1 = R2 = 470  
= 5V  
VCC  
AV = 1  
CL = 1.7pF  
R1 = R2 = 470Ω  
= 9V  
Small-Signal  
Small-Signal  
Pulse Response  
Pulse Response  
VCC  
AV = 2  
CL = 100pF  
R1 = R2 = 470Ω  
= 5V  
VCC  
AV = 1  
CL = 100pF  
R1 = R2 = 470Ω  
= 9V  
Small-Signal  
Small-Signal  
Pulse Response  
Pulse Response  
VCC  
AV = 1  
CL = 1000pF  
R1 = R2 = 470  
= 9V  
VCC  
AV = 1  
CL = 1000pF  
R1 = R2 = 470Ω  
= 5V  
August 2000  
9
MIC913  
MIC913  
Micrel  
Large-Signal  
Large-Signal  
Pulse Response  
Pulse Response  
VCC  
AV = 1  
CL = 1.7pF  
= 5V  
Large-Signal  
Large-Signal  
Pulse Response  
Pulse Response  
VCC  
AV = 1  
CL = 100pF  
= 9V  
Large-Signal  
Large-Signal  
Pulse Response  
Pulse Response  
VCC  
AV = 1  
CL = 1000pF  
= 9V  
MIC913  
10  
August 2000  
MIC913  
Micrel  
Power Supply Bypassing  
Applications Information  
Regular supply bypassing techniques are recommended. A  
10µF capacitor in parallel with a 0.1µF capacitor on both the  
positive and negative supplies are ideal. For best perfor-  
mance all bypassing capacitors should be located as close to  
the op amp as possible and all capacitors should be low ESL  
(equivalent series inductance), ESR (equivalent series resis-  
tance). Surface-mount ceramic capacitors are ideal.  
The MIC913 is a high-speed, voltage-feedback operational  
amplifierfeaturingverylowsupplycurrent. TheMIC913isnot  
unity-gain stable, it requires a minimum gain of +2 or 1 to  
ensure stability. The device is however stable even when  
driving high capacitance loads.  
Driving High Capacitance  
The MIC913 is stable when driving any capacitance (see  
Typical Characteristics: Gain Bandwidth and Phase Margin  
vs. LoadCapacitance)makingitidealfordrivinglongcoaxial  
cables or other high-capacitance loads.  
Thermal Considerations  
The SOT-23-5 package, like all small packages, has a high  
thermal resistance. It is important to ensure the IC does not  
exceed the maximum operating junction (die) temperature of  
85°C. The part can be operated up to the absolute maximum  
temperature rating of 125°C, but between 85°C and 125°C  
performance will degrade, in particular CMRR will reduce.  
Phase margin remains constant as load capacitance is  
increased. Most high-speed op amps are only able to drive  
limited capacitance.  
Note: increasing load capacitance does reduce the  
speed of the device (see Typical Characteris-  
tics: Gain Bandwidth and Phase Margin vs.  
Load). In applications where the load capaci-  
tance reduces the speed of the op amp to an  
unacceptable level, the effect of the load capaci-  
tance can be reduced by adding a small resistor  
(<100) in series with the output.  
A MIC913 with no load, dissipates power equal to the quies-  
cent supply current * supply voltage  
P
= V V  
I
S
(
)
D(noload)  
V+  
V−  
When a load is added, the additional power is dissipated in  
the output stage of the op amp. The power dissipated in the  
device is a function of supply voltage, output voltage and  
output current.  
Feedback Resistor Selection  
Conventional op amp gain configurations and resistor selec-  
tion apply, the MIC913 is NOT a current feedback device.  
Resistor values in the range of 1k to 10k are recommended.  
P
= V V  
I
(
)
D(output stage)  
V+  
OUT OUT  
Total Power Dissipation = P  
+P  
D(output stage)  
D(noload)  
Layout Considerations  
Ensure the total power dissipated in the device is no greater  
than the thermal capacity of the package. The SOT23-5  
package has a thermal resistance of 260°C/W.  
All high speed devices require careful PCB layout. The high  
stability and high PSRR of the MIC913 make this op amp  
easier to use than most, but the following guidelines should  
be observed: Capacitance, particularly on the two inputs pins  
will degrade performance; avoid large copper traces to the  
inputs. Keep the output signal away from the inputs and use  
a ground plane.  
TJ(max) TA(max)  
Max.AllowablePower Dissipation =  
260W  
It is important to ensure adequate supply bypassing capaci-  
tors are located close to the device.  
August 2000  
11  
MIC913  
MIC913  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-5 (M5)  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
MIC913  
12  
August 2000  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY