MIC916YQS [MICREL]

Triple 135MHz Low-Power Op Amp; 三重为135MHz的低功耗运算放大器
MIC916YQS
型号: MIC916YQS
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Triple 135MHz Low-Power Op Amp
三重为135MHz的低功耗运算放大器

运算放大器 光电二极管
文件: 总12页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC916  
Micrel, Inc.  
MIC916  
Triple 135MHz Low-Power Op Amp  
General Description  
Features  
The MIC916 is a high-speed, unity-gain stable operational  
amplifier. It provides a gain-bandwidth product of 135MHz  
with a very low, 2.4mA supply current per op amp.  
• 135MHz gain bandwidth product  
• 2.4mA supply current per op amp  
• QSOP-16 package  
• 270V/µs slew rate  
Supply voltage range is from ±2.5V to ±9V, allowing the  
MIC916 to be used in low-voltage circuits or applications  
requiring large dynamic range.  
• drives any capacitive load  
Applications  
The MIC916 is stable driving any capacitative load and  
achieves excellent PSRR, making it much easier to use than  
most conventional high-speed devices. Low supply voltage ,  
lowpowerconsumption,andsmallpackingmaketheMIC916  
ideal for portable equipment. The ability to drive capacitative  
loads also makes it possible to drive long coaxial cables.  
• Video  
• Imaging  
• Ultrasound  
• Portable equipment  
Ordering Information  
Part Number  
Junction  
Temp. Range  
MIC916YQS –40°C to +85°C  
Standard  
Pb-Free  
Package  
QSOP-16  
MIC916BQS  
Pin Configuration  
1
16  
INA-  
V–(A)*  
2
15  
14  
13  
12  
11  
10  
9
V+(A)  
INA+  
INB-  
INB+  
INC-  
NC  
INC+  
OUTA  
V–(B)*  
OUTB  
V+(B)  
V–(C)*  
OUTC  
V+(C)  
3
4
5
6
7
8
QSOP-16  
* V– pins must be externally shorted together  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-042205  
April 2005  
1
MIC916  
Micrel, Inc.  
Pin Description  
Pin Number  
Pin Name  
INA–  
V+(A)  
INA+  
Pin Function  
Inverting Input A  
Positive Supply Input (Op Amp A)  
Noninverting Input A  
Inverting Input B  
1
2
3
4
INB–  
5
6
INB+  
INC–  
Noninverting Input B  
Inverting Input C  
7
8
9
10  
11  
12  
13  
14  
15  
16  
NC  
INC+  
Not Connected  
Noninverting Input C  
Positive Supply Input (Op Amp C)  
Output C  
Negative Supply Input (Op Amp C)  
Positive Supply Input(Op Amp B)  
Output B  
Negative Supply Input (Op Amp B)  
Output A  
Negative Supply Input (Op Amp A)  
V+(C)  
OUTC  
V–(C)  
V+(B)  
OUTB  
V–(B)  
OUTA  
V–(A)  
M9999-042205  
2
April 2005  
MIC916  
Micrel, Inc.  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V – V )...........................................20V  
Supply Voltage (V ) ....................................... ±2.5V to ±9V  
V+  
V–  
S
Differentail Input Voltage (V  
– V ) ..........8V, Note 4  
Junction Temperature (T ) ......................... –40°C to +85°C  
IN+  
IN–  
IN–  
J
Input Common-Mode Range (V , V ) .......... V to V  
Package Thermal Resistance ...............................260°C/W  
IN+  
V+  
V–  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
Storage Temperature (T ) ........................................ 150°C  
S
ESD Rating, Note 3 ................................................... 1.5kV  
Electrical Characteristics (±5V)  
VV+ = +5V, VV– = –5V, VCM = 0V, VOUT = 0V; RL = 10M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted.  
Symbol  
VOS  
Parameter  
Input Offset Voltage  
Condition  
Min  
Typ  
1
Max  
15  
Units  
mV  
VOS  
Input Offset Voltage  
4
µV/°C  
Temperature Coefficient  
IB  
Input Bias Current  
3.5  
5.5  
µA  
µA  
9
IOS  
VCM  
CMRR  
Input Offset Current  
Input Common-Mode Range  
Common-Mode Rejection Ratio  
0.05  
3
µA  
V
CMRR > 60dB  
–2.5V < VCM < +2.5V  
–3.25  
+3.25  
70  
90  
81  
dB  
60  
dB  
PSRR  
AVOL  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
±5V < VS < ±9V  
74  
dB  
dB  
dB  
dB  
70  
RL = 2k, VOUT = ±2V  
RL = 200, VOUT = ±2V  
positive, RL = 2kΩ  
60  
60  
71  
71  
3.5  
VOUT  
Maximum Output Voltage Swing  
+3.3  
V
+3.0  
V
negative, RL = 2kΩ  
positive, RL = 200Ω  
negative, RL = 200Ω  
–3.5  
3.2  
–3.3  
V
V
–3.0  
+3.0  
V
+2.75  
V
–2.8  
–2.45  
V
V
–2.2  
GBW  
BW  
SR  
Gain-Bandwidth Product  
–3dB Bandwidth  
Slew Rate  
RL = 1kΩ  
AV = 1, RL = 100Ω  
125  
192  
230  
56  
MHz  
MHz  
V/µs  
dB  
Crosstalk  
f = 1MHz, between op amp A and B or B and C  
f = 1 MHz, between op amp A and C  
source  
sink  
72  
72  
25  
2.4  
dB  
mA  
mA  
IGND  
IGND  
Short-Circuit Output Current  
Supply Current per Op Amp  
3.5  
mA  
4.1  
mA  
Electrical Characteristics  
VV+ = +9V, VV– = –9V, VCM = 0V, VOUT = 0V; RL = 10M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
Symbol  
VOS  
Parameter  
Input Offset Voltage  
Condition  
Min  
Typ  
1
Max  
15  
Units  
mV  
VOS  
Input Offset Voltage  
4
µV/°C  
Temperature Coefficient  
April 2005  
3
M9999-042205  
MIC916  
Micrel, Inc.  
Symbol  
IB  
Parameter  
Input Bias Current  
Condition  
Min  
Typ  
3.5  
Max  
Units  
5.5  
µA  
9
µA  
IOS  
VCM  
CMRR  
Input Offset Current  
Input Common-Mode Range  
Common-Mode Rejection Ratio  
0.05  
98  
3
µA  
V
CMRR > 60dB  
–6.5V < VCM < 6.5V  
–7.25  
+7.25  
70  
dB  
60  
dB  
AVOL  
VOUT  
Large-Signal Voltage Gain  
Maximum Output Voltage Swing  
RL = 2k, VOUT = ±6V  
positive, RL = 2kΩ  
60  
73  
+7.4  
dB  
+7.2  
V
+6.8  
V
negative, RL = 2kΩ  
RL = 1kΩ  
–7.4  
–7.2  
V
V
MHz  
V/µs  
dB  
–6.8  
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Crosstalk  
135  
270  
56  
f = 1MHz, between op amp A and B or B and C  
f = 1 MHz, between op amp A and C  
source  
sink  
72  
90  
32  
2.5  
dB  
mA  
mA  
mA  
mA  
IGND  
IGND  
Short-Circuit Output Current  
Supply Current per Op Amp  
3.7  
4.3  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is  
likely to increase.  
VCC  
Test Circuits  
R2  
5k  
VCC  
10µF  
10µF  
BNC  
R1 5k  
0.1µF  
0.1µF  
Input  
0.1µF  
50  
BNC  
BNC  
R7c 2k  
Output  
Input  
R7b 200  
R7a 100Ω  
0.1µF  
R6  
5k  
2k  
10k  
R3  
R5  
5k  
BNC  
10µF  
200k  
Output  
10k  
VEE  
10k  
All resistors 1%  
R4  
50Ω  
250Ω  
0.1µF  
50Ω  
BNC  
R2 R2 +R5 +R4  
Input  
V
=V  
1+  
+
OUT  
ERROR  
R1  
R7  
0.1µF  
10µF  
CMRR vs. Frequency  
All resistors:  
1% metal film  
VEE  
PSRR vs. Frequency  
M9999-042205  
4
April 2005  
MIC916  
Micrel, Inc.  
100pF  
R2 4k  
VCC  
10µF  
10pF  
R1  
R3 27k  
20  
0.1µF  
0.1µF  
BNC  
To  
S1  
Dynamic  
Analyzer  
S2  
R5  
R4 27k  
10pF  
20Ω  
10µF  
VEE  
Noise Measurement  
April 2005  
5
M9999-042205  
MIC916  
Micrel, Inc.  
Electrical Characteristics  
Supply Current  
vs. Temperature  
Offset Voltage  
Supply Current  
vs. Temperature  
vs. Supply Voltage  
3.5  
4.0  
3.5  
3.0  
2.5  
2.0  
2.5  
2.0  
1.5  
1.0  
VSUPPLY = ±5V  
+85°C  
VSUPPLY = ±9V  
3.0  
+25°C  
VSUPPLY = ±5V  
VSUPPLY = ±9V  
2.5  
2.0  
-40°C  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Bias Current  
Offset Voltage  
Offset Voltage  
vs. Temperature  
vs. Common-Mode Voltage  
vs. Common-Mode Voltage  
5
4
3
2
6
5
4
3
2
1
0
5
4
3
2
1
0
VSUPPLY = ±9V  
VSUPPLY = ±5V  
+85°C  
VSUPPLY = ±5V  
+85°C  
-40°C  
-40°C  
+25°C  
VSUPPLY = ±9V  
+25°C  
1
-40 -20  
0
20 40 60 80 100  
-8 -6 -4 -2  
0
2
4
6
8
-5 -4 -3 -2 -1 0 1 2 3 4 5  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
Short-Circuit Current  
vs. Temperature  
Short-Circuit Current  
vs. Temperature  
Short-Circuit Current  
vs. Supply Voltage  
95  
90  
85  
80  
75  
70  
65  
60  
55  
-20  
-25  
-30  
-35  
-40  
100  
80  
VSUPPLY = ±9V  
VSUPPLY = ±5V  
-40°C  
+25°C  
+85°C  
SOURCING  
CURRENT  
60  
SINKING  
CURRENT  
40  
VSUPPLY = ±5V  
SOURCING  
CURRENT  
VSUPPLY = ±9V  
20  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
Short-Circuit Current  
vs. Supply Voltage  
Output Voltage  
Output Voltage  
vs. Output Current  
vs. Output Current  
-15  
-20  
-25  
-30  
-35  
-40  
10  
9
8
7
6
5
4
3
2
1
0
0
-1  
SINKING  
VSUPPLY = ±9V  
CURRENT  
-2  
-40°C  
-3  
+85°C  
-40°C  
+85°C  
-4  
+25°C  
-5  
+25°C  
-40°C  
-6  
-7  
-8  
+85°C  
+25°C  
SINKING  
SOURCING  
VSUPPLY = ±9V  
-30 -20  
-9  
CURRENT  
CURRENT  
-10  
2
3
4
5
6
7
8
9
10  
0
20  
40  
60  
80  
100  
-40  
-10  
OUTPUT CURRENT (mA)  
0
SUPPLY VOLTAGE (±V)  
OUTPUT CURRENT (mA)  
M9999-042205  
6
April 2005  
MIC916  
Micrel, Inc.  
Output Voltage  
Gain Bandwidth and  
Output Voltage  
vs. Output Current  
Phase Margin vs. Load  
vs. Output Current  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
150  
125  
100  
75  
46  
44  
42  
40  
38  
36  
34  
SINKING  
VSUPPLY = ±5V  
CURRENT  
-40°C  
+25°C  
VSUPPLY = ±5V  
+25°C  
50  
+85°C  
-40°C  
25  
SOURCING  
+85°C  
VSUPPLY = ±5V  
CURRENT  
20  
0
0
40  
60  
80  
-30 -25 -20 -15 -10 -5  
OUTPUT CURRENT (mA)  
0
0
200 400 600 800 1000  
CAPACITIVE LOAD (pF)  
OUTPUT CURRENT (mA)  
Gain Bandwidth and  
Gain Bandwidth and  
Common-Mode  
Rejection Ratio  
Phase Margin vs. Load  
Phase Margin vs. Supply Voltage  
150  
125  
100  
75  
46  
150  
125  
100  
75  
54  
52  
50  
48  
46  
44  
42  
120  
100  
80  
60  
40  
20  
0
44  
42  
40  
38  
36  
34  
VSUPPLY = ±9V  
50  
50  
VSUPPLY = ±9V  
25  
25  
0
0
0
200 400 600 800 1000  
CAPACITIVE LOAD (pF)  
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
Common-Mode  
Rejection Ratio  
Negative Power Supply  
Rejection Ratio  
Positive Power Supply  
Rejection Ratio  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VSUPPLY = ±9V  
VSUPPLY = ±9V  
VSUPPLY = ±5V  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Distant Channel  
Cross Talk  
Positive Power Supply  
Rejection Ratio  
Negative Power Supply  
Rejection Ratio  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VSUPPLY = ±5V  
VSUPPLY = ±5V  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
April 2005  
7
M9999-042205  
MIC916  
Micrel, Inc.  
Closed-Loop  
Frequency Response  
Test Circuit  
Adjacent Channel  
Cross Talk  
Closed-Loop  
VCC  
Frequency Response  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
10µF  
50  
40  
30  
0.1µF  
20  
10  
0
FET probe  
-10  
-20  
-30  
-40  
-50  
MIC916  
CL  
RF  
VCC = ±2.5V  
50  
1
10  
100 200  
FREQUENCY (MHz)  
10µF  
VEE  
FREQUENCY (Hz)  
Open-Loop  
Closed-Loop  
Open-Loop  
Frequency Response  
Frequency Response  
Frequency Response  
50  
40  
225  
180  
135  
90  
50  
50  
40  
225  
180  
135  
90  
40  
30  
RL=100  
RL=100Ω  
30  
30  
20  
20  
20  
10  
45  
10  
10  
45  
No Load  
0
0
0
0
0
No Load  
-10  
-20  
-30  
-40  
-50  
-45  
-90  
-135  
-180  
-225  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-45  
-90  
-135  
-180  
-225  
VCC = ±5V  
VCC = ±5V  
VCC = ±9V  
1
10  
100 200  
1
10  
100 200  
1
10  
100 200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Voltage  
Noise  
Positive  
Negative  
Slew Rate  
Slew Rate  
120  
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
VCC = ±5V  
VCC = ±5V  
0
0
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
FREQUENCY (Hz)  
Current  
Noise  
Positive  
Negative  
Slew Rate  
Slew Rate  
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VCC = ±9V  
VCC = ±9V  
0
0
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
0
200 400 600 800 1000  
LOAD CAPACITANCE (pF)  
FREQUENCY (Hz)  
M9999-042205  
8
April 2005  
MIC916  
Micrel, Inc.  
Small-Signal  
Small-Signal  
Pulse Response  
Pulse Response  
VCC = ±9V  
VCC = ±5V  
AV = 1  
AV = 1  
CL = 1.7pF  
RL = 10M  
CL = 1.7pF  
RL = 10MΩ  
Small-Signal  
Pulse Response  
Small-Signal  
Pulse Response  
VCC = ±9V  
VCC = ±5V  
AV = 1  
AV = 1  
CL = 100pF  
RL = 10M  
CL = 100pF  
RL = 10MΩ  
Small-Signal  
Pulse Response  
Small-Signal  
Pulse Response  
VCC = ±9V  
VCC = ±5V  
AV = 1  
AV = 1  
CL = 1000pF  
RL = 10MΩ  
CL = 1000pF  
RL = 10MΩ  
April 2005  
9
M9999-042205  
MIC916  
Micrel, Inc.  
Large-Signal  
Large-Signal  
Pulse Response  
Pulse Response  
VCC = ±5V  
VCC = ±9V  
AV = 1  
AV = 1  
CL = 1.7pF  
CL = 1.7pF  
V = 5.64V  
t = 21ns  
V = 5.68V  
t = 24.5ns  
Large-Signal  
Large-Signal  
Pulse Response  
Pulse Response  
VCC = ±5V  
AV = 1  
V = 5.84V  
t = 22.5ns  
CL = 100pF  
V = 5.84V  
t = 26ns  
VCC = ±9V  
AV = 1  
CL = 100pF  
Large-Signal  
Pulse Response  
Large-Signal  
Pulse Response  
VCC = ±5V  
AV = 1  
CL = 1000pF  
V = 5.88V  
t = 70ns  
V = 5.48V  
t = 95ns  
VCC = ±9V  
AV = 1  
CL = 1000pF  
M9999-042205  
10  
April 2005  
MIC916  
Micrel, Inc.  
Power Supply Bypassing  
Applications Information  
Regular supply bypassing techniques are recommended. A  
10µF capacitor in parallel with a 0.1µF capacitor on both the  
positive and negative supplies are ideal. For best perfor-  
mance all bypassing capacitors should be located as close to  
the op amp as possible and all capacitors should be low ESL  
(equivalent series inductance), ESR (equivalent series resis-  
tance). Surface-mount ceramic capacitors are ideal. All V–  
pins must be externally shorted together.  
The MIC916 is a high-speed, voltage-feedback operational  
amplifier featuring very low supply current and excellent  
stability. This device is unity gain stable and capable of  
driving high capacitance loads.  
Driving High Capacitance  
The MIC916 is stable when driving any capacitance (see  
“Typical Characteristics: Gain Bandwidth and Phase Margin  
vs. LoadCapacitance”)makingitidealfordrivinglongcoaxial  
cables or other high-capacitance loads.  
Thermal Considerations  
It is important to ensure the IC does not exceed the maximum  
operating junction (die) temperature of 85°C. The part can be  
operated up to the absolute maximum temperature rating of  
125°C, but between 85°C and 125°C performance will de-  
grade, in particular CMRR will reduce.  
Phase margin remains constant as load capacitance is  
increased. Most high-speed op amps are only able to drive  
limited capacitance.  
Note: increasing load capacitance does reduce the  
speed of the device (see “Typical Characteris-  
tics: Gain Bandwidth and Phase Margin vs.  
Load”). In applications where the load capaci-  
tance reduces the speed of the op amp to an  
unacceptable level, the effect of the load capaci-  
tance can be reduced by adding a small resistor  
(<100) in series with the output.  
A MIC916 with no load, dissipates power equal to the quies-  
cent supply current * supply voltage  
P
= V V  
I
S
(
)
D(noload)  
V+  
V−  
When a load is added, the additional power is dissipated in  
the output stage of the op amp. The power dissipated in the  
device is a function of supply voltage, output voltage and  
output current.  
Feedback Resistor Selection  
Conventional op amp gain configurations and resistor selec-  
tion apply, the MIC916 is NOT a current feedback device.  
Resistor values in the range of 1k to 10k are recommended.  
PD(output stage) = V VOUT  
I
OUT  
(
)
V+  
Layout Considerations  
Total Power Dissipation = P  
+P  
D(output stage)  
Ensure the total power dissipated in the device is no greater  
than the thermal capacity of the package. The QSOP-16  
package has a thermal resistance of 260°C/W.  
D(noload)  
All high speed devices require careful PCB layout. The high  
stability and high PSRR of the MIC916 make this op amp  
easier to use than most, but the following guidelines should  
be observed: Capacitance, particularly on the two inputs pins  
will degrade performance; avoid large copper traces to the  
inputs. Keep the output signal away from the inputs and use  
a ground plane.  
TJ(max) T  
Max.AllowablePower Dissipation =  
A(max) W  
TBD  
It is important to ensure adequate supply bypassing capaci-  
tors are located close to the device.  
April 2005  
11  
M9999-042205  
MIC916  
Micrel, Inc.  
Package Information  
PIN 1  
DIMENSIONS:  
INCHES (MM)  
0.157 (3.99)  
0.150 (3.81)  
0.009 (0.2286)  
REF  
0.012 (0.30)  
0.008 (0.20)  
0.025 (0.635)  
BSC  
45°  
0.0098 (0.249)  
0.0075 (0.190)  
0.0098 (0.249)  
8°  
0°  
0.0040 (0.102)  
0.196 (4.98)  
0.050 (1.27)  
0.189 (4.80)  
0.016 (0.40)  
SEATING 0.0688 (1.748)  
PLANE  
0.0532 (1.351)  
0.2284 (5.801)  
0.2240 (5.690)  
QSOP-16  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2000 Micrel Incorporated  
M9999-042205  
12  
April 2005  

相关型号:

MIC916_05

Triple 135MHz Low-Power Op Amp
MICREL

MIC918

51MHz Low-Power SOT-23-5/SC-70 Op Amp
MICREL

MIC918BC5

51MHz Low-Power SOT-23-5/SC-70 Op Amp
MICREL

MIC918BC5TR

Operational Amplifier, 1 Func, 5000uV Offset-Max, PDSO5, SC-70, 5 PIN
MICREL

MIC918BM5

51MHz Low-Power SOT-23-5/SC-70 Op Amp
MICREL

MIC919

27MHz Low-Power SOT-23-5/SC-70 Op Amp
MICREL

MIC919BC5

27MHz Low-Power SOT-23-5/SC-70 Op Amp
MICREL

MIC919BC5TR

Operational Amplifier, 1 Func, 5000uV Offset-Max, PDSO5, SC-70, 5 PIN
MICREL

MIC919BM5

27MHz Low-Power SOT-23-5/SC-70 Op Amp
MICREL

MIC920

80MHz Low-Power SC-70 Op Amp
MICREL

MIC920BC5

80MHz Low-Power SC-70 Op Amp
MICREL

MIC920BM5

80MHz Low-Power SC-70 Op Amp
MICREL