SY10E016JI [MICREL]

8-BIT SYNCHRONOUS BINARY UP COUNTER; 8位同步二进制计数器
SY10E016JI
型号: SY10E016JI
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

8-BIT SYNCHRONOUS BINARY UP COUNTER
8位同步二进制计数器

计数器
文件: 总9页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SY10E016  
SY100E016  
FINAL  
8-BIT SYNCHRONOUS  
BINARY UP COUNTER  
DESCRIPTION  
FEATURES  
The SY10/100E016 are high-speed synchronous,  
presettable and cascadable 8-bit binary counters designed  
foruseinnew, high-performanceECLsystems. Architecture  
and operation are the same as the Motorola MC10H016 in  
the MECL 10KH family, extended to 8 bits, as shown in the  
logic diagram.  
700MHz min. count frequency  
Extended 100E VEE range of –4.2V to –5.5V  
1000ps CLK to Q, TC  
Internal, gated TC feedback  
8 bits wide  
The counters feature internal feedback of TC, gated by  
the TCLD (terminal count load) pin. When TCLD is LOW,  
the TC feedback is disabled and counting proceeds  
continuously, with TC going LOW to indicate an all-HlGH  
state. When TCLD is HIGH, the TC feedback causes the  
counter to automatically reload upon TC = LOW, thus  
functioning as a programmable counter.  
Fully synchronous counting and TC generation  
Asynchronous Master Reset  
Fully compatible with industry standard 10KH,  
100K I/O levels  
Internal 75Kinput pulldown resistors  
Fully compatible with Motorola MC10E/100E016  
Available in 28-pin PLCC package  
PIN NAMES  
PIN CONFIGURATION  
Pin  
P0-P7  
Q0-Q7  
CE  
Function  
Parallel Data (Preset) Inputs  
Data outputs  
25 24 23 22 21 20 19  
Count Enable Control Input  
Parallel Load Enable Control Input  
Master Reset  
MR  
CLK  
TCLD  
VEE  
NC  
26  
27  
28  
1
18  
17  
16  
15  
14  
13  
12  
Q7  
Q6  
PE  
VCC  
Q5  
MR  
PLCC  
TOP VIEW  
J28-1  
CLK  
TC  
Clock  
2
VCCO  
Q4  
Terminal Count Output  
TC-Load Control Input  
VCC to Output  
P0  
3
TCLD  
VCCO  
P1  
4
Q3  
5
6
7
8
9
10 11  
Rev.: D  
Amendment: /2  
Issue Date: May, 1998  
1
SY10E016  
SY100E016  
Micrel  
BLOCK DIAGRAM  
TC  
Q7  
BIT 7  
P7  
CE  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q2  
– Q  
6
5
5
5
BIT 2 – BIT 6  
BIT 1  
5
5
5
Q1  
P1  
CE  
Q0  
Q0  
SLAVE  
Q0M  
Q0M  
MASTER  
BIT 0  
PE  
CE  
TCLD  
P0  
MR CLK  
2
SY10E016  
SY100E016  
Micrel  
TRUTH TABLE(1)  
CE  
PE  
L
TCLD  
MR  
L
CLK  
Z
Function  
Load Parallel (Pn to Qn)  
Continuous Count  
X
L
X
L
H
H
H
X
L
Z
L
H
X
X
X
L
Z
Count; Load Parallel on TC = LOW  
Hold  
H
X
X
L
Z
L
ZZ  
Z
Master respond, Slaves Hold  
Reset (Qn : = LOW, TC : = HIGH)  
X
H
NOTE:  
1. Z = Clock Pulse (LOW-to-HIGH), ZZ = Clock Pulse (HIGH-to-LOW)  
DC ELECTRICAL CHARACTERISTICS  
VEE = VEE (Min.) to VEE (Max.); VCC = VCCO = GND  
TA = –40°C  
TA = 0°C  
TA = +25°C  
TA = +85°C  
Symbol  
IIH  
Parameter  
Input HIGH Current  
Power Supply Current  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
Unit  
µA  
150  
150  
150  
150  
IEE  
mA  
10E  
100E  
151 181  
151 181  
151  
151  
181  
181  
151 181  
151 181  
151 181  
174 208  
AC ELECTRICAL CHARACTERISTICS  
VEE = VEE (Min.) to VEE (Max.); VCC = VCCO = GND  
TA = –40°C  
TA = 0°C  
TA = 25°C  
TA = +85°C  
Symbol  
Parameter  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
700 900 700 900 700 900 700 900  
Unit  
MHz  
ps  
fCOUNT  
Max. Count Frequency  
tPLH  
tPHL  
Propagation Delay to Output  
CLK to Q  
600 725 1000 600 725 1000 600 725 1000 600 725 1000  
600 775 1000 600 775 1000 600 775 1000 600 775 1000  
550 775 1050 550 775 1050 550 775 1050 550 775 1050  
MR to Q  
CLK to TC (Qs loaded)(1)  
CLK to TC (Qs unloaded)(1)  
MR to TC  
550 700 900  
550 700 900  
550 700 900 550 700 900  
625 775 1000 625 775 1000 625 775 1000 625 775 1000  
tS  
tH  
Set-up Time  
Pn  
CE  
PE  
ps  
ps  
150 –30  
600 400  
600 400  
500 300  
150 –30  
600 400  
600 400  
500 300  
150 –30  
600 400  
600 400  
500 300  
150 –30  
600 400  
600 400  
500 300  
TCLD  
Hold Time  
Pn  
CE  
PE  
TCLD  
250  
0
0
30  
–400  
–400  
250  
0
0
30  
–400  
–400  
250  
0
0
30  
–400  
–400  
250  
0
0
30  
–400  
–400  
100 –300  
100 –300  
100 –300  
100 –300  
tRR  
tWP  
Reset Recovery Time  
900 700  
900 700  
900 700  
900 700  
ps  
ps  
Minimum Pulse Width  
CLK, MR  
400  
400  
400  
400  
tr  
tf  
Rise/Fall Times  
20% to 80%  
300 510 800  
300 510 800  
300 510 800 300 510 800  
ps  
NOTE:  
1. CLK to TC propagation delay is dependent on the loading of the Q outputs. With all of the Q outputs loaded, the noise generated in going from a IIII IIII  
state to a 0000 0000 state causes the CLk to TC+ delay to increase.  
3
SY10E016  
SY100E016  
Micrel  
FUNCTION TABLE  
Function  
Load  
PE  
L
CE  
X
L
MR TCLD CLK  
P7–P4  
H
P3  
H
X
X
X
X
H
X
X
L
P2  
H
X
X
X
X
H
X
X
H
H
H
H
H
H
X
P1  
L
P0 Q7–Q4 Q3  
Q2  
H
H
H
H
L
Q1  
L
Q0  
L
TC  
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
X
L
X
X
X
X
L
X
X
L
L
L
L
L
L
X
H
H
H
H
L
H
H
H
H
L
Count  
H
H
H
H
L
X
X
X
X
X
L
L
H
L
L
L
X
H
H
L
L
L
X
H
L
L
L
X
H
H
H
H
H
H
L
Load  
Hold  
X
H
H
L
X
X
X
H
H
H
H
H
H
X
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
H
H
H
X
X
X
X
H
H
H
H
H
H
X
L
L
X
L
L
Load On  
Terminal  
Count  
H
L
H
L
L
H
L
H
H
H
H
L
L
H
L
H
L
L
H
L
H
H
H
H
L
H
L
L
H
L
L
H
L
H
L
Reset  
X
X
X
L
L
L
4
SY10E016  
SY100E016  
Micrel  
APPLICATIONS INFORMATION  
Cascading Multiple E016 Devices  
E016 in the chain to count all of the lower order terminal count  
outputs, itmustbeinthelowstate. Thebitwidthofthecounter  
canbeincreasedordecreasedbysimplyaddingorsubtracting  
E016 devices from Figure 1 and maintaining the logic pattern  
illustrated in the same figure.  
For applications which call for larger than 8-bit counters,  
multiple E016s can be tied together to achieve very wide bit  
width counters. The active low terminal count (TC) output and  
count enable input (CE) greatly facilitate the cascading of  
E016 devices. Two E016s can be cascaded without the need  
for external gating; however, for counters wider than 16 bits,  
externalORgatesarenecessaryforcascadeimplementations.  
Figure 1, below, pictorially illustrates the cascading of 4  
E016s to build a 32-bit high frequency counter. Note the E101  
gates used to OR the terminal count outputs of the lower order  
E016s to control the counting operation of the higher order  
bits. When the terminal count of the preceding device (or  
devices) goes low (the counter reaches an all 1s state), the  
more significant E016 is set in its count mode and will count  
one binary digit upon the next positive clock transition. In  
addition, the preceding devices will also count one bit, thus  
sending their terminal count outputs back to a high state,  
disabling the count operation of the more significant counters  
and placing them back into hold modes. Therefore, for an  
The maximum frequency of operation for the cascaded  
counter chain is set by the propagation delay of the TC output  
and the necessary set-up time of the CE input and the  
propagation delay through the OR gate controlling it (for 16-  
bitcountersthelimitationisonlytheTCpropagationdelayand  
the CE set-up time). Figure 1 shows E101 gates used to  
control the count enable inputs; however, if the frequency of  
operation is lower, a slower ECL OR gate can be used. Using  
the worst case guarantees for these parameters from the  
ECLinPS data book, the maximum count frequency for a  
greater than 16-bit counter is 475MHz and that for a 16-bit  
counter is 625MHz. Note that this assumes the trace delay  
between the TC outputs and the CE inputs are negligible. If  
this is not the case, estimates of these delays need to be  
added to the calculations.  
LOAD  
Q
0Q  
7
Q
0Q  
7
Q0Q  
7
Q0Q7  
"LO"  
CE  
PE  
CE  
PE  
CE  
PE  
CE  
PE  
E016  
LSB  
E016  
E016  
E016  
MSB  
CLK  
TC  
CLK  
TC  
CLK  
TC  
CLK  
TC  
P
0P  
7
P
0P  
7
P
0P  
7
P0P7  
E101  
E101  
CLOCK  
Figure 1. 32-Bit Cascaded E016 Counter  
5
SY10E016  
SY100E016  
Micrel  
Programmable Divider  
Todeterminewhatvaluetoloadintothedevicetoaccomplish  
the desired division, the designer simply subtracts the binary  
equivalent of the desired divide ratio for the binary value for  
256. As an example for a divide ration of 113:  
The E016 has been designed with a control pin which  
makes it ideal for use as an 8-bit programmable divider. The  
TCLDpin(loadonterminalcount),whenasserted,reloadsthe  
data present at the parallel input pin (Pn's) upon reaching  
terminal count (an all 1s state on the outputs). Because this  
feedback is built internal to the chip, the programmable  
division operation will run at very nearly the same frequency  
as the maximum counting frequency of the device. Figure 2  
PN's = 256 113 = 8F16 = 1000 1111  
where  
P0 = LSB and P7 = MSB  
below illustrates the input conditions necessary for utilizing Forcing this input condition, as per the set-up in Figure 2, will  
the E016 as a programmable divider set up to divide by 113. result in the waveforms of Figure 3. Note that the TC output  
H
L
L
L
H
H
H
H
P
7
P
6
P
5
P
4
P
3
P
2
P
1
P
0
H
PE  
CE  
L
H
TCLD  
CLK  
TC  
Q
7
Q
6
Q
5
Q
4
Q
3
Q
2
Q
1
Q
0
Figure 2. Mod 2 to 256 Programmable Divider  
LOAD  
1001 0000  
1001 0001  
1111 1100  
1111 1101  
1111 1110  
1111 1111  
LOAD  
CLOCK  
PE  
TC  
Divide by 113  
Figure 3. Divide by 113 E016 Programmable Divider Waveforms  
6
SY10E016  
SY100E016  
Micrel  
Divide  
Preset Data Inputs  
Ratio  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
2
3
4
5
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
L
L
H
L
L
H
H
112  
113  
114  
H
H
H
L
L
L
L
L
L
H
L
L
L
H
H
L
H
H
L
H
H
L
H
L
254  
255  
256  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
H
L
Table 1. Preset Values for Various Divide Ratios  
is used as the divide output and the pulse duration is equal to two TC outputs were OR tied, the cascaded count operation  
a full clock period. For even divide ratios twice the desired would not operate properly. Because in the cascaded form  
divideratiocanbeloadedintotheE016andtheTC outputcan the PE feedback is external and requires external gating, the  
feed the clock input of a toggle flip-flop to create a signal maximumfrequencyofoperationwillbesignificantlylessthan  
divided as desired with a 50% duty cycle.  
the same operation in a single device.  
A single E016 can be used to divide by any ratio from 2 to  
256, inclusive. If divide ratios of greater than 256 are needed,  
multiple E016s can be cascaded in a manner similar to that  
already discussed. When E016s are cascaded to build larger  
dividers, the TCLD pin will no longer provide a means for  
loading on terminal count. Because one does not want to  
reload the counters until all of the devices in the chain have  
reachedterminalcount, externalgatingoftheTCpinsmustbe  
used for multiple E016 divider chains.  
Figure 4 on the following page shows a typical block  
diagram of a 32-bit divider chain. Once again, the maximize  
the frequency of operation, E101 OR gates were used. For  
lower frequency applications, a slower OR gate could replace  
the E101. Note that for a 16-bit divider, the OR function  
feeding the PE (program enable) input CANNOT be replaced  
by a wire OR tie as the TC output of the least significant E016  
mustalsofeedtheCEinputofthemostsignificantE016. Ifthe  
Maximizing E016 Count Frequency  
The E016 device produces nine fast transitioning single-  
ended outputs; thus, VCC noise can become significant in  
situationswherealloftheoutputsswitchsimultaneouslyinthe  
same direction. This VCC noise can negatively impact the  
maximum frequency of operation of the device. Since the  
device does not need to have the Q outputs terminated to  
count properly, it is recommended that, if the outputs are not  
going to be used in the rest of the system, they should be left  
unterminated. In addition, if only a subset of the Q outputs are  
used in the system, only those outputs should be terminated.  
Not terminating the unused outputs will not only cut down the  
VCC noise generated, but will also save in total system power  
dissipation. Following these guidelines will allow designers to  
either be more aggressive in their designs, or provide them  
7
SY10E016  
SY100E016  
Micrel  
E101  
Q0Q  
7
Q
0Q  
7
Q0Q7  
Q0Q7  
"LO"  
CE  
PE  
CE  
PE  
CE  
PE  
CE  
PE  
E016  
E016  
E016  
MSB  
E016  
LSB  
CLK  
TC  
CLK  
TC  
CLK  
TC  
CLK  
TC  
P0P7  
P0P  
7
P
0P7  
P0P7  
E101  
E101  
CLOCK  
Figure 4. 32-Bit Cascaded E016 Programmable Divider  
PRODUCT ORDERING CODE  
Ordering  
Code  
Package  
Type  
Operating  
Range  
Ordering  
Code  
Package  
Type  
Operating  
Range  
SY10E016JI  
J28-1  
J28-1  
J28-1  
J28-1  
Industiral  
Industrial  
Industrial  
Industrial  
SY10E016JC  
J28-1  
J28-1  
J28-1  
J28-1  
Commercial  
Commercial  
Commercial  
Commercial  
SY10E016JITR  
SY100E016JI  
SY100E016JITR  
SY10E016JCTR  
SY100E016JC  
SY100E016JCTR  
8
SY10E016  
SY100E016  
Micrel  
28 LEAD PLCC (J28-1)  
Rev. 03  
MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA  
TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
9

相关型号:

SY10E016JITR

8-BIT SYNCHRONOUS BINARY UP COUNTER
MICREL

SY10E016JY

8-BIT SYNCHRONOUS BINARY UP COUNTER
MICREL

SY10E016JY-TR

10E SERIES, SYN POSITIVE EDGE TRIGGERED 8-BIT UP BINARY COUNTER, PQCC28
MICROCHIP

SY10E016JYTR

8-BIT SYNCHRONOUS BINARY UP COUNTER
MICREL

SY10E101

QUAD 4-INPUT OR/NOR GATE
MICREL

SY10E101JC

QUAD 4-INPUT OR/NOR GATE
MICREL

SY10E101JC

OR/NOR Gate, 10E Series, 4-Func, 4-Input, ECL, PQCC28
MICROCHIP

SY10E101JCTR

QUAD 4-INPUT OR/NOR GATE
MICREL

SY10E101JI

QUAD 4-INPUT OR/NOR GATE
MICREL

SY10E101JITR

QUAD 4-INPUT OR/NOR GATE
MICREL

SY10E101JY

QUAD 4-INPUT OR/NOR GATE
MICREL

SY10E101JY

10E SERIES, QUAD 4-INPUT OR/NOR GATE, PQCC28
MICROCHIP