SY89295UMITR [MICREL]

2.5V / 3.3V 1.5 GHZ PRECISION LVPECL PROGRAMMABLE DELAY; 2.5V / 3.3V 1.5 GHz的LVPECL精密可编程延迟
SY89295UMITR
型号: SY89295UMITR
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

2.5V / 3.3V 1.5 GHZ PRECISION LVPECL PROGRAMMABLE DELAY
2.5V / 3.3V 1.5 GHz的LVPECL精密可编程延迟

延迟线
文件: 总15页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Edge
SY89295U  
2.5V/3.3V 1.5GHz PRECISION  
LVPECL PROGRAMMABLE DELAY  
FEATURES  
Precision LVPECL programmable delay line  
Guaranteed AC performance over temperature and  
Precision Edge™  
voltage:  
> 1.5GHz f  
DESCRIPTION  
MAX  
< 160ps rise/fall times  
Low-jitter design:  
The SY89295U is a programmable delay line that delays  
the input signal using a digital control signal. The delay can  
vary from 3.2ns to 14.8ns in 10ps increments. In addition,  
the input signal is LVPECL, uses either a 2.5V ±5% or 3.3V  
±10% power supply, and is guaranteed over the full industrial  
temperature range (–40°C to +85°C).  
< 10ps total jitter  
pp  
< 2ps  
< 1ps  
cycle-to-cycle jitter  
random jitter  
rms  
rms  
Programmable delay range: 3.2ns to 14.8ns in 10ps  
The delay varies in discrete steps based on a control  
word. The control word is 10-bits long and controls the  
delay in 10ps increments. The eleventh bit is D[10] and is  
used to simultaneously cascade the SY89295U which allows  
for a larger delay range. In addition, the input pins IN and  
/IN default to an equivalent low state when left floating.  
Further, for maximum flexibility, the control register interface  
accepts CMOS or TTL level signals.  
increments  
Increased monotonicity over the MIC100EP195  
±10% of LSB INL  
V output reference voltage  
BB  
Parallel inputs accepts LVPECL or CMOS/LVTTL  
Low voltage operation: 2.5V ±5% and 3.3V ±10%  
Industrial –40°C to +85°C temperature range  
For applications that requires an analog delay input, see  
the SY89296L which is a programmable delay chip with  
fine tune control. The SY89295U and SY89296U are part  
of Micrel’s high-speed, Precision Edge™ product line.  
Available in 32-pin (5mm × 5mm) MLF™ and 32-pin  
TQFP packages  
All support documentation can be found on Micrel’s  
website at www.micrel.com.  
APPLICATIONS  
Clock de-skewing  
Timing adjustments  
Aperture centering  
Precision Edge is a trademark of Micrel, Inc.  
MicroLeadFrame and MLF are trademarks of Amkor Technology, Inc.  
Rev.: A  
Amendment: /0  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
1
Issue Date: March 2004  
Precision Edge™  
SY89295U  
Micrel  
PACKAGE/ORDERING INFORMATION  
Ordering Information(1)  
Package  
Operating  
Range  
Package  
Marking  
32 3130 29 28 27 26 25  
1
2
3
4
5
6
7
8
D8  
24 GND  
Part Number  
Type  
MLF-32  
MLF-32  
T32-1  
23  
22  
21  
20  
19  
18  
D9  
D10  
IN  
D0  
VCC  
Q
/Q  
VCC  
VCC  
SY89295UMI  
SY89295UMITR(2)  
Industrial  
Industrial  
Industrial  
Industrial  
SY89295U  
SY89295U  
SY89295U  
SY89295U  
/IN  
SY89295UTI  
SY89295UTITR(2)  
VBB  
VEF  
VCF  
T32-1  
17 NC  
9 10 11 12 13 14 15 16  
Notes:  
1. Contact factory for die availability. Dice are guaranteed at T = 25°C,  
A
DC electricals only.  
2. Tape and Reel.  
32-Pin MLF™ (MLF-32)  
32 31 30 29 28 27 26 25  
D8  
D9  
D10  
IN  
1
2
3
4
5
6
24  
23  
22  
21  
20  
19  
GND  
D0  
VCC  
Q
/Q  
/IN  
VCC  
VCC  
NC  
VBB  
VEF  
VCF  
7
8
18  
17  
9 10 1112 13 14 15 16  
32-Pin TQFP (T32-1)  
TRUTH TABLES  
Input/Output  
Inputs  
Digital Control Latch  
Outputs  
LEN  
Latch Action  
Pass Through D[10:0]  
Latched D[10:0]  
IN  
0
/IN  
1
OUT  
/OUT  
0
1
0
1
1
0
1
0
Input Enable  
/EN  
Q, /Q  
0
1
IN, /IN Delayed  
Latched D[10:0]  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
2
Precision Edge™  
SY89295U  
Micrel  
FUNCTIONAL BLOCK DIAGRAM  
IN  
0
1
0
1
0
1
0
1
0
1
/IN  
512  
GD  
256  
GD  
128  
GD  
64  
GD  
32  
GD  
/EN  
0
1
0
1
0
1
0
1
0
1
16  
GD  
8
GD  
4
GD  
2
GD  
1
GD  
D[9:0]  
LEN  
10-bit  
Latch  
SETMIN  
Q
0
1
SETMAX  
/Q  
1
GD  
CASCADE  
/CASCADE  
D[10]  
Latch  
VBB  
VCF  
VEF  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
3
Precision Edge™  
SY89295U  
Micrel  
PIN DESCRIPTION  
Pin Number  
Pin Name  
Pin Function  
23, 25, 26, 27, 29,  
30, 31, 32, 1, 2  
D[9:0]  
CMOS, ECL, or TTL Control Bits: These control signals adjust the delay from IN to Q.  
See AC Electrical Characteristicsfor delay values. In addition, see Interface Applications”  
section which illustrates the proper interfacing techniques for different logic standards.  
D[9:0] contains pull-downs and defaults LOW when left floating. D0 (LSB), and D9 (MSB).  
See Typical Operating Characteristicsfor delay information.  
3
D10  
CMOS, ECL, or TTL Control Bit: This bit is used to cascade devices for an extended delay  
range. In addition, it drives CASCADE, and /CASCADE. Further, D[10] contains a pull-  
down and defaults LOW when left floating.  
4, 5  
6
IN, /IN  
VBB(1)  
LVPECL/ECL Signal Input: Input signal to be delayed. IN contains a 75kpull-down and  
will default to a logic LOW if left floating.  
Reference Voltage Output: When using a single-ended input signal source to IN or /IN,  
connect the unused input of the differential pair to this pin. This pin can also be used to  
rebias AC-coupled inputs to IN and /IN. When used, de-couple to VCC using a 0.01µF  
capacitor, otherwise leave floating if not used. Maximum sink/source is ±0.5mA.  
7
VEF  
Reference Voltage Output: Connect this pin to VCF when D[9:0], and D[10] is ECL.  
Logic Standard  
LVPECL  
CMOS  
VCF Connects to  
(1)  
VEF  
,
No Connect  
1.5V Source  
TTL  
8
9, 24, 28  
10  
VCF  
Reference Voltage Input: The voltage driven on VCF sets the logic transition threshold for  
D[9:0], and D[10].  
GND,  
Exposed Pad(2)  
Negative Supply: For MLFpackage, exposed pad must be connected to a ground plane  
that is the same potential as the ground pin.  
LEN  
ECL Control Input: When HIGH latches the D[9:0] and D[10] bits. When LOW, the D[9:0]  
and D[10] latches are transparent.  
11  
SETMIN  
ECL Control Input: When HIGH, D[9:0] registers are reset. When LOW, the delay is set  
by SETMAX or D[9:0] and D[10]. SETMIN contains a pull-down and defaults LOW when  
left floating.  
12  
SETMAX  
VCC  
ECL Control Input: When SETMAX is set HIGH and SETMIN is set LOW, D[9:0] =  
10b1111111111. When SETMAX is LOW, the delay is set by SETMIN or D[9:0] and  
D[10]. SETMAX contains a pull-down and defaults LOW when left floating.  
13, 18, 19, 22  
14, 15  
Positive Power Supply: Bypass with 0.1µF and 0.01µF low ESR capacitors.  
/Cascade,  
Cascade  
LVPECL Differential Output: The outputs are used when cascading two or more  
SY89295U to extend the delay range.  
16  
20, 21  
17  
/EN  
/Q, Q  
NC  
LVPECL Single-Ended Control Input: When LOW, Q is delayed from IN. When HIGH,  
Q is a differential LOW. /EN contains a pull-down and defaults LOW when left floating.  
LVPECL Differential Output: Q is a delayed version of IN. Always terminate the  
output with 50to VCC 2V. See Output Interface Applicationssection.  
No Connect.  
Notes:  
1. Single-ended operation is only functional at 3.3V.  
2. MLFpackage only.  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
4
Precision Edge™  
SY89295U  
Micrel  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (V ) .................................. 0.5V to +4.0V Supply Voltage (V ) .............................. +2.375V to +3.6V  
CC  
CC  
Input Voltage (V ) ......................................... 0.5V to V  
Ambient Temperature (T ) ......................... 40°C to +85°C  
IN  
CC  
A
(3)  
LVPECL Output Current (I  
)
Package Thermal Resistance  
OUT  
Continuous .........................................................50mA  
MLF)  
JA  
Surge ................................................................100mA  
Still-Air .............................................................35°C/W  
MLF(ψ  
)
Lead Temperature (soldering, 10 sec.) ................... +220°C  
JB  
Junction-to-Board ............................................28°C/W  
Storage Temperature Range (T ) ............ 65°C to +150°C  
S
TQFP (θ  
)
JA  
Still-Air .............................................................28°C/W  
TQFP (ψ  
)
JB  
Junction-to-Board ............................................20°C/W  
(4)  
DC ELECTRICAL CHARACTERISTICS  
TA = 40°C to 85°C, unless otherwise stated.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VCC  
Power Supply  
VCC = 2.5V  
VCC = 3.3V  
2.375  
3
2.5  
3.3  
2.625  
3.6  
V
V
IEE  
Power Supply Current  
No load, max VCC  
See Figure 1a.  
See Figure 1b.  
220  
1200  
2400  
mA  
mV  
mV  
VIN  
Input Voltage Swing (IN, /IN)  
150  
300  
VDIFF_IN  
Differential Input Voltage  
Swing (IN, /IN)  
VIHCMR  
Input High Common Mode Range  
IN, INB  
VEE+1.2  
VCC  
V
VCC = 3.3V, TA = 40°C to 85°C, unless otherwise stated.  
Symbol  
VIH  
Parameter  
Condition  
Min  
Typ  
Max  
2.420  
1.675  
Units  
Input High Voltage (IN, /IN)  
Input Low High Voltage (IN, /IN)  
Output Voltage Reference  
Mode Connection  
2.075  
1.355  
V
V
V
V
V
VIL  
VBB  
Ground Reference  
Ground Reference  
1.325 1.425 1.525  
VEF  
1.20  
1.55  
1.30  
1.65  
1.4  
VCF  
Input Select Voltage  
1.75  
VCC = 2.5V, TA = 40°C to 85°C, unless otherwise stated.  
Symbol  
VIH  
Parameter  
Condition  
Min  
Typ  
Max  
2.42  
Units  
Input High Voltage (IN, /IN)  
Input Low High Voltage (IN, /IN)  
Output Voltage Reference  
Mode Connection  
2.075  
1.355  
V
V
V
V
V
VIL  
1.675  
VBB  
Ground Reference  
Ground Reference  
1.325 1.425 1.525  
VEF  
1.20  
1.15  
1.30  
1.25  
1.40  
1.35  
VCF  
Input Select Voltage  
Notes:  
1. Permanent device damage may occur if the ratings in the Absolute Maximum Ratingssection are exceeded. This is a stress rating only and  
functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute  
maximum ratings for extended periods may affect device reliability.  
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.  
3. Thermal performance on MLFpackages assumes exposed pad is soldered (or equivalent) to the device most negative potential (GND).  
4. The circuit is designed to meet the DC specifications shown in the table above after thermal equilibrium has been established. Input and output  
parameters vary 1:1 with V  
.
CC  
M9999-031604  
6
5
hbwhelp@micrel.com or (408) 955-1690  
Precision Edge™  
SY89295U  
Micrel  
(5)  
LVPECL OUTPUTS DC ELECTRICAL CHARACTERISTICS  
VCC = 2.5V ±5% or 3.3V ±10%; RLOAD = 50to VCC2V; TA = 40°C to +85°C, unless otherwise stated.  
Symbol  
VOH  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
V
Output HIGH Voltage (Q, /Q)  
Output LOW Voltage (Q, /Q)  
Output Voltage Swing (Q, /Q)  
2.155 2.280 2.405  
1.355 1.480 1.605  
VOL  
V
VOUT  
See Figure 1a.  
See Figure 1b.  
550  
1.1  
800  
1.6  
mV  
V
VDIFF_OUT  
Differential Output Voltage Swing  
(Q, /Q)  
(6)  
LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS  
VCC = 2.5V ±5% or 3.3V ±10%; TA = 40°C to +85°C, unless otherwise stated.  
Symbol  
VIH  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
V
Input HIGH Voltage  
Input LOW Voltage  
Input HIGH Current  
Input LOW Current  
2.0  
VIL  
0.8  
40  
V
IIH  
µA  
µA  
IIL  
-300  
Notes:  
5. The circuit is designed to meet the DC specifications shown in the table above after thermal equilibrium has been established. All input and output  
parameters vary 1:1 with V , however, the values are referenced to 3.3V.  
CC  
6. The circuit is designed to meet the DC specifications shown in the table above after thermal equilibrium has been established.  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
6
Precision Edge™  
SY89295U  
Micrel  
(7)  
AC ELECTRICAL CHARACTERISTICS  
TA = 40°C to +85°C; unless otherwise stated.  
Symbol  
fMAX  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Maximum Operating Frequency  
Clock  
VOUT 400mV  
1.5  
GHz  
tpd  
Propagation Delay  
IN to Q; D[010]=0  
IN to Q; D[010]=1023  
/EN to Q: D[010]=0  
D10 to CASCADE  
3200  
11500  
3400  
350  
4200  
14800  
4400  
670  
ps  
ps  
ps  
ps  
tRANGE  
Programmable Range  
tpd (max) tpd (min)  
8300  
ps  
ps  
tSKEW  
Duty Cycle Skew  
Note 8  
25  
t  
Step Delay  
D0 High  
D1 High  
D2 High  
D3 High  
D4 High  
D5 High  
D6 High  
D7 High  
D8 High  
D9 High  
D0-D9 High  
10  
15  
35  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
70  
145  
290  
575  
1150  
2300  
4610  
9220  
INL  
tS  
Integral Non-Linearity  
Setup Time  
Note 9  
10  
+10  
%LSB  
D to LEN  
200  
350  
300  
ps  
ps  
ps  
D to IN Note 10  
/EN to IN Note 11  
tH  
tR  
Hold Time  
LEN to D  
IN to /EN Note 12  
200  
400  
ps  
ps  
Release Time  
/EN to IN  
SETMAX to LEN  
SETMIN to LEN  
500  
500  
450  
ps  
ps  
ps  
tJITTER  
Cycle-to-Cycle Jitter  
Total Jitter  
Random Jitter  
Note 13  
Note 14  
Note 15  
2
10  
1
psrms  
psp-p  
psrms  
tr, tf  
Output Rise/Fall Time  
20% to 80% (Q)  
20% to 80% (CASCADE)  
50  
90  
85  
160  
300  
ps  
ps  
Duty Cycle  
45  
55  
%
Notes:  
7. High frequency AC electricals are guaranteed by design and characterization.  
8. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the crosspoint of the output.  
9. INL (Integral Non-Linearity) is defined from its corresponding point on the ideal delay versus D[9:0] curve as the deviation from its ideal delay. The  
maximum difference is the INL. Theoretical Ideal Linearity (TIL) = (measured maximum delay measured minimum delay) ÷ 1024. INL = measured  
delay measured minimum delay + (step number × TIL).  
10. This setup time defines the amount of time prior to the input signal. The delay tap of the device must be set.  
11. This setup time defines the amount of the time that /EN must be asserted prior to the next transition of IN, /IN to prevent an output response greater  
than ±75mV to the IN, /IN transition.  
12. Hold time is the minimum time that /EN must remain asserted after a negative going IN or a positive going /IN to prevent an output response greater  
than ±75mV to the IN, /IN transition.  
13. Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles over a random sample of adjacent cycle pairs.  
T
= T T +1, where T is the time between rising edges of the output signal.  
jitter_cc  
n n  
12  
14. Total jitter definition: With an ideal clock input, no more than one output edge in 10 output edges will deviate by more than the specified peak-to-  
peak jitter value.  
15. Random jitter definition: Jitter that is characterized by a Gaussian distribution, unbounded and is quantified by its standard deviation and mean.  
Random jitter is measured with a K28.7 comma defect pattern, measured at 1.5Gbps.  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
7
Precision Edge™  
SY89295U  
Micrel  
TYPICAL OPERATING CHARACTERISTICS  
V
= 3.3V, GND = 0, D = 100mV, T = 25°C, unless otherwise stated.  
IN A  
CC  
Amplitude vs. Frequency  
Delay vs. D[9:0]  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0
500 1000 1500 2000 2500  
FREQUENCY (MHz)  
0
500  
1000  
D[9:0]  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
8
Precision Edge™  
Micrel  
SY89295U  
TIMING DIAGRAM  
/IN  
IN  
tpd  
/Q  
Q
SINGLE-ENDED AND DIFFERENTIAL SWINGS  
VDIFF_IN  
,
VIN,  
VOUT  
VDIFF_OUT 1.6V (Typ.)  
800mV (Typ.)  
Figure 1b. Differential Voltage Swing  
Figure 1a. Single-Ended Voltage Swing  
INPUT AND OUTPUT STAGES  
Figure 2a. Differential  
Input Stage  
Figure 2b. Single-Ended  
Input Stage  
Figure 3. LVPECL  
Output Stage  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
9
Precision Edge™  
Micrel  
SY89295U  
OUTPUT INTERFACE APPLICATIONS  
+3.3V  
+3.3V  
R1  
130Ω  
R1  
130Ω  
Z0 = 50Ω  
Z0 = 50Ω  
Q
+3.3V  
+3.3V  
Z0 = 50Ω  
Z0 = 50Ω  
Q
/Q  
50Ω  
50Ω  
/Q  
R2  
82Ω  
R2  
82Ω  
VCC  
For +2.5V systems  
R1 = 19Ω  
VT = VCC  
2V  
C (optional)  
For +2.5V systems  
R1 = 250, R2 = 62.5Ω  
50Ω  
R1  
0.01µF  
Figure 4. Parallel Termination  
Figure 5. Y-Termination  
+3.3V  
+3.3V  
R1  
130Ω  
R1  
1kΩ  
R3  
1kΩ  
+3.3V  
Q
+3.3V  
Z0 = 50Ω  
/Q  
R2  
82Ω  
R2  
82Ω  
R4  
1.6kΩ  
For +2.5V systems  
R1 = 250, R2 = 62.5, R3 = 1.25k, R4 = 1.2kΩ  
Figure 6. Terminating Unused I/O  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
10  
Precision Edge™  
Micrel  
SY89295U  
APPLICATIONS INFORMATION  
For best performance, use good high-frequency layout  
In all cases, V  
current sinking or sourcing must be  
BB  
techniques, filter V supplies, and keep ground connections  
limited to 0.5mA or less.  
CC  
short. Use multiple vias where possible. Also, use controlled  
impedance transmission lines to interface with the SY89295U  
data inputs and outputs.  
Setting D Input Logic Thresholds  
In all designs where the SY89295U GND supply is at  
zero volts, the D inputs can accommodate CMOS and TTL  
level signals, as well as PECL or LVPECL. Figures 11, 12  
and 14 show how to connect V and V for all possible  
V
Reference  
BB  
The VBB pin is an internally generated reference and is  
CF  
EF  
available for use only by the SY89295U. When unused, this  
cases.  
pin should be left unconnected. Two common uses for V  
are to handle a single-ended PECL input, and to re-bias  
inputs for AC-coupling applications.  
BB  
Cascading  
Two or more SY89295U may be cascaded in order to  
extend the range of delays permitted. Each additional  
SY89295U adds about 3.2ns to the minimum delay and  
adds another 10240ps to the delay range.  
If either IN or /IN are driven by a single-ended output,  
V
is used to bias the unused input. Please refer to Figure  
BB  
10. The PECL signal driving the SY89295U may optionally  
be inverted in this case.  
Internal cascade circuitry has been included in the  
SY89295U. Using this internal circuitry, the SY89295U may  
be cascaded without any external gating.  
When the signal is AC-coupled, V is used, as shown  
BB  
in Figure 13, to re-bias IN and/or /IN. This ensures that  
SY89295U inputs are within acceptable common mode  
range.  
Examples of cascading 2, 3, or 4 SY89295U appear in  
Figures 7, 8, and 9.  
Control Word (11bits)  
C[10]  
D[10]  
D[9:0]  
IN  
C[9:0]  
#1  
#2  
IN  
Q
Q
/IN  
/Q  
/IN  
/Q  
SETMIN  
SETMAX  
/CASCADE  
CASCADE  
Figure 7. Cascading Two SY89295U  
Control Word (12bits)  
C[11]  
C[10]  
D[10]  
D[10]  
D[9:0]  
IN  
C[9:0]  
#1  
#2  
#3  
IN  
Q
IN  
Q
Q
/IN  
/Q  
/IN  
/Q  
/IN  
/Q  
SETMIN  
/CASCADE  
/CASCADE  
SETMIN  
SETMAX  
SETMAX  
CASCADE  
CASCADE  
Figure 8. Cascading Three SY89295U  
11  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
Precision Edge™  
Micrel  
SY89295U  
Control Word (12bits)  
C[11]  
C[10]  
D[10]  
D[10]  
D[9:0]  
IN  
#1  
#2  
#3  
#4  
C[9:0]  
IN  
Q
IN  
Q
IN  
Q
Q
/IN  
/Q  
/IN  
/Q  
/IN  
/Q  
/IN  
/Q  
SETMIN  
/CASCADE  
/CASCADE  
SETMIN  
SETMAX  
SETMIN  
SETMAX  
SETMAX  
CASCADE  
CASCADE  
Figure 9. Cascading Four SY89295U  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
12  
Precision Edge™  
Micrel  
SY89295U  
INTERFACE APPLICATIONS  
VCC = +3.3V  
D[0:10]  
LVPECL  
Signals  
VCF  
VEF  
Figure 11. V /V Biasing for  
Figure 10. Interfacing to a  
CF EF  
LVPECL Control (D) Input  
Single-Ended LVPECL Signal  
To invert the signal, connect the LVPECL  
input to /IN and connect VCC to IN.  
VCC = +3.3V  
VCC = +3.3V  
TTL  
Inputs  
D[0:10]  
VCF  
CMOS  
Inputs  
D[0:10]  
IN  
NC VCF  
NC VEF  
NC VEF  
VCC  
/IN  
1.5kΩ  
50Ω  
0.01µF  
50Ω  
VBB  
0V  
Figure 13. Re-Biasing an  
AC-Coupled Signal  
Figure 14. V /V Biasing for  
Figure 12. V /V Biasing for  
CF EF  
CF EF  
LVTTL Control (D) Input  
CMOS Control (D) Input  
RELATED PRODUCT AND SUPPORT DOCUMENTATION  
Part Number  
Function  
Data Sheet Link  
SY89295U  
2.5/3.3V 1.5GHz Precision LVPECL  
Programmable Delay  
www.micrel.com/product-info/products/sy89295u.shtml  
www.micrel.com/product-info/products/sy89296u.shtml  
www.amkor.com/products/notes_papers/MLF_appnote_0902.pdf  
http://www.micrel.com/product-info/as/solutions.shtml  
SY89296U  
2.5/3.3V 1.5GHz Precision LVPECL  
Programmable Delay with Fine Tune Control  
16-MLF Manufacturing Guidelines  
Exposed Pad Application Note  
HBW Solutions  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
13  
Precision Edge™  
Micrel  
SY89295U  
32 LEAD MicroLeadFrame(MLF-32)  
Rev. 01  
Package  
EP- Exposed Pad  
Die  
CompSide Island  
Heat Dissipation  
Heat Dissipation  
VEE  
Heavy Copper Plane  
Heavy Copper Plane  
VEE  
PCB Thermal Consideration for 32-Pin MLFPackage  
(Always solder, or equivalent, the exposed pad to the PCB)  
Package Notes:  
1. Package meets Level 2 qualification.  
2. All parts are dry-packaged before shipment.  
3. Exposed pads must be soldered to a ground for proper thermal management.  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
14  
Precision Edge™  
Micrel  
SY89295U  
32 LEAD TQFP (T32-1)  
Rev. 01  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchasers  
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchasers own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2004 Micrel, Incorporated.  
M9999-031604  
hbwhelp@micrel.com or (408) 955-1690  
15  

相关型号:

SY89295UTG

2.5V/3.3V 1.5GHz PRECISION LVPECL PROGRAMMABLE DELAY
MICREL

SY89295UTG

ACTIVE DELAY LINE, COMPLEMENTARY OUTPUT, PQFP32
MICROCHIP

SY89295UTGTR

2.5V/3.3V 1.5GHz PRECISION LVPECL PROGRAMMABLE DELAY
MICREL

SY89295UTI

2.5V / 3.3V 1.5 GHZ PRECISION LVPECL PROGRAMMABLE DELAY
MICREL

SY89295UTI

Active Delay Line, Programmable, 1-Func, 1023-Tap, Complementary Output, PQFP32, TQFP-32
MICROCHIP

SY89295UTITR

2.5V / 3.3V 1.5 GHZ PRECISION LVPECL PROGRAMMABLE DELAY
MICREL

SY89295U_06

2.5V/3.3V 1.5GHz PRECISION LVPECL PROGRAMMABLE DELAY
MICREL

SY89295U_11

2.5V/3.3V 1.5GHz Precision LVPECL
MICREL

SY89296U

2.5V/3.3V 1.5GHz PRECISION LVPECL PROGRAMMABLE DELAY WITH FINE TUNE CONTROL
MICREL

SY89296UMG

2.5V/3.3V 1.5GHz PRECISION LVPECL PROGRAMMABLE DELAY WITH FINE TUNE CONTROL
MICREL

SY89296UMGTR

2.5V/3.3V 1.5GHz PRECISION LVPECL PROGRAMMABLE DELAY WITH FINE TUNE CONTROL
MICREL

SY89296UMI

2.5V/3.3V 1.5GHz PRECISION LVPECL PROGRAMMABLE DELAY WITH FINE TUNE CONTROL
MICREL