SY89474U [MICREL]

Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination; 精密LVPECL 2 : 1复用器与1 : 2扇出和内部终止
SY89474U
型号: SY89474U
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination
精密LVPECL 2 : 1复用器与1 : 2扇出和内部终止

复用器
文件: 总11页 (文件大小:566K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SY89473U  
Precision LVPECL 2:1 Multiplexer with 1:2  
Fanout and Internal Termination  
General Description  
The SY89473U is a 2.5V/3.3V precision, high-speed 2:1  
differential MUX capable of processing clocks up to  
2.5GHz and data up to 2.5Gbps.  
®
Precision Edge  
The differential input includes Micrel’s unique, 3-pin  
input termination architecture that directly interfaces to  
any differential signal (AC- or DC-coupled) as small as  
100mV (200mVPP) without any level shifting or  
termination resistor networks in the signal path. The  
output is 800mV, 100K-compatible, LVPECL with fast  
rise/fall times guaranteed to be less than 190ps.  
Features  
Selects between two input channels and provides two  
copies of the selected output  
Guaranteed AC performance over temperature and  
supply voltage:  
- DC to 2.5Gbps data throughput  
- DC to 2.5GHz fMAX (clock)  
- <500ps In-to-Out tpd  
- <190ps tr/tf  
The SY89473U operates from a 2.5V ±5% or 3.3V  
±10% supply and is guaranteed over the full industrial  
temperature range of –40°C to +85°C. The SY89473U is  
part of Micrel’s high-speed, Precision Edge® product  
line. For multiple-clock switchover solutions, please refer  
to the SY89840–SY89843U family.  
- <20ps Output-to-output skew  
Unique patented input isolation design minimizes  
crosstalk  
All support documentation can be found on Micrel’s web  
site at: www.micrel.com.  
Ultra-low Jitter Design:  
- <1psRMS random jitter  
- <1psRMS cycle-to-cycle jitter  
- <10psPP total jitter (clock)  
- <0.7psRMS crosstalk induced jitter  
Functional Block Diagram  
Unique patent-pending input termination and VT pin  
accepts DC- and AC-coupled inputs (CML, PECL,  
LVDS)  
800mV (100K) LVPECL output swing  
2.5V ±5% or 3.3V ±10% supply voltage  
-40°C to +85°C industrial temperature range  
Available in 24-pin (4mm x 4mm) MLFTM package  
Applications  
Clock switchover  
Data distribution  
Markets  
LAN/WAN  
Enterprise servers  
ATE  
Test and measurement  
Precision Edge is a registered trademark of Micrel, Inc.  
MLF and MicroLeadFrame are trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
Micrel, Inc.  
SY89473U  
Ordering Information(1)  
Part Number  
Package Type  
Operating  
Range  
Package Marking  
Lead  
Finish  
NiPdAu  
Pb-Free  
SY89473UMG  
MLF-24  
MLF-24  
Industrial  
Industrial  
SY89473U with Pb-Free bar-line indicator  
SY89473U with Pb-Free bar-line indicator  
NiPdAu  
Pb-Free  
SY89473UMGTR(2)  
Notes:  
1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC Electricals Only.  
2. Tape and Reel.  
Pin Configuration  
24-Pin MLFTM (MLF-24)  
M9999-050405  
hbwhelp@micrel.com or (408) 955-1690  
May 4, 2005  
2
Micrel, Inc.  
SY89473U  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
Differential Inputs: These input pairs are the differential signal inputs to the device.  
They accept AC or DC-coupled signals as small as 100mV (200mVPP). Note that  
these inputs will default to an indeterminate state if left open. Each pin of a pair  
internally terminates to a VT pin through 50. Please refer to the “Input Interface  
Applications” section for more details.  
5, 2,  
IN0, /IN0  
IN1, /IN1  
23, 20  
Reference Voltage: These outputs bias to VCC -1.2V. They are used for AC-  
coupling inputs IN and /IN. Connect VREF-AC directly to the corresponding VT pin.  
Bypass with 0.01µF low ESR capacitor to VCC. Maximum sink/source current is  
±1.5mA. Due to the limited drive capability, the VREF-AC pin is only intended to  
drive its respective VT pin. Please refer to the “Input Interface Applications” section  
for more details.  
VREF-AC0,  
VREF-AC1  
3, 21  
Input Termination Center-Tap: Each side of the differential input pair terminates to  
a VT pin. The VT0 and VT1 pins provide a center-tap to a termination network for  
maximum interface flexibility. Please refer to the “Input Interface Applications”  
section for more details.  
4, 22  
VT0, VT1  
VCC  
1, 6, 9, 10, 13,  
19, 24  
Positive Power Supply: Connect to +2.5V or +3.3V power supply. Bypass with  
0.1µF//0.01µF low ESR capacitors as close to VCC pins as possible.  
Differential Outputs: These differential LVPECL output pairs are a logic function of  
the IN0, IN1, and SEL inputs. Please refer to the truth table below for details.  
Unused output pairs can be left floating with no impact on jitter.  
7, 8  
11, 12  
Q0, /Q0  
Q1, /Q1  
This single-ended TTL/CMOS-compatible input selects the inputs to the  
multiplexer. Note that this input is internally connected to a 25kpull-up resistor  
and will default to a logic HIGH state if left open. VTH = VCC/2. Please refer to the  
“Timing Diagram” section for more details.  
15  
SEL  
GND, Exposed  
Pad  
Ground: Ground pins and exposed pad must be connected to the same ground  
plane.  
14, 17, 18  
Truth Table  
INPUTS  
OUTPUTS  
IN0  
0
/IN0  
1
IN1  
X
/IN1  
X
SEL  
Q
0
1
0
1
/Q  
1
0
0
1
1
1
0
X
X
0
X
X
0
1
1
X
X
1
0
0
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
3
Micrel, Inc.  
SY89473U  
Absolute Maximum Ratings(1)  
Supply Voltage (VCC)....................................-0.5V to +4.0V  
Input Voltage (VIN)........................................... -0.5V to VCC  
Operating Ratings(2)  
Supply Voltage (VCC)..................................+2.375V to +2.625V  
....................................................................+3.0V to +3.6V  
Ambient Temperature (TA).................................–40°C to +85°C  
Package Thermal Resistance(3)  
LVPECL Output Current (IOUT  
)
Continuous ...........................................................±50mA  
Surge..................................................................±100mA  
Input Current  
Source/sink Current on IN, /IN..............................±50mA  
Source/sink Current on VT ..................................±100mA  
MLF™ (θJA)  
Still-Air.................................................................... 50°C/W  
MLF™ (ΨJB)  
Junction-to-Board................................................... 30°C/W  
V
REF-AC Current  
Source/sink Current on VREF-AC...............................±2mA  
Lead Temperature (soldering, 20 sec.) ...................+260°C  
Storage Temperature (TS)...........................-65°C to 150°C  
DC Electrical Characteristics(4)  
TA = –40°C to +85°C; unless otherwise stated.  
Symbol Parameter  
Condition  
Min  
2.375  
3.0  
Typ  
2.5  
3.3  
45  
Max  
2.625  
3.6  
Units  
V
VCC  
Power Supply  
V
ICC  
Power Supply Current  
No load, max VCC  
.
65  
mA  
RIN  
Input Resistance  
(IN-to-VT)  
45  
90  
1.2  
0
50  
55  
RDIFF_IN  
VIH  
Differential Input Resistance  
(IN-to-/IN)  
100  
110  
VCC  
V
V
V
V
V
V
Input High Voltage  
(IN, /IN)  
VIL  
Input Low Voltage  
(IN, /IN)  
VIH-0.1  
VCC  
VIN  
Input Voltage Swing  
(IN, /IN)  
See Figure 1a. Note 5  
See Figure 1b.  
0.1  
0.2  
VDIFF_IN  
VT_IN  
Differential Input Voltage Swing  
|IN-/IN|  
IN-to-VT  
(IN, /IN)  
1. 28  
VREF-AC  
Output Reference Voltage  
VCC-1.3  
VCC-1.2  
VCC-1.1  
Notes:  
1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not  
implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions  
for extended periods may affect device reliability.  
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.  
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ JA and ΨJB  
values are determined for a 4-layer board in still air unless otherwise stated.  
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.  
5.  
VIN (max) is specified when VT is floating.  
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
4
Micrel, Inc.  
SY89473U  
LVPECL Outputs DC Electrical Characteristics(6)  
VCC = 2.5V ±5% or 3.3V ±10%; TA = -40°C to + 85°C; RL = 50to VCC-2V, unless otherwise stated.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOH  
Output HIGH Voltage  
Q, /Q  
V
V
CC–1.145  
VCC-0.895  
V
VOL  
Output LOW Voltage  
Q, /Q  
CC–1.945  
550  
VCC-1.695  
V
VOUT  
Output Voltage Swing  
Q, /Q  
See Figure 1a.  
See Figure 1b.  
800  
mV  
mV  
VDIFF-OUT  
Differential Output Voltage Swing  
Q, /Q  
1100  
1600  
LVTTL/CMOS DC Electrical Characteristics(6)  
VCC = 2.5V ±5% or 3.3V ±10%; TA = -40°C to + 85°C, unless otherwise stated.  
Symbol  
VIH  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
V
Input HIGH Voltage  
Input LOW Voltage  
Input HIGH Current  
Input LOW Current  
2.0  
VIL  
0.8  
30  
V
IIH  
-125  
-300  
µA  
µA  
IIL  
Note:  
6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.  
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
5
Micrel, Inc.  
SY89473U  
AC Electrical Characteristics(7)  
VCC = 2.5V ±5% or 3.3V ±10%; TA = -40°C to + 85°C, RL = 50to VCC-2V, unless otherwise stated.  
Symbol Parameter  
fMAX Maximum Operating Frequency  
Condition  
Min  
2.5  
2.5  
Typ  
3.2  
3.0  
Max  
Units  
Gbps  
GHz  
NRZ Data  
Clock  
V
OUT 400mV  
tpd  
Differential Propagation Delay  
In-to-Q  
250  
250  
320  
360  
500  
600  
ps  
ps  
SEL-to-Q  
VTH = VCC/2  
Tpd  
Differential Propagation Delay  
158  
5
fs/oC  
Tempco Temperature Coefficient  
tSKEW  
Output-to-Output Skew  
Part-to-Part Skew  
Clock  
Note 8  
Note 9  
20  
ps  
ps  
200  
tJitter  
Random Jitter  
Note 10  
1
1
psRMS  
psRMS  
psPP  
psRMS  
ps  
Cycle-to-Cycle Jitter  
Total Jitter (TJ)  
Note 11  
Note 12  
10  
0.7  
190  
Crosstalk-Induced Jitter  
Output Rise/Fall Time (20% to 80%)  
Note 13  
tr, tf  
At full output swing.  
70  
130  
Notes:  
7. High-frequency AC-parameters are guaranteed by design and characterization.  
8. Output-to-output skew is measured between two different outputs under identical transitions.  
9. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at  
the respective inputs.  
10. Random Jitter is measured with a K28.7 pattern, measured at <fMAX  
.
11. Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles, Tn – Tn-1 where T is the time between rising edges of the  
output signal.  
12. Total Jitter definition: With an ideal clock input of frequency <fMAX, no more than one output edge in 1012 output edges will deviate by  
more than the specified peak-to-peak jitter value.  
13. Crosstalk is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each  
other at the inputs.  
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
6
Micrel, Inc.  
SY89473U  
Typical Operating Characteristics  
VCC = 3.3V; VIN > 400mV; TA = 25°C, RL = 50to VCC-2V, unless otherwise stated.  
Functional Characteristics  
VCC = 3.3V; VIN > 400mV; TA = 25°C, RL = 50to VCC-2V, unless otherwise stated.  
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
7
Micrel, Inc.  
SY89473U  
Single-Ended and Differential Swings  
Figure 1a. Single-Ended Voltage Swing  
Figure 1b. Differential Voltage Swing  
Timing Diagrams  
Input and Output Stages  
Figure 2a. Simplified Differential Input Stage  
Figure 2b. Simplified LVPECL Output Stage  
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
8
Micrel, Inc.  
SY89473U  
Input Interface Applications  
Option: may connect VT to VCC  
Figure 3c. CML Interface  
(DC-Coupled)  
Figure 3b. LVPECL Interface  
(AC-Coupled)  
Figure 3a. LVPECL Interface  
(DC-Coupled)  
Figure 3e. LVDS Interface  
(DC-Coupled)  
Figure 3d. CML Interface  
(AC-Coupled)  
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
9
Micrel, Inc.  
SY89473U  
LVPECL Output Interface Applications  
LVPECL has a high input impedance, a very low  
output impedance (open emitter), and a small signal  
swing which results in low EMI. LVPECL is ideal for  
driving 50- and-100-controlled impedance  
transmission lines. There are several techniques for  
terminating the LVPECL output including: Parallel  
Termination-Thevenin  
Termination (3-resistor),  
Equivalent,  
and  
Parallel  
AC-coupled  
Termination. Unused output pairs may be left  
floating. However, single-ended outputs must be  
terminated, or balanced.  
Note:  
1. Power-saving alternative to Thevenin termination.  
2. Place termination resistors as close to destination inputs as  
possible.  
3. Rb resistor sets the DC bias voltage, equal to VT.  
4. For 2.5V systems, Rb = 19.  
Figure 4b. Parallel Termination (3-Resistor)  
Note:  
1. For +2.5V systems, R1 = 250, R2 = 62.5.  
Figure 4a. Parallel Termination-Thevenin Equivalent  
Related Product and Support Information  
Part Number Function  
Data Sheet Link  
SY89474U  
SY89475U  
Precision LVDS 2:1 Multiplexer with  
1:2 Fanout and Internal Termination  
www.micrel.com/product-info/products/sy89474u.shtml  
Precision CML 2:1 Multiplexer with  
1:2 Fanout and Internal Termination  
www.micrel.com/product-info/products/sy89475u.shtml  
MLFTM Application Note  
www.amkor.com/products/notes_papers/MLFAppNote.pdf  
www.micrel.com/product-info/products/solutions.shtml  
HBW  
Solutions  
New Products and Applications  
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
10  
Micrel, Inc.  
SY89473U  
Package Information  
24-Pin MicroLeadFrameTM (MLF-24)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for  
its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a  
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for  
surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant  
injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk  
and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.  
© 2005 Micrel, Incorporated.  
M9999-052405  
hbwhelp@micrel.com or (408) 955-1690  
May 2005  
11  

相关型号:

SY89474UMG-TR

89474 SERIES, 2 LINE TO 1 LINE MULTIPLEXER, COMPLEMENTARY OUTPUT, QCC24
MICROCHIP

SY89474UMGTR

Precision LVDS 2:1 Multiplexer with 1:2
MICREL

SY89474U_10

Precision LVDS 2:1 Multiplexer with 1:2
MICREL

SY89475U

Precision LVPECL 2:1 Multiplexer with 1:2 Fanout and Internal Termination
MICREL

SY89529L

3.3V 200MHz PRECISION SPREADSPECTRUM CLOCK SYNTHESIZER
MICREL

SY89529LTC

3.3V 200MHz PRECISION SPREADSPECTRUM CLOCK SYNTHESIZER
MICREL

SY89529LTCTR

3.3V 200MHz PRECISION SPREADSPECTRUM CLOCK SYNTHESIZER
MICREL

SY89529LTH

3.3V 200MHz PRECISION SPREADSPECTRUM CLOCK SYNTHESIZER
MICREL

SY89529LTHTR

3.3V 200MHz PRECISION SPREADSPECTRUM CLOCK SYNTHESIZER
MICREL

SY89529LTHTR

Processor Specific Clock Generator, 200MHz, PQFP32, LEAD FREE, TQFP-32
MICROCHIP

SY89529LZC

3.3V 200MHz PRECISION SPREADSPECTRUM CLOCK SYNTHESIZER
MICREL

SY89529LZCTR

3.3V 200MHz PRECISION SPREADSPECTRUM CLOCK SYNTHESIZER
MICREL