SY89538LHG [MICREL]

3.3V PRECISION LVPECL AND LVDS PROGRAMMABLE MULTIPLE OUTPUT BANK CLOCK SYNTHESIZER AND FANOUT BUFFER WITH ZERO DELAY; 3.3V精密LVPECL和LVDS可编程多输出时钟BANK合成器和扇出缓冲器具有零延迟
SY89538LHG
型号: SY89538LHG
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

3.3V PRECISION LVPECL AND LVDS PROGRAMMABLE MULTIPLE OUTPUT BANK CLOCK SYNTHESIZER AND FANOUT BUFFER WITH ZERO DELAY
3.3V精密LVPECL和LVDS可编程多输出时钟BANK合成器和扇出缓冲器具有零延迟

输出元件 时钟
文件: 总23页 (文件大小:628K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SY89538L  
3.3V Precision LVPECL and LVDS  
Programmable Multiple Output Bank Clock  
Synthesizer and Fanout Buffer with Zero Delay  
General Description  
The SY89538L integrated programmable clock  
synthesizer and fanout is part of a precision PLL-  
based clock generation family optimized for  
enterprise switch, router, and multiprocessor server  
applications. This family is ideal for generating  
internal system timing requirements up to 750MHz for  
multiple ASICs, FPGAs, and NPUs. These devices  
integrate the following blocks into a single monolithic  
IC:  
Precision Edge®  
Features  
Integrated programmable synthesizer with multiple  
output dividers, fanout buffers, and clock drivers  
Zero-delay capability: 29.375MHz to 756MHz  
Reference clock input: 9.325MHz to 756MHz  
PLL (Phase-Lock-Loop) based synthesizer  
Zero-delay MUX and feedback capability  
1:4 LVPECL fanout  
Input MUX accepts a reference and a crystal  
(XTAL) source  
– Ideal for reference backup clock source or  
system test frequency source  
– Patent-pending unique input MUX isolates XTAL  
and reference inputs which minimizes crosstalk  
1:3 LVDS fanout  
Clock generator (dividers)  
Guaranteed AC performance:  
– Output frequency range: 29.375MHz to 756MHz  
– <150psPP total jitter  
Logic translation (LVPECL, LVDS)  
Five-independently programmable output  
banks  
– <6psRMS cycle-to-cycle jitter (XTAL Input)  
– <8psPP deterministic jitter  
This level of integration minimizes additive jitter and  
part-to-part skew associated with discrete  
– <0.7psRMS crosstalk induced jitter  
– <75ps output-to-output skew  
TTL/CMOS-compatible control logic  
alternatives, resulting in superior system-level timing  
with reduced board space and power. For  
applications that do not require a zero-delay function,  
see the SY89537L.  
Five-independently programmable output  
All support documentation can be found on  
Micrel’s web site at: www.micrel.com.  
frequency banks:  
– Four differential LVPECL output banks  
– One differential LVDS output bank with three  
output pairs  
Output bank synchronization control pin  
Output enable  
Applications  
Enterprise routers, switches, servers and  
workstations  
Parallel processor-based systems  
3.3V ±10% power supply (2.5V output capable)  
Internal system clock generation for ASICs, NPUs  
Guaranteed over the industrial temperature range  
and FPGAs  
(-40°C to +85°C)  
Available in a 64-pin EPAD-TQFP  
Markets  
LAN/WAN  
Enterprise servers  
Test and measurement  
Precision Edge is a registered trademark of Micrel, Inc.  
MLF and MicroLeadFrame are trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel, Inc.  
SY89538L  
Typical Application  
Functional Block Diagram  
October 2005  
2
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Ordering Information(1)  
Part Number  
Package  
Type  
Operating  
Range  
Package Marking  
Lead  
Finish  
NiPdAu  
Pb-Free  
SY89538LHG  
H64-1  
Industrial  
Industrial  
SY89538LHG with Pb-Free bar-line indicator  
SY89538LHG with Pb-Free bar-line indicator  
NiPdAu  
Pb-Free  
SY89538LHGTR(2)  
H64-1  
Notes:  
1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC Electricals only.  
2. Tape and Reel.  
Pin Configuration  
64-Pin EPAD TQFP (H64-1)  
October 2005  
3
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Pin Description  
Power  
Pin Number  
Pin Name  
VCCA  
Pin Function  
Analog PLL Power Pin. Connects to “quiet” 3.3V supply. 3.3V power pins must be  
connected together on the PCB. Bypass with 0.1µF//0.01µF low ESR capacitors and  
place them as close to the VCCA pin as possible.  
1
VCCD  
Digital Logic Core Power Pin. VCCD connects to a 3.3V supply. All power pins must  
be connected together on the PCB. Bypass with 0.1µF//0.01µF low ESR capacitors  
and place them as close to the VCCD pin as possible.  
6, 56  
LVDS and LVPECL Output Driver Power Pins. These outputs can be powered from a  
2.5V or 3.3V supply. Connect all VCCO pins to the same power supply: 3.3V ±10% or  
2.5V ±5%. All power pins must be connected together on the PCB. Bypass with  
0.1µF//0.01µF low ESR capacitor and place them as close to the VCCO pin as  
possible.  
19, 40, 43, 51  
VCCO  
Analog PLL Ground. Connect to “quiet” ground. GNDA and GND must be connected  
together on the PCB.  
15  
GNDA  
GND,  
16, 30, 31,  
47, 55  
Ground: GND pins and exposed pad must both be connected to the same ground  
plane.  
Exposed Pad  
Control and Configuration  
Pin Number  
Pin Name  
Pin Function  
62  
LR  
Analog Input/Output. Provides the reference voltage for the PLL loop filter and is  
used with the LF pin. See “External Loop Filter Considerations” for recommended  
loop filter values.  
63  
LF  
Analog Input/Output. Provides the loop filter node for the PLL. See “External Loop  
Filter Considerations” for recommended loop filter values.  
2, 7  
RSEL1, RSEL0  
TTL/CMOS Reference input pre-scalar and Zero Delay MUX divider select inputs.  
The two-bit input pre-scalar divides the input reference frequency by /1, /2, /4, or /8.  
RSEL0 is the LSB bit. See “Reference Input Divider and Zero Delay MUX Divider  
Select Table” for proper decoding. The threshold voltage VTH = VCC/2. Internal 25k  
pull-up. The default logic is HIGH.  
10  
36  
37  
INSEL  
LSEL  
LEN  
TTL/CMOS Input Select Control. Selects either XTAL or Reference (RFCK) input.  
Internal 25kpull-up. The default is logic HIGH, and selects the XTAL input. The  
threshold voltage VTH = VCC/2.  
Logic HIGH: XTAL Select  
Logic LOW: Reference Input Select  
TTL/CMOS input select control signal for the LVDS LOUT0-LOUT2 outputs. LSEL,  
DSEL, and LEN are used together to decode the selection and post divider of the  
LVDS outputs. Internal 25kpull-up. See “LVDS Output Post-Divider and Frequency  
Select Table” for proper decoding. The threshold voltage VTH = VCC/2. The default  
logic is HIGH.  
TTL/CMOS input enable pin. Used to control the LOUT0-LOUT2 outputs and acts as  
a frequency select pin. LEN, DSEL, and LSEL are used together to decode the  
selection and post divide of the LVDS output bank, see the “LVDS Output Post-  
Divider and Frequency Select Table” for proper decoding. Internal 25kpull-up.  
When disabled, LOUT0-LOUT2 outputs are LOW, and the complimentary outputs are  
HIGH. The threshold voltage VTH = VCC/2. The default logic is HIGH.  
23  
25  
57  
59  
PSEL0  
PSEL1  
PSEL2  
PSEL3  
TTL/CMOS input select control signals for the PECL POUT0-POUT3 outputs. PSELx,  
DSEL and PENx are used together to decode the selection and post divider of the  
PECL outputs. PSELx pins include an internal 25kpull-up. The threshold voltage  
V
TH = VCC/2. See "LVPECL Output Post-Divider and Frequency Select Table” for  
proper decoding.  
October 2005  
4
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Pin Description  
Control and Configuration (continued)  
Pin Number  
Pin Name  
Pin Function  
24  
26  
58  
60  
PEN0  
PEN1  
PEN2  
PEN3  
TTL/CMOS input enable pin. Used to control the PECL POUT0-POUT3 outputs and  
as a frequency select pins. PENx, PSELx, and DSEL are used together; see the  
“LVPECL Output Post-Divider and Frequency Select Table” for proper decoding.  
PENx contains internal 25kpull-up. When disabled, PECL0-PECL3 outputs are a  
logic LOW. The threshold voltage VTH = VCC/2.  
46  
SYNC  
TTL/CMOS Output Bank Synchronization Control. Internal 25kpull-down. The  
default state is HIGH. After any bank has been programmed, all PECL and LVDS  
outputs are synchronized when the SYNC control pin is toggled with a HIGH-LOW-  
HIGH transition. See “Synchronization” section for details. The threshold voltage VTH  
= VCC/2.  
5
FBSEL  
TTL/CMOS Input Select Control. Selects either internal or external feedback (zero-delay  
function). Internal 25kpull-up. The threshold voltage VTH = VCC/2. Default is logic  
HIGH, and selects internal feedback.  
Logic HIGH: Internal feedback (from the Programmable Divider)  
Logic Low: External feedback (from the FBIN inputs)  
28  
33  
35  
PD_4  
PD_2  
PD_0  
TTL/CMOS Programmable Divider-Select Control. Internal 25kpull-down. Default is  
logic LOW. The threshold voltage VTH = VCC/2. See “Programmable-Divider Select Table”  
for proper decoding.  
27  
29  
34  
PD_5  
PD_3  
PD_1  
TTL/CMOS Programmable Divider-Select Control. Internal 25kpull-up. Default is logic  
HIGH. The threshold voltage VTH = VCC/2. See “Programmable-Divider Select Table” for  
proper decoding.  
13, 14  
PDSEL1,  
PDSEL0  
TTL/CMOS Pre-Divider Select Input. Internal 25kpull-up. This two-bit input divider  
scales the VCO/2 frequency. See “Pre-Divider Frequency Select Table” for proper  
decoding. The threshold voltage VTH = VCC/2.  
22  
DSEL  
TTL/CMOS Post-Divider Option Control. Internal 25kpull-up. Default is logic HIGH.  
The threshold voltage VTH = VCC/2.  
Logic HIGH: All LVPECL and LVDS outputs operate with their respective output  
frequency control (PSELx, PENx, LSEL, LEN).  
Logic LOW: Internal PLL is disabled, reference and XTAL signals by-passes the PLL  
through a /1, /4, and /16 Post-Divider.  
See “LVPECL and LVDS Output Post-Divider and Frequency Select Table” for proper  
decoding.  
October 2005  
5
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Pin Description  
Input/Output  
Pin Number  
Pin Name  
Pin Function  
External Feedback Input used as the zero delay input. Output feeds into the inputs to  
configure the device in zero-delay mode, which forces the output frequency to the  
same frequency of the RFCK frequency. Requires external termination. See “Zero  
Delay FBIN Input” section for more details.  
3, 4  
FBIN, /FBIN  
Reference Clock Differential Input. Input accepts any input, single-ended or  
differential: TTL/CMOS, LVPECL, LVDS, HSTL, and SSTL. RFCK requires an  
external termination. See “Input Interface” and “Input Termination” sections for more  
details.  
8, 9  
RFCK, /RFCK  
XTAL2, XTAL1  
Crystal Input. Directly connect a series resonant crystal across inputs. See “Quartz  
Crystal Oscillator Specification” table. Place crystal as close to the input as possible,  
keep XTAL and traces away from adjacent noisy traces to minimize noise coupling,  
and place the XTAL on the same side as the SY89538L (component side).  
11, 12  
100K LVPECL Output Drivers. Terminate all LVPECL outputs with 50to VCCO–2V.  
Each output pair has a respective output frequency control (PSELx, PENx, DSEL).  
See “LVPECL Output Post-Divider and Frequency Select Table” for proper decoding.  
For low-jitter applications, unused LVPECL output pairs should be terminated with  
pull-down resistors. See “Output Termination Recommendations” section for  
termination detail.  
17, 18  
20, 21  
49, 50  
52, 53  
POUT0, /POUT0  
POUT1, /POUT1  
POUT2, /POUT2  
POUT3, /POUT3  
Differential LVDS-Compatible Output Drivers. Output termination is 100across the  
pair. For low-jitter applications, unused LVDS output pairs should be terminated with  
100across the pair. See “Output Termination Recommendations” section for  
details.  
38, 39  
LOUT0, /LOUT0  
LOUT1, /LOUT1  
LOUT2, /LOUT2  
41, 42  
44, 45  
32, 48,  
54, 61, 64  
NC  
No connect.  
Input Driver Select Table  
RSEL1  
RSEL0  
Internal Reference  
Clock  
Zero-Delay  
MUX Divider  
0
0
1
1
0
1
0
1
RFCK / 8  
RFCK / 4  
RFCK / 2  
RFCK / 1  
FBIN / 8  
FBIN / 4  
FBIN / 2  
FBIN / 1  
Table 1. Reference Input Divider and Zero-Delay MUX Divider Select Table  
Pre-Divider Frequency Select Table  
PDSEL1  
PDSEL0  
Pre-Div-Out Frequency  
(VCO/2) / 5  
0
0
1
1
0
1
0
1
(VCO/2) / 4  
(VCO/2) / 3  
(VCO/2) / 2  
Table 2. Pre-Divider Select Table  
October 2005  
6
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Output and Frequency Select Tables  
PSELx  
PENx  
DSEL  
POUTx  
Disable Output (HIGH)  
fREF-DIV / 4  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
fREF-DIV / 16  
fREF-DIV / 1  
Disable Output (LOW)  
fPRE-DIV / 2  
fPRE-DIV / 8  
fPRE-DIV / 1  
Table 3. LVPECL Output Post-Divider and Frequency Select Table  
LSEL  
LEN  
0
DSEL  
LOUTx  
Disable Output (HIGH)  
fREF-DIV / 4  
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
1
0
fREF-DIV / 16  
1
fREF-DIV / 1  
0
Disable Output (LOW)  
fPRE-DIV / 2  
1
0
fPRE-DIV / 8  
1
fPRE-DIV / 1  
Table 4. LVDS Output Post-Divider and Frequency Select Table  
Programmable-Divider Select Table  
PD_5  
PD_4  
PD_3  
PD_2  
PD_1  
PD_0  
6-Bit Prog. Divider  
fVCO  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
8
9
10  
11  
12  
fRef x 32  
fRef x 36  
fRef x 40  
fRef x 44  
fRef x 48  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
40  
41  
42  
43  
44  
fRef x 160  
fRef x 164  
fRef x 168  
fRef x 172  
fRef x 176  
1
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
1
1
0
1
0
59  
60  
61  
62  
63  
fRef x 236  
fRef x 240  
fRef x 244  
fRef x 248  
fRef x 252  
1
1
1
1
1
1
Table 5. Programmable-Divider Select Table  
Note:  
See “Reference Input Frequency and Valid Programmable Divider Range” section for more details.  
October 2005  
7
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VCCD, VCCA, VCCO)...... –0.5V to +4.0V  
Input Voltage (RFCK, FBIN)...................0.5V to VCC  
XTAL Input Voltage (VXTAL1, 2) ......... VCC –1.9V to VCC  
Supply Voltage  
VCCOA and VCCOC ............................... +3.0V to +3.6V  
CCOB ............................................. +2.375V to +3.6V  
V
Output Current (IOUT  
)
Ambient Temperature (TA).......................40°C to +85°C  
Package Thermal Resistance (Junction-to-Ambient)  
With Die attach soldered to GND:  
TQFP (θJA) Still-Air......................................23°C/W  
TQFP (θJA) 200lfpm.....................................18°C/W  
TQFP (θJA) 500lfpm.....................................15°C/W  
With Die attach NOT soldered to GND(3):  
LVPECL Outputs (Surge) .........................100mA  
LVPECL Outputs (Continuous)...................50mA  
LVDS Outputs...........................................±10mA  
Lead Temperature (soldering, 20 sec.)..........+260°C  
Storage Temperature (Ts) .................65°C to 150°C  
TQFP (θJA) Still-Air......................................44°C/W  
TQFP (θJA) 200lfpm.....................................36°C/W  
TQFP (θJA) 500lfpm.....................................30°C/W  
Package Thermal Resistance (Junction-to-Board)  
TQFP (θJC) ....................................................7°C/W  
DC Electrical Characteristics(4)  
Power Supply  
TA = –40°C to +85°C, unless otherwise stated.  
Symbol  
VCCA  
Parameter  
Condition  
Note 5  
Min  
3.0  
Typ  
3.3  
3.3  
2.5  
3.3  
240  
10  
Max  
3.6  
Units  
V
PLL Power Supply  
Control Logic Supply Voltage  
Output Supply Voltage  
VCCD  
Note 5  
3.0  
3.6  
V
VCCO  
2.375  
3.0  
2.625  
3.6  
V
V
ICC  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
Digital Supply Current  
No load, max. VCC, Note 6  
Max. VCC  
300  
mA  
mA  
mA  
mA  
ICCA  
ICCO  
ICCD  
No load, max. VCC  
Max. VCC  
55  
175  
LVCMOS/LVTTL Input Control Logic  
VCCA = VCCD = +3.3V ±10%, VCCO = +2.5V ±5% or +3.3V ±10%; TA = –40°C to +85°C, unless otherwise stated.  
Symbol  
VIH  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
V
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
2.0  
VIL  
0.8  
V
IIH  
VIN = VCC  
–125  
–300  
150  
µA  
µA  
IIL  
VIN = 0.5V  
Notes:  
1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not  
implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings  
conditions for extended periods may affect device reliability.  
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.  
3. It is recommended that the user always solder the exposed die pad to a ground plane for enhanced heat dissipation.  
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.  
5.  
6.  
V
CCA and VCCD are not internally connected. They must be connected together on the PCB.  
I
CC = ICCA + ICCO + ICCD  
.
October 2005  
8
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Reference Clock Inputs/External Feedback Inputs  
VCCA = VCCD = +3.3V ±10%, VCCO = +2.5V ±5% or +3.3V ±10%; TA = –40°C to +85°C, unless otherwise stated.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VIH  
Input HIGH Voltage  
RFCK, /RFCK  
FBIN, /FBIN  
V
CCD + 0.3  
V
VIL  
VIN  
Input LOW Voltage  
Input Voltage Swing  
RFCK, /RFCK  
FBIN, /FBIN  
–0.3  
100  
V
RFCK, /RFCK,  
FBIN, /FBIN  
mV  
See Figure 1a.  
VDIFF_IN  
Differential Input Voltage Swing  
RFCK, /RFCK,  
FBIN, /FBIN  
200  
mV  
See Figure 1b.  
100K LVPECL Output DC Electrical Characteristics  
VCCA = VCCD = +3.3V ±10%, VCCO = +2.5V ±5% or +3.3V ±10%, RL = 50into VCCO–2V; TA = –40°C to +85°C,  
unless otherwise stated.  
Symbol  
VOH  
Parameter  
Condition  
Min  
VCCO –1.075  
VCCO –1.860  
550  
Typ  
Max  
Units  
V
Output HIGH Voltage  
Output LOW Voltage  
Output Voltage Swing  
Differential Output Voltage Swing  
VCCO –0.830  
VCCO –1.570  
VOL  
V
VOUT  
See Figure 1a.  
See Figure 1b.  
800  
mV  
mV  
VDIFF_OUT  
1100  
1600  
LVDS Output DC Electrical Characteristics  
VCCA = VCCD = +3.3V ±10%, VCCO = +2.5V ±5% or +3.3V ±10%, RL = 100across the pair; TA = –40°C to +85°C,  
unless otherwise stated.  
Symbol  
VOUT  
Parameter  
Condition  
Min  
250  
Typ  
325  
650  
Max  
Units  
mV  
mV  
V
Output Voltage Swing  
See Figure 1a.  
See Figure 1b.  
VDIFF-OUT  
VOCM  
Differential Output Voltage Swing  
Output Common Mode Voltage  
Change in Common Mode Voltage  
500  
1.125  
1.275  
25  
mV  
VOCM  
October 2005  
9
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
AC Electrical Characteristics  
VCCA = VCCD = +3.3V ±10%; VCCO = +2.5V ±5% or +3.3V ±10%, RL (LVDS) = 100across the output pairs, RL  
(LVPECL) = 50into VCCO–2V; TA = –40°C to +85°C, unless otherwise stated.  
Symbol  
Parameter  
Condition  
Min  
14  
Typ  
Max  
18  
Units  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
XTAL Input Frequency Range  
Reference Input Frequency Range  
Zero Delay Input Frequency Range  
Note 7  
fIN  
See Table 8  
See Table 9  
INSEL = LOW  
INSEL = HIGH  
9.325  
29.375  
9.325  
14  
756  
756  
94.5  
18  
Phase Detector Operating  
Frequency Range  
fREF  
29.375  
2352  
fOUT  
756  
3024  
75  
Output Frequency Range  
Internal VCO Frequency Range  
Output-to-Output  
fVCO  
Note 8  
15  
tSKEW  
tLOCK  
10  
ms  
Minimum PLL Lock Time  
Loop Filter Optimized for Cycle-to-Cycle Jitter  
R = 50Ω  
C1 = 0.47µF  
C2 = 1000pF  
Note 9  
Note 9  
Note 10  
4
5
6
psRMS  
psRMS  
psPP  
dBc@  
fphase  
1-Sigma Cycle-to-Cycle Jitter (XTAL Input)  
1-Sigma Cycle-to-Cycle Jitter (RFCK Reference)  
Total Jitter  
tJITTER  
14  
80  
-35  
150  
Spur  
XTAL/RFCK Crosstalk-Induced Jitter  
PLL Bandwidth  
Note 11  
0.7  
psRMS  
kHz  
See Table 10  
14 fREF 18  
11.1  
38.4  
BW  
tDC  
FOUT Duty Cycle  
43  
100  
80  
8
50  
57  
%
ps  
ps  
tr, tf  
Output Rise/Fall Time (20% to 80%)  
Output Rise/Fall Time (20% to 80%)  
LVPECL  
LVDS  
250  
150  
400  
300  
See “Synchronization”  
section  
Internal  
clock  
cycle  
tPW_SYNC_MIN  
Minimum SYNC Pulse Width  
Synchronization Delay  
See “Synchronization”  
section  
8
Internal  
clock  
cycle  
tPD_SYNC  
Notes:  
7. Fundamental mode, series resonant crystal.  
8. The output-to-output skew is defined as the worst-case difference between any outputs within a single device operating at the same voltage  
and temperature.  
9. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, Tn – Tn-1 where T is the time between rising edges of the  
output signal.  
10. Total jitter definition: with an ideal clock input of frequency <fMAX, no more than one output edge in 1012 output edges will deviate by more  
than the specified peak-to-peak jitter value.  
11. Crosstalk is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each  
other at the inputs.  
October 2005  
10  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Single-Ended and Differential Swings  
Figure 1a. Single-Ended Voltage Swing  
Figure 1b. Differential Voltage Swing  
October 2005  
11  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Oscillator Tips  
Functional Description  
1. Mount the crystal as close to the SY89538L  
as possible to minimize parasitic effects.  
Overall Function  
The SY89538L integrated programmable clock  
synthesizer and fanout buffer with zero delay is part of  
2. Mount the crystal on the same plane as the  
SY89538L to minimize on via hole inductance.  
a
precision PLL-based clock generation family  
3. To minimize noise pick up on the loop filter  
pins, cut the ground plane directly underneath  
the loop filter component pads and traces.  
optimized for internal system clock generation  
(FPGAs, ASICs, NPU).  
Inputs  
4. Keep the crystal and its traces away from  
adjacent noisy traces to minimize noise  
coupling.  
XTAL  
The SY89538L features a fully integrated on-board  
oscillator, which minimizes system implementation  
cost. The oscillator is a series resonant, multi-vibrator  
type crystal driver designed to drive a 14MHz to  
18MHz series resonant crystal, see Table 6 and 7 for  
more details on the crystal frequency range and  
specifications.  
Figure 2 below illustrates how to interface the crystal  
with the SY89538L.  
XTAL (MHz)  
Min. Max.  
18  
fVCO (GHz)  
Figure 2. Crystal Interface  
X RREF  
Min.  
2.352  
Max.  
Quartz Crystal Selection:  
Note: Raltron Series Resonant: AS-16.666-S-SMD-T-MI (2) Raltron  
14  
168  
3.024  
RFCK  
Table 6. XTAL Frequency Range and Valid  
Programmable Range Table  
The input MUX drives the PLLs phase detector, which  
expects  
a
frequency between 9.325MHz and  
94.5MHz. Therefore, reference clock maximum input  
frequency is 756MHz when the reference divider is set  
to a divide-by-8 and the reference clock minimum  
frequency is 9.325MHz when the reference divider is  
set to a divide-by-1. Given that the VCO frequency  
range is from 2.352GHz to 3.024GHz, the minimum  
and maximum frequency range of RFCK can be  
calculated as follows:  
Min.  
Typ.  
Max.  
Units  
Frequency Range  
(Fundamental Mode-  
Series Resonant)  
14  
18  
MHz  
Frequency Tolerance  
@ 25°C  
±30  
±50  
±50  
±100  
+85  
PPM  
PPM  
°C  
Frequency Stability over  
0°C to 70°C  
Operating  
Temperature Range  
-40  
-55  
Minimum Output Frequency (9.33MHz Input):  
fPHASE × Pr eDivider × FeedbackDivider  
Storage  
Temperature Range  
Aging (per yr/1st 3yrs)  
+125  
°C  
fOUT  
=
=
Pr eDivider × PostDivider ×  
(
Div by 2  
)
±5  
50  
PPM  
(
9.33MHz 63× 2  
)
×
(
)
×
2
( )  
fOUT  
Equivalent Series  
Resistance (ESR)  
(
5
)
×
(
8
)
×
2
( )  
Drive Level  
100  
µW  
fOUT = 29.4MHz  
Maximum Output Frequency (756MHz Input):  
Table 7. Quartz Crystal Oscillator Specifications  
756MHz  
×
(8× 2  
)
×
(2)  
8
fOUT  
=
(
2
)
×
(
1
)
×
2
( )  
fOUT = 756MHz  
October 2005  
12  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Table 8 summarizes the input reference frequency and associated divider values:  
fRFCK (MHz)  
fREF (MHz)  
fVCO (GHz)  
Ref-Div = 1  
Ref-Div = 8  
756  
X fREF  
32  
Min.  
73.5  
65.3  
58.8  
53.5  
49.0  
Max.  
94.5  
84.0  
75.6  
68.7  
63.0  
Min.  
2.352  
2.352  
2.352  
2.352  
2.352  
Max.  
73.5  
65.3  
58.8  
53.5  
49.0  
3.024  
3.024  
3.024  
3.024  
3.024  
672  
36  
605  
40  
550  
44  
504  
48  
14.7  
14.3  
14.0  
13.7  
13.4  
151  
160  
164  
168  
172  
176  
14.7  
14.3  
14.0  
13.7  
13.4  
18.9  
18.4  
18.0  
17.6  
17.2  
2.352  
2.352  
2.352  
2.352  
2.352  
3.024  
3.024  
3.024  
3.024  
3.024  
148  
144  
141  
137  
9.97  
9.80  
9.64  
9.48  
9.33  
103  
236  
240  
244  
248  
252  
9.97  
9.80  
9.64  
9.48  
9.33  
12.8  
12.6  
12.4  
12.2  
12.0  
2.352  
2.352  
2.352  
2.352  
2.352  
3.024  
3.024  
3.024  
3.024  
3.024  
101  
99.1  
97.5  
96.0  
Table 8. Reference Input Frequency and Valid Programmable Divider Range Table  
October 2005  
13  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Zero Delay FBIN Input  
How Does Zero Delay Work?  
From the block diagram,  
fRFCK  
The SY89538L features a zero delay MUX that forces  
the output to be at the same phase relationship as the  
reference. This effectively configures the SY89538L  
as a zero delay buffer when FBSEL is logic HIGH and  
the output is fed into the feedback input FBIN as  
shown in Figures 3a and 3b.  
fFBIN  
fREF  
=
and fFBK =  
Ref. Divider  
FBK Divider  
When the PLL is locked, fREF = fFBK and since Ref.  
Divider = FBK Divider, fRFCK is forced to equal fFBIN  
.
In zero delay mode, fOUT is fed into FBIN, therefore,  
RFCK is forced to equal fOUT  
f
.
Figure 3a. Zero Delay Mode  
(LVDS Output)  
Figure 3b. Zero Delay Mode  
(LVPECL Output)  
October 2005  
14  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Ref-Divider = 1  
fREF (MHz)  
Ref-Divider = 2  
fREF (MHz)  
Ref-Divider = 4  
fREF (MHz)  
Ref-Divider = 8  
fREF (MHz)  
Post-  
Divider  
Pre-  
Divider  
fVCO (MHz)  
fOUT (MHz)  
Min.  
2.35  
2.35  
2.35  
2.35  
Max.  
Min.  
Max.  
755.0  
503.0  
378.0  
302.0  
Min.  
588.0  
392.0  
294.0  
235.0  
Max.  
755.0  
503.0  
378.0  
302.0  
Min.  
294.0  
196.0  
147.0  
117.5  
Max.  
377.5  
251.5  
189.0  
151.0  
Min.  
147.0  
98.0  
73.5  
58.8  
Max.  
188.8  
125.8  
94.5  
Min.  
73.5  
49.0  
36.8  
29.4  
Max.  
94.4  
62.9  
47.3  
37.8  
3.02  
3.02  
3.02  
3.02  
1
1
1
1
2
3
4
5
588.0  
392.0  
294.0  
235.0  
75.5  
2.35  
2.35  
2.35  
2.35  
3.02  
3.02  
3.02  
3.02  
2
2
2
2
2
3
4
5
294.0  
196.0  
147.0  
118.0  
378.0  
252.0  
189.0  
151.0  
294.0  
196.0  
147.0  
118.0  
378.0  
252.0  
189.0  
151.0  
147.0  
98.0  
73.5  
59.0  
189.0  
126.0  
94.5  
73.5  
49.0  
36.8  
29.5  
94.5  
63.0  
47.3  
37.8  
36.8  
24.5  
18.4  
14.8  
47.3  
31.5  
23.6  
18.9  
75.5  
2.35  
2.35  
2.35  
2.35  
3.02  
3.02  
3.02  
3.02  
8
8
8
8
2
3
4
5
73.4  
49.0  
36.7  
29.4  
94.4  
62.9  
47.2  
37.8  
73.4  
49.0  
36.7  
29.4  
94.4  
62.9  
47.2  
37.8  
36.7  
24.5  
18.4  
14.7  
47.2  
31.5  
23.6  
18.9  
18.4  
12.3  
23.6  
15.7  
11.8  
Not  
Valid  
11.8  
Not  
Valid  
Not  
Valid  
Not  
Valid  
Not  
Valid  
Not  
Valid  
Not  
Not  
Not  
Not  
Valid  
Valid  
Valid  
Valid  
Table 9. Zero Delay Divider Cases  
Considerations when in zero delay mode:  
Systematic phase offset is caused by added  
and parasitic capacitance  
The input and output frequency range is  
29.375MHz to 756MHz  
Phase offset is introduced by increased trace  
length  
The phase detector frequency range is  
9.325MHz to 94.5MHz  
Phase offset second order effects can be  
introduced with high εR die-electric constants  
since the velocity of electromagnetic waves  
slows down as the die-electric constant  
increases  
There are cases in which certain divider  
combinations at certain frequencies are  
not valid, see Table 9 for more details  
October 2005  
15  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
External Loop Filter Considerations  
Power Supply Filtering Techniques  
The SY89538L features an external PLL loop filter  
that allows the users to tailor the PLL’s behavior. It is  
recommended that ceramic capacitors with NPO or  
X7R dielectric be used, since they have very low  
effective series resistance. For applications that  
require ultra-low cycle-to-cycle jitter, use the  
components shown in Figure 4. Larger values of the  
zero capacitor (capacitor shown in parallel) results in  
less cycle-to- cycle jitter, however the total jitter  
increases as the value of the zero capacitor  
increases. In addition, as the zero capacitor  
increases, loop stability decreases as the zero  
capacitor begins to dominate over the pole capacitor  
(capacitor in series with the damping resistor). The  
external loop filter allows the user to change the loop  
filter values for specific jitter requirements. Using a  
smaller resistor in the loop filter decreases the PLL’s  
loop bandwidth. This results in less noise from the  
PLL input, but potentially more noise from the VCO.  
Take care to keep the loop filter components on the  
same side of the board and as close as possible to  
the SY89538L’s LR and LF pins. To minimize noise  
pick up on the loop filter pins, cut the ground plane  
directly underneath the loop filter component pads  
and traces. However, the benefit may not be  
significant in all applications.  
As with any high-speed integrated circuit, power  
supply filtering is very important. At a minimum,  
VCCA, VCCD, and all VCCO pins should be  
individually connected using a via to the power supply  
plane, and separate bypass capacitors should be  
used for each pin. To achieve optimal jitter  
performance, each power supply pin should use  
separate instances of the circuit shown in Figure 5.  
Figure 5. Recommended  
Power Supply Filter  
Note:  
For VCCA and VCCD use ferrite bead, 200mA, Murata P/N  
BLM21A1025.  
For VCCO use ferrite bead3A, 0.025DC, Murata, P/N BLM31P005.  
Figure 4. Loop Filter  
October 2005  
16  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Synchronization  
Output Synchronization Controlled by SYNC Timing Diagram  
The SYNC control input is used to synchronize all  
divider outputs of the post divider. When a HIGH-LOW  
transition is applied to the SYNC control input the  
outputs are disabled when all post-divider outputs are  
LOW, see “Output Synchronization Controlled by  
SYNC Timing Diagram” for details. Once SYNC is  
asserted with a rising edge, the outputs are enabled  
when all internal divider stages are reaching their  
LOW state. This ensures a simultaneous switching of  
all outputs with the next LOW-HIGH transition of the  
pre-divider clock.  
October 2005  
17  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
frequencies determined by the loop filter when the  
SY89538L is driven by a 14MHz to 18MHz crystal  
when the feedback divider is effectively 168.  
PLL Loop Stability  
For the loop filter configurations shown in Figure 4,  
Table 10 below summarizes the PLL’s loop stability in  
terms of damping factor, natural frequency, and  
bandwidth, and illustrates the pole and zero cutoff  
Parameter  
Units  
Vcc  
3
3
3
3.3  
25  
3.3  
25  
3.3  
25  
3.6  
85  
3.6  
85  
3.6  
85  
V
C
RM Temperature  
Die Temperature  
VCO Frequency  
-40  
-40  
-40  
-18  
-18  
-18  
55  
55  
55  
125  
2352  
125  
2800  
125  
3024  
C
2352  
2800  
3024  
2352  
2800  
3024  
MHz  
Charge Pump  
Current  
1.80E-04  
50  
1.80E-04  
50  
1.80E-04  
50  
1.80E-04  
50  
1.80E-04  
50  
1.80E-04  
50  
1.80E-04  
50  
1.80E-04  
50  
1.80E-04  
50  
A
Loop Filter  
Resistor  
Ohms  
Zero Capacitor  
Pole Capacitor  
4.70E-07  
1.00E-10  
4.70E-07  
1.00E-09  
4.70E-07  
1.00E-09  
4.70E-07  
1.00E-09  
4.70E-07  
1.00E-09  
4.70E-07  
1.00E-09  
4.70E-07  
1.00E-09  
4.70E-07  
1.00E-09  
4.70E-07  
1.00E-09  
F
F
VCO Gain  
(KVCO)  
3.20E+09  
168  
4.50E+09  
168  
4.50E+09  
168  
2.80E+09  
168  
3.30E+09  
168  
3.10E+09  
168  
2.30E+09  
168  
1.70E+09  
168  
1.30E+09  
168  
Hz/V  
Integer  
MHz  
Feedback Divider  
Phase Detector  
Frequency  
14  
16  
18  
14  
16  
18  
14  
16  
18  
Damping Factor  
1.0  
1.2  
1.2  
0.9  
1.0  
1.0  
0.9  
0.7  
0.6  
Natural  
Frequency  
13600.29  
16127.95  
16127.95  
12721.90  
13811.16  
13386.09  
11530.20  
9912.83  
8668.52  
Hz  
Ratio=Phase  
Detector Freq / Fc  
513  
417  
469  
586  
568  
681  
714  
1103  
1623  
Table 10. PLL Loop Stability  
October 2005  
18  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Figure 6 shows the open and closed loop gain of the  
SY89538L. The closed loop-gain plot shows that the  
SY89538L when configured with the recommended  
loop filter values has essentially no jitter peaking near  
the -3dB point. In addition, the open loop curve shows  
the frequency at which unity gain occurs for a typical  
case of the SY89538L with VCC = 3.3V at TA = 25°C.  
At unity gain, Figure 7 can be used to determine the  
phase margin or stability of the SY89538L.  
Figure 8. Loop Filter Control Voltage vs.  
Frequency at 3.3V, TA = 25°C  
Frequency (Hz)  
Figure 6. Open and Closed Loop Gain  
at VCC = 3.3V, TA = 25°C  
Figure 9. Frequency vs.  
Loop Filter Control Voltage at 3.3V, TA = 25°C  
Input Interface  
RFCK and FBIN are designed to accept any  
differential or single-ended input signal 300mV above  
VCC or 300mV below GND. RFCK and FBIN should  
not be left floating. Tie either the true or complement  
input to GND, but not both. A logic zero is achieved by  
connecting the complement input to GND with the true  
input floating. For TTL input, tie a 2.5kresistor  
between the complement input and GND. LVDS, CML  
and HSTL differential signals may be connected  
directly to the reference inputs.  
Frequency (Hz)  
Figure 7. Phase Margin Plot  
at VCC = 3.3V, TA = 25°C  
Figure 8 illustrates the VCO frequency versus the loop  
filter control voltage at 3.3V, TA = 25°C. The normal  
loop filter control voltage is -300mV to +300mV.  
Figure 9 illustrates the VCO gain curve at VCC = 3.3V,  
TA = 25°C. With this set of information, determining  
the loop stability with other sets of loop filter  
configurations is possible.  
Figure 10. Simplified Input Structure  
October 2005  
19  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Input Termination (RFCK and FBIN)  
Figure 11a. LVPECL Interface  
(DC-Coupled)  
Figure 11b. LVPECL Interface  
Figure 11c. CML Interface  
(AC-Coupled)  
(DC-Coupled)  
Figure 11e. LVDS  
(DC-Coupled)  
Figure 11d. CML Interface  
(AC-Coupled)  
Figure 11f. 2.5V LVPECL  
(DC-Coupled)  
Figure 11h. Single-Ended  
Input Interface  
Figure 11g. 2.5V CML  
(DC-Coupled)  
October 2005  
20  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
The LVPECL output can also be terminated with three  
50resistors as shown in Figure 12b. A 0.1µF low  
ESR decoupling capacitor from VCC to Y-Junction is  
recommended in order to reduce noise in the signal.  
Output Bank and Frequency Control  
There are five independently programmable output  
frequency banks, four differential LVPECL output  
banks and one differential LVDS output bank with  
three output pairs. Each bank has frequency control  
DSEL, SELx and Enx to generate different divider  
ratios (see “LVPECL and LVDS Output Post-Divider  
Frequency Select” Tables). It can be programmed for  
pass-through, internal divided VCO clock divide-by-  
/2, /8 or disable state. When disabled, the non-  
inverted output goes to static LOW and the inverted  
output goes to static HIGH.  
AC-Coupled LVPECL Termination  
While terminating an AC-coupled LVPECL signal, pull-  
down resistor is used to create a DC current path to  
GND to produce an output swing. For 3.3V supply,  
100provides the necessary pull-down. At the final  
destination, proper termination to create a VCC–1.3V  
termination bias is required 82||130. Please refer  
to Figure 12c.  
Output Logic Characteristics  
See “Output Termination Recommendations” for  
proper termination. When LVPECL single-ended  
output is desired, the unused complimentary output  
should be terminated. Unused LVPECL output pairs  
can be left floating. LVDS output pairs should be  
terminated with 100across the pair. In order to  
minimize jitter and skew, unused LVDS output banks  
and unused LVDS output pairs should be terminated  
with 100across each pair.  
LVPECL Outputs:  
Typical voltage swing is 800mV into 50.  
Figure 12a. LVPECL Parallel Thevenin-Equivalent  
Common mode voltage is VCCO–1.3V.  
LVDS Outputs:  
Typical voltage swing is 325mV into 100.  
Common mode voltage is 1.2V.  
Output Termination Recommendations  
LVPECL  
LVPECL has high input impedance, very low output  
(open emitter) impedance, and small signal swing  
which results in low EMI. LVPECL is ideal for driving  
50-and-100-controlled impedance transmission  
lines. There are several techniques for terminating the  
LVPECL output: Single-ended termination, Parallel  
Figure 12b. LVPECL Parallel Termination  
Termination  
Thevenin-Equivalent,  
3-Resistor  
Y-Termination, and AC-coupled termination.  
Single-Ended LVPECL Termination  
Unused output pairs may be left floating. Terminating  
single-ended and unused outputs will enhance the  
performance. Terminate LVPECL outputs by 50to  
VCC–2V. The unused input terminal must be biased to  
VCC–1.3V using a resistor network. See Figure 11h for  
more details.  
DC-Coupled LVPECL Parallel Termination  
Terminate LVPECL by an output impedance of 50to  
VCC–2V. Termination resistor values are a function of  
VCC. For  
a
3.3V supply, the optimal parallel  
combination is 130||82. See Figure 12a for details.  
Figure 12c. LVPECL AC-Coupled Parallel  
Thevenin-Equivalent  
October 2005  
21  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
LVDS  
function of LVDS input, is kept to a minimum, to keep  
EMI low conveniently to ASKs and FPGAs. Each  
LVDS output pair requires 100across the differential  
pair at the end destination (often intended integrated  
into the ASIC).  
LVDS specifies a small swing of 325mV typical, on a  
nominal 1.2V common mode above ground. The  
common mode voltage has tight limits to permit large  
variations in ground between an LVDS driver and  
receiver. Also, change in common mode voltage, as a  
Related Product and Support Documentation  
Part Number  
Function  
Data Sheet Link  
SY89537L  
3.3V, Precision LVPECL and LVDS  
http://www.micrel.com/product-info/products/sy89537l.shtml  
Programmable, Multiple Output Bank Clock  
Synthesizer and Fanout Buffer with Zero Delay  
HBW Solutions New Products and Applications  
MLFTM Application Note  
www.micrel.com/product-info/products/solutions.shtml  
www.amkor.com/products/notes_papers/MLFAppNote.pdf  
October 2005  
22  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  
Micrel, Inc.  
SY89538L  
Package Information  
64-Pin EPAD-TQFP (H64-1)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for  
its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a  
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for  
surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant  
injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk  
and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.  
© 2005 Micrel, Incorporated.  
October 2005  
23  
M9999-101105-B  
hbwhelp@micrel.com or (408) 955-1690  

相关型号:

SY89538LHGTR

3.3V PRECISION LVPECL AND LVDS PROGRAMMABLE MULTIPLE OUTPUT BANK CLOCK SYNTHESIZER AND FANOUT BUFFER WITH ZERO DELAY
MICREL

SY89538LHY

3.3V, Precision LVPECL and LVDS Programmable Multiple Output Bank Clock Synthesizer
MICREL

SY89538LHY

SPECIALTY INTERFACE CIRCUIT, PQFP64
MICROCHIP

SY89538LHY-TR

SPECIALTY INTERFACE CIRCUIT, PQFP64
MICROCHIP

SY89538LHYTR

3.3V, Precision LVPECL and LVDS Programmable Multiple Output Bank Clock Synthesizer
MICREL

SY89538LHZ

3.3V, Precision LVPECL and LVDS Programmable Multiple Output Bank Clock Synthesizer
MICREL

SY89538LHZ-TR

SPECIALTY INTERFACE CIRCUIT, PQFP64
MICROCHIP

SY89538LHZTR

3.3V, Precision LVPECL and LVDS Programmable Multiple Output Bank Clock Synthesizer
MICREL

SY89538L_06

3.3V, Precision LVPECL and LVDS Programmable Multiple Output Bank Clock Synthesizer and Fanout Buffer with Zero Delay
MICREL

SY89538L_08

3.3V, Precision LVPECL and LVDS Programmable Multiple Output Bank Clock Synthesizer
MICREL

SY89540U

Precision Low Jitter 4x4 LVDS Crosspoint Switch with Internal Termination
MICREL

SY89540UMG

Precision Low Jitter 4x4 LVDS Crosspoint Switch with Internal Termination
MICREL