ML4863ES

更新时间:2024-09-18 02:26:05
品牌:MICRO-LINEAR
描述:High Efficiency Flyback Controller

ML4863ES 概述

High Efficiency Flyback Controller 高效率反激式控制器

ML4863ES 数据手册

通过下载ML4863ES数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
July 2000  
FEATURING  
Extended Commercial Temperature Range  
-20˚C to 70˚C  
ML4863*  
for Portable Handheld Equipment  
High Efficiency Flyback Controller  
GENERAL DESCRIPTION  
FEATURES  
The ML4863 is a flyback controller designed for use in  
multi-cell battery powered systems such as PDAs and  
notebook computers. The flyback topology is ideal for  
systems where the battery voltage can be either above or  
below the output voltage, and where multiple output  
voltages are required.  
Variable frequency current mode control and  
synchronous rectification for high efficiency  
Minimum external components  
Guaranteed start-up and operation over a wide input  
voltage range (3.15V to 15V)  
The ML4863 uses the output voltage as the feedback  
control signal to the current mode variable frequency  
flyback controller. In addition, a synchronous rectifier  
control output is supplied to provide the highest possible  
conversion efficiency (greater than 85% efficiency over a  
1mA to 1A load range).  
High frequency operation (>200kHz) minimizes the  
size of the magnetics  
Flyback topology allows multiple outputs in addition to  
the regulated 5V  
The ML4863 has been designed to operate with a  
minimum number of external components to optimize  
space and cost.  
Built-in overvoltage and current limit protection  
*Some Packages Are Obsolete  
BLOCK DIAGRAM  
V
SHDN  
CC  
3
BIAS & UVLO  
V
FB  
V
CC  
V
5
IN  
4.5V  
LDO  
1
4
V
FB  
V
FB  
+
V
REF  
GND  
I
8
6
V
CC  
CURRENT  
COMPARATOR  
OUT 1  
+
SWITCHING  
CONTROL  
A1  
COMP  
18mV  
18mV  
R
CROSS-CONDUCTION  
PROTECTION  
gm  
V
CC  
RECTIFIER  
COMPARATOR  
OUT 2  
COMP  
A2  
7
2
BLANKING  
+
SENSE  
1
ML4863  
PIN CONFIGURATION  
ML4863  
8-Pin SOIC (S08)  
V
1
2
3
4
8
7
6
5
GND  
IN  
SENSE  
SHDN  
OUT 2  
OUT 1  
V
V
CC  
FB  
TOP VIEW  
PIN DESCRIPTION  
PIN NAME  
FUNCTION  
PIN NAME  
FUNCTION  
1
2
3
V
Battery input voltage  
Secondary side current sense  
5
6
7
8
V
Internal power supply node for  
connection of a bypass capacitor  
IN  
CC  
SENSE  
SHDN  
OUT 1  
OUT 2  
GND  
Flyback primary switch MOSFET driver  
output  
Pulling this pin high initiates a  
shutdown mode to minimize battery  
drain  
Flyback synchronous rectifier MOSFET  
driver output  
4
V
Feedback input from transformer  
FB  
secondary, and supply voltage when  
Analog signal ground  
V
> 4.5V  
OUT  
2
ML4863  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings are those values beyond which  
the device could be permanently damaged. Absolute  
maximum ratings are stress ratings only and functional  
device operation is not implied.  
Lead Temperature (Soldering 10 Sec.) ..................... 260ºC  
Thermal Resistance (q ) .................................... 160ºC/W  
JA  
OPERATING CONDITIONS  
V
................................................................. GND – 0.3V to 18V  
Temperature Range  
IN  
Voltage on any other pin ........................... GND – 0.3V to 7V  
Source or Sink Current (OUT1 & OUT2)...................... 1A  
Junction Temperature ..............................................150ºC  
Storage Temperature Range...................... –65ºC to 150ºC  
ML4863CS................................................. 0ºC to 70ºC  
ML4863ES ............................................. –20ºC to 70ºC  
ML4863IS .............................................. –40ºC to 85ºC  
V
Operating Range ...................................3.15V to 15V  
IN  
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, V = 12V, T = Operating Temperature Range (Note 1)  
IN  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OSCILLATOR  
tON  
ON Time  
C Suffix  
2.1  
2.1  
2.5  
2.5  
2.8  
2.95  
850  
µs  
µs  
ns  
E/I Suffix  
Minimum Off Time  
VFB REGULATION  
Total Variation  
OUTPUT DRIVERS  
OUT1 Rise Time  
VFB = 0V  
450  
650  
Line, Load, & Temp  
4.85  
5
5.15  
V
CLOAD = 3nF, 20% to 90% of VCC  
CLOAD = 3nF, 90% to 20% of VCC  
CLOAD = 3nF, 20% to 90% of VCC  
60  
60  
60  
70  
70  
70  
ns  
ns  
ns  
OUT1 Fall Time  
OUT2 Rise Time  
OUT2 Fall Time  
Continuous Mode, CLOAD = 3nF,  
90% to 20% of VCC  
60  
70  
ns  
ns  
Discontinuous Mode, CLOAD = 3nF,  
90% to 20% of VCC  
125  
150  
SHDN  
SENSE  
Input High Voltage  
Input Low Voltage  
Input Bias Current  
2.0  
V
V
0.8  
10  
SHDN = 5V  
5
µA  
SENSE Threshold – Full Load  
VIN = 5V, VFB = VFB (No Load) – 100mV  
VFB = 0V  
130  
150  
160  
235  
mV  
mV  
SENSE Threshold – Short Circuit  
CIRCUIT PROTECTION  
Undervoltage Lockout Start-up Threshold  
Undervoltage Lockout Hysteresis  
3.0  
0.5  
3.15  
0.6  
V
V
3
ML4863  
ELECTRICAL CHARACTERISTICS (Continued)  
SYMBOL  
SUPPLY  
IFB  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VFB Quiescent Current  
100  
20  
5
150  
25  
µA  
µA  
µA  
V
IIN  
VIN Shutdown Current  
SHDN = 5V  
SHDN = 5V, VIN < 6V  
10  
VCC  
VCC Output Voltage  
VFB = 0V, VIN = 15V, CVCC = 0.1µF  
VFB = 0V, VIN = 6V, CVCC = 0.1µF  
VFB = 0V, VIN = 3.15V, CVCC = 0.1µF  
VFB = 5V  
4.5  
4.0  
2.8  
4.5  
5.5  
5.0  
V
V
5
5.15  
V
Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions.  
4
ML4863  
FUNCTIONAL DESCRIPTION  
The ML4863 utilizes a flyback topology with constant on-  
time control. The circuit determines the length of the off-  
time by waiting for the inductor current to drop to a level  
TRANSCONDUCTANCE AMPLIFIER  
The feedback transconductance amplifier generates a  
current from the voltage difference between the output  
and the reference. This current produces a voltage across  
determined by the feedback voltage (V ). Consequently,  
FB  
the current programming is somewhat unconventional  
because the valley of the current ripple is programmed  
instead of the peak. The controller automatically enters  
burst mode when the programmed current falls below  
zero. Constant on-time control therefore features a  
transition into and out of burst mode which does not  
require additional control circuitry.  
R
that adds to the negative voltage on the current sense  
gm  
resistor, R  
. When the current level in the inductor  
SENSE  
drops low enough to cause the voltage at the non-inverting  
input of the current programming comparator to go  
positive, the comparator trips and the converter starts a  
new on-cycle. The current programming comparator  
controls the length of the off-time by waiting until the  
current in the secondary decreases to the value specified  
by the feedback transconductance amplifier.  
The control circuit is made up of four distinctive blocks;  
the constant on-time oscillator, the current programming  
comparator, the feedback transconductance amplifier, and  
the synchronous rectifier controller. A simplified circuit  
diagram is shown in Figure 1.  
In this way, the feedback transconductance amplifier‘s  
output current steers the current level in the inductor.  
When the output voltage drops due to a load increase, it  
will increase the output current of the feedback amplifier  
OSCILLATOR & COMPARATOR  
and generate a larger voltage across R which in turn  
gm  
The oscillator has a constant on-time and a minimum off-  
time. The off-time is extended as long as the output of the  
current programming comparator is low. Note that in  
constant on-time control, a discharge (off-time) cycle is  
needed for the inductor current to be sensed. The  
minimum off-time is required to account for the finite  
circuit delays in sensing the inductor output current.  
raises the secondary current trip level. However, when the  
output voltage is too high, the feedback amplifier’s output  
current will eventually become negative. Because the  
output current of the inductor can never go negative by  
virtue of the diode, the non-inverting input of the  
comparator will also stay negative. This causes the  
converter to stop operation until the output voltage drops  
enough to increase the output current of the feedback  
transconductance amplifier above zero.  
V
OUT  
I
S
V
IN  
R
ESR  
4
V
FB  
L
P
1:1  
FEEDBACK  
TRANSCONDUCTANCE  
AMPLIFIER  
CONSTANT ON-TIME  
MINIMUM OFF-TIME  
OSCILLATOR  
CURRENT  
PROGRAMMING  
COMPARATOR  
R
P
C
+
ONE SHOT  
+
OUT 1  
COMP  
t
V
ON  
REF  
6
C
2.5µs  
P
ONE SHOT  
t
OFF  
500ns  
R
gm  
RECTIFIER  
COMPARATOR  
OUT 2  
SENSE  
COMP  
+
BLANKING  
7
2
A2  
ML4863  
R
SENSE  
Figure 1. Schematic of the ML4863 Controller and Power Stage  
5
ML4863  
FUNCTIONAL DESCRIPTION (Continued)  
SYNCHRONOUS RECTIFIER CONTROL  
where h = converter efficiency.  
Once R has been determined, L can be found:  
The control circuitry for the synchronous rectifier does not  
influence the operation of the main controller. The  
synchronous rectifier is turned on during the minimum off  
time, or whenever the SENSE pin is less than –18mV.  
During transitions where the primary switch is turned on  
before the voltage on the SENSE pin goes above –18mV,  
the gate of the synchronous rectifier is discharged softly to  
avoid accidently triggering the current-mode comparator  
with the gate discharge spike on the sense resistor.  
SENSE  
P
LP = (25×106 ) × V  
×RSENSE  
(2)  
IN MAX  
0 5  
Three operational modes are defined by the voltage at the  
SENSE pin at the end of the off-time: discontinuous mode,  
continuous mode, and current limit. The following values  
can be used to determine the current levels of each mode:  
V
< 0V: discontinuous mode  
SENSE  
The part will also operate with a Schottky diode in place  
of the synchronous rectifier, but the conversion efficiency  
will suffer.  
0V < V  
< 160mV: continuous mode  
SENSE  
160mV < V  
< 235mV: current limit  
SENSE  
CURRENT LIMIT AND MODES OF OPERATION  
Inserting the maximum value of V  
for each  
SENSE  
The normal operating range and current limit point are  
determined by the current programming comparator. They  
are dependent on the value of the synchronous rectifier  
operational mode into the following equation will  
determine the maximum current levels for each  
operational mode:  
current sense resistor (R  
), the nominal transformer  
SENSE  
IN ꢃ  
× η  
V
VSENSE  
tON × V  
primary inductance (L ), and the input voltage.  
IN  
P
IOUT  
=
×
+
R  
(3)  
VOUT + V  
2×LP  
IN  
SENSE  
R
can be calculated by:  
SENSE  
V
V
150mV  
5ꢄ  
IN  
0
MIN  
5
IN  
0
MIN  
5
RSENSE  
(1)  
VOUT  
V
IOUT  
20  
V
IOUT  
IN  
0
MAX  
5
IN  
0
MAX  
5
0
MAX  
6
ML4863  
DESIGN CONSIDERATIONS  
DESIGN PROCEDURE  
See Table 1 for suggested component manufacturers.  
Part  
Number  
A typical design can be implemented by using the  
following procedure.  
Component Manufacturer  
Phone  
Sense  
Resistors  
Dale  
IRC  
LRC Series  
WSL Series  
(402) 563-6506  
(512) 992-7900  
1.  
Specify the application by defining:  
Inductors  
Coilcraft  
Coiltronics  
Dale  
R4999  
(847) 639-6400  
The maximum input voltage (V  
)
IN(MAX)  
The mainimum input voltage (V  
)
OCTA-PAC Series (561)241-7876  
IN(MIN)  
OUT(MAX)  
The maximum output current (I  
The maximum output ripple (DV  
)
LPE-6562 Series (605) 665-9301  
LPT-4545 series  
)
OUT  
Capacitors AVX  
Sprague  
TPS series  
(207) 282-5111  
(207) 324-4140  
As a general design rule, the output ripple should be kept  
below 100mV to ensure stability.  
593D Series  
MOSFETs National  
NDS94XX  
NDS99XX  
(800) 272-9954  
2.  
Select a sense resistor, R  
, using equation 1.  
SENSE  
Motorola  
MMDF Series  
MMSF Series  
(602) 897-5056  
3a.  
Determine the inductance required for the  
optimum output ripple using equation 2.  
Siliconix  
Littlefoot Series (408) 988-8000  
3b.  
3c.  
Determine the minimum inductor current rating  
required. The peak inductor current is calculated  
using the following formula:  
Table 1. Component Suppliers  
6
V
™ (2.5™ 10  
)
235mV  
RSENSE  
IN (MAX)  
DESIGN EXAMPLE  
IL PEAK  
=
+
(4)  
LP  
1.  
Specify the application by defining:  
Specify the inductor's DC winding resistance. A  
good rule of thumb is to allow 5mW, or less, of  
resistance per µH of inductance. For minimum  
core loss, choose a high frequency core material  
such as Kool-Mu, ferrite, or MPP.  
V
V
= 6V  
= 4V  
IN(MAX)  
IN(MIN)  
I
= 500mA  
OUT(MAX)  
DV  
= 100mV  
OUT  
2.  
Select the sense resistor, R  
, using Equation 1:  
SENSE  
3d.  
4a.  
Specify the coupled inductor's turns ratio:  
Np : Ns = 1:1  
4
5+ 4  
150mV  
500mA 20 × 6 × 0.5ꢄ  
4V  
× ꢀ  
× 0.85  
RSENSE  
=
+
(1a)  
Calculate the minimum output capacitance  
required using:  
R
= 138mW @ 120mW  
SENSE  
3a.  
3b.  
Determine the inductance required using  
equation 2.  
6
V
+ V  
IN(MAX) ꢃ  
2.5™10  
OUT  
C = IOUT (MAX)  
™
™
(5)  
(6)  
VOUT  
VOUT  
LP = (25×106 ) × 6 × 0.12  
= 18µH  
(2a)  
4b.  
5.  
Establish the maximum allowable ESR for the  
ouput capacitor:  
Determine the minimum inductor current rating  
required.  
VOUT ™RSENSE  
RESR  
<
150mV  
(4a)  
235mV 6 × (2.5×106  
120mΩ  
)
As a final design check, evaluate the system  
stability (no compensation, single pole response)  
by using the following equation:  
IL PEAK  
=
+
= 2.79A  
18 ×10–6  
R
× (VOUT + V  
)
!
"
(7)  
SENSE  
IN (MIN)  
VOUT (6 ×106 ) ×  
#
LP  
$
where R  
used.  
and L are the actual values to be  
P
SENSE  
7
ML4863  
DESIGN CONSIDERATIONS (Continued)  
3c.  
3d.  
4a.  
Specify the inductors DC winding resistance:  
= 90mW  
LAYOUT  
L
Good PC board layout practices will ensure the proper  
operation of the ML4863. Important layout considerations  
follow:  
DCR  
Specify the coupled inductor's turn ratio:  
Np : Ns = 1:1  
• The connection from the current sense resistor to the  
SENSE pin of the ML4863 should be made by a  
separate trace and connected right at the sense resistor  
lead.  
Calculate the minimum output capacitance  
required using equation 5.  
5+ 6  
2.5×106  
• The V bypass capacitor needs to be located close to  
C = 0.50 × ꢁ ꢄ ×  
CC  
ꢃ ꢆ  
= 55µF  
(5a)  
(6a)  
the ML4863 for adequate filtering of the IC's internal  
bias voltage.  
ꢂ ꢅ  
5
0.1  
4b.  
Establish the maximum ESR for the output  
capacitor using equation 6.  
• Trace lengths from the capacitors to the inductor, and  
from the inductor to the FET should be as short as  
possible to minimize noise and ground bounce.  
0.1× 0.12  
150mV  
RESR  
<
= 80mW  
• Power and ground planes must be large enough to  
handle the current the converter has been designed for.  
Based on these calculations, the design should use two  
100µF capacitors, with an ESR of 100mW each, in parallel  
to meet the capacitance and ESR requirements.  
See Figure 5 for a sample PC board layout.  
5.  
As a final design check, evaluate the system  
stability using equation 7.  
0.12× (5+ 4)  
18 ×10–6  
) × ꢆ  
"
= 360mV (7a)  
100mV (6 ×106  
#
$
!
Since the inequality is met, the circuit should be stable.  
Some typical application circuits are shown in Figures 2, 3,  
and 4.  
V
V
OUT  
OUT  
5V, 1A  
Coiltronics  
CTX20-4  
5V, 2A  
Dale  
LPE6562  
400µF  
800µF  
V
V
IN  
IN  
47µF  
100µF  
ML4863  
GND  
ML4863  
GND  
NDS9955  
V
V
IN  
IN  
SENSE OUT 2  
SHDN OUT 1  
SENSE OUT 2  
SHDN OUT 1  
NDS9410  
V
V
CC  
V
V
CC  
FB  
FB  
NDS9410  
1µF  
1µF  
100m  
50m  
Figure 2. 5V, 1A Circuit  
Figure 3. 5V, 2A Circuit  
8
ML4863  
12V  
C4  
C5  
33µF  
20V  
33µF  
20V  
5V  
C6  
C7  
C8  
C9  
100µF  
6.3V  
100µF  
6.3V  
100µF  
6.3V  
100µF  
6.3V  
T1  
DALE  
LPE-6562-A145  
3.3V  
C13  
100µF  
6.3V  
7
4
9
8
3
C10  
100µF  
6.3V  
C11  
100µF  
6.3V  
C12  
100µF  
6.3V  
1,5  
6,10  
2
NDS9955  
Q1A  
Q1B  
Q2A  
Q2B  
MMDF3N03  
ML4863  
GND  
R1  
120m  
V
V
IN  
IN  
C1  
C2  
33µF  
20V  
33µF  
20V  
SENSE OUT 2  
SHDN OUT 1  
R2  
30mΩ  
SHDN  
V
V
CC  
FB  
C3  
1µF  
50V  
R3  
60mΩ  
Figure 4. 5W Multiple Output DC-DC Converter  
Figure 5. Typical PC Board Layout  
9
ML4863  
PHYSICAL DIMENSIONS inches (millimeters)  
Package: S08  
8-Pin SOIC  
0.189 - 0.199  
(4.80 - 5.06)  
8
0.148 - 0.158 0.228 - 0.244  
(3.76 - 4.01) (5.79 - 6.20)  
PIN 1 ID  
1
0.017 - 0.027  
(0.43 - 0.69)  
(4 PLACES)  
0.050 BSC  
(1.27 BSC)  
0.059 - 0.069  
(1.49 - 1.75)  
0º - 8º  
0.012 - 0.020  
(0.30 - 0.51)  
0.015 - 0.035  
(0.38 - 0.89)  
0.006 - 0.010  
(0.15 - 0.26)  
0.055 - 0.061  
(1.40 - 1.55)  
0.004 - 0.010  
(0.10 - 0.26)  
SEATING PLANE  
ORDERING INFORMATION  
PART NUMBER  
TEMPERATURE RANGE  
PACKAGE  
ML4863CS  
ML4863ES  
ML4863IS (Obsolete)  
0ºC to 70ºC  
–20ºC to 70ºC  
–40ºC to 85ºC  
8-Pin SOIC (S08)  
8-Pin SOIC (S08)  
8-Pin SOIC (S08)  
© Micro Linear 1997. is a registered trademark of Micro Linear Corporation. All other trademarks are the property of their respective owners.  
Products described herein may be covered by one or more of the following U.S. patents: 4,897,611; 4,964,026; 5,027,116; 5,281,862; 5,283,483; 5,418,502;  
5,508,570; 5,510,727; 5,523,940; 5,546,017; 5,559,470; 5,565,761; 5,592,128; 5,594,376; 5,652,479; 5,661,427; 5,663,874; 5,672,959; 5,689,167. Japan: 2,598,946;  
2,619,299; 2,704,176. Other patents are pending.  
2092 Concourse Drive  
San Jose, CA 95131  
Tel: 408/433-5200  
Fax: 408/432-0295  
www.microlinear.com  
Micro Linear reserves the right to make changes to any product herein to improve reliability, function or design. Micro Linear does not assume any liability  
arising out of the application or use of any product described herein, neither does it convey any license under its patent right nor the rights of others. The circuits  
contained in this data sheet are offered as possible applications only. Micro Linear makes no warranties or representations as to whether the illustrated circuits  
infringe any intellectual property rights of others, and will accept no responsibility or liability for use of any application herein. The customer is urged to consult  
with appropriate legal counsel before deciding on a particular application.  
DS4863-01  
10  

ML4863ES 相关器件

型号 制造商 描述 价格 文档
ML4863IS MICRO-LINEAR High Efficiency Flyback Controller 获取价格
ML4865 FAIRCHILD High Voltage High Current Boost Regulator 获取价格
ML4865 MICRO-LINEAR High Voltage High Current Boost Regulator 获取价格
ML4865CS-2 FAIRCHILD High Voltage High Current Boost Regulator 获取价格
ML4865CS-2 MICRO-LINEAR High Voltage High Current Boost Regulator 获取价格
ML4865CS-2 ROCHESTER Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, PDSO8, SOIC-8 获取价格
ML4865CS2 ROCHESTER 2 A SWITCHING REGULATOR, 200 kHz SWITCHING FREQ-MAX, PDSO8, SOIC-8 获取价格
ML4865CS2 FAIRCHILD Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, CMOS, PDSO8, SOIC-8 获取价格
ML4865CS2X FAIRCHILD Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, PDSO8, SOIC-8 获取价格
ML4865CSX-2 FAIRCHILD Switching Regulator, Current-mode, 2A, 200kHz Switching Freq-Max, PDSO8, SOIC-8 获取价格

ML4863ES 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6