ML65F16244 [MICRO-LINEAR]

16-Bit Buffer/Line Driver with 3-State Outputs; 16位与3态输出缓冲器/线路驱动器
ML65F16244
型号: ML65F16244
厂家: MICRO LINEAR CORPORATION    MICRO LINEAR CORPORATION
描述:

16-Bit Buffer/Line Driver with 3-State Outputs
16位与3态输出缓冲器/线路驱动器

驱动器
文件: 总10页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 1998  
PRELIMINARY  
ML65F16244*  
16-Bit Buffer/Line Driver with 3-State Outputs  
GENERAL DESCRIPTION  
FEATURES  
The ML65F16244 is a BiCMOS, 16-bit buffer/line driver  
with 3-state outputs. This device was specifically designed  
for high speed bus applications. Its 16 channels support  
propagation delay of 2ns maximum, and fast output  
enable and disable times of 5ns or less to minimize  
datapath delay.  
Low propagation delays — 2ns maximum for 3.3V,  
2.5ns maximum for 2.7V  
Fast output enable/disable times of 5ns maximum  
FastBus Charge current to minimize the bus settling  
time during active capacitive loading  
This device is designed to minimize undershoot,  
overshoot, and ground bounce to decrease noise delays.  
These transceivers implement a unique digital and analog  
implementation to eliminate the delays and noise  
inherent in traditional digital designs. The device offers a  
new method for quickly charging up a bus load capacitor  
to minimize bus settling times, or FastBus™ Charge.  
FastBus Charge is a transition current, (specified as  
2.7 to 3.6V V supply operation;  
CC  
LV-TTL compatible input and output levels with 3-state  
capability  
Industry standard pinout compatible to FCT, ALV, LCX,  
LVT, and other low voltage logic families  
I
) that injects between 60 to 200mA (depending  
ESD protection exceeds 2000V  
DYNAMIC  
on output load) of current during the rise time and fall  
time. This current is used to reduce the amount of time it  
takes to charge up a heavily-capacitive loaded bus,  
effectively reducing the bus settling times, and  
Full output swing for increased noise margin  
Undershoot and overshoot protection to 400mV  
improving data/clock margins in tight timing budgets.  
typically  
Micro Linear’s solution is intended for applications for  
critical bus timing designs that include minimizing  
device propagation delay, bus settling time, and time  
delays due to noise. Applications include; high speed  
memory arrays, bus or backplane isolation, bus to bus  
bridging, and sub-2ns propagation delay schemes.  
Low ground bounce design  
The ML65F16244 follows the pinout and functionality of  
the industry standard 2.7V to 3.6V-logic families.  
* This Part Is End Of Life As Of August 1, 2000  
BLOCK DIAGRAM  
V
CC  
 OE  
A0  
A1  
A2  
A3  
B0  
B1  
B2  
B3  
GND  
1 of 4  
1
ML65F16244  
PIN CONFIGURATION  
ML65F16244  
48-Pin SSOP (R48)  
48-Pin TSSOP (T48)  
1OE  
1B0  
1B1  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2OE  
1A0  
1A1  
GND  
1A2  
1A3  
3
GND  
1B2  
4
5
1B3  
6
V
7
V
CC  
CC  
2B0  
2B1  
8
2A0  
2A1  
GND  
2A2  
2A3  
3A0  
3A1  
GND  
3A2  
3A3  
9
GND  
2B2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
2B3  
3B0  
3B1  
GND  
3B2  
3B3  
V
V
CC  
CC  
4B0  
4B1  
4A0  
4A1  
GND  
4A2  
4A3  
3OE  
GND  
4B2  
4B3  
4OE  
TOP VIEW  
FUNCTION TABLE  
(Each 4-bit section)  
INPUTS  
OUTPUTS  
OE  
1Ai, 2Ai, 3Ai, 4Ai  
1Bi, 2Bi, 3Bi, 4Bi  
L
L
H
L
H
L
H
X
Z
L = Logic Low, H = Logic High, X = Don’t Care, Z = High Impedance  
2
ML65F16244  
PIN DESCRIPTION  
PIN NAME  
FUNCTION  
PIN NAME  
FUNCTION  
Output Enable  
Data Input  
1
2
1OE  
1B0  
1B1  
GND  
1B2  
1B3  
Output Enable  
Data Output  
Data Output  
Signal Ground  
Data Output  
Data Output  
2.7V to 3.6V Supply  
Data Output  
Data Output  
Signal Ground  
Data Output  
Data Output  
Data Output  
Data Output  
Signal Ground  
Data Output  
Data Output  
2.7V to 3.6V Supply  
Data Output  
Data Output  
Signal Ground  
Data Output  
Data Output  
Output Enable  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
3OE  
4A3  
4A2  
GND  
4A1  
4A0  
3
Data Input  
4
Signal Ground  
Data Input  
5
6
Data Input  
7
V
CC  
V
CC  
2.7V to 3.6V Supply  
Data Input  
8
2B0  
2B1  
GND  
2B2  
2B3  
3B0  
3B1  
GND  
3B2  
3B3  
3A3  
3A2  
GND  
3A1  
3A0  
2A3  
2A2  
GND  
2A1  
2A0  
9
Data Input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Signal Ground  
Data Input  
Data Input  
Data Input  
Data Input  
Signal Ground  
Data Input  
Data Input  
V
CC  
V
CC  
2.7V to 3.6V Supply  
Data Input  
4B0  
4B1  
GND  
4B2  
4B3  
4OE  
1A3  
1A2  
GND  
1A1  
1A0  
2OE  
Data Input  
Signal Ground  
Data Input  
Data Input  
Output Enable  
3
ML65F16244  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings are those values beyond which  
the device could be permanently damaged. Absolute  
maximum ratings are stress ratings only and functional  
device operation is not implied.  
Storage Temperature Range ..................... –65°C to 150°C  
Junction Temperature..............................................150°C  
Lead Temperature (Soldering, 10sec) ...................... 150°C  
Thermal Impedance (q ) ..................................... 76°C/W  
JA  
V
............................................................................. 7V  
CC  
OPERATING CONDITIONS  
DC InputVoltage .............................. –0.3V to V + 0.3V  
CC  
AC InputVoltage (PW < 20ns)................................. –3.0V  
DC Output Voltage ...................................0.3V to 7VDC  
Output Current, Source or Sink ............................. 180mA  
Temperature Range........................................0°C to 70°C  
V
Operating Range ...................................2.7V to 3.6V  
IN  
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, V = 3.3V, T = Operating Temperature Range (Note 1).  
IN  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC ELECTRICAL CHARACTERISTICS (CLOAD = 50pF)  
tPHL, tPLH Propagation Delay  
Ai to Bi  
3.3V  
2.7V  
3.3V  
2.7V  
3.3V  
2.7V  
3.3V  
2.7V  
3.3V  
2.7V  
1.35  
1.25  
1.7  
1.9  
2
2.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
pF  
tOE  
Output Enable Time  
Output Disable Time  
OE to Ai/Bi  
DIRtoAi/Bi  
OE to Ai/Bi  
DIRtoAi/Bi  
6
5
6
tOD  
5
6
5
6
TOS  
CIN  
Output-to-Output Skew  
Input Capacitance  
300  
5
DC ELECTRICAL CHARACTERISTICS (CLOAD = 50pF, RLOAD = Open)  
VIH  
VIL  
IIH  
Input High Voltage  
Input Low Voltage  
Logic high  
2.0  
V
V
Logic low  
0.8  
300  
300  
5
Input High Current  
Input Low Current  
Per pin, VIN = 3V  
Per pin, VIN = 0V  
VCC = 3.6V, 0 < VIN < VCC  
VCC = 3.6V, IIN = 18mA  
Low to high transitions  
High to low transitions  
mA  
mA  
mA  
V
IIL  
IHI-Z  
VIC  
Three-State Output Current  
Input Clamp Voltage  
–0.7  
80  
–0.2  
IDYNAMIC Dynamic Transition Current  
(FastBus Charge)  
mA  
mA  
V
80  
VOH  
Output High Voltage  
VCC = 3.6V  
VCC = 2.7V  
2.4  
3.4  
2.35  
2.25  
V
VOL  
ICC  
Output LowVoltage  
VCC = 2.7V and 3.6V  
0.6  
3
V
Quiescent Power Supply Current  
VCC = 3.6V, f = 0Hz,  
Inputs = VCC or 0V  
µA  
Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.  
4
ML65F16244  
100  
80  
60  
40  
20  
0
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
0
0.4  
0.8  
1.2  
(V)  
1.6  
2
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
V
OL  
V
(V)  
OH  
Figure 1a. Typical V vs. I for 3.3V V  
.
Figure 1b. Typical V  
vs. I  
for 3.3V V  
.
OL  
OL  
CC  
OH  
OH  
CC  
One Buffer Output  
One Buffer Output  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V = 2.7V  
CC  
V
= 2.7V  
CC  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
0
25  
50  
75  
0
25  
50  
75  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 2a. Propagation Delay vs. Load Capacitance:  
3.3V, 50MHZ  
Figure 2b. Propagation Delay vs. Load Capacitance:  
2.7V, 50MHZ  
60  
50  
60  
50  
75pF  
75pF  
40  
30  
20  
10  
0
40  
30  
50pF  
30pF  
50pF  
20  
30pF  
10  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 3a. I vs. Frequency: V = V = 3.3V.  
Figure 3b. I vs. Frequency: V = V = 2.7V.  
CC CC IN  
CC  
CC  
IN  
One Buffer Output  
One Buffer Output  
5
ML65F16244  
FUNCTIONAL DESCRIPTION  
1OE  
1A0  
1A1  
1A2  
1A3  
1B0  
1B1  
1B2  
1B3  
2OE  
2A0  
2A1  
2A2  
2A3  
2B0  
2B1  
2B2  
2B3  
3OE  
3A0  
3A1  
3A2  
3A3  
3B0  
3B1  
3B2  
3B3  
4OE  
4A0  
4A1  
4A2  
4A3  
4B0  
4B1  
4B2  
4B3  
Figure 4. Logic Diagram  
1A0 1A1  
1A2 1A3 2A0  
2A1  
2A2  
2A3 3A0 3A1 3A2 3A3 4A0 4A1 4A2 4A3  
2OE  
1OE  
3OE  
4OE  
2B0  
2B1  
2B2  
2B3 3B0  
3B1  
3B2  
3B3  
4B0  
4B1  
4B2  
4B3  
1B0 1B1  
1B2 1B3  
Figure 5. Logic Symbol  
6
ML65F16244  
ARCHITECTURAL DESCRIPTION  
One path sources current to the load capacitance where  
the signal is asserted, and the other path sinks current  
from the output when the signal is negated.  
The ML65F16244 is a 16-bit buffer/line driver with 3-state  
outputs designed for 2.7V to 3.6V V operation. This  
CC  
device is designed for Quad-Nibble, Dual-Byte or single  
16-bit word memory interleaving operations. Each bank  
has an independently controlled 3-state output enable pin  
with output enable/disable access times of less than 5ns.  
Each bank is configured to have four independent buffer/  
line drivers.  
The assertion path is the Darlington pair consisting of  
transistors Q1 and Q2. The effect of transistor Q1 is to  
increase the current gain through the stage from input to  
output, to increase the input resistance and to reduce  
input capacitance. During an input low-to-high transition,  
the output transistor Q2 sources large amount of current to  
quickly charge up a highly capacitive load which in  
effect reduces the bus settling time. This current is  
Until now, these buffer/line drivers were typically  
implemented in CMOS logic and made to be TTL  
compatible by sizing the input devices appropriately. In  
order to buffer large capacitances with CMOS logic, it is  
necessary to cascade an even number of inverters, each  
successive inverter larger than the preceding, eventually  
leading to an inverter that will drive the required load  
capacitance at the required frequency. Each inverter  
stage represents an additional delay in the gating process  
because in order for a single gate to switch, the input  
must slew more than half of the supply voltage. The best  
of these 16-bit CMOS buffers has managed to drive 50pF  
load capacitance with a delay of 3ns.  
specified as I  
.
DYNAMIC  
The negation path is also the Darlington pair consisting of  
transistor Q3 and transistor Q4. With M1 connecting to  
the input of the Darlington pair, Transistor Q4 then sinks a  
large amount of current during the input transition from  
high-to-low.  
Inverter X2 is a helpful buffer that not only drives the  
output toward the upper rail but also pulls the output to  
the lower rail.  
Micro Linear has produced a 16-bit buffer/line driver with  
a delay less than 2ns (at 3.3V) by using a unique circuit  
architecture that does not require cascade logic gates.  
There are a number of MOSFETs not shown in Figure 6.  
These MOSFETs are used to 3-state the buffers.  
The basic architecture of the ML65F16244 is shown in  
Figure 6. In this circuit, there are two paths to the output.  
V
CC  
OE  
Q1  
Q2  
X1  
X2  
IN  
OUT  
M1  
Q3  
Q4  
Figure 6. One Buffer Cell of the ML65F16244  
7
ML65F16244  
CIRCUITS AND WAVE FORMS  
V
CC  
= 3V  
1.5V  
ML65F16244  
DUT  
INPUT  
0V  
3V  
t
PLH  
V
V
IN  
OUT  
1.5V  
50pF  
OUTPUT  
0V  
I
OUT  
t
PHL  
t
AND t INPUT = 2ns  
FALL  
RISE  
Figure 7. Test Circuits for All Outputs  
Figure 8. Propagation Delay  
ENABLE  
DISABLE  
1.5V  
V
= 3V  
CC  
1.5V  
INPUT  
CONTROL  
INPUT  
t
t
t
OD  
OE  
OE  
3V  
1.5V  
OUTPUT1  
OUTPUT  
LOW  
V
V
+ 0.3V  
OL  
OL  
V
V
OH  
OUTPUTi  
i = 1 to 16  
1.5V  
– 0.3V  
OUTPUT  
HIGH  
OH  
0V  
t
OS  
t
OD  
Figure 9. Enable and Disable Times  
Figure 10. Output Skew  
8
ML65F16244  
PHYSICAL DIMENSIONS inches (millimeters)  
Package: R48  
48-Pin SSOP  
0.620 - 0.630  
(15.75 - 16.00)  
48  
0.291 - 0.301 0.402 - 0.410  
(7.39 - 7.65) (10.21 - 10.41)  
PIN 1 ID  
1
0.015 - 0.025  
(0.38 - 0.64)  
(4 PLACES)  
0.025 BSC  
(0.63 BSC)  
0.094 - 0.110  
(2.39 - 2.79)  
0º - 8º  
0.006 - 0.014  
(0.15 - 0.36)  
0.024 - 0.040  
(0.61 - 1.02)  
0.005 - 0.010  
(0.13 - 0.26)  
0.088 - 0.092  
(2.24 - 2.34)  
0.008 - 0.016  
(0.20 - 0.41)  
SEATING PLANE  
Package: T48  
48-Pin TSSOP  
0.487 - 0.497  
(12.37 - 12.63)  
0.236 - 0.244  
(6.00 - 6.20)  
0.319 BSC  
(8.1 BSC)  
PIN 1 ID  
0.020 BSC  
(0.50 BSC)  
0.047 MAX  
(1.20 MAX)  
0º - 8º  
0.007 - 0.011  
(0.17 - 0.27)  
0.020 - 0.028  
(0.50 - 0.70)  
0.004 - 0.008  
(0.10 - 0.20)  
0.031 - 0.039  
(0.80 - 1.00)  
0.002 - 0.006  
(0.05 - 0.15)  
SEATING PLANE  
9
ML65F16244  
ORDERING INFORMATION  
PART NUMBER  
TEMPERATURE RANGE  
0°C to 70°C  
PACKAGE  
ML65F16244CR (EOL)  
ML65F16244CT (EOL)  
48-Pin SSOP (R48)  
48-Pin TSSOP (T48)  
0°C to 70°C  
© Micro Linear 2000.  
is a registered trademark of Micro Linear Corporation. All other trademarks are the  
property of their respective owners.  
Products described herein may be covered by one or more of the following U.S. patents: 4,897,611; 4,964,026; 5,027,116;  
5,281,862; 5,283,483; 5,418,502; 5,508,570; 5,510,727; 5,523,940; 5,546,017; 5,559,470; 5,565,761; 5,592,128; 5,594,376;  
5,652,479; 5,661,427; 5,663,874; 5,672,959; 5,689,167; 5,714,897; 5,717,798; 5,742,151; 5,747,977; 5,754,012; 5,757,174;  
5,767,653; 5,777,514; 5,793,168; 5,798,635; 5,804,950; 5,808,455; 5,811,999; 5,818,207; 5,818,669; 5,825,165; 5,825,223;  
5,838,723; 5.844,378; 5,844,941. Japan: 2,598,946; 2,619,299; 2,704,176; 2,821,714. Other patents are pending.  
Micro Linear makes no representations or warranties with respect to the accuracy, utility, or completeness of the contents  
of this publication and reserves the right to make changes to specifications and product descriptions at any time without  
notice. No license, express or implied, by estoppel or otherwise, to any patents or other intellectual property rights is granted  
by this document. The circuits contained in this document are offered as possible applications only. Particular uses or  
applications may invalidate some of the specifications and/or product descriptions contained herein. The customer is urged  
to perform its own engineering review before deciding on a particular application. Micro Linear assumes no liability  
whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Micro Linear products including  
liability or warranties relating to merchantability, fitness for a particular purpose, or infringement of any intellectual property  
right. Micro Linear products are not designed for use in medical, life saving, or life sustaining applications.  
2092 Concourse Drive  
San Jose, CA 95131  
Tel: (408) 433-5200  
Fax: (408) 432-0295  
www.microlinear.com  
DS65F16244-01  
10  

相关型号:

ML65F16244CR

16-Bit Buffer/Line Driver with 3-State Outputs
MICRO-LINEAR

ML65F16244CT

16-Bit Buffer/Line Driver with 3-State Outputs
MICRO-LINEAR

ML65F16245

16-Bit Bidirectional Transceiver with 3-State Outputs
MICRO-LINEAR

ML65F16245CR

16-Bit Bidirectional Transceiver with 3-State Outputs
MICRO-LINEAR

ML65F16245CT

16-Bit Bidirectional Transceiver with 3-State Outputs
MICRO-LINEAR

ML65F30MB

ML65 Series DC-DC Converter
ETC

ML65F30ML

ML65 Series DC-DC Converter
ETC

ML65F30MR

ML65 Series DC-DC Converter
ETC

ML65F30PB

ML65 Series DC-DC Converter
ETC

ML65F30PL

ML65 Series DC-DC Converter
ETC

ML65F30PR

ML65 Series DC-DC Converter
ETC

ML65F30TB

ML65 Series DC-DC Converter
ETC