25C160TE/SN
更新时间:2024-10-29 12:58:29
品牌:MICROCHIP
描述:2K X 8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, MS-012, SOIC-8
25C160TE/SN 概述
2K X 8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, MS-012, SOIC-8 EEPROM
25C160TE/SN 规格参数
是否无铅: | 不含铅 | 是否Rohs认证: | 符合 |
生命周期: | Not Recommended | 零件包装代码: | SOIC |
包装说明: | SOP, SOP8,.25 | 针数: | 8 |
Reach Compliance Code: | compliant | ECCN代码: | EAR99 |
HTS代码: | 8542.32.00.51 | 风险等级: | 5.15 |
最大时钟频率 (fCLK): | 3 MHz | 数据保留时间-最小值: | 200 |
耐久性: | 1000000 Write/Erase Cycles | JESD-30 代码: | R-PDSO-G8 |
JESD-609代码: | e3 | 长度: | 4.9 mm |
内存密度: | 16384 bit | 内存集成电路类型: | EEPROM |
内存宽度: | 8 | 湿度敏感等级: | 1 |
功能数量: | 1 | 端子数量: | 8 |
字数: | 2048 words | 字数代码: | 2000 |
工作模式: | SYNCHRONOUS | 最高工作温度: | 125 °C |
最低工作温度: | -40 °C | 组织: | 2KX8 |
封装主体材料: | PLASTIC/EPOXY | 封装代码: | SOP |
封装等效代码: | SOP8,.25 | 封装形状: | RECTANGULAR |
封装形式: | SMALL OUTLINE | 并行/串行: | SERIAL |
峰值回流温度(摄氏度): | 260 | 电源: | 5 V |
认证状态: | Not Qualified | 座面最大高度: | 1.75 mm |
串行总线类型: | SPI | 最大待机电流: | 0.000001 A |
子类别: | EEPROMs | 最大压摆率: | 0.005 mA |
最大供电电压 (Vsup): | 5.5 V | 最小供电电压 (Vsup): | 4.5 V |
标称供电电压 (Vsup): | 5 V | 表面贴装: | YES |
技术: | CMOS | 温度等级: | AUTOMOTIVE |
端子面层: | Matte Tin (Sn) | 端子形式: | GULL WING |
端子节距: | 1.27 mm | 端子位置: | DUAL |
处于峰值回流温度下的最长时间: | 40 | 宽度: | 3.91 mm |
最长写入周期时间 (tWC): | 5 ms | 写保护: | HARDWARE/SOFTWARE |
Base Number Matches: | 1 |
25C160TE/SN 数据手册
通过下载25C160TE/SN数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。
PDF下载25C080/160
8K/16K 5.0V SPI Bus Serial EEPROM
FEATURES
PACKAGE TYPES
• SPI modes 0,0 and 1,1
• 3 MHz Clock Rate
• Single 5V supply
PDIP
CS
SO
1
2
8
7
VCC
• Low Power CMOS Technology
- Max Write Current: 5 mA
- Read Current: 1.0 mA
- Standby Current: 1 µA typical
• Organization
HOLD
WP
VSS
3
4
6
5
SCK
SI
- 1024 x 8 for 25C080
- 2048 x 8 for 25C160
• 16 Byte Page
• Self-timed ERASE and WRITE Cycles
• Sequential Read
• Block Write Protection
- Protect none, 1/4, 1/2, or all of Array
• Built-in Write Protection
- Power On/Off Data Protection Circuitry
- Write Latch
SOIC
1
2
8
7
CS
SO
VCC
HOLD
- Write Protect Pin
• High Reliability
3
4
6
5
WP
VSS
SCK
SI
- Endurance: 10M cycles (guaranteed)
- Data Retention: >200 years
- ESD protection: >4000 V
• 8-pin PDIP/SOIC Packages
• Temperature ranges supported
- Commercial (C):
- Industrial (I):
- Automotive (E):
0°C to +70°C
-40°C to +85°C
-40˚C to +125˚C
BLOCK DIAGRAM
Status
Register
HV Generator
DESCRIPTION
The Microchip Technology Inc. 25C080/160 are 8K and
16K bit Serial Electrically Erasable PROMs. The mem-
ory is accessed via a simple Serial Peripheral Interface
(SPI) compatible serial bus. The bus signals required
are a clock input (SCK) plus separate data in (SI) and
data out (SO) lines. Access to the device is controlled
through a chip select (CS) input, allowing any number
of devices to share the same bus.
EEPROM
Array
Memory
Control
Logic
X
I/O Control
Logic
Dec
Page Latches
Y Decoder
WP
SI
There are two other inputs that provide the end user
with additional flexibility. Communication to the device
can be paused via the hold pin (HOLD). While the
device is paused, transitions on its inputs will be
ignored, with the exception of chip select, allowing the
host to service higher priority interrupts. Also write
operations to the Status Register can be disabled via
the write protect pin (WP).
SO
CS
SCK
HOLD
Sense Amp.
R/W Control
Vcc
Vss
SPI is a trademark of Motorola.
1996 Microchip Technology Inc.
Preliminary
DS21147F-page 1
25C080/160
FIGURE 1-1: AC TEST CIRCUIT
1.0
ELECTRICAL
CHARACTERISTICS
Vcc
1.1
Maximum Ratings*
2.25 K
VCC........................................................................ 7.0V
All inputs and outputs w.r.t. VSS......-0.6V to VCC +1.0V
Storage temperature .............................-65˚C to 150˚C
Ambient temperature under bias...........-65˚C to 125˚C
Soldering temperature of leads (10 seconds) ...+300˚C
ESD protection on all pins...................................... 4kV
SO
1.8 K
100 pF
*Stresses above those listed under ‘Maximum ratings’ may
cause permanent damage to the device.This is a stress rating
only and functional operation of the device at those or any
other conditions above those indicated in the operational list-
ings of this specification is not implied. Exposure to maximum
rating conditions for extended period of time may affect device
reliability
1.2
AC Test Conditions
AC Waveform:
VLO = 0.2V
VHI = Vcc - 0.2V
VHI = 4.0V
(Note 1)
(Note 2)
TABLE 1-1:
Name
PIN FUNCTION TABLE
Function
Timing Measurement Reference Level
CS
SO
Chip Select Input
Serial Data Output
Serial Data Input
Serial Clock Input
Write Protect Pin
Ground
Input
0.5 VCC
0.5 VCC
Output
SI
SCK
WP
Note 1: For VCC ≤ 4.0V
2: For VCC > 4.0V
VSS
VCC
HOLD
Supply Voltage
Hold Input
TABLE 1-2:
DC CHARACTERISTICS
Applicable over recommended operating ranges shown below unless otherwise noted.
VCC = 4.5V to 5.5V
Commercial (C): Tamb = 0°C to +70°C
Industrial (I):
Tamb = -40°C to +85°C
Automotive (E): Tamb = -40˚C to +125˚C
Parameter
Symbol
Min
Max
Units
Test Conditions
High level input voltage
Low level input voltage
Low level output voltage
High level output voltage
Input leakage current
Output leakage current
VIH1
VIL1
VOL
VOH
ILI
2.0
-0.3
VCC+1
0.8
0.4
—
V
V
—
V
IOL=2.1 mA
VCC-0.5
-10
V
IOH=-400 µA
10
µA
µA
CS=VIH, VIN=Vss to VCC
ILO
-10
10
CS=VIH, V
=Vss to VCC
OUT
Internal Capacitance
(all inputs and outputs)
CINT
—
7
pF
Tamb=25˚C, FCLK=3.0 MHz,
VCC=5.5V (Note)
Operating Current
ICC write
—
5
mA
VCC=5.5V
ICC READ
ICC READ
—
—
1
500
mA
µA
VCC=5.5V; 3 MHz
VCC=5.5V; 2 MHz
Standby Current
ICCS
—
5
µA
CS=VCC=5.5V; Vin=0V or VCC
Note:
This parameter is periodically sampled and not 100% tested.
DS21147F-page 2
Preliminary
1996 Microchip Technology Inc.
25C080/160
FIGURE 1-2: SERIAL INPUT TIMING
tCSD
CS
tCLD
tR
tCSS
tF
tCSH
SCK
SI
tSU
tHD
MSB in
LSB in
high impedance
SO
FIGURE 1-3: SERIAL OUTPUT TIMING
CS
tCSH
tHI
tLO
SCK
tV
tDIS
LSB out
tHO
MSB out
SO
SI
don’t care
FIGURE 1-4: HOLD TIMING
CS
tHH
tHS
tHS
tHH
SCK
tHZ
n
tHV
high impedance
don’t care
n
tSU
n
SO
n+2
n+2
n+1
n-1
n+1
n
n-1
SI
HOLD
1996 Microchip Technology Inc.
Preliminary
DS21147F-page 3
25C080/160
TABLE 1-3:
AC CHARACTERISTICS
Applicable over recommended operating ranges shown below unless otherwise noted.
VCC = 4.5V to 5.5V
Commercial (C): Tamb = 0° to +70°C
Industrial (I):
Tamb = -40° to +85°C
Automotive (E): Tamb = -40˚C to +125˚C
Symbol
Parameter
Clock Frequency
Min
Max
Units
Test Conditions
fSCK
tCSS
tCSH
tCSD
tSU
tHD
tR
—
100
100
250
30
3
—
—
—
—
—
2
MHz
ns
ns
ns
ns
ns
µs
µs
ns
ns
ns
ns
CS Setup Time
CS Hold Time
CS Disable Time
Data Setup Time
Data Hold Time
CLK Rise Time
CLK Fall Time
50
—
(Note 1)
(Note 1)
tF
—
2
tHI
Clock High Time
Clock Low Time
Clock Delay Time
150
150
50
—
—
—
150
tLO
tCLD
tV
Output Valid from
Clock Low
—
tHO
tDIS
tHS
tHH
tHZ
tHV
tWC
—
Output Hold Time
0
—
200
—
—
—
—
5
ns
ns
ns
ns
ns
ns
ms
Output Disable Time
HOLD Setup Time
—
(Note 1)
100
100
100
100
—
HOLD Hold Time
HOLD Low to Output High-Z
HOLD High to Output Valid
Internal Write Cycle Time
Endurance
(Note 1)
(Note 1)
(Note 2)
10M
—
E/W Cycles 25°C, Vcc = 5.0V, Block Mode
(Note 3)
Note 1: This parameter is periodically sampled and not 100% tested.
2: tWC begins on the rising edge of CS after a valid write sequence and ends when the internal self-timed write
cycle is complete.
3: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific appli-
cation, please consult the Total Endurance Model which can be obtained on our BBS or website.
DS21147F-page 4
Preliminary
1996 Microchip Technology Inc.
25C080/160
the WREN or WRDI commands regardless of the state
of write protection on the status register.This bit is read
only.
2.0
PRINCIPLES OF OPERATION
The 25C080/160 is an 1024/2048 byte EEPROM
designed to interface directly with the Serial Peripheral
Interface (SPI) port of many of today’s popular micro-
controller families, including Microchip’s midrange
PIC16CXX microcontrollers. It may also interface with
microcontrollers that do not have a built-in SPI port by
using discrete I/O lines programmed properly with soft-
ware.
The Block Protection (BP0 and BP1) bits indicate
which blocks are currently write protected. These bits
are set by the user issuing the WRSR instruction.
These bits are non-volatile.
The Write Protect Enable (WPEN) bit is a non-volatile
bit that is available as an enable bit for the WP pin. The
Write Protect (WP) pin and the Write Protect Enable
(WPEN) bit in the status register control the program-
mable hardware write protect feature. Hardware write
protection is enabled when WP pin is low and the
WPEN bit is high. Hardware write protection is disabled
when either the WP pin is high or the WPEN bit is low.
When the chip is hardware write protected, only writes
to non-volatile bits in the status register are disabled.
See Table 2-2 for matrix of functionality on the WPEN
bit and Figure 2-1 for a flowchart of Table 2-2. See
Figure 3-5 for RDSR timing sequence.
The 25C080/160 contains an 8-bit instruction register.
The part is accessed via the SI pin, with data being
clocked in on the rising edge of SCK. The CS pin must
be low and the HOLD pin must be high for the entire
operation. If the WPEN bit in the status register is set,
the WP pin must be held high to allow writing to the non-
volatile bits in the status register.
Table 2-1 contains a list of the possible instruction bytes
and format for device operation. All instructions,
addresses and data are transferred MSB first, LSB last.
Data is sampled on the first rising edge of SCK after CS
goes low. If the clock line is shared with other peripheral
devices on the SPI bus, the user can assert the HOLD
input and place the 25C080/160 in ‘HOLD’ mode. After
releasing the HOLD pin, operation will resume from the
point when the HOLD was asserted.
TABLE 2-1:
INSTRUCTION SET
Instruction Instruction
Description
Name
Format
WREN
0000 0110 Set the write enable latch
(enable write operations)
0000 0100 Reset the write enable
latch (disable write opera-
tions)
WRDI
2.1
Write Enable (WREN) and Write
Disable (WRDI)
RDSR
WRSR
0000 0101 Read status register
0000 0001 Write status register (write
protect enable and block
write protection bits)
0000 0011 Read data from memory
array beginning at
The 25C080/160 contains a write enable latch. This
latch must be set before any write operation will be
completed internally. The WREN instruction will set the
latch, and the WRDI will reset the latch.The following is
a list of conditions under which the write enable latch
will be reset:
READ
selected address
0000 0010 Write data to memory
array beginning at
• Power-up
WRITE
• WRDI instruction successfully executed
• WRSR instruction successfully executed
• WRITE instruction successfully executed
selected address
2.2
Read Status Register (RDSR)
The RDSR instruction provides access to the status
register. The status register may be read at any time,
even during a write cycle. The status register is format-
ted as follows:
7
6
5
4
3
2
1
0
WPEN
X
X
X
BP1
BP0
WEL
WIP
The Write-In-Process (WIP) bit indicates whether the
25C080/160 is busy with a write operation.When set to
a ‘1’ a write is in progress, when set to a ‘0’ no write is
in progress. This bit is read only.
The Write Enable Latch (WEL) bit indicates the status
of the write enable latch. When set to a ‘1’ the latch
allows writes to the array and status register, when set
to a ‘0’ the latch prohibits writes to the array and status
register. The state of this bit can always be updated via
1996 Microchip Technology Inc.
Preliminary
DS21147F-page 5
25C080/160
TABLE 2-2:
WRITE PROTECT FUNCTIONALITY MATRIX
WPEN
WP
WEL
Protected Blocks
Unprotected Blocks
Status Register
0
0
1
1
X
X
X
X
Low
Low
High
High
0
1
0
1
0
1
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Writable
Protected
Writable
Protected
Writable
Protected
Writable
Protected
Protected
Protected
Writable
FIGURE 2-1: WRITE TO STATUS REGISTER AND/OR ARRAY FLOWCHART
CS Returns High
Write
to Status
Reg?
No
No
No
No
Write
To other
Commands
to array?
Yes
Yes
WEL = 1?
Yes
WEL = 1?
Yes
Write to the
Unprotected Block
No
No
WP is low?
Yes
Do not write to
Array
WPEN = 1?
Yes
Write to
Status Register
Do not write to
Status Register
From other
Commands
Continue
DS21147F-page 6
Preliminary
1996 Microchip Technology Inc.
25C080/160
immediately after the WREN instruction without CS
being brought high, the data will not be written to the
array because the write enable latch will not have been
properly set.
2.3
Write Status Register (WRSR)
The WRSR instruction allows the user to select one of
four protection options for the array by writing to the
appropriate bits in the status register. The array is
divided up into four segments. The user has the ability
to write protect none, one, two, or all four of the seg-
ments of the array.The partitioning is controlled as illus-
trated in table below. See Figure 3-6 for WRSR timing
sequence.
Once the write enable latch is set, the user may pro-
ceed by setting the CS low, issuing a write instruction,
followed by the 16-bit address, with the five (25C160) or
six (25C080) MSBs of the address being don’t care bits,
and then the data to be written. Up to 16 bytes of data
can be sent to the 25C080/160 before a write cycle is
necessary. The only restriction is that all of the bytes
must reside in the same page. A page address begins
with XXXX XXXX XXXX 0000 and ends with XXXX
XXXX XXXX 1111. If the internal address counter
reaches XXXX XXXX XXXX 1111 and the clock contin-
ues, the counter will roll back to the first address of the
page and overwrite any data in the page that may have
been written.
TABLE 2-3:
BP1
ARRAY PROTECTION
Array Addresses
Write Protected
BP0
0
0
0
1
none
upper 1/4
300h-3FFh for 25C080
600h-7FFh for 25C160
upper 1/2
200h-3FFh for 25C080
400h-7FFh for 25C160
all
For the data to be actually written to the array, the CS
must be brought high after the least significant bit (D0)
1
1
0
1
th
of the n data byte has been clocked in. If CSis brought
high at any other time, the write operation will not be
completed. See Figure 3-3 and Figure 3-4 for more
detailed illustrations on the byte write sequence and the
page write sequence, respectively.
000h-3FFh for 25C080
000h-7FFh for 25C160
3.0
DEVICE OPERATION
While the write is in progress, the status register may
be read to check the status of the WPEN, WIP, WEL,
BP1, and BP0 bits. A read attempt of a memory array
location will not be possible during a write cycle. When
a write cycle is completed, the write enable latch is
reset
3.1
Clock and Data Timing
Data input on the SI pin is latched on the rising edge of
SCK. Data is output on the SO pin after the falling edge
of SCK.
3.4
Data Protection
3.2
Read Sequence
The following protection has been implemented to pre-
vent inadvertent writes to the array:
The part is selected by pulling CS low. The 8-bit read
instruction is transmitted to the 25C080/160 followed by
the 16-bit address, with the five (25C160) or six
(25C080) MSBs of the address being don’t care bits.
After the correct read instruction and address are sent,
the data stored in the memory at the selected address
is shifted out on the SO pin. The data stored in the
memory at the next address can be read sequentially
by continuing to provide clock pulses. The internal
address pointer is automatically incremented to the
next higher address after each byte of data is shifted
out. When the highest address is reached ($3FF for
25C080, $7FF for 25C160) the address counter rolls
over to address $000 allowing the read cycle to be con-
tinued indefinitely. The read operation is terminated by
setting CS high (see Figure 3-1).
• The write enable latch is reset on power-up.
• A write enable instruction must be issued to set
the write enable latch.
• After a successful byte write, page write, or status
register write, the write enable latch is reset.
• CS must be set high after the proper number of
clock cycles to start an internal write cycle.
• Access to the array during an internal write cycle
is ignored and programming is continued.
3.5
Power On State
The 25C080/160 powers on in the following state:
• The device is in low power standby mode (CS=1).
• The write enable latch is reset.
3.3
Write Sequence
• SO is in high impedance state.
• A low level on CS is required to enter active state.
Prior to any attempt to write data to the 25C080/160,
the write enable latch must be set by issuing the WREN
instruction (Figure 3-2). This is done by setting CS low
and then clocking the proper instruction into the
25C080/160. After all eight bits of the instruction are
transmitted, the CS must be brought high to set the
write enable latch. If the write operation is initiated
1996 Microchip Technology Inc.
Preliminary
DS21147F-page 7
25C080/160
FIGURE 3-1: READ SEQUENCE
CS
0
0
1
0
2
3
4
5
0
6
7
8
9
10 11
21 22 23 24 25 26 27 28 29 30 31
SCK
SI
instruction
16 bit address
0
0
0
1
1 15 14 13 12
2
1
0
data out
high impedance
7
6
5
4
3
2
1
0
SO
FIGURE 3-2: WRITE ENABLE SEQUENCE
CS
0
0
1
0
2
0
3
0
4
0
5
6
1
7
SCK
SI
1
0
high impedance
SO
FIGURE 3-3: WRITE SEQUENCE
CS
T
wc
0
0
1
0
2
3
4
5
0
6
1
7
8
9 10 11
21 22 23 24 25 26 27 28 29 30 31
data byte
SCK
SI
instruction
16 bit address
15 14 13 12
0
0
0
0
2
1
0
7
6
5
4
3
2
1
0
high impedance
SO
DS21147F-page 8
Preliminary
1996 Microchip Technology Inc.
25C080/160
FIGURE 3-4: PAGE WRITE SEQUENCE
CS
0
0
1
0
2
3
4
5
0
6
1
7
8
9 10 11
21 22 23 24 25 26 27 28 29 30 31
SCK
SI
instruction
16 bit address
0 15 14 13 12
data byte 1
0
0
0
2
1
0
7
6
5
4
3
2
1
0
CS
32 33 34 35 36 37 38 39
data byte 2
41 42 43 44 45 46 47
data byte 3
40
7
SCK
SI
data byte n (16 max)
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
FIGURE 3-5: READ STATUS REGISTER SEQUENCE
CS
0
0
1
0
2
3
4
5
6
7
8
9
10 11 12 13 14 15
SCK
SI
instruction
0
0
0
1
0
1
data from status register
high impedance
7
6
5
4
3
2
1
0
SO
FIGURE 3-6: WRITE STATUS REGISTER SEQUENCE
CS
0
1
0
2
3
4
5
0
6
0
7
8
9
10 11 12 13 14 15
SCK
SI
instruction
data to status register
7
6
5
4
3
2
1
0
0
0
0
0
1
high impedance
SO
1996 Microchip Technology Inc.
Preliminary
DS21147F-page 9
25C080/160
4.5
Write Protect (WP)
4.0
PIN DESCRIPTIONS
This pin is used in conjunction with the WPEN bit in the
status register to prohibit writes to the non-volatile bits
in the status register. When WP is low and WPEN is
high, writing to the non-volatile bits in the status register
is disabled. All other operations function normally.
When WP is high, all functions, including writes to the
non-volatile bits in the status register operate normally.
If the WPEN bit is set WP low during a status register
write sequence will disable writing to the status register.
If an internal write cycle has already begun, WP going
low will have no effect on the write.
4.1
Chip Select (CS)
A low level on this pin selects the device. A high level
deselects the device and forces it into standby mode.
However, a programming cycle which is already in
progress will be completed, regardless of the CS input
signal. If CS is brought high during a program cycle, the
device will go into standby mode as soon as the pro-
gramming cycle is complete. As soon as the device is
deselected, SO goes to the high impedance state,
allowing multiple parts to share the same SPI bus. A
low to high transition on CS after a valid write sequence
is what initiates an internal write cycle. After power-up,
a low level on CS is required prior to any sequence
being initiated.
The WP pin function is blocked when the WPEN bit in
the status register is low. This allows the user to install
the 25C080/160 in a system with WP pin grounded and
still be able to write to the status register. The WP pin
functions will be enabled when the WPEN bit is set
high.
4.2
Serial Input (SI)
The SI pin is used to transfer data into the device. It
receives instructions, addresses, and data to be written
to the memory. Input is latched on the rising edge of the
serial clock.
4.6
Hold (HOLD)
The HOLD pin is used to suspend transmission to the
25C080/160 while in the middle of a serial sequence
without having to re-transmit the entire sequence over
at a later time. It should be held high any time this func-
tion is not being used. Once the device is selected and
a serial sequence is underway, the HOLD pin may be
pulled low to pause further serial communication with-
out resetting the serial sequence. The HOLD pin must
be brought low while SCK is low, otherwise the HOLD
function will not be invoked until the next SCK high to
low transition. The 25C080/160 must remain selected
during this sequence. The SI, SCK, and SO pins are in
a high impedance state during the time the part is
paused and transitions on these pins will be ignored.To
resume serial communication, HOLD must be brought
high while the SCK pin is low, otherwise serial commu-
nication will not resume.
It is possible for the SI pin and the SO pin to be tied
together. With SI and SO tied together, two way com-
munication of data can occur using only one microcon-
troller I/O line.
4.3
Serial Output (SO)
The SO pin is used to transfer data serially out of the
25C080/160. During a read cycle, data is shifted out on
this pin after the falling edge of the serial clock.
It is possible for the SI pin and the SO pin to be tied
together. With SI and SO tied together, two way com-
munication of data can occur using only one microcon-
troller I/O line.
4.4
Serial Clock (SCK)
The SCK is used to synchronize the communication
between a master and the 25C080/160. Instructions,
addresses, or data present on the SI pin are latched on
the rising edge of the clock input, while data on the SO
pin is updated after the falling edge of the clock input.
DS21147F-page 10
Preliminary
1996 Microchip Technology Inc.
25C080/160
25C080/160 Product Identification System
To order or to obtain information (e.g., on pricing or delivery), please use the listed part numbers, and refer to the factory or the listed
sales offices.
25C080/160
–
E
/P
Package:
P = Plastic DIP (300 mil body), 8 lead
SN = Plastic SOIC (150 mil body), 8 lead
Temperature
Range:
Blank = 0°C to +70°C
I = -40°C to +85°C
E = -40°C to +125°C
Device:
SPI Bus Serial EEPROM
25C080/160
25C080T/160T
SPI Bus Serial EEPROM (Tape and Reel)
Sales and Support
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1. Your local Microchip sales office (see next page)
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.
1996 Microchip Technology Inc.
Preliminary
DS21147F-page 11
WORLDWIDE SALES & SERVICE
AMERICAS
Corporate Office
ASIA/PACIFIC
Hong Kong
EUROPE
United Kingdom
Microchip Technology Inc.
Microchip Technology
RM 3801B, Tower Two
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200 Fax: 852 2 401 3431
India
Microchip Technology
No. 6, Legacy, Convent Road
Bangalore 560 025 India
Tel: 91 80 526 3148 Fax: 91 80 559 9840
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 1628 850303 Fax: 44 1628 850178
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602 786-7200 Fax: 602 786-7277
Technical Support: 602 786-7627
Web: http://www.microchip.com
France
Atlanta
Arizona Microchip Technology SARL
Zone Industrielle de la Bonde
2 Rue du Buisson aux Fraises
91300 Massy - France
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770 640-0034 Fax: 770 640-0307
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79
Boston
Korea
Germany
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508 480-9990 Fax: 508 480-8575
Microchip Technology
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku,
Seoul, Korea
Tel: 82 2 554 7200 Fax: 82 2 558 5934
Shanghai
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Muenchen, Germany
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44
Chicago
Italy
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 708 285-0071 Fax: 708 285-0075
Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 972 991-7177 Fax: 972 991-8588
Dayton
Microchip Technology Inc.
Suite 150
Arizona Microchip Technology SRL
Centro Direzionale Colleone Pas Taurus 1
Viale Colleoni 1
20041 Agrate Brianza
Milan Italy
Microchip Technology
Unit 406 of Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hongiao District
Shanghai, Peoples Republic of China
Tel: 86 21 6275 5700
Fax: 011 86 21 6275 5060
Singapore
Microchip Technology
200 Middle Road
#10-03 Prime Centre
Singapore 188980
Tel: 65 334 8870 Fax: 65 334 8850
Taiwan, R.O.C
Microchip Technology
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2 717 7175 Fax: 886 2 545 0139
Tel: 39 39 6899939 Fax: 39 39 689 9883
JAPAN
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Two Prestige Place
Miamisburg, OH 45342
Tel: 513 291-1654 Fax: 513 291-9175
Tel: 81 45 471 6166 Fax: 81 45 471 6122
11/7/96
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 714 263-1888 Fax: 714 263-1338
NewYork
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305 Fax: 516 273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950 Fax: 408 436-7955
Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905 405-6279 Fax: 905 405-6253
All rights reserved. 1996, Microchip Technology Incorporated, USA. 11/96
Printed on recycled paper.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No repre-
sentation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement
of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not autho-
rized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.The Microchip logo and
name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.
DS21147F-page 12
Preliminary
1996 Microchip Technology Inc.
25C160TE/SN 相关器件
型号 | 制造商 | 描述 | 价格 | 文档 |
25C160TESN | MICROCHIP | 2K X 8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, MS-012, SOIC-8 | 获取价格 | |
25C160TI/SN | MICROCHIP | 2K X 8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, MS-012, SOIC-8 | 获取价格 | |
25C160TIOT | MICROCHIP | 2K X 8 SPI BUS SERIAL EEPROM, PDSO5, SOT-23, 5 PIN | 获取价格 | |
25C160TISN | MICROCHIP | 2K X 8 SPI BUS SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, MS-012, SOIC-8 | 获取价格 | |
25C160TOT | MICROCHIP | 2K X 8 SPI BUS SERIAL EEPROM, PDSO5, SOT-23, 5 PIN | 获取价格 | |
25C160TSN | MICROCHIP | 暂无描述 | 获取价格 | |
25C160TST | MICROCHIP | 2K X 8 SPI BUS SERIAL EEPROM, PDSO8, TSSOP-8 | 获取价格 | |
25C22X58SC | ALTECH | Electric Fuse, | 获取价格 | |
25C256 | CATALYST | 128K/256K-Bit SPI Serial CMOS E2PROM | 获取价格 | |
25C320 | MICROCHIP | 32K 5.0V SPI Bus Serial EEPROM | 获取价格 |
25C160TE/SN 相关文章
- 2024-10-31
- 6
- 2024-10-31
- 6
- 2024-10-31
- 7
- 2024-10-31
- 8