ATA5577M133SC-DDB [MICROCHIP]

IC RFID 125KHZ R/W 330PF BUMP;
ATA5577M133SC-DDB
型号: ATA5577M133SC-DDB
厂家: MICROCHIP    MICROCHIP
描述:

IC RFID 125KHZ R/W 330PF BUMP

电信 电信集成电路
文件: 总55页 (文件大小:944K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ATA5577C  
ATA5577C – Read/Write LF RFID IDIC 100 kHz to 150 kHz  
Introduction  
The ATA5577C is a contactless read/write Identification Integrated Chip (IDIC®) for applications in the 125 kHz or 134  
kHz frequency band. A single coil connected to the chip serves as the IC’s power supply and bidirectional  
communication interface. The antenna and chip together form a transponder or tag. The on-chip 363-bit EEPROM  
(11 blocks with 33 bits each) is read and written blockwise from a base station (reader). Data are transmitted from the  
IDIC (uplink) using load modulation. This is achieved by damping the RF field with a resistive load between the two  
terminals, “Coil 1 and Coil 2”. The IC receives and decodes serial base station commands (downlink), which are  
encoded as 100% amplitude modulated On-Off Keying (OOK) Pulse Interval Encoded (PIE) bit streams.  
Features  
These are the following features of read/write LF RFID IDIC 100 kHz to 150 kHz:  
Contactless Power Supply  
Contactless Read/Write Data Transmission  
Radio Frequency fRF from 100 kHz to 150 kHz  
Basic mode or Extended mode  
Compatible with T5557, ATA5567  
Replacement for e5551/T5551 in Most Common Operation modes  
Configurable for ISO/IEC 11784/785 Compatibility  
Total 363 Bits EEPROM Memory: 11 Blocks (32 bits + 1 lock bit):  
– 7 × 32 bits EEPROM user memory, including 32-bit password memory  
– 2 × 32 bits for unique ID  
– 1 × 32-bit Option register in EEPROM to set up the analog front end:  
Clock and gap detection level  
Improved downlink timing  
Clamp and modulation voltage  
Soft modulation switching  
Write damping like the T5557/ATA5567 or with resistor  
Downlink protocol  
– 1 × 32-bit Configuration register in EEPROM to set up:  
Data rate  
– RF/2 to RF/128, binary-selectable or  
– Fixed Basic mode rates  
Modulation/coding  
– Bi-phase, Manchester, Frequency Shift Keying (FSK), Phase-Shift Keying (PSK), Non-Return-to-  
Zero (NRZ)  
Other options:  
– Password mode  
– Max block feature  
– Direct Access mode  
– Sequence terminator(s)  
DS70005357B-page 1  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
– Blockwise write protection (lock bit)  
– Answer-On-Request (AOR) mode  
– Inverse data output  
– Disable Test mode access  
– Fast downlink (~6 kbps versus ~3 kbps)  
– OTP functionality  
– Init delay (~67 ms)  
High Q-Antenna Tolerance due to Build In Options  
Adaptable to Different Applications:  
– Access control  
– Animal ID  
– Waste management  
On-Chip Trimmed Antenna Capacitor:  
– 250 pF/330 pF (±3%)  
Pad Options:  
– ATA5577M1C  
100 μm × 100 μm for wire bonding or flip chip  
– ATA5577M2C  
200 μm × 400 μm for direct coil bonding  
DS70005357B-page 2  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Table of Contents  
Introduction.....................................................................................................................................................1  
Features......................................................................................................................................................... 1  
1. Compatibility............................................................................................................................................5  
2. System Block Diagram............................................................................................................................6  
3. ATA5577C – Functional Blocks...............................................................................................................7  
3.1. Analog Front End (AFE)...............................................................................................................7  
3.2. AFE Option Register.................................................................................................................... 7  
3.3. Data-Rate Generator....................................................................................................................7  
3.4. Write Decoder.............................................................................................................................. 8  
3.5. HV Generator............................................................................................................................... 8  
3.6. DC Supply.................................................................................................................................... 8  
3.7. Power-on Reset (POR)................................................................................................................ 8  
3.8. Clock Extraction........................................................................................................................... 8  
3.9. Controller......................................................................................................................................8  
3.10. Mode Register..............................................................................................................................8  
3.11. Modulator..................................................................................................................................... 8  
3.12. Memory........................................................................................................................................ 9  
3.13. Traceability Data Structure/Unique ID..........................................................................................9  
4. Operating the ATA5577C.......................................................................................................................11  
4.1. Configuring the ATA5577C......................................................................................................... 11  
4.2. Soft Modulation Switching..........................................................................................................13  
4.3. Demodulation Delay...................................................................................................................13  
4.4. Write Damping............................................................................................................................14  
4.5. Initialization and Init Delay..........................................................................................................14  
4.6. Modulator in Basic Mode............................................................................................................15  
4.7. Maxblock Setting........................................................................................................................15  
4.8. Password Mode..........................................................................................................................15  
4.9. Answer-On-Request (AOR) Mode..............................................................................................15  
4.10. ATA5577C in Extended Mode (X-mode).................................................................................... 17  
4.11. Tag-to-Reader Communication.................................................................................................. 19  
4.12. Reader to Tag Communication...................................................................................................21  
4.13. Programming..............................................................................................................................28  
5. Error Handling.......................................................................................................................................30  
5.1. Errors During Command Sequence........................................................................................... 30  
5.2. Errors Before/During Programming the EEPROM..................................................................... 30  
6. Animal ID...............................................................................................................................................38  
7. Electrical Characteristics.......................................................................................................................40  
8. Ordering Information............................................................................................................................. 42  
8.1. Ordering Details for Pad Type 1.................................................................................................43  
DS70005357B-page 3  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
8.2. Ordering Details for Pad Type 2.................................................................................................44  
8.3. Configuration on Delivery...........................................................................................................44  
9. Package Information............................................................................................................................. 45  
10. Document Revision History...................................................................................................................52  
10.1. Atmel Revision History............................................................................................................... 52  
The Microchip Website.................................................................................................................................53  
Product Change Notification Service............................................................................................................53  
Customer Support........................................................................................................................................ 53  
Microchip Devices Code Protection Feature................................................................................................53  
Legal Notice................................................................................................................................................. 53  
Trademarks.................................................................................................................................................. 54  
Quality Management System....................................................................................................................... 54  
Worldwide Sales and Service.......................................................................................................................55  
DS70005357B-page 4  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Compatibility  
1.  
Compatibility  
The ATA5577C is designed to be compatible with the T5557/ATA5567. The structure of the Configuration register is  
identical. The two modes, Basic mode and Extended mode, are also available. The ATA5577C is able to replace the  
e5551/T5551 in most common operation modes. In all applications, the correct functionality of the replacements must  
be evaluated and proved. For more details, refer to product-relevant application notes on the Microchip website.  
DS70005357B-page 5  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
System Block Diagram  
2.  
System Block Diagram  
The following figure illustrates the system block diagram of the RFID system.  
Figure 2-1.ꢀRFID System Using ATA5577C Tag  
Transponder  
Power  
Reader  
or  
Memory  
Base station  
1
)
Data  
Microchip ATA5577  
1
) Mask option  
DS70005357B-page 6  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
ATA5577C – Functional Blocks  
3.  
ATA5577C – Functional Blocks  
The following figure illustrates the functional block of ATA5577C.  
Figure 3-1.ꢀBlock Diagram  
AFE option register  
POR  
Modulator  
Coil 1  
Mode register  
Memory  
1
)
(363-bit EEPROM)  
Controller  
Test logic  
Coil 2  
Input register  
HV generator  
1
) Mask option  
3.1  
Analog Front End (AFE)  
The AFE includes all circuits that are directly connected to the coil terminals. It generates the IC’s power supply and  
handles the bidirectional data communication with the reader.  
The AFE consists of the following blocks:  
Rectifier to generate a DC supply voltage from the AC coil voltage  
Clock extractor  
Switchable load between “Coil 1 and Coil 2” for data transmission from the tag to the reader  
Field gap detector for data transmission from the base station to the tag  
Electrostatic Discharge (ESD) protection circuitry  
3.2  
3.3  
AFE Option Register  
The Option register maintains a readable shadow copy of the data held in the EEPROM page 1, block 3 ( refer to  
Figure 3-2). This contains the AFE level and threshold settings, with enhanced downlink protocol selection with which  
the device is fine-tuned for perfect operation and all application environments. It is continually refreshed during Read  
mode operation and reloaded after every Power-on Reset event or Reset command. By default, the Option register is  
preprogrammed according to Table 8-3.  
Data-Rate Generator  
The data rate is binary programmable to operate at any even numbered data rate between RF/2 and RF/128, or to  
any of the fixed Basic mode data rates (RF/8, RF/16, RF/32, RF/40, RF/50, RF/64, RF/100 and RF/128).  
DS70005357B-page 7  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
ATA5577C – Functional Blocks  
3.4  
Write Decoder  
The write decoder detects the write gaps and verifies the validity of the data stream according to the e555x downlink  
protocol (pulse interval encoding).  
3.5  
3.6  
HV Generator  
This on-chip charge pump circuit generates the high voltage required to program the EEPROM.  
DC Supply  
Power is supplied to the IDIC externally via the two coil connections. The IC rectifies and regulates this RF source,  
and uses it to generate its supply voltage.  
3.7  
3.8  
3.9  
Power-on Reset (POR)  
The POR circuit blocks the voltage supply to the IDIC until an acceptable voltage threshold is reached.  
Clock Extraction  
The clock extraction circuit uses the external RF signal as its internal clock source.  
Controller  
The control logic module executes the following functions:  
Loads Mode register with configuration data from EEPROM block 0 after power-on and during reading  
Loads Option register with the settings for the analog front end stored in EEPROM page 1, block 3 ( refer to  
Figure 3-2) after power-on and during reading  
Controls all EEPROM memory read/write access and data protection  
Handles the downlink command decoding detecting protocol violations and error conditions  
3.10  
3.11  
Mode Register  
The Mode register maintains a readable shadow copy of the configuration data held in block 0 of the EEPROM. It is  
continually refreshed during Read mode and reloaded after every POR event or Reset command. On delivery, the  
Mode register is preprogrammed according to Table 8-3.  
Modulator  
The modulator encodes the serialized EEPROM data for transmission to a tag reader or base station.  
Several types of modulation are available:  
Manchester  
Bi-phase  
FSK  
PSK  
NRZ  
DS70005357B-page 8  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
ATA5577C – Functional Blocks  
3.12  
Memory  
The following figure shows the memory map of ATA5577C.  
Figure 3-2.ꢀMemory Map  
The memory is a 363-bit EEPROM, which is arranged in 11 blocks of 33 bits each. Each block includes a single lock  
bit, which is responsible for write-protecting the associated block. Programming takes place on a block basis, so a  
complete block (including lock bit) is programmed with a single command.  
The memory is subdivided into two page areas:  
Page 0 contains eight blocks  
Page 1 contains three blocks  
All 33 bits of a block, including the lock bit, are programmed simultaneously. Block 0 of page 0 (refer to Figure 3-2)  
contains the mode/configuration data, which are not transmitted during Regular-Read mode operations.  
Addressing block 0 always affects block 0 of page 0 (refer to Figure 3-2) regardless of the page selector. Block 7 of  
page 0 (refer to Figure 3-2) may be used as a protection password. Block 3 of page 1 (refer to Figure 3-2) contains  
the AFE Option register, which is also not transmitted during Regular-Read mode operation. Bit ‘0’ of every block is  
the lock bit for that block.  
Once locked, the block (including the lock bit itself) is not reprogrammable via the RF field. Blocks 1 and 2 of page 1  
(refer to Figure 3-2) contain traceability data and are transmitted with the modulation parameters defined in the  
Configuration register after the opcode ‘11’ is issued by the reader (see Figure 4-15 and Figure 4-16). The  
traceability data blocks are programmed and locked by ATA5577C.  
3.13  
Traceability Data Structure/Unique ID  
Blocks 1 and 2 of page 1 (refer to Figure 3-2) contain the traceability data and are programmed and locked by  
ATA5577C during production testing (1). The Most Significant Byte (MSB) of block 1 is fixed to E0h, the Allocation  
Class (ACL), as defined in ISO/IEC 15963-1. The second byte is, therefore, defined in ISO/IEC 7816-6 as the  
DS70005357B-page 9  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
ATA5577C – Functional Blocks  
manufacturer ID (15h). The following five bits indicate chip ID (CID – ‘00001b’ for ATA5577M1 and ‘00010b’ for  
ATA5577M2), and the next bits (IC revision, ICR) are used by Microchip for the IC and/or foundry version of the  
ATA5577C. The lower 40 bits of data encode Microchip’s traceability information and conform to a unique numbering  
system (unique ID). These 40 data bits contain the lot ID (year, quarter, number), wafer number (Wafer#) and die  
number of the wafer (DW).  
Note:ꢀ  
1. This is only valid for sawn wafer on foil delivery.  
Figure 3-3.ꢀATA5577C Traceability Data Structure  
ACL – Allocation Class as defined in ISO/IEC 15963-1 = E0h  
MFC – Atmel Corporation Manufacturer Code as defined in ISO/IEC 7816-6 = 15h  
CID – 5-bit Chip ID for identification of the different products: ‘00001b’ for ATA5577M1 and ‘00010b’ for  
ATA5577M2  
ICR – 3-bit IC Revision to identify foundry and/or revision of IC  
Year – 1-digit BCD encoded year of manufacturing  
Quarter – 2 bits for quarter of manufacturing  
Number – 14 bits of consecutive number  
Wafer# – 5 bits for wafer number  
DW – 15 bits designating sequential die number on wafer  
DS70005357B-page 10  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
4.  
Operating the ATA5577C  
4.1  
Configuring the ATA5577C  
The following figures illustrates the configuration of the ATA5577C.  
Figure 4-1.ꢀBlock 3 Page 1 – Analog Front-End Option Setup 1  
Note:ꢀ  
1. If the option key is 6 or 9, the front-end options are activated. For all other values, they take on the default  
state (all ‘0’s). If the option key is 6, then the complete page 1 (that is, Option register and traceability data)  
cannot be overwritten by any test write command. This means that if the lock bits of the three blocks of page 1  
are set and the option key is 6, then all of page 1’s blocks (refer to Figure 3-2) are locked against change.  
2. Weak field condition.  
DS70005357B-page 11  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-2.ꢀBlock 0 Page 0 – Configuration Mapping in Basic Mode  
DS70005357B-page 12  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-3.ꢀBlock 0 Page 0 – Configuration Mapping in Extended Mode (X-mode)  
4.2  
Soft Modulation Switching  
Modulation switching results in abrupt rise of the modulation signal at the beginning of each modulation. This could  
lead to clock losses, and therefore, timing violations, especially in applications with high-quality antennas. To prevent  
this, several soft modulation settings can be chosen for a soft transition into the modulation state. Soft modulation  
must be used in combination with modulation schemes and data rates which do not involve high-frequency  
modulation changes.  
Figure 4-4.ꢀSoft Modulation Switching Scheme  
4.3  
Demodulation Delay  
Soft modulation causes imbalance in modulated and unmodulated phases. Depending on the soft modulation setting,  
the unmodulated phase is longer than the modulated phase. To balance out this mismatch, the switch point from the  
modulated to the unmodulated phase is delayed for one or two pulses. These delays and soft modulation switching  
must be used in combination with modulation schemes and data rates which do not involve high-frequency  
modulation changes.  
DS70005357B-page 13  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-5.ꢀDemodulation Delay Scheme  
4.4  
4.5  
Write Damping  
Reader-to-tag communication is initialized by sending a start gap from the reader station. To ease gap detection with  
respect to detecting subsequent field gaps reliably, receive damping and low attenuation are activated by default. A  
higher attenuation factor is switched on to fasten the relaxation time, especially in combination with high-quality coils.  
Using antenna coils with a low Q-factor might make it feasible to switch off the write damping. This results in better  
energy balance, and therefore, improved write distance.  
Initialization and Init Delay  
The POR circuit remains active until an adequate voltage threshold is reached. This, in turn, triggers the default  
initialization delay sequence. During this configuration period, for 192 field clocks, the ATA5577C is initialized with the  
configuration data stored in EEPROM block 0 (refer to Figure 3-2) and with the options stored in block 3, page 1  
(refer to Figure 3-2).  
Tag modulation in Regular-Read mode is observed for 3 ms after entering the RF field. If the init delay bit is set, the  
ATA5577C variant with damping during initialization remains in a permanent damping state for t ~ 69 ms at f = 125  
kHz.  
The ATA5577C variant without damping starts modulation after t ~ 69 ms without damping:  
Init delay = 0: TINIT = 192 × TC + TPOR ~ 3 ms; TC = 8 μs at f = 125 kHz (TPOR denotes delay for POR and  
depends on environmental conditions)  
Init delay = 1: TINIT = (192 + 8192) × TC + TPOR ~ 69 ms  
DS70005357B-page 14  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Any field gap occurring during this initialization phase, restarts the complete sequence. After this initialization time,  
the ATA5577C enters Regular-Read mode, and modulation starts automatically using the parameters defined in the  
Configuration register.  
4.6  
Modulator in Basic Mode  
The modulator consists of data encoders for the following types of modulation in Basic mode:  
Table 4-1.ꢀTypes of Modulation in Basic Mode  
Mode  
Direct Data Output  
0 = RF/8  
FSK1a(1)  
FSK2a(1)  
FSK1(1)  
FSK2(1)  
PSK1(2)  
PSK2(2)  
PSK3(2)  
FSK/8 – FSK/5  
FSK/8 – FSK/10  
FSK/5 – FSK/8  
FSK/10 – FSK/8  
1 = RF/5  
1 = RF/10  
1 = RF/8  
1 = RF/8  
0 = RF/8  
0 = RF/5  
0 = RF/10  
Phase change when input changes  
Phase change on bit clock if input high  
Phase change on rising edge of input  
0 = falling edge, 1 = rising edge  
Manchester  
Bi-phase  
NRZ  
1 = creates an additional mid-bit change  
1 = damping on, 0 = damping off  
Note:ꢀ  
1. A common multiple of bit rate and FSK frequencies is recommended.  
2. In PSK mode, the selected data rate must be an integer multiple of the PSK sub-carrier frequency.  
4.7  
4.8  
Maxblock Setting  
After entering Regular-Read mode, the ATA5577C transmits the data content starting with block 1. The MAXBLK  
setting defines how many data blocks are transmitted.  
Password Mode  
When Password mode is active (PWD = 1), the first 32 bits after the opcode are regarded as the password. They are  
compared bit-by-bit with the contents of block 7, starting at bit 1. If the comparison fails, the ATA5577C must not  
program the memory. Instead, it restarts in Regular-Read mode once the command transmission is finished.  
Note:ꢀ In Password mode, MAXBLK must be set to a value lower than seven to prevent the password from being  
transmitted by the ATA5577C.  
Each transmission of the direct access command (2 opcode bits, 32-bit password, ‘0’ bit plus 3 address bits = 38 bits)  
needs about 18 ms. Testing all possible combinations (about 4.3 billion) can take about two years.  
4.9  
Answer-On-Request (AOR) Mode  
When the AOR bit in the Configuration register is set, the ATA5577C does not start modulation in the Regular-Read  
mode after loading configuration block 0. The tag waits for a valid AOR data stream (wake-up command) from the  
reader before modulation is enabled. The wake-up command consists of the opcode (‘10’ or ‘11’) followed by a valid  
password. The selected tag remains active until the RF field is turned off or a new command with a different  
password is transmitted, which may address another tag in the RF field.  
DS70005357B-page 15  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Table 4-2.ꢀATA5577C – Modes of Operation  
PWD AOR  
Behavior of Tag after Reset Command or POR  
AOR mode:  
Deactivate Function  
1
1
0
1
Command with non-matching  
password deactivates the selected  
tag  
Modulation starts after wake-up with a matching password  
Programming needs valid password  
0
Password mode:  
Modulation in Regular-Read mode starts after Reset  
Programming and direct access needs valid password  
Normal mode:  
Modulation in Regular-Read mode starts after Reset  
Programming and direct access without password  
Figure 4-6.ꢀAOR Mode, Fixed Bit Length Protocol Example  
Modulation  
VCoil1 - Coil2  
Loading  
configuration  
and option  
No modulation  
because AOR = 1  
AOR wake-up command  
(with valid PWD)  
POR  
DS70005357B-page 16  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-7.ꢀAnti-Collision Procedure Using AOR Mode  
Reader  
Tag  
Initialize tags with  
AOR = 1, PWD = 1  
Field OFF  
ON  
POWER-ON RESET  
Read configuration  
Wait for tW > 2.5ms  
Enter AOR mode  
Wait for OPCODE +  
PWD  
"wake-up  
command"  
"Select a single tag"  
send OPCODE + PWD  
"wake-up command"  
Receive damping ON  
No  
Password correct?  
Yes  
Decode data  
Send block 1 to MAXBLK  
No  
All tags read?  
Yes  
Field ON  
OFF  
Exit  
4.10  
ATA5577C in Extended Mode (X-mode)  
In general, setting of the master key (bits 1 to 4) of block 0 to the value 6 or 9, together with the X-mode bit, enables  
the Extended mode functions, such as the binary bit rate generator, OTP functionality, fast downlink, inverse data  
output and sequence start marker.  
Master key = 9:  
Test mode access and Extended mode are both enabled  
DS70005357B-page 17  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Master key = 6:  
– Any Test mode access is denied but the Extended mode is still enabled  
Any other master key setting prevents activation of the ATA5577C Extended mode options, even when the X-mode  
bit is set.  
4.10.1 Modulator in Extended Mode (X-mode)  
The following table provides the details of the modulator in Extended mode (X-mode).  
Table 4-3.ꢀATA5577C Types of Modulation in Extended Mode (X-mode)  
Mode  
FSK1(1)  
Direct Data Output Encoding  
FSK/5 – FSK/8 0 = RF/5; 1 = RF/8  
FSK/10 – FSK/8 0 = RF/10; 1 = RF/8 FSK/8 – FSK/10 0 = RF/8; 1 = RF/10 (= FSK2a)  
Phase change when input changes Phase change when input changes  
Phase change on bit clock if input high Phase change on bit clock if input low  
Phase change on rising edge of input Phase change on falling edge of input  
0 = falling edge, 1 = rising edge mid-bit 1 = falling edge, 0 = rising edge mid-bit  
Inverse Data Output Encoding  
FSK/8 – FSK/5 0 = RF/8; 1 = RF/5 (= FSK1a)  
FSK2(1)  
PSK1(2)  
PSK2(2)  
PSK3(2)  
Manchester  
Bi-phase  
1 creates an additional mid-bit change  
0 creates an additional mid-bit change  
1 creates an additional mid-bit change  
0 = damping on, 1 = damping off  
Differential bi-phase 0 creates an additional mid-bit change  
NRZ  
1 = damping on, 0 = damping off  
Note:ꢀ  
1. A common multiple of bit rate and FSK frequencies is recommended.  
2. In PSK mode, the selected data rate must be an integer multiple of the PSK sub-carrier frequency.  
4.10.2 Binary Bit Rate Generator  
In Extended mode, the data rate is binary-programmable to operate at any even numbered data rate between RF/2  
and RF/128 as given in the formula: Data Rate = RF/(2n + 2).  
4.10.3 OTP Functionality  
If the OTP bit is set to ‘1’, all memory blocks are write-protected and behave as if all lock bits are set to ‘1’. If, in  
addition, the master key is set to 6, the ATA5577C mode of operation is locked forever (One-Time-Programmable  
functionality). If the master key is set to 9, Test mode access allows reconfiguration of the tag.  
4.10.4 Fast Downlink  
In the optional Fast Downlink mode, the time between two gaps is reduced. In the Fixed Bit Length Protocol mode,  
there are nominally 12 field clocks for a ‘0’ and 28 field clocks for a ‘1’. When there is no gap for more than 32 field  
clocks after a previous gap, the ATA5577C in the Fixed Bit Length Protocol mode will exit the Downlink mode (refer to  
Table 4-5).  
The Fast Downlink mode timings for the long leading reference protocol are shown in Table 4-6, for the leading zero  
reference protocol in Table 4-7 and for the 1-of-4 coding protocol in Table 4-8.  
4.10.5 Inverse Data Output  
In Extended mode (X-mode), the ATA5577C supports an inverse data output option. If inverse data are enabled, the  
modulator shown in the following figure works on inverted data (see Table 4-3). This function is supported for all basic  
types of encoding.  
DS70005357B-page 18  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-8.ꢀData Encoder for Inverse Data Output  
PSK1  
PSK2  
PSK3  
Intern out  
data  
Direct/NRZ  
Data output  
MUX  
Sync  
D
XOR  
FSK1  
FSK2  
Data clock  
CLK  
R
Manchester  
Bi-phase  
Inverse data output  
Modulator  
4.11  
Tag-to-Reader Communication  
During read operation (Uplink mode), the data stored within the EEPROM are cycled, and the “Coil 1 and Coil 2”  
terminals are load modulated. This resistive load modulation is detected at the reader device.  
4.11.1  
Regular-Read Mode  
In Regular-Read mode, data from the memory are transmitted serially, starting with block 1, bit 1, up to the last block  
(for example, 7), bit 32. The last block to be read is defined by the mode parameter field MAXBLK in EEPROM block  
0. When the data block addressed by MAXBLK is read, data transmission restarts with block 1, bit 1.  
The user may limit the cyclic data stream in Regular-Read mode by setting MAXBLK between 0 and 7 (representing  
each of the eight data blocks). If set to 7, blocks 1 through 7 are read. If set to 1, only block 1 is transmitted  
continuously. If set to 0, the contents of the configuration block (normally not transmitted) are read. In the case of  
MAXBLK = 0 or 1, Regular-Read mode cannot be distinguished from Block-Read mode.  
Figure 4-9.ꢀExamples of Different MAXBLK Settings  
MAXBLK = 5  
MAXBLK = 2  
MAXBLK = 0  
0
Block 1  
Block 4  
Block 2  
Block 0  
Block 5  
Block 1  
Block 0  
Block 1  
Block 2  
Block 0  
Block 2  
Block 1  
Block 0  
Loading block 0  
0
Block 1  
Loading block 0  
0
Block 0  
Loading block 0  
Every time the ATA5577C enters Regular or Block-Read mode, the first bit transmitted is a logical ‘0’. The data  
stream starts with block 1, bit 1, continues through MAXBLK bit 32, and if in Regular-Read mode, cycles  
continuously.  
Note:ꢀ This behavior is different from that of the original e555x and helps to decode PSK-modulated data.  
4.11.2  
Block-Read Mode  
With the direct access command, only the addressed block is read repetitively. This mode is called Block-Read  
mode. Direct access is entered by transmitting the page access opcode (‘10’ or ‘11’), a single 0 and the requested 3-  
bit block address when the tag is in Normal mode.  
In Password mode (PWD bit set), direct access to a single block needs the valid 32-bit password to be transmitted  
after the page access opcode, followed by a 0 and the 3-bit block address. If the transmitted password does not  
match the contents of block 7, the ATA5577C tag returns to Regular-Read mode.  
DS70005357B-page 19  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Note:ꢀ  
A direct access to block 0 of page 1 reads the configuration data of block 0, page 0  
A direct access to block 4 to 7 of page 1 reads all data bits as zero  
4.11.3  
Sequence Terminator (Basic Mode)  
The Sequence Terminator (ST) is a special damping pattern, which is inserted in front of the first block and can be  
used to synchronize the reader. This sequence terminator is recommended only for FSK and Manchester coding.  
This Basic mode sequence terminator consists of four bit periods. During the first and third bit period, the data value  
is 1. During the second and fourth bit periods, modulation is switched off (using Manchester encoding, switched on).  
Biphase modulated data blocks need fixed leading and trailing bits, in combination with the sequence terminator, to  
be reliably identified. The sequence terminator may be individually enabled by setting mode bit 29 (ST = 1) in Basic  
mode (X-mode = 0).  
In the Regular-Read mode, the sequence terminator is inserted at the start of each MAXBLK-limited read data  
stream.  
In Block-Read mode, after any block write or direct access command, or if MAXBLK was set to ‘1’, the sequence  
terminator is inserted before the transmission of the selected block.  
This behavior is different from that of previous ICs (e5551/T5551, T5554). For further details, refer to the relevant  
application notes.  
Figure 4-10.ꢀRead Data Stream with Sequence Terminator  
No terminator  
Block 1  
Block 2  
MAXBLK  
Block 1  
Block 2  
Regular-read mode  
Sequence terminator  
Block 1  
Sequence terminator  
St = on  
Block 2  
MAXBLK  
Block 1  
Block 2  
Figure 4-11.ꢀBasic Mode Sequence Terminator Waveforms  
Bit period  
Data 1  
Modulation  
off (on)  
Data 1  
Modulation  
off (on)  
Sequence  
Last bit  
First bit  
Waveforms per different modulation types  
bit 1 or 0  
VCoilPP  
Manchester  
FSK  
Sequence terminator is not suitable for Bi-phase or PSK modulation  
4.11.4  
Sequence Start Marker (X-mode)  
The ATA5577C sequence start marker is a special damping pattern in Extended mode which may be used to  
synchronize the reader. The sequence start marker consists of two bits (‘01’ or ‘10’), which are inserted as a header  
before the first block to be transmitted, if in Extended mode, bit 29 is set. At the start of a new block sequence, the  
value of the two bits is inverted.  
DS70005357B-page 20  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-12.ꢀATA5577C Sequence Start Marker in Extended Mode  
Sequence start marker  
10  
10  
Block n  
Block 1  
01  
Block n  
10  
Block n  
01  
Block n  
10  
Block n  
01  
Block read mode  
Block 2  
MAXBLK  
01  
Block 1  
Block 2  
MAXBLK  
10  
Regular read mode  
4.12  
Reader to Tag Communication  
Data are transmitted to the tag by interrupting the RF field with short field gaps (On-Off Keying) in accordance with  
the T5557/ATA5567 write method (Downlink mode). The duration of these field gaps is, for example, 100 μs. The  
time between two gaps encodes the 0/1 information to be transmitted (pulse interval encoding). There are four  
different downlink protocols available, which are selectable via bit 21 and bit 22 in the Option register block 3, page 1  
(see Figure 4-1).  
Choosing the default downlink protocol (fixed bit length protocol), the time between two gaps is nominally 24 field  
clocks for a 0 and 56 field clocks for a 1. When there is no gap for more than 64 field clocks after a previous gap, the  
ATA5577C exits the Downlink mode. The tag starts with the command execution if the correct number of bits were  
received. If a failure is detected, the ATA5577C does not continue and enters Regular-Read mode.  
Improved downlink performance could be achieved by choosing self-calibrating downlink protocols.  
The ATA5577C offers three different possibilities to achieve better performance using self-calibrating downlink  
protocols:  
Long leading reference:  
– Fully forward and backward compatible with former tags and readers.  
Leading zero:  
– A reader sends a leading zero in front of the downlink bit stream. This leading zero serves as a reference  
for the following zero and one bits.  
1-of-4 coding:  
– Compact downlink protocol with optimized energy balance.  
4.12.1 Start Gap  
The initial gap is referred to as the start gap. This triggers the reader-to-tag communication. In the Option register  
(block 3, page 1), several settings are chosen to ease gap detection during this mode of operation; for example, the  
receive damping is activated (see Figure 4-1). The start gap may need to be longer than subsequent gaps, so-called  
write gaps, in order to be detected reliably.  
A start gap is accepted at any time after the Mode register is loaded (≥ 3 ms). A single gap does not change the  
previously selected page (by a previous opcode ‘10’ or ‘11’).  
Figure 4-13.ꢀStart of Reader-to-Tag Communication  
Read mode  
Write mode  
Write damping settings  
Sgap  
Wgap  
DS70005357B-page 21  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Table 4-4.ꢀGap Scheme  
Parameters  
Start gap  
Remark  
Symbol  
Sgap  
Wgap  
Min.  
Max.  
50  
Unit  
TC  
8
8
Write gap  
Normal Downlink mode  
20  
TC  
Note:ꢀ All absolute times assume TC = 1/fC = 8 μs (fC = 125 kHz).  
4.12.2 Downlink Data Protocols  
The ATA5577C expects to receive a dual bit opcode as a part of a reader command sequence.  
There are three valid opcodes:  
1. The opcode ‘10’ precedes all downlink operations for page 0.  
2. The opcode ‘11’ precedes all downlink operations for page 1. Performing a direct access command on block 0  
always provides block 0, page 0 independently of the page selector (see Figure 3-2).  
3. The Reset opcode ‘00’ initiates an initialization cycle.  
The fourth opcode ‘01’ precedes all Test mode write operations. Any Test mode access is ignored after master key  
(bits 1 to 4) in block 0 is set to 6. Any further modifications of the master key are prohibited by setting the lock bit of  
block 0 or the OTP bit.  
Rules to follow for the downlink:  
Standard write needs the opcode, the lock bit, 32 data bits and the 3-bit address (38 bits total)  
Protected write (PWD bit set) requires a valid 32-bit password between the opcode, and the data and address  
bits. Protected write (PWD bit set), in conjunction with the leading-zero-reference protocol or with the 1-of-4  
coding protocol, requires two padding zero bits between the opcode and the password (see Figure 4-22). This  
ensures the uniqueness of the direct access with the password and the standard write command (see Table 5-1)  
For the AOR wake-up command, an opcode and a valid password are necessary to select and activate a  
specific tag  
Note:ꢀ The data bits are read in the same order as written.  
If the transmitted command sequence is invalid, the ATA5577C enters Regular-Read mode with the previously  
selected page (by previous opcode ‘10’ or ‘11’).  
Figure 4-14.ꢀComplete Writing Sequence with Fixed Bit Length Protocol  
Read mode  
Write mode  
Read mode  
Opcode  
Block data  
Block address  
Programming  
Configuration  
loading  
Start gap  
Lock bit  
POR  
DS70005357B-page 22  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-15.ꢀATA5577C Command Formats Fixed Bit Length Protocol and Long Leading Reference Protocol  
Ref OP  
)
)
)
)
)
)
)
**  
**  
**  
**  
*
*
Standard write  
Protected write  
R
R
R
R
1p  
1p  
1p  
L
1
1
1
0
1
Data  
Password  
Password  
Password  
32  
2
1
Addr  
0
32  
32  
32  
L
0
Data  
32  
2
Addr 0  
*
AOR (wake-up command)  
Direct access (PWD = 1)  
)
*
*
*
1p  
1p  
1p  
2
Addr  
0
)
)
)
)
)
**  
**  
**  
Direct access (PWD = 0)  
Page 0/1 regular read  
Reset command  
R
R
R
2
Addr  
0
) p = page selector  
*
00  
) R = Reference pulse if necessary  
**  
Figure 4-16.ꢀATA5577C Command Formats Leading Zero Reference Protocol and 1-of-4 Coding Protocol  
Ref OP  
)
)
)
)
)
**  
**  
**  
**  
*
Standard write  
Protected write  
R
R
R
R
1p  
L
1
Data  
Password  
Password  
Password  
0
32  
32  
32  
32  
2
L
Addr  
1
0
)
*
1p 00  
1
Data  
32  
2
Addr 0  
)
*
00  
00  
0
1
1
AOR (wake-up command)  
Direct access (PWD = 1)  
1p  
)
*
1p  
1p  
1p  
0
2
Addr  
0
)
)
)
)
)
**  
**  
**  
*
*
Direct access (PWD = 0)  
Page 0/1 regular read  
Reset command  
R
R
R
2 Addr  
) p = page selector  
**  
*
00  
) R = Reference pulse  
4.12.3 Fixed Bit Length Protocol  
In the fixed bit length protocol, the time between two gaps is nominally 24 field clocks for a 0 and 56 field clocks for a  
1. When there is no gap for more than 64 field clocks after a previous gap, the ATA5577C exits the Downlink mode.  
This protocol is compatible with the T5557/ATA5567 transponder.  
Table 4-5.ꢀDownlink Data Coding Scheme with Fixed Bit Length Protocol  
Normal Downlink  
Fast Downlink  
Parameter  
Remark Symbol  
Min. Typ. Max. Min. Typ. Max. Unit  
Start gap  
Write gap  
Sgap  
8
8
15  
10  
50  
20  
8
8
15  
10  
50  
20  
TC  
TC  
Wgap  
DS70005357B-page 23  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
...........continued  
Parameter  
Write data coding (gap separation)  
Normal Downlink  
Fast Downlink  
Remark Symbol  
Min. Typ. Max. Min. Typ. Max. Unit  
0 data  
1 data  
d0  
d1  
16  
48  
24  
56  
32  
64  
8
12  
28  
16  
32  
TC  
TC  
24  
Note:ꢀ All absolute times assume: TC = 1/fC = 8 μs (fC = 125 kHz).  
Figure 4-17.ꢀFixed Bit Length Protocol  
1
0
4.12.4 Long Leading Reference Protocol  
To achieve better downlink performance, an enhanced ATA5577C reader places a reference pulse in front of the  
opcode. This reference pulse is used as a timing reference for all following data, thus providing an auto-adjustment  
for varying environmental conditions. The long leading reference protocol allows full compatibility and coexistence of  
both T5557/ATA5567 and ATA5577C devices with both T5557/ATA5567 compatible readers and advanced  
ATA5577C readers. However, only the ATA5577C devices can profit from the self-calibration and the resultant  
increase in write distance (see Figure 4-1 for Option register settings).  
In this mode, the reference pulse in front of the command is monitored. Depending on the pulse length, the remainder  
of the command is either evaluated using the fixed bit length protocol or is used as a measurement reference to  
evaluate the following command bits. Otherwise, the following bits are considered as an invalid command.  
1. For a reference-based command, the reference pulse (dref) has a length of 16 to 32 + 136 = 152 to 168 field  
clocks (zero bit + timing bias = reference pulse). Hence, the expected length lies between 152 and 168 field  
clocks. The equivalent expected zero bit length is then extracted and used as a reference for all following bits.  
The long leading reference pulse, in this case, is used as a timing reference only and does not contribute to  
the command data itself (see part ‘a’ on Figure 4-18).  
2. The first bit must lie within the fixed bit length frame (for example, in Normal mode: 0: 16 to 32 clocks; 1: 48 to  
64 clocks), the device switches automatically to the fixed bit length protocol (see 4.12.3 Fixed Bit Length  
Protocol) and this first pulse is evaluated as the first command bit. This allows compatibility with long leading  
reference programmed ATA5577C devices, interacting with T5557/ATA5567 readers, which do not send any  
reference pulses (see part ‘b’ on Figure 4-18).  
3. If an T5557/ATA5567 device interacts with an enhanced ATA5577C reader, the reference pulse (152 to 168  
field clocks) is ignored by the T5557/ATA5567 and the following data bits are evaluated correctly. Therefore, a  
T5557/ATA5567 device is compatible with an enhanced ATA5577C reader (see part ‘b’ on Figure 4-18).  
4. The first bit corresponds to neither (1) nor (2), then it is rejected as an invalid command.  
Table 4-6.ꢀDownlink Data Coding Scheme with Long Leading Reference  
Normal Downlink  
Min. Typ. Max.  
15  
Fast Downlink  
Parameter  
Remark  
Symbol  
Unit  
Min.  
Typ.  
15  
Max.  
50  
Start gap  
Write gap  
Sgap  
Wgap  
dref  
8
8
50  
8
8
TC  
TC  
TC  
TC  
10  
20  
10  
20  
Write data coding Reference  
(gap separation) Pulse  
152  
160  
168  
140  
144  
148  
136 clocks + 0 data bit  
132 clocks + 0 data bit  
0 data  
1 data  
d0  
d1  
dref –  
143  
dref –  
136  
dref – 128 dref –  
135  
dref –  
132  
dref – 124 TC  
dref –  
111  
dref –  
104  
dref – 96 dref –  
119  
dref –  
116  
dref – 112 TC  
DS70005357B-page 24  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Note:ꢀ All absolute times assume: TC = 1/fC = 8 μs (fC = 125 kHz).  
Figure 4-18.ꢀLong Leading Reference Protocol  
Reference pulse  
1
0
a)  
b)  
c)  
1
0
Reference pulse  
1
0
4.12.5 Leading Zero Reference Protocol  
If the device is programmed in this mode, it always expects a reference pulse before the command data itself. This  
pulse length must correspond exactly to the length of the zero bits in the following command. All further lengths of the  
zero and one bits of the command are derived from the reference pulse. Therefore, downlink performance is optimal  
in different environmental conditions.  
Table 4-7.ꢀDownlink Data Coding Scheme with Leading Zero Reference  
Normal Downlink  
Min. Typ. Max.  
15  
Fast Downlink  
Typ. Max.  
15  
Parameter  
Start gap  
Remark  
Symbol  
Unit  
Min.  
Sgap  
Wgap  
dref  
8
50  
20  
72  
8
8
8
50  
20  
68  
TC  
TC  
TC  
Write gap  
8
10  
10  
Write data coding  
(gap separation)  
Reference  
Pulse  
12  
0 data  
1 data  
d0  
d1  
dref – 7 dref  
dref + 8 dref – 3 dref  
dref + 4 TC  
dref + 9 dref + 16 dref + 24 dref + 5 dref + 8 dref + 12 TC  
Note:ꢀ All absolute times assume: TC = 1/fC = 8 μs (fC = 125 kHz).  
Figure 4-19.ꢀLeading Zero Reference Protocol  
Reference pulse  
(0)  
1
0
4.12.6 1-of-4 Coding Protocol  
This protocol codes the data in bit pairs so that the length of each packet can have one of four discrete lengths. This  
protocol is extremely compact and exhibits the least number of field gaps, which in turn, improves the device’s ability  
to extract power from the field. Additionally, a leading reference pulse, ‘00’, is placed in front of the downlink  
command. This serves as a reference pulse for all following data bits, thus providing an auto-adjustment for varying  
environmental conditions.  
Table 4-8.ꢀDownlink Data Coding Scheme with 1-of-4 Coding  
Normal Downlink  
Min. Typ. Max.  
15  
Fast Downlink  
Typ.  
Parameter  
Remark  
Symbol  
Unit  
Min.  
Max.  
50  
20  
Start gap  
Write gap  
Sgap  
8
8
50  
20  
8
8
15  
10  
TC  
TC  
Wgap  
10  
DS70005357B-page 25  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
...........continued  
Parameter  
Normal Downlink  
Min. Typ. Max.  
12 72  
Fast Downlink  
Unit  
Remark  
Symbol  
Min.  
Typ.  
Max.  
Write data coding  
(gap separation)  
Reference  
pulse ‘00’  
dref  
8
68  
TC  
00’ data  
01’ data  
10’ data  
11’ data  
d00  
d01  
d10  
d11  
dref – 7 dref  
dref + 8 dref – 3 dref  
dref + 4 TC  
dref + 9 dref + 16 dref + 24 dref + 5 dref + 8 dref + 12 TC  
dref + 25 dref + 32 dref + 40 dref + 13 dref + 16 dref + 20 TC  
dref + 41 dref + 48 dref + 56 dref + 21 dref + 24 dref + 28 TC  
Note:ꢀ All absolute times assume: TC = 1/fC = 8 μs (fC = 125 kHz).  
Figure 4-20.ꢀ1-of-4 Coding Protocol  
DS70005357B-page 26  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-21.ꢀStandard Write Sequence Example  
a) Fixed-bit-length Protocol  
Read mode  
Opcode  
Blockdata: "100 ... 1"  
Blockaddr.: "011"  
Programming  
Read mode  
1
0
0
1
0
0
1
0
1
1
Start gap  
Lock bit  
b) Long-leading-reference Protocol  
Reference Pulse  
Read mode  
Opcode  
Blockdata: "100 ... 1"  
Blockaddr.: "011"  
Programming Read mode  
1
0
0
1
0
0
1
0
1
1
Start gap  
Lock bit  
c) Leading-zero-reference Protocol  
Read mode Opcode  
Blockdata: "100 ... 1"  
Blockaddr.: "011"  
Programming  
Read mode  
0
1
0
0
1
0
0
1
0
1
1
Start gap  
Lock bit  
Reference Pulse  
d) 1-of-4-coding Protocol  
Blockdata:  
"100 ... 1"  
Blockaddr.:  
"011"  
Read mode  
Opcode  
10  
Programming  
Read mode  
00  
0 1 00  
1 0  
11  
Start gap  
Lock bit  
Reference Pulse  
DS70005357B-page 27  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-22.ꢀProtected Write Sequence Example  
a) Fixed-bit-length Protocol  
Read mode  
Opcode  
PWD: "1101 ... "  
Blockdata: "100 ... 1"  
Blockaddr.: "011"  
Programming Read mode  
1
0
1
1
0
1
0
1
0
0
1
0
1
1
Start gap  
Lock bit  
b) Long-leading-reference Protocol  
Read mode  
Reference Pulse Opcode  
PWD: "1101 ... "  
Blockdata: "100 ... 1"  
Blockaddr.: "011"  
Programming Read mode  
1
0
1
1
0
1
0
1
0
0
1
0
1
1
Start gap  
Lock bit  
c) Leading-zero-reference Protocol  
Read mode  
Opcode  
PWD: "1101 ... "  
Blockdata: "100 ... 1"  
Blockaddr.: "011"  
Programming Read mode  
0
1
0
0
0
1
1
0
1
0
1
0
0
1
0
1
1
Start gap  
Padding zeros  
Lock bit  
Reference Pulse  
d) 1-of-4-coding Protocol  
Blockdata:  
"100 ... 1"  
Blockaddr.:  
"011"  
Read mode  
Opcode  
10  
PWD: "1101 ... "  
11 01  
Programming  
Read mode  
00  
00  
0 1 00  
1 0  
11  
Start gap  
Padding zeros  
Reference Pulse  
Lock bit  
4.13  
Programming  
The ATA5577C can be programmed when all the required information is received. There is a clock delay between the  
end of the writing sequence and the start of programming.  
Typical programming time is 5.6 ms. This cycle includes a data verification read to grant secure and correct  
programming. After programming is successfully executed, the ATA5577C enters Block-Read mode, transmitting the  
block just programmed as shown in the following figure.  
Note:ꢀ This timing and behavior are different from that of the e555x family predecessors. For more details, refer to  
relevant application notes.  
If the command sequence is validated and the addressed block is not write-protected, then the new data are  
programmed into the EEPROM memory. The new state of the block write protection bit (lock bit) is programmed at  
the same time accordingly.  
Each programming cycle consists of four consecutive steps: erase block, erase verification (data = 0), programming  
and write verification (corresponding data bits = 1).  
DS70005357B-page 28  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Operating the ATA5577C  
Figure 4-23.ꢀCoil Voltage after Programming a Memory Block  
VCoil 1 - Coil 2  
POR/  
Reset  
or  
Read programmed  
memory block  
Write data to tag  
5.6 ms  
Read block 1 to MAXBLK  
(Regular-read mode)  
Programming and  
data verification  
(Block-read mode)  
Single  
gap  
Note:ꢀ Programming of page 1 with following single gap leads to a page 1 read. To enter Regular-Read mode, a  
POR or Reset command must be performed.  
DS70005357B-page 29  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Error Handling  
5.  
Error Handling  
Several error conditions are detected to ensure that only valid bits are programmed into the EEPROM. There are two  
error types, which lead to two different actions.  
5.1  
Errors During Command Sequence  
The following detectable errors occur while sending a command sequence to the ATA5577C:  
Wrong number of field clocks between two gaps (that is, not a valid 1 or 0 pulse stream)  
Password mode is activated and the password does not match the contents of block 7  
The number of bits received in the command sequence is incorrect  
Valid bit counts accepted by the ATA5577C are listed in the following table.  
Table 5-1.ꢀBit Counts of Command Sequences  
Long Leading  
Reference  
Protocol  
Leading Zero  
Reference  
Protocol  
Fixed Bit Length  
1-of-4 Coding  
Protocol  
Command  
Protect  
Protocol  
Standard write  
Direct access  
Password write  
(PWD = 0) 38 bits  
(PWD = 0) 6 bits  
(PWD = 1) 70 bits  
(PWD = 1) 38 bits  
38 bits  
38 bits  
38 bits  
6 bits  
6 bits  
6 bits  
70 bits  
38 bits  
72 bits  
40 bits  
72 bits  
40 bits  
Direct access with  
PWD  
AOR wake-up  
(PWD = 1) 34 bits  
34 bits  
2 bits  
2 bits  
36 bits  
2 bits  
2 bits  
36 bits  
2 bits  
2 bits  
Reset command  
2 bits  
2 bits  
Page 0/1 regular  
read  
If any of these erroneous conditions (except AOR mode) are detected, the ATA5577C enters Regular-Read mode,  
starting with block 1 of the page defined in the command sequence. An erroneous AOR wake-up command stops  
modulation (modulation defeat).  
5.2  
Errors Before/During Programming the EEPROM  
If the command sequence is received successfully, the following errors prevent programming:  
The lock bit of the addressed block is already set.  
If it is a locked block, Programming mode is not entered. The ATA5577C reverts to Block-Read mode,  
continuously transmitting the currently addressed block.  
If a data verification error is detected after an executed data block programming, the tag stops modulation  
(modulation defeat) until a new command is transmitted.  
DS70005357B-page 30  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Error Handling  
Figure 5-1.ꢀATA5577C Functional Diagram  
Power-on reset  
AOR = 1  
Set-up modes  
AOR mode  
AOR = 0  
Regular-read mode  
Page 0  
Page 0 or 1  
addr = 1 to MAXBLK  
Block-read mode  
addr = current  
Gap  
Start  
gap  
Command mode  
Gap  
Direct access  
OP(1p) 1)  
Command decode  
OP(11..)  
Modulation  
defeat  
OP(1p) 1)  
Single gap  
Page 1  
Page 0  
OP(10..)  
OP(00)  
Reset  
OP(01)  
Test mode  
Write  
OP(1p) 1)  
to page 0  
if master key < > 6  
Write  
data = old  
data = old  
data = old  
data = new  
fail  
fail  
fail  
ok  
Number of bits  
Password check  
Lock bit check  
Data verification failed  
Program and verify  
1) p = page selector  
DS70005357B-page 31  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Error Handling  
Figure 5-2.ꢀExample with Manchester Coding with Data Rate RF/16  
DS70005357B-page 32  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Error Handling  
Figure 5-3.ꢀExample of Bi-Phase Coding with Data Rate RF/16  
DS70005357B-page 33  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Error Handling  
Figure 5-4.ꢀExample: FSK1a Coding with Data Rate RF/40, Sub-Carrier f0 = RF/8, f1 = RF/5  
DS70005357B-page 34  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Error Handling  
Figure 5-5.ꢀExample of PSK1 Coding with Data Rate RF/16  
DS70005357B-page 35  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Error Handling  
Figure 5-6.ꢀExample of PSK2 Coding with Data Rate RF/16  
DS70005357B-page 36  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Error Handling  
Figure 5-7.ꢀExample of PSK3 Coding with Data Rate RF/16  
DS70005357B-page 37  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Animal ID  
6.  
Animal ID  
In ISO 11784/11785, the code structure of a 128-bit FDX-B telegram is defined. Following is an example of how to  
program the ATA5577C for ISO 11785 FDX-B.  
Figure 6-1.ꢀStructure of the ISO 11785 FDX-B Telegram  
Bits  
11  
8 x (8+1)  
2 x (8+1)  
3 x (8+1)  
LSB  
MSB LSB  
83 84  
MSB  
101 102  
Control bit '1'  
...  
12 ...  
...  
...  
...  
Bit No.  
1
11  
20  
128  
Header  
Identification Code  
CRC  
Trailer  
11-bit fixed  
00000000001  
16-bit CRC  
+ 2 bits  
24-bit trailer all zeros  
+ 3 bits  
64-bit Identification Code  
+ 8 bits  
MSB  
83  
LSB  
12  
...  
...  
Bit No.  
20  
Country Code  
8 bits  
Unique  
Number  
6 bits  
Unique  
Number 8 bits  
Unique  
Number 8 bits  
Unique  
Number 8 bits  
Unique  
Number 8 bits  
RFU 7 bits  
RFU 7 bits  
RFU 14 bits  
Country Code 10 bits  
Unique Number 38 bits  
1. Except for the header, every eight bits are followed by one control bit (‘1’) to prevent the header from recurring.  
2. All data are transmitted LSB first.  
3. Country codes are defined in ISO 3166.  
4. The bits reserved for future use (RFU) are all set to ‘0’.  
5. If the data block flag is not set, the trailer bits are all set to ‘0’.  
6. CRC is performed on the 64-bit identification code without the control bits. The generator polynomial is P(x) =  
x16 + x12 + x5 + 1. Reverse CRC-CCITT (0x8408) is used. Data stream is LSB first.  
Table 6-1.ꢀExample Data for Animal ID  
Code  
Animal flag  
Dec. Value  
Hex. Value  
Comment  
1
1
Use for animal ID  
0
0
RFU  
Reserved for future use  
No data in trailer  
0
0
Data block flag  
Country code  
Unique number  
CRC  
999  
3E7  
Country code for demo tags  
Any demo number  
78187493530  
36255  
123456789A  
8D9F  
CRC for the identification code  
Programming of the ATA5577C for animal ID:  
Encoding of the data is differential bi-phase RF/32  
128 bits have to be transmitted in Regular-Read mode (Maxblock = 4)  
Table 6-2.ꢀProgramming the ATA5577C with Example Data  
Block  
Address  
Value  
Comment  
Option register  
Block 3, page 1  
0x 6DD0 0000(1)  
Soft modulation, two pulses recommended  
DS70005357B-page 38  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Animal ID  
...........continued  
Block  
Address  
Value  
Comment  
Configuration register  
User data block 1  
User data block 2  
User data block 3  
User data block 4  
Block 0, page 0  
Block 1, page 0  
Block 2, page 0  
Block 3, page 0  
Block 4, page 0  
0x 603F 8080  
0x 002B 31EB  
0x 54B2 979F  
0x 8040 7F3B  
0x 1804 0201  
RF/32, differential bi-phase, Maxblock = 4  
Header, unique number  
Unique number (cont.), country code  
Data block flag, RFU, animal flag, CRC  
CRC (cont.), trailer bits  
Note:ꢀ  
1. Depending on application, settings may vary.  
DS70005357B-page 39  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Electrical Characteristics  
7.  
Electrical Characteristics  
The electrical characteristics of ATA5577C are described in the following table.  
Tamb = +25°C; fcoil = 125 kHz; unless otherwise specified.  
Table 7-1.ꢀElectrical Characteristics  
No.  
Parameters  
Test Conditions  
Symbol  
fRF  
Min. Typ. Max. Unit Type*  
1
RF Frequency Range  
100  
125 150  
kHz  
μA  
2.1 Supply Current (without  
current consumed by the  
Tamb = 25°C(1)  
IDD  
1.5  
2
3
5
T
2.2  
Read – full temperature  
range  
μA  
Q
external LC tank circuit)  
2.3  
Programming full –  
temperature range  
25  
μA  
V
Q
Q
Q
3.1 Coil Voltage (AC supply)  
POR threshold (50 mV  
hysteresis)  
Vcoil pp  
3.6  
3.2  
Read mode and write  
command(2)  
6
8
Vclamp  
V
3.3  
Program EEPROM(2)  
Vcoil pp = 6V  
Vclamp  
V
ms  
V
Q
Q
Q
Q
T
4
Start-up Time  
tstartup  
2.5  
11  
5.1 Clamp Voltage (depends  
on settings in Option  
3 mA current into Coil 1/  
Coil 2  
VPP clamp lo  
VPP clamp med  
VPP clamp hi  
VPP clamp med  
5.2  
13  
17  
15  
V
register)  
5.3  
5.4  
14  
13  
21  
18  
V
20 mA current into Coil 1/  
Coil 2  
V
T
6.1 Modulation Parameters  
(depends on settings in  
3 mA current into Coil 1/  
Coil 2 and modulation on  
VPP mod lo  
2
3
5
4
V
V
V
V
T
Q
Q
T
6.2  
VPP mod med  
VPP mod hi  
Option register)  
6.3  
6.4  
7
20 mA current into Coil 1/  
Coil 2 and modulation on  
VPP mod med  
6
7.5  
9
6.5 Thermal Stability  
Vmod lo/Tamb  
Vclkdet lo  
Vclkdet med  
Vclkdet hi  
-1  
mV/°C  
mV  
Q
Q
T
7.1 Clock Detection Level  
(depends on settings in  
Vcoil pp = 8V  
250  
7.2  
400  
550 730  
800  
mV  
Option register)  
7.3  
mV  
Q
Q
T
7.4 Gap Detection Level  
(depends on settings in  
Vcoil pp = 8V  
Vgapdet lo  
Vgapdet med  
Vgapdet hi  
250  
mV  
7.5  
400  
5
550 730  
850  
mV  
Option register)  
7.6  
mV  
Q
T
8
9
Programming Time  
Endurance  
From last command gap to Tprog  
re-enter Read mode (64  
+ 648 internal clocks)  
5.7  
6
ms  
Erase all/write all(3)  
ncycle  
100000  
Cycles  
Q
DS70005357B-page 40  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Electrical Characteristics  
...........continued  
No.  
Parameters  
Test Conditions  
Top = 55°C(3)  
Symbol  
tretention  
Min. Typ. Max. Unit Type*  
10.1 Data Retention  
10  
96  
20  
50  
Years  
hrs  
Q
T
10.2  
Top = 150°C(3)  
Top = 250°C(3)  
Mask option(4)  
tretention  
tretention  
Cr  
10.3  
24  
hrs  
Q
T
11.1 Resonance Capacitor  
320  
242  
330 340  
250 258  
130  
pF  
11.2  
11.3  
11.4  
11.5  
75  
10  
Q
T
12.1 Micromodule Capacitor  
Parameters(4)  
Capacitance tolerance  
Tamb  
Cr  
320  
330 340  
pF  
* Type means:  
T: Directly or indirectly tested during production  
Q: Ensured based on initial product qualification data  
Note:ꢀ  
1. IDD measurement setup: EEPROM programmed to 00 ... 000 (erase all); chip in modulation defeat.  
2. Current into Coil 1/Coil 2 is limited to 10 mA.  
3. Since EEPROM performance is influenced by assembly processes, cannot confirm the parameters for -DDW  
(tested die on unsawn wafer) delivery.  
4. For more details, refer to 8. Ordering Information.  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated  
in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Table 7-2.ꢀAbsolute Maximum Ratings  
Parameters  
Maximum DC Current into Coil 1/Coil 2  
Symbol  
Icoil  
Value  
20  
Unit  
mA  
mA  
mW  
V
Maximum AC Current into Coil 1/Coil 2, f = 125 kHz  
Icoil p  
Ptot  
20  
Power Dissipation (die) (free air condition, time of application: 1s)  
Electrostatic Discharge Maximum to ANSI/ESD-STM5.1-2001 Standard (HBM)  
Operating Ambient Temperature Range  
100  
Vmax  
Tamb  
Tstg  
3000  
-40 to +85  
°C  
Storage Temperature Range (data retention reduced)  
-40 to +150 °C  
DS70005357B-page 41  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Ordering Information  
8.  
Ordering Information  
The following figures illustrate the part number of ATA5577M devices.  
Figure 8-1.ꢀATA5577M Die Type 1  
1
cc  
s
C
-
xxx  
ATA5577M  
Device name  
Die Type  
ON-Chip Capacitor  
Speciality  
Fab Indicator  
Separator  
Package  
Figure 8-2.ꢀATA5577M Die Type 2  
2
cc  
s
C
-
xxx  
ATA5577M  
Device name  
Die Type  
ON-Chip Capacitor  
Speciality  
Fab Indicator  
Separator  
Package  
DS70005357B-page 42  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Ordering Information  
8.1  
Ordering Details for Pad Type 1  
The following table provides the ordering details of ATA5577M devices for pad type 1.  
Table 8-1.ꢀOrdering Details for Pad Type 1  
Model  
Number  
Die  
Description  
Ordering Code  
Description  
ATA5577M  
Type 1 –  
ATA5577M1330C-DDB  
On-chip capacity value in pF – 330  
Package:  
Standard pads ATA5577M133SC-DDB  
– 6" sawn wafer on foil with ring  
– Thickness 150 μm (approx. 6 mil)  
Fab indicator – C  
Speciality:  
– 0: Nothing special  
– S: Preprogrammed in unique format  
Refer to Figure 9-1  
ATA5577M1330C-DDW  
ATA5577M1330C-PAE  
On-chip capacity value in pF – 330  
Package – 6" wafer, thickness 680 μm (approx.  
27 mil)  
Fab indicator – C  
Refer to Figure 9-1  
On-chip capacity value in pF – 330  
Package – NOA3 micromodule (lead-free)  
Fab indicator – C  
Refer to:  
Figure 9-5  
Figure 9-6  
ATA5577M1330C-UFQW  
ATA5577M1330C-PPMY  
On-chip capacity value in pF – 330  
Package – XDFN package 1.5 mm by 2 mm,  
thickness 0.37 mm  
Fab indicator – C  
Refer to Figure 9-7  
On-chip capacity value in pF – 330  
Package – Transponder Brick package  
Fab indicator – C  
See “ATA5577M1330C-PPMY Data Sheet”  
DS70005357B-page 43  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Ordering Information  
8.2  
Ordering Details for Pad Type 2  
The following table provides the ordering details of ATA5577M devices for pad type 2.  
Table 8-2.ꢀOrdering Details for Pad Type 2  
Model  
Number  
Die  
Description  
Ordering Code  
Description  
ATA5577M  
Type 2 – Mega ATA5577M2330C-DBB  
pads, 200 μm ATA5577M233SC-DBB  
On-chip capacity value in pF = 330  
Package:  
by 400 μm  
ATA5577M233AC-DBB  
– 6" sawn wafer on foil with ring  
– Thickness 150 μm (approx. 6 mil) with gold  
bumps 25 μm  
Fab indicator – C  
Speciality:  
– 0: Nothing special  
– S: Preprogrammed in unique format  
– A: Thickness 280 µm (approx. 11 mil) with  
gold bumps 25 µm (for DBB)  
Refer to Figure 9-2  
ATA5577M2330C-DBQ  
ATA5577M233SC-DBQ  
On-chip capacity value in pF = 330  
Package – Die in blister tape, thickness 280 μm  
(approx. 11 mil), plus gold bumps 25 μm  
Fab indicator – C  
Speciality:  
– 0: Nothing special  
– S: Preprogrammed in unique format  
Refer to Figure 9-4  
ATA5577M233TC-DBB  
On-chip capacity value in pF = 330  
Package:  
– 6" sawn wafer on foil with 8" ring  
– Thickness 150 µm (approx. 6 mil) with gold  
bumps 25 µm  
Fab indicator: C  
Speciality:  
T: Preprogrammed in unique format  
Refer to Figure 9-3  
8.3  
Configuration on Delivery  
The following table describes the configuration on delivery of ATA5577C.  
Table 8-3.ꢀConfiguration on Delivery  
Block  
AFE option setup  
Configuration register  
User data block 1  
User data block 2  
Address  
Block 3, page 1  
Block 0, page 0  
Block 1, page 0  
Block 2, page 0  
Value  
Comment  
All options take on the default state  
RF/32, Manchester, Maxblock = 2  
All ‘0’s  
0x 0000 0000  
0x 0008 8040  
0x 0000 0000  
0x 0000 0000  
All ‘0’s  
DS70005357B-page 44  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Package Information  
9.  
Package Information  
The following figures illustrate the package information of ATA5577C.  
Figure 9-1.ꢀSawn Wafer on Foil with Ring (Type 1, Standard Pads)  
1
Die Dimensions  
0.181  
0.15±0.012  
20:1  
(0.08)  
0.1  
C1  
C2  
technical drawings  
according to DIN  
specifications  
Dimensions in mm  
0.095  
B
0.07  
Label:  
Prod: ATA5577M1xxxC-DDB  
59.5  
63.6  
Orientation on frame  
Lot no:  
Wafer no:  
Qty:  
4 B  
Option  
xxx  
Wafer ATA5577M1xxxC-DDB  
UV Tape Adwill D176  
330  
33D  
6" Wafer frame, plastic  
thickness 2.5mm  
Ø227.7  
Ø3 A  
A
Ø150  
Ø194.5  
212  
07/19/10  
TITLE  
DRAWING NO.  
REV.  
GPC  
Dimensions  
ATA5577M1xxxC-DDB  
MICROCHIP  
9.920-6676.03-4  
1
DS70005357B-page 45  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Package Information  
Figure 9-2.ꢀSawn Wafer on Foil with Ring (Type 2, Mega Pads and Au Bumps)  
1±0.015  
0.155±0.014  
0.005±0.002  
(0.08)  
Die Dimensions  
(BCB coating)  
20:1  
(Au bump)  
0.025±0.005  
0.04  
0.2  
0.324  
× 45°  
technical drawings  
according to DIN  
specifications  
0.15±0.012  
Dimensions in mm  
0.175±0.017  
Label:  
Prod: ATA5577M2xxxC-DBB  
59.5  
63.6  
Lot no:  
Wafer no:  
Qty:  
B
Orientation on frame  
4 B  
Option  
xxx  
330  
Wafer ATA5577M2xxxC-DBB  
UV Tape Adwill D176  
6" Wafer frame, plastic  
thickness 2.5mm  
Ø227.7  
Ø150  
Ø3 A  
A
Ø194.5  
212  
07/19/10  
TITLE  
DRAWING NO.  
REV.  
GPC  
Dimensions  
ATA5577M2xxxC-DBB  
9.920-6679.02-4  
1
MICROCHIP  
DS70005357B-page 46  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Package Information  
Figure 9-3.ꢀSawn Wafer on Foil with Ring (Gold Bumps)  
DS70005357B-page 47  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Package Information  
Figure 9-4.ꢀDie in Blister Tape  
1
0.285±0.0135  
(0.08)  
0.005±0.0015  
Die Dimensions  
20:1  
(BCB coating)  
technical drawings  
according to DIN  
specifications  
C2  
C1  
(Au bump)  
0.025±0.005  
0.28±0.012  
0.04 x 45  
0.2  
°
0.324  
0.305±0.0017  
Label acc. ’’Packaging and Packing Spec.’’  
’’X’’  
cover tape  
carrier tape  
8.4  
4
’’X’’  
reel Ø330  
1.3  
Option  
xxx  
Packing acc. IEC 60286-3  
Specification Tape and reel  
Dimensions in mm  
330  
0.5  
0.254  
02/28/12  
TITLE  
Dimensions  
ATA5577M2xxxC-DBQ  
DRAWING NO.  
REV.  
GPC  
9.800-5110.01-4  
2
MICROCHIP  
DS70005357B-page 48  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Package Information  
Figure 9-5.ꢀNOA3S Micromodule  
DS70005357B-page 49  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Package Information  
Figure 9-6.ꢀShipping Reel for NOA3 Micromodule  
DS70005357B-page 50  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Package Information  
Figure 9-7.ꢀXDFN Package  
D
D1  
D2  
technical drawings  
according to DIN  
specifications  
e
Dimensions in mm  
PIN 1 ID  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
Symbol MIN  
NOM  
0.37  
0.1 nom.  
2
MAX  
A
A1  
D
0.32  
0.4  
1.95  
0.6  
0.6  
1.45  
1
2.05  
0.8  
D1  
D2  
E
0.7  
0.7  
0.8  
1.5  
1.55  
1.2  
E1  
e
1.1  
1 BSC  
04/06/11  
TITLE  
Package: XDFN_1.5x2_2L  
DRAWING NO.  
REV.  
GPC  
6.543-5159.01-4  
1
MICROCHIP  
DS70005357B-page 51  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
Document Revision History  
10.  
Document Revision History  
Revision  
Date  
Section  
Description  
B
02/20  
Document  
8.2 Ordering Details for Pad Type 2 was updated  
Added new delivery option, “ATA5577M233TC-DBB” (Figure  
9-3)  
A
04/18  
Document  
Updated from Atmel to Microchip template  
Assigned a new Microchip document number. Previous  
version is Atmel 9187 revision H.  
ISBN number added.  
10.1  
Atmel Revision History  
Revision No.  
History  
9187H-RFID-07/14  
Section 10 “Ordering Information” on pages 38 to 39 updated  
Section 11 “Package Information” on pages 40 to 45 updated  
9187G-RFID-04/13  
9187F-RFID-01/13  
Section 10 “Ordering Information” on pages 37 to 38 updated  
Section 5.5 “Initialization and Init Delay” on page 11 updated  
Figure 5-1 “Answer-on-request (AOR) Mode ...” on page 12 updated  
Figure 5-9 “Complete Writing Sequence ...” on page 19 updated  
Ordering Information for ATA5577M1cccC-DDW on pages 37 and 38 added  
9187E-RFID-07/12  
9187D-RFID-04/12  
Section 10 “Ordering Information” on pages 37 to 38: Ordering codes added  
Figure 11-4 “Die in Blister Tape” on page 42 added  
Figure 11-5 “Die on Sticky Tape” on page 43 updated  
9187C-RFID-04/11  
9187BX-RFID-03/11  
Figure 11-1 “Pad Layout (Type 1, Standard Pads)” on page 41 removed  
Figure 11-2 “Pad Layout (Type 2, Mega Pads)” on page 42 removed  
Section 10 “Ordering Information” on page 39 changed  
Section 10.1 “Available Order Codes” on page 40 changed  
Figure 11-4 “Die in Waffle Pack” on page 44 added  
DS70005357B-page 52  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
The Microchip Website  
Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files  
and information easily available to customers. Some of the content available includes:  
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s  
guides and hardware support documents, latest software releases and archived software  
General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online  
discussion groups, Microchip design partner program member listing  
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of  
seminars and events, listings of Microchip sales offices, distributors and factory representatives  
Product Change Notification Service  
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will  
receive email notification whenever there are changes, updates, revisions or errata related to a specified product  
family or development tool of interest.  
To register, go to http://www.microchip.com/pcn and follow the registration instructions.  
Customer Support  
Users of Microchip products can receive assistance through several channels:  
Distributor or Representative  
Local Sales Office  
Embedded Solutions Engineer (ESE)  
Technical Support  
Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to  
help customers. A listing of sales offices and locations is included in this document.  
Technical support is available through the website at: http://www.microchip.com/support  
Microchip Devices Code Protection Feature  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these  
methods, to our knowledge, require using the Microchip products in a manner outside the operating  
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of  
intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code  
protection does not mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection  
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital  
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you  
may have a right to sue for relief under that Act.  
Legal Notice  
Information contained in this publication regarding device applications and the like is provided only for your  
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with  
DS70005357B-page 53  
Datasheet  
© 2020 Microchip Technology Inc.  
ATA5577C  
your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER  
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,  
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such  
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless  
otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,  
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,  
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,  
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,  
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,  
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,  
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,  
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,  
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,  
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,  
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,  
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad  
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,  
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their respective companies.  
©
2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-5622-3  
Quality Management System  
For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.  
DS70005357B-page 54  
Datasheet  
© 2020 Microchip Technology Inc.  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/support  
Web Address:  
Australia - Sydney  
Tel: 61-2-9868-6733  
China - Beijing  
India - Bangalore  
Tel: 91-80-3090-4444  
India - New Delhi  
Tel: 91-11-4160-8631  
India - Pune  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Tel: 86-10-8569-7000  
China - Chengdu  
Tel: 86-28-8665-5511  
China - Chongqing  
Tel: 86-23-8980-9588  
China - Dongguan  
Tel: 86-769-8702-9880  
China - Guangzhou  
Tel: 86-20-8755-8029  
China - Hangzhou  
Tel: 86-571-8792-8115  
China - Hong Kong SAR  
Tel: 852-2943-5100  
China - Nanjing  
Tel: 91-20-4121-0141  
Japan - Osaka  
Fax: 45-4485-2829  
Finland - Espoo  
Tel: 81-6-6152-7160  
Japan - Tokyo  
Tel: 358-9-4520-820  
France - Paris  
http://www.microchip.com  
Atlanta  
Tel: 81-3-6880- 3770  
Korea - Daegu  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Germany - Garching  
Tel: 49-8931-9700  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Austin, TX  
Tel: 82-53-744-4301  
Korea - Seoul  
Tel: 82-2-554-7200  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Malaysia - Penang  
Tel: 60-4-227-8870  
Philippines - Manila  
Tel: 63-2-634-9065  
Singapore  
Germany - Haan  
Tel: 512-257-3370  
Boston  
Tel: 49-2129-3766400  
Germany - Heilbronn  
Tel: 49-7131-72400  
Germany - Karlsruhe  
Tel: 49-721-625370  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Germany - Rosenheim  
Tel: 49-8031-354-560  
Israel - Ra’anana  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Chicago  
Tel: 86-25-8473-2460  
China - Qingdao  
Tel: 86-532-8502-7355  
China - Shanghai  
Tel: 86-21-3326-8000  
China - Shenyang  
Tel: 86-24-2334-2829  
China - Shenzhen  
Tel: 86-755-8864-2200  
China - Suzhou  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Dallas  
Tel: 65-6334-8870  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Taiwan - Taipei  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Detroit  
Tel: 972-9-744-7705  
Italy - Milan  
Tel: 86-186-6233-1526  
China - Wuhan  
Tel: 886-2-2508-8600  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Italy - Padova  
Novi, MI  
Tel: 248-848-4000  
Houston, TX  
Tel: 86-27-5980-5300  
China - Xian  
Tel: 39-049-7625286  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Norway - Trondheim  
Tel: 47-72884388  
Tel: 281-894-5983  
Indianapolis  
Tel: 86-29-8833-7252  
China - Xiamen  
Noblesville, IN  
Tel: 86-592-2388138  
China - Zhuhai  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Los Angeles  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Raleigh, NC  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
UK - Wokingham  
Tel: 919-844-7510  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS70005357B-page 55  
Datasheet  
© 2020 Microchip Technology Inc.  

相关型号:

ATA5577M2330C-DBB

IC RFID R/W BUMP SAWN WAFER
MICROCHIP

ATA5577M2330C-DBQ

IC IDIC R/W RFID 150KHZ
MICROCHIP

ATA5577M233AC-DBB

IC RFID 125KHZ R/W 330PF BUMP
MICROCHIP

ATA5577M233SC-DBB

IC RFID 125KHZ R/W 330PF BUMP
MICROCHIP

ATA5577M233SC-DBQ

IC IDIC R/W RFID 330BIT
MICROCHIP
MICROCHIP

ATA5577M3330C-DBB

IC RFID 125KHZ R/W 330PF BUMP
MICROCHIP
MICROCHIP
MICROCHIP
MICROCHIP
MICROCHIP

ATA5577_13

Contactless Power Supply Contactless Read/Write Data Transmission
ATMEL