ATXMEGA64A1-AU [MICROCHIP]

IC MCU 8BIT 64KB FLASH 100TQFP;
ATXMEGA64A1-AU
型号: ATXMEGA64A1-AU
厂家: MICROCHIP    MICROCHIP
描述:

IC MCU 8BIT 64KB FLASH 100TQFP

时钟 外围集成电路
文件: 总122页 (文件大小:2582K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8/16-bit XMEGA A1 Microcontroller  
ATxmega128A1 / ATxmega64A1  
Not recommended for new designs -  
Use XMEGA A1U series  
Preliminary  
Features  
High-performance, low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller  
Nonvolatile program and data memories  
64K - 128KBytes of in-system self-programmable flash  
4K - 8KBytes boot section  
2 KBBytes EEPROM  
4 KB - 8 KBBytes internal SRAM  
External bus interface for up to 16Mbytes SRAM  
External bus interface for up to 128Mbit SDRAM  
Peripheral features  
Four-channel DMA controller  
Eight-channel event system  
Eight 16-bit timer/counters  
Four timer/counters with 4 output compare or input capture channels  
Four timer/counters with 2 output compare or input capture channels  
High resolution extension on all timer/counters  
Advanced waveform extension (AWeX) on two timer/counters  
Eight USARTs with IrDA support for one USART  
Four two-wire interfaces with dual address match (I2C and SMBus compatible)  
Four serial peripheral interfaces (SPIs)  
AES and DES crypto engine  
16-bit real time counter (RTC) with separate oscillator  
Two sixteen channel, 12-bit, 2msps Analog to Digital Converters  
Two two-channel, 12-bit, 1msps Digital to Analog Converters  
Four Analog Comparators (ACs) with window compare function, and current sources  
External interrupts on all general purpose I/O pins  
Programmable watchdog timer with separate on-chip ultra low power oscillator  
QTouch® library support  
Capacitive touch buttons, sliders and wheels  
Special microcontroller features  
Power-on reset and programmable brown-out detection  
Internal and external clock options with PLL and prescaler  
Programmable multilevel interrupt controller  
Five sleep modes  
Programming and debug interfaces  
JTAG (IEEE 1149.1 compliant) interface, including boundary scan  
PDI (Program and Debug Interface)  
I/O and packages  
78 Programmable I/O pins  
100 lead TQFP  
100 ball BGA  
100 ball VFBGA  
Operating voltage  
1.6 – 3.6V  
Operating frequency  
0 – 12MHz from 1.6V  
0 – 32MHz from 2.7V  
8067O–AVR–06/2013  
8067O–AVR–06/2013  
Not recommended for new designs - Use XMEGA A1U series  
 
1.  
Ordering Information  
Ordering Code  
ATxmega128A1-AU  
Flash (B)  
E2  
SRAM  
Speed (MHz) Power Supply Package(1)(2)(3)  
Temp  
128K + 8K  
2 KB  
8 KB  
ATxmega128A1-AUR  
ATxmega64A1-AU  
100A  
64K + 4K  
128K + 8K  
64K + 4K  
128K + 8K  
64K + 4K  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
4 KB  
8 KB  
4 KB  
8 KB  
4 KB  
ATxmega64A1-AUR  
ATxmega128A1-CU  
ATxmega128A1CUR  
ATxmega64A1-CU  
ATxmega64A1-CUR  
ATxmega128A1-C7U  
ATxmega128A1-C7UR  
ATxmega64A1-C7U  
ATxmega64A1-C7UR  
32  
1.6 - 3.6V  
100C1  
100C2  
-40C - 85C  
Notes:  
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.  
3. For packaging information, see “Packaging information” on page 70.  
Package Type  
100-lead, 14 x 14 x 1.0mm, 0.5mm lead pitch, thin profile plastic quad flat package (TQFP)  
100-ball, 9 x 9 x 1.2mm body, ball pitch 0.88mm, chip ball grid array (CBGA)  
100-ball, 7 x 7 x 1.0mm body, ball pitch 0.65mm, very thin fine-pitch ball grid array (VFBGA)  
100A  
100C1  
100C2  
Typical Applications  
Industrial control  
Factory automation  
Building control  
Board control  
Climate control  
RF and ZigBee®  
Sensor control  
Optical  
Low power battery applications  
Power tools  
HVAC  
Utility metering  
White goods  
Medical applications  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
2
8067O–AVR–06/2013  
 
 
 
 
2.  
Pinout/Block Diagram  
Figure 2-1. Block diagram and pinout  
INDEX CORNER  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PK0  
VCC  
GND  
PJ7  
PJ6  
PJ5  
PJ4  
PJ3  
PJ2  
PJ1  
PA6  
PA7  
GND  
AVCC  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
GND  
VCC  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
GND  
VCC  
PD0  
Q
Port  
Port R  
S
DATA BU  
ADC A  
DAC A  
AC A0  
AC A1  
OSC/CLK  
Contro l  
BOD  
VREF  
RTC  
POR  
TEMP  
OCD  
9
Power  
Contro l  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
FLASH  
RAM  
Port K  
PJ0  
CPU  
DMA  
VCC  
GND  
PH7  
PH6  
PH5  
PH4  
PH3  
PH2  
PH1  
PH0  
VCC  
GND  
PF7  
PF6  
ADC B  
DAC B  
AC B0  
AC B1  
Reset  
Contro l  
E 2PROM  
Port J  
Interrupt Controlle r  
Event System ctrl  
Watchdog  
Port H  
S
DATA BU  
EVENT ROUTING NETWORK  
Port C  
Port D  
Port E  
Port F  
Notes:  
1. For full details on pinout and pin functions refer to “Pinout and Pin Functions” on page 55.  
2. VCC/GND on pin 83/84 are swapped compared to other VCC/GND to allow easier routing of GND to 32kHz crystal.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
3
8067O–AVR–06/2013  
 
 
Figure 2-2. CBGA-pinout  
Top view  
Bottom view  
1
2
3
4
5
6
7
8
9
10  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
K
Table 2-1. CBGA-pinout.  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
E
PK0  
PK3  
VCC  
GND  
PQ0  
VCC  
PK2  
PK5  
PK6  
PQ1  
GND  
PK1  
PK4  
PK7  
PQ2  
PJ3  
PJ4  
PJ5  
PJ6  
PJ7  
VCC  
PH7  
PJ0  
PJ1  
PJ2  
GND  
PH4  
PH5  
PH6  
PE7  
PH1  
PH2  
PH3  
PF0  
PE6  
GND  
PH0  
PF2  
PF1  
PE5  
VCC  
PF6  
PF3  
PF4  
PE4  
PF7  
PF5  
VCC  
GND  
PE3  
RESET/  
PDI  
F
PR1  
PR0  
PDI  
PQ3  
PC2  
PE2  
PE1  
PE0  
VCC  
G
H
J
GND  
AVCC  
PA0  
PA1  
PA2  
PA3  
PA7  
PA4  
PA5  
PB0  
GND  
PB3  
PB2  
PB4  
PB5  
PB6  
PB7  
PC1  
PC0  
PC3  
VCC  
PC6  
PC5  
PC4  
GND  
PD7  
PD5  
PC7  
VCC  
PD6  
PD4  
PD2  
GND  
GND  
PD3  
PD1  
PD0  
PB1  
K
PA6  
AVCC  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
4
8067O–AVR–06/2013  
 
3.  
Overview  
The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based  
on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA devices  
achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system  
designer to optimize power consumption versus processing speed.  
The Atmel AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are  
directly connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single  
instruction, executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs  
many times faster than conventional single-accumulator or CISC based microcontrollers.  
The AVR XMEGA A1 devices provide the following features: in-system programmable flash with read-while-write  
capabilities; internal EEPROM and SRAM; four-channel DMA controller, eight-channel event system and programmable  
multilevel interrupt controller, 78 general purpose I/O lines, 16-bit real-time counter (RTC); eight flexible, 16-bit  
timer/counters with compare and PWM channels, eight USARTs; four two-wire serial interfaces (TWIs); four serial  
peripheral interfaces (SPIs); AES and DES cryptographic engine; two 16-channel, 12-bit ADCs with programmable gain;  
two 2-channel, 12-bit DACs; four Analog Comparators (ACs) with window mode; programmable watchdog timer with  
separate internal oscillator; accurate internal oscillators with PLL and prescaler; and programmable brown-out detection.  
The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available. The  
devices also have an IEEE std. 1149.1 compliant JTAG interface, and this can also be used for boundary scan, on-chip  
debug and programming.  
The XMEGA A1 devices have five software selectable power saving modes. The idle mode stops the CPU while allowing  
the SRAM, DMA controller, event system, interrupt controller, and all peripherals to continue functioning. The power-  
down mode saves the SRAM and register contents, but stops the oscillators, disabling all other functions until the next  
TWI or pin-change interrupt, or reset. In power-save mode, the asynchronous real-time counter continues to run, allowing  
the application to maintain a timer base while the rest of the device is sleeping. In standby mode, the external crystal  
oscillator keeps running while the rest of the device is sleeping. This allows very fast startup from the external crystal,  
combined with low power consumption. In extended standby mode, both the main oscillator and the asynchronous timer  
continue to run. To further reduce power consumption, the peripheral clock to each individual peripheral can optionally be  
stopped in active mode and idle sleep mode.  
Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR  
microcontrollers.  
The device are manufactured using Atmel high-density, nonvolatile memory technology. The program flash memory can  
be reprogrammed in-system through the PDI or JTAG interfaces. A boot loader running in the device can use any  
interface to download the application program to the flash memory. The boot loader software in the boot flash section will  
continue to run while the application flash section is updated, providing true read-while-write operation. By combining an  
8/16-bit RISC CPU with in-system, self-programmable flash, the AVR XMEGA is a powerful microcontroller family that  
provides a highly flexible and cost effective solution for many embedded applications.  
All Atmel AVR XMEGA devices are supported with a full suite of program and system development tools, including C  
compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
5
8067O–AVR–06/2013  
 
3.1  
Block Diagram  
Figure 3-1. XMEGA A1 Block Diagram  
Oscillator / Crystal / Clock  
General Purpose I/O  
Digital function  
Analog function  
Bus masters / Programming / Debug  
VBAT  
Power  
32.768 kHz  
XOSC  
Oscillator  
Circuits/  
Clock  
Supervision  
Watchdog  
Oscillator  
Generation  
Battery Backup  
Controller  
Real Time  
Counter  
Real Time  
Counter  
EVENT ROUTING NETWORK  
Watchdog  
Timer  
DATA BUS  
DACA  
Power  
Supervision  
POR/BOD &  
RESET  
Event System  
Controller  
Oscillator  
Control  
PORT A (8)  
SRAM  
DMA  
Controller  
Sleep  
Controller  
ACA  
PDI  
ADCA  
BUS  
Matrix  
Prog/Debug  
Controller  
AREFA  
Int. Refs.  
Tempref  
AREFB  
JTAG  
PORT P (8)  
PORT N (8)  
PORT M (8)  
OCD  
AES  
Interrupt  
Controller  
CPU  
DES  
ADCB  
ACB  
PORT L (8)  
PORT K (8)  
PORT J (8)  
NVM Controller  
PORT B (8)  
DACB  
Flash  
EEPROM  
EBI  
PORT H (8)  
PORT G (8)  
DATA BUS  
EVENT ROUTING NETWORK  
PORT C (8)  
PORT D (8)  
PORT E (8)  
PORT F (8)  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
6
8067O–AVR–06/2013  
 
 
4.  
Resources  
A comprehensive set of development tools, application notes and datasheets are available for download on  
http://www.atmel.com/avr.  
4.1  
Recommended reading  
XMEGA A Manual  
XMEGA A Application Notes  
This device data sheet only contains part specific information and a short description of each peripheral and module. The  
XMEGA A Manual describes the modules and peripherals in depth. The XMEGA A application notes contain example  
code and show applied use of the modules and peripherals.  
The XMEGA A Manual and Application Notes are available from http://www.atmel.com/avr.  
5.  
Capacitive touch sensing  
The Atmel QTouch library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR  
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced  
reporting of touch keys and includes Adjacent Key Suppression® (AKS®) technology for unambiguous detection of key  
events. The QTouch library includes support for the QTouch and QMatrix acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR  
microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the  
touch sensing API’s to retrieve the channel information and determine the touch sensor states.  
The QTouch library is FREE and downloadable from the Atmel website at the following location:  
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the QTouch library user guide -  
also available for download from the Atmel website.  
6.  
Disclaimer  
For devices that are not available yet, typical values contained in this datasheet are based on simulations and  
characterization of other AVR XMEGA microcontrollers manufactured on the same process technology. Min. and Max  
values will be available after the device is characterized.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
7
8067O–AVR–06/2013  
 
 
 
 
7.  
AVR CPU  
7.1  
Features  
8/16-bit high performance AVR RISC Architecture  
138 instructions  
Hardware multiplier  
32x8-bit registers directly connected to the ALU  
Stack in SRAM  
Stack Pointer accessible in I/O memory space  
Direct addressing of up to 16M Bytes of program and data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Support for 8-, 16- and 32-bit Arithmetic  
Configuration Change Protection of system critical features  
7.2  
7.3  
Overview  
All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and  
perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the  
program in the flash memory. Interrupt handling is described in a separate section, refer to “Interrupts and Programmable  
Multilevel Interrupt Controller” on page 29.  
Architectural Overview  
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories  
and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one  
instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to  
be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
8
8067O–AVR–06/2013  
 
 
 
 
Figure 7-1. Block diagram of the AVR CPU architecture.  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is  
updated to reflect information about the result of the operation.  
The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers all have  
single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between registers or between a  
register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program and data  
space addressing, enabling efficient address calculations.  
The memory spaces are linear. The data memory space and the program memory space are two different memory  
spaces.  
The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the EEPROM can be  
memory mapped in the data memory.  
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O  
memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to 0x3F.  
The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be accessed as  
data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.  
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five different  
addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.  
Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.  
The program memory is divided in two sections, the application program section and the boot program section. Both  
sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for self-  
programming of the application flash memory must reside in the boot program section. The application section contains  
an application table section with separate lock bits for write and read/write protection. The application table section can  
be used for safe storing of nonvolatile data in the program memory.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
9
8067O–AVR–06/2013  
7.4  
ALU - Arithmetic Logic Unit  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general  
purpose registers. In a single clock cycle, arithmetic operations between general purpose registers or between a register  
and an immediate are executed and the result is stored in the register file. After an arithmetic or logic operation, the  
status register is updated to reflect information about the result of the operation.  
ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit  
arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit aritmetic. The hardware  
multiplier supports signed and unsigned multiplication and fractional format.  
7.4.1 Hardware Multiplier  
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different  
variations of signed and unsigned integer and fractional numbers:  
Multiplication of unsigned integers  
Multiplication of signed integers  
Multiplication of a signed integer with an unsigned integer  
Multiplication of unsigned fractional numbers  
Multiplication of signed fractional numbers  
Multiplication of a signed fractional number with an unsigned one  
A multiplication takes two CPU clock cycles.  
7.5  
Program Flow  
After reset, the CPU starts to execute instructions from the lowest address in the flash program memory ‘0.’ The program  
counter (PC) addresses the next instruction to be fetched.  
Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole  
address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.  
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general  
data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After  
reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the  
I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be  
accessed through the five different addressing modes supported in the AVR CPU.  
7.6  
Status Register  
The status register (SREG) contains information about the result of the most recently executed arithmetic or logic  
instruction. This information can be used for altering program flow in order to perform conditional operations. Note that  
the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many  
cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.  
The status register is not automatically stored when entering an interrupt routine nor restored when returning from an  
interrupt. This must be handled by software.  
The status register is accessible in the I/O memory space.  
7.6.1 Stack and Stack Pointer  
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing  
temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit  
registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and  
POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that pushing  
data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is automatically loaded  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
10  
8067O–AVR–06/2013  
 
 
 
after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed, it must be set to point  
above address 0x2000, and it must be defined before any subroutine calls are executed or before interrupts are enabled.  
During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can be  
two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program  
memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For devices  
with more than 128KB of program memory, the return address is three bytes, and hence the SP is  
decremented/incremented by three. The return address is popped off the stack when returning from interrupts using the  
RETI instruction, and from subroutine calls using the RET instruction.  
The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one  
when data is popped off the stack using the POP instruction.  
To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable interrupts  
for up to four instructions or until the next I/O memory write.  
After reset the stack pointer is initialized to the highest address of the SRAM. See Table 8-2 on page 15.  
7.7  
Register File  
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The register  
file supports the following input/output schemes:  
One 8-bit output operand and one 8-bit result input  
Two 8-bit output operands and one 8-bit result input  
Two 8-bit output operands and one 16-bit result input  
One 16-bit output operand and one 16-bit result input  
Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient  
address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash  
program memory.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
11  
8067O–AVR–06/2013  
 
8.  
Memories  
8.1  
Features  
Flash Program Memory  
One linear address space  
In-System Programmable  
Self-Programming and Bootloader support  
Application Section for application code  
Application Table Section for application code or data storage  
Boot Section for application code or bootloader code  
Separate lock bits and protection for all sections  
Built in fast CRC check of a selectable flash program memory section  
Data Memory  
One linear address space  
Single cycle access from CPU  
SRAM  
EEPROM  
Byte and page accessible  
Optional memory mapping for direct load and store  
I/O Memory  
Configuration and Status registers for all peripherals and modules  
16 bit-accessible General Purpose Register for global variables or flags  
External Memory support  
SRAM  
SDRAM  
Memory mapped external hardware  
Bus arbitration  
Safe and deterministic handling of CPU and DMA Controller priority  
Separate buses for SRAM, EEPROM, I/O Memory and External Memory access  
Simultaneous bus access for CPU and DMA Controller  
Production Signature Row Memory for factory programmed data  
Device ID for each microcontroller device type  
Serial number for each device  
Oscillator calibration bytes  
ADC, DAC and temperature sensor calibration data  
User Signature Row  
One flash page in size  
Can be read and written from software  
Content is kept after chip erase  
8.2  
Overview  
The Atmel AVR architecture has two main memory spaces, the program memory and the data memory. Executable code  
can reside only in the program memory, while data can be stored in the program memory and the data memory. The data  
memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All memory spaces are linear and  
require no memory bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and read/write  
operations. This prevents unrestricted access to the application software.  
A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can  
only be written by an external programmer.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
12  
8067O–AVR–06/2013  
 
 
 
The available memory size configurations are shown in “Ordering Information” on page 2. In addition each device has a  
flash memory signature rows for calibration data, device identification, serial number etc.  
8.3  
In-System Programmable Flash Program Memory  
he Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The flash  
memory can be accessed for read and write from an external programmer through the PDI or from application software  
running in the device.  
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is organized  
in two main sections, the application section and the boot loader section. The sizes of the different sections are fixed, but  
device-dependent. These two sections have separate lock bits, and can have different levels of protection. The store  
program memory (SPM) instruction, which is used to write to the flash from the application software, will only operate  
when executed from the boot loader section.  
The application section contains an application table section with separate lock settings. This enables safe storage of  
nonvolatile data in the program memory.  
Figure 8-1. Flash Program Memory (Hexadecimal address)  
Word Address  
ATxega128A1  
ATxmega64A1  
0
0
Application Section (Bytes)  
(128K/64K)  
...  
EFFF  
F000  
/
/
/
/
/
77FF  
7800  
7FFF  
8000  
87FF  
Application Table Section (Bytes)  
(8K/4K)  
FFFF  
10000  
10FFF  
Boot Section (Bytes)  
(8K/4K)  
8.3.1 Application Section  
The Application section is the section of the flash that is used for storing the executable application code. The protection  
level for the application section can be selected by the boot lock bits for this section. The application section can not store  
any boot loader code since the SPM instruction cannot be executed from the application section.  
8.3.2 Application Table Section  
The application table section is a part of the application section of the flash memory that can be used for storing data.  
The size is identical to the boot loader section. The protection level for the application table section can be selected by  
the boot lock bits for this section. The possibilities for different protection levels on the application section and the  
application table section enable safe parameter storage in the program memory. If this section is not used for data,  
application code can reside here.  
8.3.3 Boot Loader Section  
While the application section is used for storing the application code, the boot loader software must be located in the boot  
loader section because the SPM instruction can only initiate programming when executing from this section. The SPM  
instruction can access the entire flash, including the boot loader section itself. The protection level for the boot loader  
section can be selected by the boot loader lock bits. If this section is not used for boot loader software, application code  
can be stored here.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
13  
8067O–AVR–06/2013  
 
8.3.4 Production Signature Row  
The production signature row is a separate memory section for factory programmed data. It contains calibration data for  
functions such as oscillators and analog modules. Some of the calibration values will be automatically loaded to the  
corresponding module or peripheral unit during reset. Other values must be loaded from the signature row and written to  
the corresponding peripheral registers from software. For details on calibration conditions, refer to “Electrical  
Characteristics” on page 76.  
The production signature row also contains an ID that identifies each microcontroller device type and a serial number for  
each manufactured device. The serial number consists of the production lot number, wafer number, and wafer  
coordinates for the device. The device ID for the available devices is shown in Table 8-1.  
The production signature row cannot be written or erased, but it can be read from application software and external  
programmers.  
Table 8-1. Device ID bytes.  
Device  
Device ID bytes  
Byte 2  
4E  
Byte 1  
96  
Byte 0  
1E  
ATxmega64A1  
ATxmega128A1  
4C  
97  
1E  
8.3.5 User Signature Row  
The user signature row is a separate memory section that is fully accessible (read and write) from application software  
and external programmers. It is one flash page in size, and is meant for static user parameter storage, such as calibration  
data, custom serial number, identification numbers, random number seeds, etc. This section is not erased by chip erase  
commands that erase the flash, and requires a dedicated erase command. This ensures parameter storage during  
multiple program/erase operations and on-chip debug sessions.  
8.4  
Fuses and Lock bits  
The fuses are used to configure important system functions, and can only be written from an external programmer. The  
application software can read the fuses. The fuses are used to configure reset sources such as brownout detector and  
watchdog, startup configuration, JTAG enable, and JTAG user ID.  
The lock bits are used to set protection levels for the different flash sections (that is, if read and/or write access should be  
blocked). Lock bits can be written by external programmers and application software, but only to stricter protection levels.  
Chip erase is the only way to erase the lock bits. To ensure that flash contents are protected even during chip erase, the  
lock bits are erased after the rest of the flash memory has been erased.  
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the value zero.  
Both fuses and lock bits are reprogrammable like the flash program memory.  
8.5  
Data Memory  
The data memory contains the I/O memory, internal SRAM, optionally memory mapped EEPROM, and external memory  
if available. The data memory is organized as one continuous memory section, see Figure 8-2 on page 15. To simplify  
development, I/O Memory, EEPROM and SRAM will always have the same start addresses for all Atmel AVR XMEGA  
devices. The address space for External Memory will always start at the end of Internal SRAM and end at address  
0xFFFFFF.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
14  
8067O–AVR–06/2013  
 
 
 
Figure 8-2. Data Memory Map (Hexadecimal address)  
Byte Address  
ATxmega128A1  
Byte Address  
ATxmega64A1  
0
0
I/O Registers  
(4 KB)  
I/O Registers  
(4 KB)  
FFF  
1000  
17FF  
FFF  
1000  
17FF  
EEPROM  
(2 KB)  
EEPROM  
(2 KB)  
RESERVED  
RESERVED  
2000  
3FFF  
2000  
2FFF  
Internal SRAM  
(8 KB)  
Internal SRAM  
(4 KB)  
4000  
3000  
External Memory  
(0 to 16 MB)  
External Memory  
(0 to 16 MB)  
FFFFFF  
FFFFFF  
8.6  
8.7  
EEPROM  
XMEGA AU devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data space  
(default) or memory mapped and accessed in normal data space. The EEPROM supports both byte and page access.  
Memory mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this,  
EEPROM is accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal  
address 0x1000.  
I/O Memory  
The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O  
memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions,  
which is used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT  
instructions can address I/O memory locations in the range 0x00 - 0x3F directly. In the address range 0x00 - 0x1F,  
single- cycle instructions for manipulation and checking of individual bits are available.  
The I/O memory address for all peripherals and modules in XMEGA A1U is shown in the “Peripheral Module Address  
Map” on page 62.  
8.7.1 General Purpose I/O Registers  
The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for  
storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.  
8.8  
8.9  
External Memory  
Four ports can be used for external memory, supporting external SRAM, SDRAM, and memory mapped peripherals such  
as LCD displays. Refer to “EBI – External Bus Interface” on page 47. The external memory address space will always  
start at the end of internal SRAM.  
Data Memory and Bus Arbitration  
Since the data memory is organized as four separate sets of memories, the different bus masters (CPU, DMA controller  
read and DMA controller write, etc.) can access different memory sections at the same time.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
15  
8067O–AVR–06/2013  
 
 
 
 
8.10 Memory Timing  
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from  
SRAM takes two cycles. For burst read (DMA), new data are available every cycle. EEPROM page load (write) takes one  
cycle, and three cycles are required for read. For burst read, new data are available every second cycle. External  
memory has multi-cycle read and write. The number of cycles depends on the type of memory and configuration of the  
external bus interface. Refer to the instruction summary for more details on instructions and instruction timing.  
8.11 Device ID and Revision  
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device type. A  
separate register contains the revision number of the device.  
8.12 I/O Memory Protection  
Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the  
I/O register related to the clock system, the event system, and the advanced waveform extensions. As long as the lock is  
enabled, all related I/O registers are locked and they can not be written from the application software. The lock registers  
themselves are protected by the configuration change protection mechanism.  
8.13 JTAG Disable  
It is possible to disable the JTAG interface from the application software. This will prevent all external JTAG access to the  
device until the next device reset or until JTAG is enabled again from the application software. As long as JTAG is  
disabled, the I/O pins required for JTAG can be used as normal I/O pins.  
8.14 Flash and EEPROM Page Size  
The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible for the  
flash and byte accessible for the EEPROM.  
Table 8-2 shows the Flash Program Memory organization. Flash write and erase operations are performed on one page  
at a time, while reading the Flash is done one byte at a time. For Flash access the Z-pointer (Z[m:n]) is used for  
addressing. The most significant bits in the address (FPAGE) gives the page number and the least significant address  
bits (FWORD) gives the word in the page.  
Table 8-2. Number of words and Pages in the Flash.  
Page  
Device  
PC size  
Flash  
Size  
FWORD  
FPAGE  
Application  
Boot  
No of  
pages  
No of  
pages  
bits  
bytes  
words  
Size  
Size  
ATxmega64A1  
ATxmega128A1  
16  
17  
64K + 4K  
128K+ 8K  
128  
256  
Z[7:1]  
Z[8:1]  
Z[16:8]  
Z[17:9]  
64K  
256  
4K  
8K  
16  
16  
128K  
256  
Table 8-3 shows EEPROM memory organization for the Atmel AVR XMEGA A1U devices. EEPROM write and erase  
operations can be performed one page or one byte at a time, while reading the EEPROM is done one byte at a time. For  
EEPROM access the NVM Address Register (ADDR[m:n]) is used for addressing. The most significant bits in the  
address (E2PAGE) give the page number and the least significant address bits (E2BYTE) give the byte in the page.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
16  
8067O–AVR–06/2013  
 
 
 
 
 
 
Table 8-3. Number of Bytes and Pages in the EEPROM.  
Device  
EEPROM  
Size  
Page Size  
bytes  
32  
E2BYTE  
E2PAGE  
No of pages  
ATxmega64A1  
ATxmega128A1  
2 KB  
ADDR[4:0]  
ADDR[4:0  
ADDR[10:5]  
ADDR[10:5]  
64  
64  
2 KB  
32  
8.14.1 I/O Memory  
All peripherals and modules are addressable through I/O memory locations in the data memory space. All I/O memory  
locations can be accessed by the Load (LD/LDS/LDD) and Store (ST/STS/STD) instructions, transferring data between  
the 32 general purpose registers in the CPU and the I/O Memory.  
The IN and OUT instructions can address I/O memory locations in the range 0x00 - 0x3F directly.  
I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. The  
value of single bits can be checked by using the SBIS and SBIC instructions on these registers.  
The I/O memory address for all peripherals and modules in XMEGA A1 is shown in the “Peripheral Module Address Map”  
on page 62.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
17  
8067O–AVR–06/2013  
9.  
DMAC - Direct Memory Access Controller  
9.1  
Features  
Allows High-speed data transfer  
From memory to peripheral  
From memory to memory  
From peripheral to memory  
From peripheral to peripheral  
4 Channels  
From 1 byte and up to 16M bytes transfers in a single transaction  
Multiple addressing modes for source and destination address  
Increment  
Decrement  
Static  
1, 2, 4, or 8 byte Burst Transfers  
Programmable priority between channels  
9.2  
Overview  
The four-channel direct memory access (DMA) controller can transfer data between memories and peripherals, and thus  
offload these tasks from the CPU. It enables high data transfer rates with minimum CPU intervention, and frees up CPU  
time. The four DMA channels enable up to four independent and parallel transfers.  
The DMA controller can move data between SRAM and peripherals, between SRAM locations and directly between  
peripheral registers. With access to all peripherals, the DMA controller can handle automatic transfer of data to/from  
communication modules. The DMA controller can also read from memory mapped EEPROM.  
Data transfers are done in continuous bursts of 1, 2, 4, or 8 bytes. They build block transfers of configurable size from 1  
byte to 64KB. A repeat counter can be used to repeat each block transfer for single transactions up to 16MB. Source and  
destination addressing can be static, incremental or decremental. Automatic reload of source and/or destination  
addresses can be done after each burst or block transfer, or when a transaction is complete. Application software,  
peripherals, and events can trigger DMA transfers.  
The four DMA channels have individual configuration and control settings. This include source, destination, transfer  
triggers, and transaction sizes. They have individual interrupt settings. Interrupt requests can be generated when a  
transaction is complete or when the DMA controller detects an error on a DMA channel.  
To allow for continuous transfers, two channels can be interlinked so that the second takes over the transfer when the  
first is finished, and vice versa.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
18  
8067O–AVR–06/2013  
 
 
 
10. Event System  
10.1 Features  
Inter-peripheral communication and signalling with minimum latency  
CPU and DMA independent operation  
8 Event Channels allows for up to 8 signals to be routed at the same time  
Events can be generated by  
Timer/Counters (TCxn)  
Real Time Counter (RTC)  
Analog to Digital Converters (ADCx)  
Analog Comparators (ACx)  
Ports (PORTx)  
System Clock (ClkSYS  
)
Software (CPU)  
Events can be used by  
Timer/Counters (TCxn)  
Analog to Digital Converters (ADCx)  
Digital to Analog Converters (DACx)  
Ports (PORTx)  
DMA Controller (DMAC)  
IR Communication Module (IRCOM)  
The same event can be used by multiple peripherals for synchronized timing  
Advanced Features  
Manual Event Generation from software (CPU)  
Quadrature Decoding  
Digital Filtering  
Functions in Active and Idle mode  
10.2 Overview  
The Event System is a set of features for inter-peripheral communication. It enables the possibility for a change of state  
in one peripheral to automatically trigger actions in one or more peripherals. These changes in a peripheral that will  
trigger actions in other peripherals are configurable by software. It is a simple, but powerful system as it allows for  
autonomous control of peripherals without any use of interrupts, CPU or DMA resources.  
The indication of a change in a peripheral is referred to as an event, and is usually the same as the interrupt conditions  
for that peripheral. Events are passed between peripherals using a dedicated routing network called the Event Routing  
Network. Figure 10-1 on page 20 shows a basic block diagram of the Event System with the Event Routing Network and  
the peripherals to which it is connected. This highly flexible system can be used for simple routing of signals, pin  
functions or for sequencing of events.  
The maximum latency is two CPU clock cycles from when an event is generated in one peripheral, until the actions are  
triggered in one or more other peripherals.  
The Event System is functional in both Active and Idle modes.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
19  
8067O–AVR–06/2013  
 
 
 
Figure 10-1. Event system block diagram.  
CPU /  
Software  
DMA  
Controller  
Event Routing Network  
clkPER  
ADC  
AC  
Prescaler  
Event  
System  
Controller  
Real Time  
Counter  
Timer /  
Counters  
DAC  
Port pins  
IRCOM  
he event routing network consists of eight software-configurable multiplexers that control how events are routed and  
used. These are called event channels, and allow for up to eight parallel event routing configurations. The maximum  
routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
20  
8067O–AVR–06/2013  
 
11. System Clock and Clock options  
11.1 Features  
Fast start-up time  
Safe run-time clock switching  
Internal Oscillators:  
32 MHz run-time calibrated RC oscillator  
2 MHz run-time calibrated RC oscillator  
32.768 kHz calibrated RC oscillator  
32 kHz Ultra Low Power (ULP) oscillator with 1 kHz ouput  
External clock options  
0.4 - 16 MHz Crystal Oscillator  
32 kHz Crystal Oscillator  
External clock  
PLL with internal and external clock options with 1 to 31x multiplication  
Clock Prescalers with 1x to 2048x division  
Fast peripheral clock running at two and four times the CPU clock speed  
Automatic Run-Time Calibration of internal oscillators  
Crystal Oscillator failure detection  
11.2 Overview  
Atmel AVR XMEGA devices have a flexible clock system supporting a large number of clock sources. It incorporates  
both accurate internal oscillators and external crystal oscillator and resonator support. A high-frequency phase locked  
loop (PLL) and clock prescalers can be used to generate a wide range of clock frequencies. An oscillator failure monitor  
can be enabled to issue a non-maskable interrupt and switch to the internal oscillator if the external oscillator or PLL fails.  
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the device  
will always start up running from the 2MHz internal oscillator. During normal operation, the system clock source and  
prescalers can be changed from software at any time.  
Figure 11-1 on page 22 presents the principal clock system in the XMEGA A1U family devices. Not all of the clocks need  
to be active at a given time. The clocks for the CPU and peripherals can be stopped using sleep modes and power  
reduction registers as described in “Power Management and Sleep Modes” on page 24.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
21  
8067O–AVR–06/2013  
 
 
 
Figure 11-1. The clock system, clock sources and clock distribution  
Real Time  
Counter  
Non-Volatile  
Memory  
Peripherals  
RAM  
AVR CPU  
clkPER  
clkPER2  
clkPER4  
clkCPU  
System Clock Prescalers  
clkSYS  
Brown-out  
Detector  
Watchdog  
Timer  
clkRTC  
System Clock Multiplexer  
(SCLKSEL)  
RTCSRC  
PLL  
PLLSRC  
XOSCSEL  
32 kHz  
Int. ULP  
32.768 kHz  
Int. OSC  
32.768 kHz  
TOSC  
0.4 – 16 MHz  
XTAL  
32 MHz  
Int. Osc  
2 MHz  
Int. Osc  
11.3 Clock Options  
The clock sources are divided in two main groups: internal oscillators and external clock sources. Most of the clock  
sources can be directly enabled and disabled from software, while others are automatically enabled or disabled,  
depending on peripheral settings. After reset, the device starts up running from the 2MHz internal oscillator. The other  
clock sources and PLL are turned off by default.  
The internal oscillators do not require any external components to run. For details on characteristics and accuracy of the  
internal oscillators, refer to the device datasheet.  
11.3.1 32 kHz Ultra Low Power Internal Oscillator  
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a very low  
power clock source, and it is not designed for high accuracy. The oscillator employs a built-in prescaler that provides a  
1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the device.  
This oscillator can be selected as the clock source for the RTC.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
22  
8067O–AVR–06/2013  
 
11.3.2 32.768 kHz Calibrated Internal Oscillator  
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default frequency  
close to its nominal frequency. The calibration register can also be written from software for run-time calibration of the  
oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz  
output.  
11.3.3 32.768 kHz Crystal Oscillator  
A 32.768kHz crystal oscillator can be connected between the 1 and 2 pins and enables a dedicated low frequency  
oscillator input circuit. A low power mode with reduced voltage swing on 2 is available. This oscillator can be used as a  
clock source for the system clock and RTC.  
11.3.4 0.4 - 16 MHz Crystal Oscillator  
This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4 - 16MHz.  
11.3.5 2 MHz Run-time Calibrated Internal Oscillator  
The 2MHz Run-time Calibrated Internal Oscillator is a high frequency oscillator. It is calibrated during production to  
provide a default frequency which is close to its nominal frequency. The oscillator can use the 32kHz Calibrated Internal  
Oscillator or the 32kHz Crystal Oscillator as a source for calibrating the frequency run-time to compensate for  
temperature and voltage drift hereby optimizing the accuracy of the oscillator.  
11.3.6 32 MHz Run-time Calibrated Internal Oscillator  
The 32MHz Run-time Calibrated Internal Oscillator is a high frequency oscillator. It is calibrated during production to  
provide a default frequency which is close to its nominal frequency. The oscillator can use the 32kHz Calibrated Internal  
Oscillator or the 32kHz Crystal Oscillator as a source for calibrating the frequency run-time to compensate for  
temperature and voltage drift hereby optimizing the accuracy of the oscillator.  
11.3.7 External Clock input  
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic resonator.  
XTAL1 can be used as input for an external clock signal. The 1 and 2 pins is dedicated to driving a 32.768kHz crystal  
oscillator.  
11.3.8 PLL with Multiplication factor 1 - 31x  
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a user-  
selectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range of output  
frequencies from all clock sources.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
23  
8067O–AVR–06/2013  
12. Power Management and Sleep Modes  
12.1 Features  
Power management for adjusting power consumption and functions  
5 sleep modes  
Idle  
Power-down  
Power-save  
Standby  
Extended standby  
Power reduction register to disable clock and turn off unused peripherals in active and idle modes  
12.2 Overview  
Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.  
This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.  
All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application  
code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the  
device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals  
and all enabled reset sources can restore the microcontroller from sleep to active mode.  
In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When  
this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This  
reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power  
management than sleep modes alone.  
12.3 Sleep Modes  
Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA  
microcontrollers have five different sleep modes tuned to match the typical functional stages during application  
execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the  
device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an  
enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal  
program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending  
when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt  
service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution  
starts.  
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will  
reset, start up, and execute from the reset vector.  
12.3.1 Idle Mode  
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but  
all peripherals, including the interrupt controller, event system and DMA controller are kept running. Any enabled  
interrupt will wake the device.  
12.3.2 Power-down Mode  
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of  
asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the two-  
wire interface address match interrupt and asynchronous port interrupts, e.g pin change.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
24  
8067O–AVR–06/2013  
 
 
 
 
12.3.3 Power-save Mode  
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep  
running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt.  
12.3.4 Standby Mode  
Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running  
while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time.  
12.3.5 Extended Standby Mode  
Extended standby mode is identical to power-save mode, with the exception that the enabled system clock sources are  
kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
25  
8067O–AVR–06/2013  
13. System Control and Reset  
13.1 Features  
Multiple reset sources for safe operation and device reset  
Power-On Reset  
External Reset  
Watchdog Reset  
Brown-Out Reset  
PDI reset  
Software reset  
Asynchronous reset  
No running clock in the device is required for reset  
Reset status register  
13.2 Overview  
The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where  
operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a reset  
source goes active, the device enters and is kept in reset until all reset sources have released their reset. The I/O pins  
are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set to their  
initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the content of  
the accessed location can not be guaranteed.  
After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts  
running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to  
move the reset vector to the lowest address in the boot section.  
The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software  
reset feature makes it possible to issue a controlled system reset from the user software.  
The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows  
which sources have issued a reset since the last power-on.  
13.3 Reset Sequence  
A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is  
active. When all reset requests are released, the device will go through three stages before the device starts running  
again:  
Reset counter delay  
Oscillator startup  
Oscillator calibration  
If another reset requests occurs during this process, the reset sequence will start over again.  
13.4 Reset Sources  
13.4.1 Power-On Reset  
TA power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the VCC rises and  
reaches the POR threshold voltage (VPOT), and this will start the reset sequence.  
The POR is also activated to power down the device properly when the VCC falls and drops below the VPOT level.  
The VPOT level is higher for falling VCC than for rising VCC. Consult the datasheet for POR characteristics data.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
26  
8067O–AVR–06/2013  
 
 
 
 
 
13.4.2 Brownout Detection  
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed,  
programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip  
erase and when the PDI is enabled.  
13.4.3 External Reset  
The external reset circuit is connected to the external RESET pin. The external reset will trigger when the RESET pin is  
driven below the RESET pin threshold voltage, VRST, for longer than the minimum pulse period, tEXT. The reset will be  
held as long as the pin is kept low. The RESET pin includes an internal pull-up resistor.  
13.4.4 Watchdog Reset  
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not reset from  
the software within a programmable timeout period, a watchdog reset will be given. The watchdog reset is active for one  
to two clock cycles of the 2MHz internal oscillator. For more details see “WDT - Watchdog Timer” on page 28.  
13.4.5 Software reset  
The software reset makes it possible to issue a system reset from software by writing to the software reset bit in the reset  
control register.The reset will be issued within two CPU clock cycles after writing the bit. It is not possible to execute any  
instruction from when a software reset is requested until it is issued.  
13.4.6 Program and Debug Interface Reset  
The program and debug interface reset contains a separate reset source that is used to reset the device during external  
programming and debugging. This reset source is accessible only from external debuggers and programmers.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
27  
8067O–AVR–06/2013  
13.5 WDT - Watchdog Timer  
13.5.1 Features  
Issues a device reset if the timer is not reset before its timeout period  
Asynchronous operation from dedicated oscillator  
1kHz output of the 32kHz ultra low power oscillator  
11 selectable timeout periods, from 8ms to 8s  
Two operation modes:  
Normal mode  
Window mode  
Configuration lock to prevent unwanted changes  
13.6 Overview  
The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover  
from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout  
period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a  
microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application  
code.  
The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT  
must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued.  
Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.  
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent clock  
source, and will continue to operate to issue a system reset even if the main clocks fail.  
The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For  
increased safety, a fuse for locking the WDT settings is also available.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
28  
8067O–AVR–06/2013  
 
 
14. Interrupts and Programmable Multilevel Interrupt Controller  
14.1 Features  
Short and predictable interrupt response time  
Separate interrupt configuration and vector address for each interrupt  
Programmable multilevel interrupt controller  
Interrupt prioritizing according to level and vector address  
Three selectable interrupt levels for all interrupts: low, medium and high  
Selectable, round-robin priority scheme within low-level interrupts  
Non-maskable interrupts for critical functions  
Interrupt vectors optionally placed in the application section or the boot loader section  
14.2 Overview  
Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have  
one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it  
will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt  
controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged  
by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.  
All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are  
prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level  
interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the  
interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest  
interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are  
serviced within a certain amount of time.  
Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.  
14.3 Interrupt vectors  
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific interrupts in  
each peripheral. The base addresses for the Atmel AVR XMEGA A1U devices are shown in Table 14-1. Offset  
addresses for each interrupt available in the peripheral are described for each peripheral in the XMEGA AU manual. For  
peripherals or modules that have only one interrupt, the interrupt vector is shown in Table 14-1. The program address is  
the word address.  
Table 14-1. Reset and Interrupt vectors  
Program Address  
(Base Address)  
Source  
Interrupt Description  
0x000  
RESET  
0x002  
OSCF_INT_vect  
PORTC_INT_base  
PORTR_INT_base  
DMA_INT_base  
RTC_INT_base  
TWIC_INT_base  
Crystal Oscillator Failure Interrupt vector (NMI)  
Port C Interrupt base  
0x004  
0x008  
Port R Interrupt base  
0x00C  
DMA Controller Interrupt base  
Real Time Counter Interrupt base  
Two-Wire Interface on Port C Interrupt base  
0x014  
0x018  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
29  
8067O–AVR–06/2013  
 
 
 
 
 
Program Address  
(Base Address)  
Source  
Interrupt Description  
0x01C  
0x028  
0x030  
0x032  
0x038  
0x03E  
0x040  
0x044  
0x048  
0x04E  
0x056  
0x05A  
0x05E  
0x06A  
0x072  
0x074  
0x07A  
0x080  
0x084  
0x088  
0x08E  
0x096  
0x09A  
0x0A6  
0x0AE  
0x0B0  
0x0B6  
0x0BC  
0x0C0  
0x0C4  
0x0C8  
0x0D0  
0x0D4  
TCC0_INT_base  
TCC1_INT_base  
SPIC_INT_vect  
Timer/Counter 0 on port C Interrupt base  
Timer/Counter 1 on port C Interrupt base  
SPI on port C Interrupt vector  
USART 0 on port C Interrupt base  
USART 1 on port C Interrupt base  
AES Interrupt vector  
USARTC0_INT_base  
USARTC1_INT_base  
AES_INT_vect  
NVM_INT_base  
Non-Volatile Memory Interrupt base  
Port B Interrupt base  
PORTB_INT_base  
ACB_INT_base  
Analog Comparator on Port B Interrupt base  
Analog to Digital Converter on Port B Interrupt base  
Port E Interrupt base  
ADCB_INT_base  
PORTE_INT_base  
TWIE_INT_base  
TCE0_INT_base  
TCE1_INT_base  
SPIE_INT_vect  
Two-Wire Interface on Port E Interrupt base  
Timer/Counter 0 on port E Interrupt base  
Timer/Counter 1 on port E Interrupt base  
SPI on port E Interrupt vector  
USARTE0_INT_base  
USARTE1_INT_base  
PORTD_INT_base  
PORTA_INT_base  
ACA_INT_base  
USART 0 on port E Interrupt base  
USART 1 on port E Interrupt base  
Port D Interrupt base  
Port A Interrupt base  
Analog Comparator on Port A Interrupt base  
Analog to Digital Converter on Port A Interrupt base  
Two-Wire Interface on Port D Interrupt base  
Timer/Counter 0 on port D Interrupt base  
Timer/Counter 1 on port D Interrupt base  
SPI on port D Interrupt vector  
USART 0 on port D Interrupt base  
USART 1 on port D Interrupt base  
Port Q INT base  
ADCA_INT_base  
TWID_INT_base  
TCD0_INT_base  
TCD1_INT_base  
SPID_INT_vector  
USARTD0_INT_base  
USARTD1_INT_base  
PORTQ_INT_base  
PORTH_INT_base  
PORTJ_INT_base  
PORTK_INT_base  
PORTF_INT_base  
TWIF_INT_base  
Port H INT base  
Port J INT base  
Port K INT base  
Port F INT base  
Two-Wire Interface on Port F INT base  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
30  
8067O–AVR–06/2013  
Program Address  
(Base Address)  
Source  
Interrupt Description  
0x0D8  
0x0E4  
0x0EC  
0x0EE  
0x0F4  
TCF0_INT_base  
TCF1_INT_base  
SPIF_INT_vector  
USARTF0_INT_base  
USARTF1_INT_base  
Timer/Counter 0 on port F Interrupt base  
Timer/Counter 1 on port F Interrupt base  
SPI ion port F Interrupt base  
USART 0 on port F Interrupt base  
USART 1 on port F Interrupt base  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
31  
8067O–AVR–06/2013  
15. I/O Ports  
15.1 Features  
78 General purpose input and output pins with individual configuration  
Output driver with configurable driver and pull settings:  
Totem-pole  
Wired-AND  
Wired-OR  
Bus-keeper  
Inverted I/O  
Input with synchronous and/or asynchronous sensing with interrupts and events  
Sense both edges  
Sense rising edges  
Sense falling edges  
Sense low level  
Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations  
Optional slew rate control  
Asynchronous pin change sensing that can wake the device from all sleep modes  
Two port interrupts with pin masking per I/O port  
Efficient and safe access to port pins  
Hardware read-modify-write through dedicated toggle/clear/set registers  
Configuration of multiple pins in a single operation  
Mapping of port registers into bit-accessible I/O memory space  
Peripheral clocks output on port pin  
Real-time counter clock output to port pin  
Event channels can be output on port pin  
Remapping of digital peripheral pin functions  
Selectable USART, SPI, and timer/counter input/output pin locations  
15.2 Overview  
One port consists of up to eight port pins: pin 0 to 7. Each port pin can be configured as input or output with configurable  
driver and pull settings. They also implement synchronous and asynchronous input sensing with interrupts and events for  
selectable pin change conditions. Asynchronous pin-change sensing means that a pin change can wake the device from  
all sleep modes, included the modes where no clocks are running.  
All functions are individual and configurable per pin, but several pins can be configured in a single operation. The pins  
have hardware read-modify-write (RMW) functionality for safe and correct change of drive value and/or pull resistor  
configuration. The direction of one port pin can be changed without unintentionally changing the direction of any other  
pin.  
The port pin configuration also controls input and output selection of other device functions. It is possible to have both the  
peripheral clock and the real-time clock output to a port pin, and available for external use. The same applies to events  
from the event system that can be used to synchronize and control external functions. Other digital peripherals, such as  
USART, SPI, and timer/counters, can be remapped to selectable pin locations in order to optimize pin-out versus  
application needs.  
The notation of these ports are PORTA, PORTB, PORTC, PORTD, PORTE, PORTF, PORTH, PORTJ, PORTK, PORTQ  
and PORTR.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
32  
8067O–AVR–06/2013  
 
 
 
15.3 Output Driver  
All port pins (Pn) have programmable output configuration. The port pins also have configurable slew rate limitation to  
reduce electromagnetic emission.  
15.3.1 Push-pull  
Figure 15-1. I/O configuration - Totem-pole  
DIRn  
OUTn  
INn  
Pn  
15.3.2 Pull-down  
Figure 15-2. I/O configuration - Totem-pole with pull-down (on input)  
DIRn  
OUTn  
INn  
Pn  
15.3.3 Pull-up  
Figure 15-3. I/O configuration - Totem-pole with pull-up (on input)  
DIRn  
OUTn  
INn  
Pn  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
33  
8067O–AVR–06/2013  
 
15.3.4 Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level  
was ‘1’, and pull-down if the last level was ‘0’.  
Figure 15-4. I/O configuration - Totem-pole with bus-keeper  
DIRn  
OUTn  
INn  
Pn  
15.3.5 Others  
Figure 15-5. Output configuration - Wired-OR with optional pull-down  
OUTn  
Pn  
INn  
Figure 15-6. I/O configuration - Wired-AND with optional pull-up  
INn  
Pn  
OUTn  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
34  
8067O–AVR–06/2013  
15.4 Input sensing  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is  
shown in Figure 15-7 on page 35.  
Figure 15-7. Input sensing system overview  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IREQ  
Event  
Synchronous sensing  
Pn  
Synchronizer  
INn  
EDGE  
DETECT  
Q
Q
D
D
INVERTEDI/O  
R
R
When a pin is configured with inverted I/O the pin value is inverted before the input sensing.  
15.5 Port Interrupt  
Each ports have two interrupts with seperate priority and interrupt vector. All pins on the port can be individually selected  
as source for each of the interrupts. The interrupts are then triggered according to the input sense configuration for each  
pin configured as source for the interrupt.  
15.6 Alternate Port Functions  
In addition to the input/output functions on all port pins, most pins have alternate functions. This means that other  
modules or peripherals connected to the port can use the port pins for their functions, such as communication or pulse-  
width modulation. “Pinout and Pin Functions” on page 55 shows which modules on peripherals that enables alternate  
functions on a pin, and what alternate functions that is available on a pin.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
35  
8067O–AVR–06/2013  
 
 
 
 
16. T/C - 16-bit Timer/Counter  
16.1 Features  
Eight 16-bit Timer/Counters  
Four Timer/Counters of type 0  
Four Timer/Counters of type 1  
Four Compare or Capture (CC) Channels in Timer/Counter 0  
Two Compare or Capture (CC) Channels in Timer/Counter 1  
Double Buffered Timer Period Setting  
Double Buffered Compare or Capture Channels  
Waveform Generation:  
Single Slope Pulse Width Modulation  
Dual Slope Pulse Width Modulation  
Frequency Generation  
Input Capture:  
Input Capture with Noise Cancelling  
Frequency capture  
Pulse width capture  
32-bit input capture  
Event Counter with Direction Control  
Timer Overflow and Timer Error Interrupts and Events  
One Compare Match or Capture Interrupt and Event per CC Channel  
Supports DMA Operation  
Hi-Resolution Extension (Hi-Res)  
Advanced Waveform Extension (AWEX)  
16.2 Overview  
Atmel AVR XMEGA devices have a set of eight flexible 16-bit timer/counters (TC). Their capabilities include accurate  
program execution timing, frequency and waveform generation, and input capture with time and frequency measurement  
of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-bit capture.  
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be  
used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC  
channels can be used together with the base counter to do compare match control, frequency generation, and pulse  
width waveform modulation, as well as various input capture operations. A timer/counter can be configured for either  
capture or compare functions, but cannot perform both at the same time.  
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or from the event system.  
The event system can also be used for direction control and capture trigger or to synchronize operations.  
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and  
timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for timer/counter 0.  
Only Timer/Counter 0 has the split mode feature that split it into 2 8-bit Timer/Counters with four compare channels each.  
Some timer/counters have extensions to enable more specialized waveform and frequency generation. The advanced  
waveform extension (AWeX) is intended for motor control and other power control applications. It enables low- and high-  
side output with dead-time insertion, as well as fault protection for disabling and shutting down external drivers. It can  
also generate a synchronized bit pattern across the port pins.  
The advanced waveform extension can be enabled to provide extra and more advanced features for the Timer/Counter.  
This is only available for Timer/Counter 0. See “AWeX - Advanced Waveform Extension” on page 38 for more details.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
36  
8067O–AVR–06/2013  
 
 
 
The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight times by  
using an internal clock source running up to four times faster than the peripheral clock. See “Hi-Res - High Resolution  
Extension” on page 39 for more details.  
Figure 16-1. Overview of a Timer/Counter and closely related peripherals  
Timer/Counter  
Base Counter  
Prescaler  
clkPER  
Timer Period  
Counter  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
AWeX  
Pattern  
Generation  
Fault  
DTI  
Dead-Time  
Insertion  
Capture  
Comparator  
Control  
Protection  
Waveform  
Generation  
Buffer  
PORTC, PORTD, PORTE and PORTF each has one Timer/Counter 0 and one Timer/Counter1. Notation of these  
Timer/Counters are TCC0 (Time/Counter C0), TCC1, TCD0, TCD1, TCE0, TCE1, TCF0, and TCF1, respectively.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
37  
8067O–AVR–06/2013  
 
17. AWeX - Advanced Waveform Extension  
17.1 Features  
Output with complementary output from each Capture channel  
Four Dead Time Insertion (DTI) Units, one for each Capture channel  
8-bit DTI Resolution  
Separate High and Low Side Dead-Time Setting  
Double Buffered Dead-Time  
Event Controlled Fault Protection  
Single Channel Multiple Output Operation (for BLDC motor control)  
Double Buffered Pattern Generation  
17.2 Overview  
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG)  
modes. It is primarily intended for use with different types of motor control and other power control applications. It  
enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external  
drivers. It can also generate a synchronized bit pattern across the port pins.  
Each of the waveform generator outputs from the Timer/Counter 0 are split into a complimentary pair of outputs when  
any AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the non-  
inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS  
switching. The DTI output will override the normal port value according to the port override setting.  
The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition,  
the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator  
unit is enabled, the DTI unit is bypassed.  
The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable  
the AWeX output. The event system ensures predictable and instant fault reaction, and gives great flexibility in the  
selection of fault triggers.  
The AWeX is available for TCC0 and TCE0. The notation of these are AWEXC and AWEXE.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
38  
8067O–AVR–06/2013  
 
 
 
18. Hi-Res - High Resolution Extension  
18.1 Features  
Increases Waveform Generator resolution by 2-bits (4x)  
Supports Frequency, single- and dual-slope PWM operation  
Supports the AWeX when this is enabled and used for the same Timer/Counter  
18.2 Overview  
TThe high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a  
timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM  
generation. It can also be used with the AWeX if this is used for the same timer/counter.  
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so the  
peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension  
is enabled.  
There are four hi-res extensions that each can be enabled for each timer/counters pair on PORTC, PORTD, PORTE and  
PORTF. The notation of these peripherals are HIRESC, HIRESD, HIRESE and HIRESF, respectively.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
39  
8067O–AVR–06/2013  
 
 
 
19. RTC - 16-bit Real-Time Counter  
19.1 Features  
16-bit resolution  
Selectable clock source  
32.768kHz external crystal  
External clock  
32.768kHz internal oscillator  
32kHz internal ULP oscillator  
Programmable 10-bit clock prescaling  
One compare register  
One period register  
Clear counter on period overflow  
Optional interrupt/event on overflow and compare match  
19.2 Overview  
The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep modes, to  
keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.  
The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the  
configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the RTC needs  
a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the 32.768kHz internal  
oscillator or the 32kHz internal ULP oscillator.  
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches the  
counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the  
maximum resolution is 30.5µs, and time-out periods can range up to 2000 seconds. With a resolution of 1s, the  
maximum timeout period is more than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event  
when the counter equals the compare register value, and an overflow interrupt and/or event when it equals the period  
register value.  
Figure 19-1. Real Time Counter overview  
External Clock  
TOSC1  
32.768kHz Crystal Osc  
TOSC2  
32.768kHz Int. Osc  
32kHz int ULP (DIV32)  
PER  
RTCSRC  
TOP/  
clkRTC  
10-bit  
=
=
Overflow  
CNT  
prescaler  
”match”/  
Compare  
COMP  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
40  
8067O–AVR–06/2013  
 
 
 
20. TWI - Two-Wire Interface  
20.1 Features  
Four identical two-wire interface peripherals  
Bidirectional two-wire communication interface  
Phillips I2C compatible  
System Management Bus (SMBus) compatible  
Bus master and slave operation supported  
Slave operation  
Single bus master operation  
Bus master in multi-master bus environment  
Multi-master arbitration  
Flexible slave address match functions  
7-bit and general call address recognition in hardware  
10-bit addressing supported  
Address mask register for dual address match or address range masking  
Optional software address recognition for unlimited number of addresses  
Slave can operate in all sleep modes, including power-down  
Slave address match can wake device from all sleep modes, including power-down  
100kHz and 400kHz bus frequency support  
Slew-rate limited output drivers  
Input filter for bus noise and spike suppression  
Support arbitration between start repeated start and data bit (SMBus)  
Slave arbitration allows support for address resolve protocol (ARP) (SMBus)  
20.2 Overview  
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and System Management Bus  
(SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each bus line.  
A device connected to the bus must act as a master or a slave. The master initiates a data transaction by addressing a  
slave on the bus and telling whether it wants to transmit or receive data. One bus can have many slaves and one or  
several masters that can take control of the bus. An arbitration process handles priority if more than one master tries to  
transmit data at the same time. Mechanisms for resolving bus contention are inherent in the protocol.  
The TWI module supports master and slave functionality. The master and slave functionality are separated from each  
other, and can be enabled and configured separately. The master module supports multi-master bus operation and  
arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is supported. Quick command  
and smart mode can be enabled to auto-trigger operations and reduce software complexity.  
The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit addressing is  
also supported. A dedicated address mask register can act as a second address match register or as a register for  
address range masking. The slave continues to operate in all sleep modes, including power-down mode. This enables  
the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the address  
matching to let this be handled in software instead.  
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors, collision,  
and clock hold on the bus are also detected and indicated in separate status flags available in both master and slave  
modes.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
41  
8067O–AVR–06/2013  
 
 
 
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external  
TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than used by  
the TWI bus.  
PORTC, PORTD, PORTE, and PORTF each has one TWI. Notation of these peripherals are TWIC, TWID, TWIE, and  
TWIF.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
42  
8067O–AVR–06/2013  
21. SPI - Serial Peripheral Interface  
21.1 Features  
Four identical SPI peripherals  
Full-duplex, three-wire synchronous data transfer  
Master or slave operation  
Lsb first or msb first data transfer  
Eight programmable bit rates  
Interrupt flag at the end of transmission  
Write collision flag to indicate data collision  
Wake up from idle sleep mode  
Double speed master mode  
21.2 Overview  
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using three or four pins. It  
allows fast communication between an Atmel AVR XMEGA device and peripheral devices or between several  
microcontrollers. The SPI supports full-duplex communication.  
A device connected to the bus must act as a master or slave. The master initiates and controls all data transactions.  
PORTC, PORTD, PORTE, and PORTF each has one SPI. Notation of these peripherals are SPIC, SPID, SPIE, and  
SPIF.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
43  
8067O–AVR–06/2013  
 
 
 
22. USART  
22.1 Features  
Eight identical USART peripherals  
Full-duplex operation  
Asynchronous or synchronous operation  
Synchronous clock rates up to 1/2 of the device clock frequency  
Asynchronous clock rates up to 1/8 of the device clock frequency  
Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits  
Fractional baud rate generator  
Can generate desired baud rate from any system clock frequency  
No need for external oscillator with certain frequencies  
Built-in error detection and correction schemes  
Odd or even parity generation and parity check  
Data overrun and framing error detection  
Noise filtering includes false start bit detection and digital low-pass filter  
Separate interrupts for  
Transmit complete  
Transmit data register empty  
Receive complete  
Multiprocessor communication mode  
Addressing scheme to address a specific devices on a multidevice bus  
Enable unaddressed devices to automatically ignore all frames  
Master SPI mode  
Double buffered operation  
Operation up to 1/2 of the peripheral clock frequency  
IRCOM module for IrDA compliant pulse modulation/demodulation  
22.2 Overview  
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible serial  
communication module. The USART supports full-duplex communication and asynchronous and synchronous operation.  
The USART can be configured to operate in SPI master mode and used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide range of standards. The  
USART is buffered in both directions, enabling continued data transmission without any delay between frames. Separate  
interrupts for receive and transmit complete enable fully interrupt driven communication. Frame error and buffer overflow  
are detected in hardware and indicated with separate status flags. Even or odd parity generation and parity check can  
also be enabled.  
The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud rates  
from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific frequency  
to achieve a required baud rate. It also supports external clock input in synchronous slave operation.  
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and receive  
buffers, shift registers, and baud rate generator enabled. Pin control and interrupt generation are identical in both modes.  
The registers are used in both modes, but their functionality differs for some control settings.  
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and  
demodulation for baud rates up to 115.2Kbps.  
PORTC, PORTD, PORTE, and PORTF each has two USARTs. Notation of these peripherals are USARTC0, USARTC1,  
USARTD0, USARTD1, USARTE0, USARTE1, USARTF0 and USARTF1.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
44  
8067O–AVR–06/2013  
 
 
 
23. IRCOM - IR Communication Module  
23.1 Features  
Pulse modulation/demodulation for infrared communication  
IrDA compatible for baud rates up to 115.2Kbps  
Selectable pulse modulation scheme  
3/16 of the baud rate period  
Fixed pulse period, 8-bit programmable  
Pulse modulation disabled  
Built-in filtering  
Can be connected to and used by any USART  
23.2 Overview  
Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates  
up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
45  
8067O–AVR–06/2013  
 
 
 
24. AES and DES Crypto Engine  
24.1 Features  
Data Encryption Standard (DES) CPU instruction  
Advanced Encryption Standard (AES) crypto module  
DES Instruction  
Encryption and decryption  
DES supported  
Encryption/decryption in 16 CPU clock cycles per 8-byte block  
AES crypto module  
Encryption and decryption  
Supports 128-bit keys  
Supports XOR data load mode to the state memory  
Encryption/decryption in 375 clock cycles per 16-byte block  
24.2 Overview  
The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two commonly used standards for  
cryptography. These are supported through an AES peripheral module and a DES CPU instruction, and the  
communication interfaces and the CPU can use these for fast, encrypted communication and secure data storage.  
DES is supported by an instruction in the AVR CPU. The 8-byte key and 8-byte data blocks must be loaded into the  
register file, and then the DES instruction must be executed 16 times to encrypt/decrypt the data block.  
The AES crypto module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key. The key and data must  
be loaded into the key and state memory in the module before encryption/decryption is started. It takes 375 peripheral  
clock cycles before the encryption/decryption is done. The encrypted/encrypted data can then be read out, and an  
optional interrupt can be generated. The AES crypto module also has DMA support with transfer triggers when  
encryption/decryption is done and optional auto-start of encryption/decryption when the state memory is fully loaded.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
46  
8067O–AVR–06/2013  
 
 
 
25. EBI – External Bus Interface  
25.1 Features  
Supports SRAM up to:  
512KB using 3-port EBI configuration  
16MB using 3-port EBI configuration  
Supports SDRAM up to:  
128Mb using 3-port EBI configuration  
Four software configurable chip selects  
Software configurable wait state insertion  
Can run from the 2x peripheral clock frequency for fast access  
25.2 Overview  
The External Bus Interface (EBI) is used to connect external peripherals and memory for access through the data  
memory space. When the EBI is enabled, data address space outside the internal SRAM becomes available using  
dedicated EBI pins.  
The EBI can interface external SRAM, SDRAM, and peripherals, such as LCD displays and other memory mapped  
devices.  
The address space for the external memory is selectable from 256 bytes (8-bit) up to 16MB (24-bit). Various multiplexing  
modes for address and data lines can be selected for optimal use of pins when more or fewer pins are available for the  
EBI. The complete memory will be mapped into one linear data address space continuing from the end of the internal  
SRAM.  
The EBI has four chip selects, each with separate configuration. Each can be configured for SRAM, SRAM low pin count  
(LPC), or SDRAM.  
The EBI is clocked from the fast, 2x peripheral clock, running up to two times faster than the CPU.  
Four-bit and eight-bit SDRAM are supported, and SDRAM configurations, such as CAS latency and refresh rate, are  
configurable in software.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
47  
8067O–AVR–06/2013  
 
 
 
26. ADC - 12-bit Analog to Digital Converter  
26.1 Features  
Two ADCs with 12-bit resolution  
2Msps sample rate for each ADC  
Signed and unsigned conversions  
4 result registers with individual input channel control for each ADC  
8 single ended inputs for each ADC  
8x4 differential inputs for each ADC  
4 internal inputs:  
Integrated Temperature Sensor  
DAC Output  
VCC voltage divided by 10  
Bandgap voltage  
Software selectable gain of 2, 4, 8, 16, 32 or 64  
Software selectable resolution of 8- or 12-bit.  
Internal or External Reference selection  
Event triggered conversion for accurate timing  
DMA transfer of conversion results  
Interrupt/Event on compare result  
26.2 Overview  
XMEGA A1 devices have two Analog to Digital Converters (ADC), see Figure 26-1 on page 49. The two ADC modules  
can be operated simultaneously, individually or synchronized.  
The ADC converts analog voltages to digital values. The ADC has 12-bit resolution and is capable of converting up to 2  
million samples per second. The input selection is flexible, and both single-ended and differential measurements can be  
done. For differential measurements an optional gain stage is available to increase the dynamic range. In addition  
several internal signal inputs are available. The ADC can provide both signed and unsigned results.  
This is a pipeline ADC. A pipeline ADC consists of several consecutive stages, where each stage convert one part of the  
result. The pipeline design enables high sample rate at low clock speeds, and remove limitations on samples speed  
versus propagation delay. This also means that a new analog voltage can be sampled and a new ADC measurement  
started while other ADC measurements are ongoing.  
ADC measurements can either be started by application software or an incoming event from another peripheral in the  
device. Four different result registers with individual input selection (MUX selection) are provided to make it easier for the  
application to keep track of the data. Each result register and MUX selection pair is referred to as an ADC Channel. It is  
possible to use DMA to move ADC results directly to memory or peripherals when conversions are done.  
Both internal and external analog reference voltages can be used. An accurate internal 1.0V reference is available.  
An integrated temperature sensor is available and the output from this can be measured with the ADC. The output from  
the DAC, VCC/10 and the Bandgap voltage can also be measured by the ADC.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
48  
8067O–AVR–06/2013  
 
 
 
Figure 26-1. ADC overview  
ADC0  
Compare  
ADC7  
Internal  
<
>
VINP  
signals  
ADC0  
CH0 Result  
CH1 Result  
CH2 Result  
CH3 Result  
Threshold  
(Int Req)  
ADC7  
1x - 64x  
ADC4  
ADC7  
Int. signals  
Internal  
signals  
VINN  
ADC0  
Internal 1.00V  
Reference  
Voltage  
ADC3  
Internal VCC/1.6V  
Int. signals  
AREFA  
AREFB  
Each ADC has four MUX selection registers with a corresponding result register. This means that four channels can be  
sampled within 1.5 µs without any intervention by the application other than starting the conversion. The results will be  
available in the result registers.  
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay) from 3.5  
µs for 12-bit to 2.5 µs for 8-bit result.  
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This eases calculation when  
the result is represented as a signed integer (signed 16-bit number).  
PORTA and PORTB each has one ADC. Notation of these peripherals are ADCA and ADCB, respectively.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
49  
8067O–AVR–06/2013  
27. DAC - 12-bit Digital to Analog Converter  
27.1 Features  
12-bit resolution  
Two independent, continuous-drive output channels  
Up to one million samples per second conversion rate  
Built-in calibration that removes:  
Offset error  
Gain error  
Multiple conversion trigger sources  
On new available data  
Events from the event system  
High drive capabilities and support for  
Resistive loads  
Capacitive loads  
Combined resistive and capacitive loads  
Internal and external reference options  
DAC output available as input to analog comparator and ADC  
Low-power mode, with reduced drive strength  
Optional DMA transfer of data  
27.2 Overview  
The XMEGA A1 devices features two 12-bit, 1 Msps DACs with built-in offset and gain calibration, see Figure 27-1 on  
page 50.  
A DAC converts a digital value into an analog signal. The DAC may use an internal 1.0 voltage as the upper limit for  
conversion, but it is also possible to use the supply voltage or any applied voltage in-between. The external reference  
input is shared with the ADC reference input.  
Figure 27-1. DAC overview  
REFSEL  
AVCC  
Internal 1.00V  
AREFA  
AREFB  
12  
CH0DATA  
D
DAC CH0  
A
T
Output  
Control and Driver  
DAC CH1  
12  
A
CH1DATA  
ADC  
DAC  
Trigger  
Enable  
DAC CTRL  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
50  
8067O–AVR–06/2013  
 
 
 
 
Each DAC has one continuous output with high drive capabilities for both resistive and capacitive loads. It is also  
possible to split the continuous time channel into two Sample and Hold (S/H) channels, each with separate data  
conversion registers.  
A DAC conversion may be started from the application software by writing the data conversion registers. The DAC can  
also be configured to do conversions triggered by the Event System to have regular timing, independent of the  
application software. DMA may be used for transferring data from memory locations to DAC data registers.  
The DAC has a built-in calibration system to reduce offset and gain error when loading with a calibration value from  
software.  
PORTA and PORTB each has one DAC. Notation of these peripherals are DACA and DACB. respectively.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
51  
8067O–AVR–06/2013  
28. AC - Analog Comparator  
28.1 Features  
Four Analog Comparators  
Selectable propagation delay versus current consumption  
Selectable hysteresis  
No  
Small  
Large  
Analog comparator output available on pin  
Flexible input selection  
All pins on the port  
Output from the DAC  
Bandgap reference voltage  
A 64-level programmable voltage scaler of the internal VCC voltage  
Interrupt and event generation on:  
Rising edge  
Falling edge  
Toggle  
Window function interrupt and event generation on:  
Signal above window  
Signal inside window  
Signal below window  
Constant current source with configurable output pin selection  
28.2 Overview  
The analog comparator (AC) compares the voltage levels on two inputs and gives a digital output based on this  
comparison. The analog comparator may be configured to generate interrupt requests and/or events upon several  
different combinations of input change.  
Two important properties of the analog comparator’s dynamic behavior are: hysteresis and propagation delay. Both of  
these parameters may be adjusted in order to achieve the optimal operation for each application.  
The input selection includes analog port pins, several internal signals, and a 64-level programmable voltage scaler. The  
analog comparator output state can also be output on a pin for use by external devices.  
A constant current source can be enabled and output on a selectable pin. This can be used to replace, for example,  
external resistors used to charge capacitors in capacitive touch sensing applications.  
The analog comparators are always grouped in pairs on each port. These are called analog comparator 0 (AC0) and  
analog comparator 1 (AC1). They have identical behavior, but separate control registers. Used as pair, they can be set in  
window mode to compare a signal to a voltage range instead of a voltage level.  
PORTA and PORTB each has one AC pair. Notations are ACA and ACB, respectively.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
52  
8067O–AVR–06/2013  
 
 
 
Figure 28-1. Analog comparator overview  
Pin Input  
+
AC0OUT  
Pin Input  
-
Hysteresis  
DAC  
Enable  
Interrupt  
Interrupts  
Events  
Interrupt  
Mode  
Sensititivity  
Control  
&
Voltage  
Scaler  
ACnMUXCTRL  
ACnCTRL  
WINCTRL  
Window  
Function  
Enable  
Bandgap  
Hysteresis  
+
Pin Input  
AC1OUT  
-
Pin Input  
The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in  
Figure 28-2.  
Figure 28-2. Analog comparator window function  
+
AC0  
Upper limit of window  
-
Interrupts  
Interrupt  
Input signal  
sensitivity  
Events  
control  
+
AC1  
Lower limit of window  
-
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
53  
8067O–AVR–06/2013  
 
 
29. Programming and Debugging  
29.1 Features  
Programming  
External programming through PDI or JTAG interfaces  
Minimal protocol overhead for fast operation  
Built-in error detection and handling for reliable operation  
Boot loader support for programming through any communication interface  
Debugging  
Nonintrusive, real-time, on-chip debug system  
No software or hardware resources required from device except pin connection  
Program flow control  
Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor  
Unlimited number of user program breakpoints  
Unlimited number of user data breakpoints, break on:  
Data location read, write, or both read and write  
Data location content equal or not equal to a value  
Data location content is greater or smaller than a value  
Data location content is within or outside a range  
No limitation on device clock frequency  
Program and Debug Interface (PDI)  
Two-pin interface for external programming and debugging  
Uses the Reset pin and a dedicated pin  
No I/O pins required during programming or debugging  
JTAG interface  
Four-pin, IEEE Std. 1149.1 compliant interface for programming and debugging  
Boundary scan capabilities according to IEEE Std. 1149.1 (JTAG)  
29.2 Overview  
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip  
debugging of a device.  
The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses, lock bits, and the user  
signature row.  
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not require any  
software or hardware resources except for the device pin connection. Using the Atmel tool chain, it offers complete  
program flow control and support for an unlimited number of program and complex data breakpoints. Application debug  
can be done from a C or other high-level language source code level, as well as from an assembler and disassembler  
level.  
Programming and debugging can be done through two physical interfaces. The primary one is the PDI physical layer,  
which is available on all devices. This is a two-pin interface that uses the Reset pin for the clock input (PDI_CLK) and one  
other dedicated pin for data input and output (PDI_DATA). A JTAG interface is also available on most devices, and this  
can be used for programming and debugging through the four-pin JTAG interface. The JTAG interface is IEEE Std.  
1149.1 compliant, and supports boundary scan. Any external programmer or on-chip debugger/emulator can be directly  
connected to either of these interfaces. Unless otherwise stated, all references to the PDI assume access through the  
PDI physical layer.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
54  
8067O–AVR–06/2013  
 
 
 
30. Pinout and Pin Functions  
The pinout of XMEGA A1 is shown in “Pinout/Block Diagram” on page 3. In addition to general I/O functionality, each pin  
may have several functions. This will depend on which peripheral is enabled and connected to the actual pin. Only one of  
the alternate pin functions can be used at time.  
30.1 Alternate Pin Function Description  
The tables below shows the notation for all pin functions available and describes its function.  
30.1.1 Operation/Power Supply  
VCC  
Digital supply voltage  
Analog supply voltage  
Ground  
AVCC  
GND  
30.1.2 Port Interrupt functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
ASYNC  
Port pin with full synchronous and full asynchronous interrupt function  
30.1.3 Analog functions  
ACn  
Analog Comparator input pin n  
Analog Comparator 0 Output  
AC0OUT  
ADCn  
DACn  
AREF  
Analog to Digital Converter input pin n  
Digital to Analog Converter output pin n  
Analog Reference input pin  
30.1.4 EBI functions  
An  
Address line n  
Data line n  
Dn  
CSn  
Chip Select n  
ALEn  
RE  
Address Latch Enable pin n  
(SRAM)  
Read Enable  
(SRAM)  
WE  
External Data Memory Write  
Bank Address  
(SRAM /SDRAM)  
(SDRAM)  
(SDRAM)  
(SDRAM)  
BAn  
CAS  
CKE  
Column Access Strobe  
SDRAM Clock Enable  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
55  
8067O–AVR–06/2013  
 
 
CLK  
DQM  
RAS  
2P  
SDRAM Clock  
(SDRAM)  
(SDRAM)  
(SDRAM)  
Data Mask Signal/Output Enable  
Row Access Strobe  
2 Port Interface  
3P  
3 Port Interface  
30.1.5 Timer/Counter and AWEX functions  
OCnx  
Output Compare Channel x for Timer/Counter n  
OCnx  
Inverted Output Compare Channel x for Timer/Counter n  
Output Compare Channel x Low Side for Timer/Counter n  
Output Compare Channel x High Side for Timer/Counter n  
OCnxLS  
OCnxHS  
30.1.6 Communication functions  
SCL  
Serial Clock for TWI  
SDA  
Serial Data for TWI  
SCLIN  
SCLOUT  
SDAIN  
SDAOUT  
XCKn  
RXDn  
TXDn  
SS  
Serial Clock In for TWI when external driver interface is enabled  
Serial Clock Out for TWI when external driver interface is enabled  
Serial Data In for TWI when external driver interface is enabled  
Serial Data Out for TWI when external driver interface is enabled  
Transfer Clock for USART n  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
30.1.7 Oscillators, Clock and Event  
n
Timer Oscillator pin n  
XTALn  
CLKOUT  
EVOUT  
Input/Output for inverting Oscillator pin n  
Peripheral Clock Output  
Event Channel 0 Output  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
56  
8067O–AVR–06/2013  
 
30.1.8 Debug/System functions  
RESET  
PDI_CLK  
PDI_DATA  
TCK  
Reset pin  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
JTAG Test Clock  
TDI  
JTAG Test Data In  
TDO  
JTAG Test Data Out  
TMS  
JTAG Test Mode Select  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
57  
8067O–AVR–06/2013  
30.2 Alternate Pin Functions  
The tables below show the primary/default function for each pin on a port in the first column, the pin number in the  
second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that  
enable and use the alternate pin functions.  
Table 30-1. Port A - Alternate functions.  
PORT A  
PIN #  
INTERRUPT  
ADCA  
POS  
ADCA  
NEG  
ADCA  
GAINPOS  
ADCA  
GAINNEG  
ACA  
POS  
ACA  
NEG  
ACA  
OUT  
DACA  
REFA  
GND  
AVCC  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
93  
94  
95  
96  
97  
98  
99  
100  
1
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
SYNC/ASYNC  
SYNC  
DAC0  
DAC1  
AC3  
AC5  
AC7  
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
SYNC  
SYNC  
2
SYNC  
AC0OUT  
Table 30-2. Port B - Alternate functions.  
PORT B  
PIN #  
INTERRUPT  
ADCB  
POS  
ADCB  
NEG  
ADCB  
GAINPOS  
ADCB  
GAINNEG  
ACB  
POS  
ACB  
NEG  
ACB  
OUT  
DACB  
REFB  
JTAG  
GND  
AVCC  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
3
4
5
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
6
7
SYNC/ASYNC  
SYNC  
DAC0  
DAC1  
8
AC3  
AC5  
AC7  
9
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
TMS  
TDI  
10  
11  
12  
SYNC  
SYNC  
TCK  
TDO  
SYNC  
AC0OUT  
Table 30-3. Port C - Alternate functions.  
PORT C  
GND  
VCC  
PIN #  
13  
INTERRUPT  
TCC0  
AWEXC  
TCC1  
USARTC0  
USARTC1  
SPIC  
TWIC  
EVENTOUT  
CLOCKOUT  
14  
PC0  
15  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0ALS  
OC0AHS  
OC0BLS  
SDA  
SCL  
PC1  
16  
XCK0  
RXD0  
PC2  
17  
SYNC/ASYNC  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
58  
8067O–AVR–06/2013  
 
PORT C  
PC3  
PIN #  
18  
INTERRUPT  
SYNC  
TCC0  
AWEXC  
OC0BHS  
OC0CLS  
OC0CHS  
OC0DLS  
OC0DHS  
TCC1  
USARTC0  
USARTC1  
SPIC  
TWIC  
EVENTOUT  
CLOCKOUT  
OC0D  
TXD0  
PC4  
19  
SYNC  
OC1A  
OC1B  
SS  
PC5  
20  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PC6  
21  
SYNC  
PC7  
22  
SYNC  
CLKOUT  
EVOUT  
Table 30-4. Port D - Alternate functions.  
PORT D  
GND  
VCC  
PD0  
PIN #  
23  
INTERRUPT  
TCD0  
TCD1  
USARTD0  
USARTD1  
SPID  
TWID  
CLOCKOUT  
EVENTOUT  
24  
25  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
SDA  
SCL  
PD1  
26  
XCK0  
RXD0  
TXD0  
PD2  
27  
SYNC/ASYNC  
SYNC  
PD3  
28  
PD4  
29  
SYNC  
OC1A  
OC1B  
SS  
PD5  
30  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PD6  
31  
SYNC  
PD7  
32  
SYNC  
CLKOUT  
EVOUT  
Table 30-5. Port E - Alternate functions.  
PORT E  
GND  
VCC  
PE0  
PIN #  
33  
INTERRUPT  
TCE0  
AWEXE  
TCE1  
USARTE0  
USARTE1  
SPIE  
TWIE  
CLOCKOUT  
EVENTOUT  
34  
35  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
OC0ALS  
OC0AHS  
OC0BLS  
OC0BHS  
OC0CLS  
OC0CHS  
OC0DLS  
OC0DHS  
SDA  
SCL  
PE1  
36  
XCK0  
RXD0  
TXD0  
PE2  
37  
SYNC/ASYNC  
SYNC  
PE3  
38  
PE4  
39  
SYNC  
OC1A  
OC1B  
SS  
PE5  
40  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PE6  
41  
SYNC  
PE7  
42  
SYNC  
CLKOUT  
EVOUT  
Table 30-6. Port F - Alternate functions.  
PORT F  
GND  
PIN #  
43  
INTERRUPT  
TCF0  
TCF1  
USARTF0  
USARTF1  
SPIF  
TWIF  
VCC  
44  
PF0  
45  
SYNC  
OC0A  
SDA  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
59  
8067O–AVR–06/2013  
PORT F  
PF1  
PIN #  
46  
INTERRUPT  
SYNC  
TCF0  
OC0B  
OC0C  
OC0D  
TCF1  
USARTF0  
XCK0  
USARTF1  
SPIF  
TWIF  
SCL  
PF2  
47  
SYNC/ASYNC  
SYNC  
RXD0  
PF3  
48  
TXD0  
PF4  
49  
SYNC  
OC1A  
OC1B  
SS  
PF5  
50  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PF6  
51  
SYNC  
PF7  
52  
SYNC  
Table 30-7. Port H - Alternate functions.  
PORT H  
GND  
VCC  
PH0  
PIN #  
53  
INTERRUPT  
SDRAM 3P  
SRAM ALE1 3P  
SRAM ALE12 3P  
LPC ALE1 3P  
LPC ALE1 2P  
LPC ALE12 2P  
54  
55  
SYNC  
SYNC  
WE  
CAS  
RAS  
DQM  
BA0  
BA1  
CKE  
CLK  
WE  
RE  
WE  
RE  
WE  
RE  
WE  
RE  
WE  
PH1  
56  
RE  
PH2  
57  
SYNC/ASYNC  
SYNC  
ALE1  
ALE1  
ALE2  
CS0  
CS1  
CS2  
CS3  
ALE1  
ALE1  
ALE1  
PH3  
58  
ALE2  
PH4  
59  
SYNC  
CS0/A16  
CS1/A17  
CS2/A18  
CS3/A19  
CS0/A16  
CS1/A17  
CS2/A18  
CS3/A19  
CS0  
CS1  
CS2  
CS3  
CS0/A16  
CS1/A17  
CS2/A18  
CS3/A19  
PH5  
60  
SYNC  
PH6  
61  
SYNC  
PH7  
62  
SYNC  
Table 30-8. Port J - Alternate functions.  
PORT J  
GND  
VCC  
PJ0  
PIN #  
63  
INTERRUPT  
SDRAM 3P  
SRAM ALE1 3P  
SRAM ALE12 3P  
LPC ALE1 3P  
LPC ALE1 2P  
LPC ALE12 2P  
64  
65  
SYNC  
SYNC  
D0  
D1  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0/A0  
D1/A1  
D2/A2  
D3/A3  
D4/A4  
D5/A5  
D6/A6  
D7/A7  
D0/A0  
D1/A1  
D2/A2  
D3/A3  
D4/A4  
D5/A5  
D6/A6  
D7/A7  
D0/A0/A8  
D1/A1/A9  
PJ1  
66  
PJ2  
67  
SYNC/ASYNC  
SYNC  
D2  
D2/A2/A10  
D3/A3/A11  
D4/A4/A12  
D5/A5/A13  
D6/A6/A14  
D7/A7/A15  
PJ3  
68  
D3  
PJ4  
69  
SYNC  
A8  
PJ5  
70  
SYNC  
A9  
PJ6  
71  
SYNC  
A10  
A11  
PJ7  
72  
SYNC  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
60  
8067O–AVR–06/2013  
Table 30-9. Port K - Alternate functions.  
PORT K  
GND  
VCC  
PK0  
PIN #  
73  
INTERRUPT  
SDRAM 3P  
SRAM ALE1 3P  
SRAM ALE12 3P  
LPC ALE1 3P  
LPC ALE1 2P  
LPC ALE12 2P  
74  
75  
SYNC  
SYNC  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0/A8  
A1/A9  
A0/A8/A16  
A1/A9/A17  
A2/A10/A18  
A3/A11/A19  
A4/A12/A20  
A5/A13/A21  
A6/A14/A22  
A7/A15/A23  
A8  
PK1  
76  
A9  
PK2  
77  
SYNC/ASYNC  
SYNC  
A2/A10  
A3/A11  
A4/A12  
A5/A13  
A6/A14  
A7/A15  
A10  
A11  
A12  
A13  
A14  
A15  
PK3  
78  
PK4  
79  
SYNC  
PK5  
80  
SYNC  
PK6  
81  
SYNC  
PK7  
82  
SYNC  
Table 30-10. Port Q - Alternate functions.  
PORT Q  
VCC  
GND  
PQ0  
PIN #  
83  
INTERRUPT  
84  
85  
SYNC  
SYNC  
TOSC1 (Input)  
TOSC2 (Output)  
PQ1  
86  
PQ2  
87  
SYNC/ASYNC  
SYNC  
PQ3  
88  
Table 30-11. Port R - Alternate functions.  
PORT R  
PDI  
PIN #  
89  
INTERRUPT  
PDI  
XTAL  
PDI_DATA  
PDI_CLOCK  
RESET  
PRO  
90  
91  
SYNC  
SYNC  
XTAL2  
XTAL1  
PR1  
92  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
61  
8067O–AVR–06/2013  
31. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in XMEGA A1. For complete register  
description and summary for each peripheral module, refer to the XMEGA A Manual.  
Table 31-1. Peripheral Module Address Map  
Base Address  
0x0000  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0068  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x00C0  
0x0100  
0x0180  
0x01C0  
0x0200  
0x0240  
0x0300  
0x0320  
0x0380  
0x0390  
0x0400  
0x0440  
0x0480  
0x0490  
Name  
Description  
GPIO  
General Purpose IO Registers  
Virtual Port 0  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
Virtual Port 1  
Virtual Port 2  
Virtual Port 3  
CPU  
CLK  
Clock Control  
Sleep Controller  
Oscillator Control  
SLEEP  
OSC  
DFLLRC32M  
DFLLRC2M  
PR  
DFLL for the 32 MHz Internal RC Oscillator  
DFLL for the 2 MHz RC Oscillator  
Power Reduction  
RST  
Reset Controller  
WDT  
Watch-Dog Timer  
MCU  
MCU Control  
PMIC  
Programmable Multilevel Interrupt Controller  
Port Configuration  
PORTCFG  
AES  
AES Module  
DMA  
DMA Controller  
EVSYS  
NVM  
Event System  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Analog to Digital Converter on port B  
Digital to Analog Converter on port A  
Digital to Analog Converter on port B  
Analog Comparator pair on port A  
Analog Comparator pair on port B  
Real Time Counter  
ADCA  
ADCB  
DACA  
DACB  
ACA  
ACB  
RTC  
EBI  
External Bus Interface  
TWIC  
Two Wire Interface on port C  
Two Wire Interface on port D  
TWID  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
62  
8067O–AVR–06/2013  
 
Base Address  
0x04A0  
0x04B0  
0x0600  
0x0620  
0x0640  
0x0660  
0x0680  
0x06A0  
0x06E0  
0x0700  
0x0720  
0x07C0  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08B0  
0x08C0  
0x08F8  
0x0900  
0x0940  
0x0990  
0x09A0  
0x09B0  
0x09C0  
0x0A00  
0x0A40  
0x0A80  
0x0A90  
0x0AA0  
0x0AB0  
0x0AC0  
0x0B00  
Name  
Description  
TWIE  
TWIF  
Two Wire Interface on port E  
Two Wire Interface on port F  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PORTF  
PORTH  
PORTJ  
PORTK  
PORTQ  
PORTR  
TCC0  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
Port H  
Port J  
Port K  
Port Q  
Port R  
Timer/Counter 0 on port C  
Timer/Counter 1 on port C  
TCC1  
AWEXC  
HIRESC  
USARTC0  
USARTC1  
SPIC  
Advanced Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
USART 1 on port C  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 0 on port D  
IRCOM  
TCD0  
TCD1  
Timer/Counter 1 on port D  
HIRESD  
USARTD0  
USARTD1  
SPID  
High Resolution Extension on port D  
USART 0 on port D  
USART 1 on port D  
Serial Peripheral Interface on port D  
Timer/Counter 0 on port E  
TCE0  
TCE1  
Timer/Counter 1 on port E  
AWEXE  
HIRESE  
USARTE0  
USARTE1  
SPIE  
Advanced Waveform Extension on port E  
High Resolution Extension on port E  
USART 0 on port E  
USART 1 on port E  
Serial Peripheral Interface on port E  
Timer/Counter 0 on port F  
TCF0  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
63  
8067O–AVR–06/2013  
Base Address  
0x0B40  
Name  
Description  
TCF1  
Timer/Counter 1 on port F  
0x0B90  
HIRESF  
USARTF0  
USARTF1  
SPIF  
High Resolution Extension on port F  
USART 0 on port F  
0x0BA0  
0x0BB0  
USART 1 on port F  
0x0BC0  
Serial Peripheral Interface on port F  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
64  
8067O–AVR–06/2013  
32. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Arithmetic and Logic Instructions  
ADD  
ADC  
ADIW  
SUB  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1/2  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd + 1:Rd  
Rd  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd,K  
Rd,K  
Rd  
Rd  
Rd v K  
CBR  
INC  
Rd  
Rd ($FFh - K)  
Rd + 1  
Rd  
DEC  
TST  
Rd  
Decrement  
Rd  
Rd - 1  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
DES  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
K
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Data Encryption  
Z,C  
Z,C  
Z,C  
Z,C  
if (H = 0) then R15:R0  
else if (H = 1) then R15:R0  
Encrypt(R15:R0, K)  
Decrypt(R15:R0, K)  
Branch Instructions  
RJMP  
IJMP  
k
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
EIJMP  
JMP  
Extended Indirect Jump to (Z)  
Jump  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
None  
2
3
PC  
k
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
65  
8067O–AVR–06/2013  
 
Mnemonics  
RCALL  
Operands  
Description  
Operation  
Flags  
None  
None  
#Clocks  
2 / 3(1)  
k
Relative Call Subroutine  
Indirect Call to (Z)  
PC  
PC + k + 1  
ICALL  
PC(15:0)  
PC(21:16)  
Z,  
0
2 / 3(1)  
EICALL  
Extended Indirect Call to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
3(1)  
CALL  
RET  
k
call Subroutine  
PC  
PC  
k
None  
None  
I
3 / 4(1)  
4 / 5(1)  
4 / 5(1)  
1 / 2 / 3  
1
Subroutine Return  
STACK  
STACK  
PC + 2 or 3  
RETI  
Interrupt Return  
PC  
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
Rd - Rr  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd,Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd - Rr - C  
Rd - K  
1
CPI  
Rd,K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
1
SBRC  
SBRS  
SBIC  
SBIS  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
BRID  
k
Branch if Not Equal  
k
Branch if Carry Set  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
k
k
k
Branch if Minus  
k
Branch if Plus  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
k
k
k
k
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
k
k
k
k
if (I = 0) then PC  
Data Transfer Instructions  
MOV  
Rd, Rr  
Rd, Rr  
Copy Register  
Rd  
Rr  
None  
None  
1
1
MOVW  
Copy Register Pair  
Rd+1:Rd  
Rr+1:Rr  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
66  
8067O–AVR–06/2013  
Mnemonics  
Operands  
Rd, K  
Description  
Operation  
Flags  
None  
None  
None  
None  
#Clocks  
1
LDI  
LDS  
LD  
Load Immediate  
Rd  
Rd  
Rd  
K
Rd, k  
Load Direct from data space  
Load Indirect  
(k)  
(X)  
2(1)(2)  
1(1)(2)  
1(1)(2)  
Rd, X  
LD  
Rd, X+  
Load Indirect and Post-Increment  
Rd  
X
(X)  
X + 1  
LD  
Rd, -X  
Load Indirect and Pre-Decrement  
X X - 1,  
Rd (X)  
X - 1  
(X)  
None  
2(1)(2)  
LD  
LD  
Rd, Y  
Load Indirect  
Rd (Y)  
(Y)  
None  
None  
1(1)(2)  
1(1)(2)  
Rd, Y+  
Load Indirect and Post-Increment  
Rd  
Y
(Y)  
Y + 1  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
Y
Rd  
Y - 1  
(Y)  
None  
2(1)(2)  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
None  
2(1)(2)  
1(1)(2)  
1(1)(2)  
LD  
Rd, Z+  
Load Indirect and Post-Increment  
Rd  
Z
(Z),  
Z+1  
LD  
Rd, -Z  
Load Indirect and Pre-Decrement  
Z
Rd  
Z - 1,  
(Z)  
None  
2(1)(2)  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
None  
2(1)(2)  
2(1)  
X, Rr  
Rr  
1(1)  
ST  
X+, Rr  
Store Indirect and Post-Increment  
(X)  
X
Rr,  
X + 1  
1(1)  
ST  
-X, Rr  
Store Indirect and Pre-Decrement  
X
(X)  
X - 1,  
Rr  
None  
2(1)  
ST  
ST  
Y, Rr  
Store Indirect  
(Y)  
Rr  
None  
None  
1(1)  
1(1)  
Y+, Rr  
Store Indirect and Post-Increment  
(Y)  
Y
Rr,  
Y + 1  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
Y
(Y)  
Y - 1,  
Rr  
None  
2(1)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
None  
2(1)  
1(1)  
1(1)  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
(Z)  
Z
Rr  
Z + 1  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
None  
2(1)  
2(1)  
3
STD  
LPM  
LPM  
LPM  
Z+q,Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd, Z+  
Load Program Memory and Post-Increment  
Rd  
Z
(Z),  
Z + 1  
3
ELPM  
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
None  
3
3
3
Rd, Z  
Rd, Z+  
Extended Load Program Memory and Post-  
Increment  
Rd  
Z
(RAMPZ:Z),  
Z + 1  
SPM  
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
None  
-
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
67  
8067O–AVR–06/2013  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
SPM  
Z+  
Store Program Memory and Post-Increment  
by 2  
(RAMPZ:Z)  
Z
R1:R0,  
Z + 2  
None  
-
IN  
Rd, A  
A, Rr  
Rr  
In From I/O Location  
Out To I/O Location  
Rd  
I/O(A)  
STACK  
Rd  
I/O(A)  
Rr  
None  
None  
None  
None  
1
OUT  
PUSH  
POP  
1
Push Register on Stack  
Pop Register from Stack  
Rr  
1(1)  
2(1)  
Rd  
STACK  
Bit and Bit-test Instructions  
LSL  
Rd  
Rd  
Rd  
Rd  
Logical Shift Left  
Rd(n+1)  
Rd(0)  
C
Rd(n),  
0,  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
1
1
1
1
LSR  
ROL  
ROR  
Logical Shift Right  
Rd(n)  
Rd(7)  
C
Rd(n+1),  
0,  
Rd(0)  
Rotate Left Through Carry  
Rotate Right Through Carry  
Rd(0)  
Rd(n+1)  
C
C,  
Rd(n),  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
Rd(7)  
Rd(n)  
C
C,  
Rd(n+1),  
Rd(0)  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
CBI  
I/O(A, b)  
0
None  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
T
Rr(b)  
T
1
T
Rd(b)  
C
C
N
N
Z
None  
C
C
N
N
Z
Clear Carry  
0
Set Negative Flag  
1
Clear Negative Flag  
Set Zero Flag  
0
1
Clear Zero Flag  
Z
0
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
I
1
I
CLI  
I
0
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
S
1
S
S
V
V
T
S
0
V
1
V
0
T
1
Clear T in SREG  
T
0
T
SEH  
CLH  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H
H
1
H
H
0
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
68  
8067O–AVR–06/2013  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
MCU Control Instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(see specific descr. for Sleep)  
(see specific descr. for WDR)  
Watchdog Reset  
Notes:  
1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.  
2. One extra cycle must be added when accessing Internal SRAM.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
69  
8067O–AVR–06/2013  
33. Packaging information  
33.1 100A  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.17  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
E1  
B
14.10 Note 2  
0.27  
1. This package conforms to JEDEC reference MS-026, Variation AED.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.08 mm maximum.  
L
0.75  
e
0.50 TYP  
2010-10-20  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,  
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
100A  
D
R
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
70  
8067O–AVR–06/2013  
 
 
33.2 100C1  
0.12  
Z
E
Marked A1 Identifier  
SIDE VIEW  
D
A
TOP VIEW  
A1  
Øb  
e
A1 Corner  
0.90 TYP  
10  
8
7
6
9
5
4
3
2
1
A
B
C
D
0.90 TYP  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
E
F
D1  
MIN  
1.10  
0.30  
8.90  
8.90  
7.10  
7.10  
0.35  
MAX  
1.20  
0.40  
9.10  
9.10  
7.30  
7.30  
0.45  
NOM  
NOTE  
SYMBOL  
G
e
A
H
I
A1  
D
0.35  
J
9.00  
E
9.00  
E1  
D1  
E1  
Øb  
e
7.20  
7.20  
BOTTOM VIEW  
0.40  
0.80 TYP  
5/25/06  
DRAWING NO. REV.  
100C1  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
100C1, 100-ball, 9 x 9 x 1.2 mm Body, Ball Pitch 0.80 mm  
Chip Array BGA Package (CBGA)  
A
R
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
71  
8067O–AVR–06/2013  
 
33.3 100C2  
E
A1 BALL ID  
0.10  
D
A1  
A2  
TOP VIEW  
A
SIDE VIEW  
E1  
100 - Ø0.35 0.05  
J
I
H
G
F
E
D
C
B
A
COMMON DIMENSIONS  
(Unit of Measure = mm)  
e
D1  
MIN  
MAX  
1.00  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.20  
0.65  
6.90  
7.00  
7.10  
D1  
E
5.85 BSC  
7.00  
1
2
3
4
5
6
7
8
9
10  
6.90  
0.30  
7.10  
0.40  
A1 BALL CORNER  
b
e
E1  
b
5.85 BSC  
0.35  
BOTTOM VIEW  
e
0.65 BSC  
12/23/08  
GPC  
CIF  
DRAWING NO.  
TITLE  
REV.  
100C2, 100-ball (10 x 10 Array), 0.65 mm Pitch,  
7.0 x 7.0 x 1.0 mm, Very Thin, Fine-Pitch  
Ball Grid Array Package (VFBGA)  
Package Drawing Contact:  
packagedrawings@atmel.com  
100C2  
A
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
72  
8067O–AVR–06/2013  
 
34. Electrical Characteristics  
34.1 Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only  
and functional operation of the device at these  
or other conditions beyond those indicated in  
the operational sections of this specification is  
not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect  
device reliability.  
Operating Temperature . . . . . . . . . . . -55C to +125C  
Storage Temperature . . . . . . . . . . . . . -65C to +150°C  
Voltage on any Pin with respect to Ground-0.5V to VCC+0.5V  
Maximum Operating Voltage . . . . . . . . . . . . . . . . 3.6V  
DC Current per I/O Pin. . . . . . . . . . . . . . . . . . 20.0 mA  
DC Current VCC and GND Pins. . . . . . . . . . 200.0 mA  
34.2 DC Characteristics  
Table 34-1. Current consumption.  
Symbol Parameter  
Condition  
Min  
Typ  
365  
790  
690  
1400  
18.35  
135  
255  
270  
510  
8.15  
0.1  
Max  
Units  
µA  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
VCC = 3.0V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
1 MHz, Ext. Clk  
Active mode(1)  
800  
1600  
20  
2 MHz, Ext. Clk  
32 MHz, Ext. Clk  
1 MHz, Ext. Clk  
mA  
µA  
Idle mode(1)  
380  
650  
9.2  
2 MHz, Ext. Clk  
ICC  
32 MHz, Ext. Clk  
mA  
All Functions Disabled  
All Functions Disabled, T = 85°C  
2
5
Power-down mode  
Power-save mode  
0.5  
µA  
µA  
ULP, WDT, Sampled BOD  
0.6  
ULP, WDT, Sampled BOD, T=85°C  
RTC 1 kHz from Low Power 32 kHz  
RTC from Low Power 32 kHz  
3
10  
0.52  
0.55  
1.16  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
73  
8067O–AVR–06/2013  
 
 
 
Symbol Parameter  
Condition  
Module current consumption(2)  
Min  
Typ  
Max  
Units  
RC32M  
395  
TBD  
120  
155  
30  
RC32M w/DFLL  
Internal 32.768 kHz oscillator as DFLL source  
Internal 32.768 kHz oscillator as DFLL source  
Multiplication factor = 10x  
RC2M  
RC2M w/DFLL  
RC32K  
PLL  
195  
TBD  
120  
1
Watchdog normal mode  
BOD Continuous mode  
BOD Sampled mode  
Internal 1.00 V ref  
Temperature reference  
µA  
85  
80  
RTC with int. 32 kHz RC as  
source  
No prescaling  
30  
ICC  
RTC with ULP as source  
ADC  
No prescaling  
1
250 kS/s - Int. 1V Ref  
3.6  
1.8  
1
DAC Normal Mode  
DAC Low-Power Mode  
AC High-speed  
AC Low-power  
USART  
1000 kS/s, Single channel, Int. 1V Ref  
1000 KS/s, Single channel, Int. 1V Ref  
mA  
220  
110  
7.5  
180  
18  
Rx and Tx enabled, 9600 BAUD  
Prescaler DIV1  
µA  
DMA  
Timer/Counter  
AES  
195  
20  
Vcc = 2V  
Vcc = 3V  
Flash/EEPROM  
Programming  
mA  
30  
Note:  
1. All Power Reduction Registers set. Typical numbers measured at T = 25°C if nothing else is specified.  
2. with no prescaling  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
74  
8067O–AVR–06/2013  
34.3 Speed  
Table 34-2. Operating voltage and frequency.  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
Min  
0
Typ  
Max  
12  
Units  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
0
12  
ClkCPU  
CPU clock frequency  
MHz  
0
32  
0
32  
The maximum CPU clock frequency of the XMEGA A1 devices is depending on VCC. As shown in Figure 34-1 on page  
75 the Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V.  
Figure 34-1. Maximum Frequency vs. Vcc  
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
75  
8067O–AVR–06/2013  
 
 
34.4 Flash and EEPROM Memory Characteristics  
Table 34-3. Endurance and data retention.  
Symbol Parameter  
Condition  
Min  
10K  
10K  
100  
25  
Typ  
Max  
Units  
25°C  
85°C  
25°C  
55°C  
25°C  
85°C  
25°C  
55°C  
Write/Erase cycles  
Cycle  
Flash  
Data retention  
Year  
Cycle  
Year  
80K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
Table 34-4. Programming time.  
Symbol Parameter  
Condition  
Min  
Typ(1)  
40  
4
Max  
Units  
Chip Erase  
Flash, EEPROM(2) and SRAM Erase  
Page Erase  
Flash  
Page Write  
6
Page WriteAutomatic Page Erase and Write  
Page Erase  
12  
4
ms  
EEPROM  
Page Write  
6
Page Write Automatic Page Erase and Write  
12  
Notes:  
1. Programming is timed from the internal 2 MHz oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
34.5 ADC Characteristics  
Table 34-5. ADC characteristics  
Symbol  
RES  
Parameter  
Condition  
Programmable: 8/12  
500 kS/s  
Min  
Typ  
Max  
Units  
Bits  
Resolution  
8
12  
<±1  
12  
5
INL  
Integral Non-Linearity  
Differential Non-Linearity  
Gain Error  
-5  
LSB  
LSB  
mV  
DNL  
500 kS/s  
< ±0.75  
±10  
Offset Error  
±2  
mV  
VCC2.0V  
2000  
500  
Max is 1/4 of  
Peripheral Clock  
ADCclk  
ADC Clock frequency  
kHz  
VCC<2.0V  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
76  
8067O–AVR–06/2013  
 
 
 
 
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
2000  
500  
Units  
VCC2.0V  
Conversion rate  
ksps  
VCC<2.0V  
Conversion time  
(RES+2)/2+GAIN  
ADCclk  
cycles  
5
7
8
(propagation delay)  
RES = 8 or 12, GAIN = 0 or 1  
Sampling Time  
1/2 ADCclk cycle  
0.25  
0
µS  
V
Conversion range  
Analog Supply Voltage  
Reference voltage  
VREF  
Vcc+0.3  
Vcc-0.6  
2000  
AVCC  
VREF  
Vcc-0.3  
1.0  
V
V
VCC2.0V  
Input bandwidth  
kHz  
VCC<2.0V  
500  
INT1V  
INTVCC  
SCALEDVCC  
RAREF  
Internal 1.00V reference  
Internal VCC/1.6  
1.00  
VCC/1.6  
VCC/10  
>10  
V
V
Scaled internal VCC/10 input  
Reference input resistance  
V
M  
ADCclk  
cycles  
Start-up time  
12  
24  
Temp. sensor, VCC/10, Bandgap  
Internal input sampling speed  
100  
ksps  
Table 34-6. ADC gain stage characteristics.  
Symbol  
Parameter  
Gain error  
Offset error  
Condition  
Min  
Typ  
< ±1  
< ±1  
0.12  
0.06  
Max  
Units  
%
1 to 64 gain  
mV  
VREF = Int. 1V  
64x gain  
Vrms  
Noise level at input  
Clock rate  
mV  
VREF = Ext. 2V  
Same as ADC  
1000  
kHz  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
77  
8067O–AVR–06/2013  
34.6 DAC Characteristics  
Table 34-7. DAC characteristics.  
Symbol Parameter  
Condition  
VREF = Ext. ref  
Min  
Typ  
5
Max  
Units  
INL  
Integral Non-Linearity  
VCC = 1.6-3.6V  
VCC = 1.6-3.6V  
LSB  
VREF = Ext. ref  
VREF= AVCC  
0.6  
0.6  
<±1  
DNL  
Differential Non-Linearity  
LSB  
Fclk  
Conversion rate  
1000  
ksps  
V
AREF  
External reference voltage  
Reference input impedance  
Max output voltage  
1.1  
AVCC-0.6  
>10  
AVCC*0.98  
0.01  
M  
V
Rload=100k  
Rload=100k  
Min output voltage  
V
34.7 Analog Comparator Characteristics  
Table 34-8. Analog Comparator characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
<±5  
< 1000  
0
Max  
Units  
mV  
pA  
Voff  
Ilk  
Input Offset Voltage  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 3.0V, T= 85°C  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
Input Leakage Current  
Hysteresis, No  
Vhys1  
Vhys2  
Vhys3  
mV  
mV  
mV  
Hysteresis, Small  
Hysteresis, Large  
mode = HS  
mode = HS  
mode = HS  
mode = HS  
mode = LP  
25  
50  
100  
tdelay  
Propagation delay  
70  
ns  
140  
34.8 Bandgap Characteristics  
Table 34-9. Bandgap voltage characteristics.  
Symbol Parameter  
Bandgap startup time  
Bandgap voltage  
Condition  
As reference for ADC or DAC  
Min  
Typ  
Max  
Units  
µs  
1 Clk_PER + 2.5µs  
1.1  
V
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
78  
8067O–AVR–06/2013  
 
 
 
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
V
T= 85°C, After calibration  
0.99  
1.01  
ADC/DAC ref  
1
Variation over voltage and temperature VCC = 1.6 - 3.6V, T = -40C to 85C  
±5  
%
34.9 Brownout Detection Characteristics  
Table 34-10. Brownout Detection characteristics.  
Symbol Parameter  
BOD level 0 falling Vcc  
Condition  
Min  
Typ  
Max  
Units  
1.6  
1.9  
2.1  
2.4  
2.6  
2.9  
3.2  
3.4  
2
BOD level 1 falling Vcc  
BOD level 2 falling Vcc  
BOD level 3 falling Vcc  
BOD level 4 falling Vcc  
BOD level 5 falling Vcc  
BOD level 6 falling Vcc  
BOD level 7 falling Vcc  
Hysteresis  
V
BOD level 0-5  
%
Note: 1. BOD is calibrated to BOD level 0 at 85°C, and BOD level 0 is the default level.  
34.10 PAD Characteristics  
Table 34-11. PAD characteristics.  
Symbol Parameter  
Condition  
VCC = 2.4 - 3.6V  
Min  
Typ  
Max  
VCC+0.5  
VCC+0.5  
0.3*VCC  
0.2*VCC  
0.76  
Units  
0.7*VCC  
0.8*VCC  
-0.5  
VIH  
VIL  
Input High Voltage  
V
VCC = 1.6 - 2.4V  
VCC = 2.4 - 3.6V  
Input Low Voltage  
V
V
VCC = 1.6 - 2.4V  
-0.5  
IOL = 15 mA, VCC = 3.3V  
IOL = 10 mA, VCC = 3.0V  
IOL= 5 mA, VCC = 1.8V  
0.45  
0.3  
VOL  
Output Low Voltage GPIO  
0.64  
0.2  
0.46  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
79  
8067O–AVR–06/2013  
 
 
Symbol Parameter  
Condition  
IOH = -8 mA, VCC = 3.3V  
IOH = -6 mA, VCC = 3.0V  
IOH = -2 mA, VCC = 1.8V  
Min  
2.6  
2.1  
1.4  
Typ  
3
Max  
Units  
VOH  
Output High Voltage GPIO  
2.2  
V
1.6  
IIL  
IIH  
Input Leakage Current I/O pin  
Input Leakage Current I/O pin  
I/O pin Pull/Buss keeper Resistor  
Reset pin Pull-up Resistor  
Input hysteresis  
<0.001  
<0.001  
20  
1
1
µA  
µA  
k  
k  
V
RP  
RRST  
20  
0.5  
34.11 POR Characteristics  
Table 34-12. Power-on Reset characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
1
Max  
Units  
VPOT-  
VPOT+  
POR threshold voltage falling Vcc  
POR threshold voltage rising Vcc  
V
V
1.4  
34.12 Reset Characteristics  
Table 34-13. Reset characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
90  
Max  
Units  
Minimum reset pulse width  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.45*VCC  
0.42*VCC  
Reset threshold voltage  
V
34.13 Oscillator Characteristics  
Table 34-14. Internal 32.768kHz oscillator characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
T = 85C, VCC = 3V,  
After production calibration  
Accuracy  
-0.5  
0.5  
%
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
80  
8067O–AVR–06/2013  
 
 
 
Table 34-15. Internal 2MHz oscillator characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
%
T = 85C, VCC = 3V,  
Accuracy  
-1.5  
1.5  
After production calibration  
DFLL Calibration step size  
T = 25C, VCC = 3V  
0.175  
%
Table 34-16. Internal 32MHz oscillator characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
%
T = 85C, VCC = 3V,  
Accuracy  
-1.5  
1.5  
After production calibration  
DFLL Calibration stepsize  
T = 25C, VCC = 3V  
0.2  
%
Table 34-17. Internal 32kHz, ULP oscillator characteristics.  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
Output frequency 32 kHz ULP OSC T = 85C, VCC = 3.0V  
Table 34-18. Maximum load capacitance (CL) and ESR recommendation for 32.768kHz crystal.  
26  
kHz  
Crystal CL [pF]  
Max ESR [k]  
6.5  
9
60  
35  
Table 34-19. Device wake-up time from sleep.  
Symbol Parameter  
Condition(1)  
Int. 32.768 kHz RC  
Min  
Typ(2)  
130  
2
Max  
Units  
Int. 2 MHz RC  
Idle Sleep, Standby and Extended  
Standby sleep mode  
Ext. 2 MHz Clock  
Int. 32 MHz RC  
Int. 32.768 kHz RC  
Int. 2 MHz RC  
2
0.17  
320  
10.3  
4.5  
5.8  
µS  
Power-save and Power-down  
Sleep mode  
Ext. 2 MHz Clock  
Int. 32 MHz RC  
Notes:  
1. Non-prescaled System Clock source.  
2. Time from pin change on external interrupt pin to first available clock cycle. Additional interrupt response time is minimum 5 system clock source cycles.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
81  
8067O–AVR–06/2013  
 
 
35. Typical Characteristics  
35.1 Active Supply Current  
Figure 35-1. Active Supply Current vs. Frequency  
fSYS = 1 - 32 MHz, T = 25°C  
25  
20  
15  
10  
3.3V  
3.0V  
2.7V  
2.2V  
5
1.8V  
0
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
Figure 35-2. Active Supply Current vs. VCC  
fSYS = 1.0 MHz  
1200  
1000  
800  
600  
400  
200  
0
85°C  
-40°C  
25°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
82  
8067O–AVR–06/2013  
 
 
35.2 Idle Supply Current  
Figure 35-3. Idle Supply Current vs. Frequency  
fSYS = 1 - 32 MHz, T = 25°C  
10  
9
3.3V  
3.0V  
2.7V  
8
7
6
5
4
3
2.2V  
2
1.8V  
1
0
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
Figure 35-4. Active Supply Current vs. VCC  
fSYS = 1.0 MHz  
400  
350  
300  
250  
200  
150  
100  
50  
85°C  
25°C  
-40°C  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
cc [V]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
83  
8067O–AVR–06/2013  
 
35.3 Power-down Supply Current  
Figure 35-5. Power-down Supply Current vs. Temperature  
2.5  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
2
1.5  
1
0.5  
0
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
35.4 Power-save Supply Current  
Figure 35-6. Power-save Supply Current vs. Temperature  
Sampled BOD, WDT, RTC from ULP enabled  
3.5  
3
3.3V  
2.7V  
2.2V  
1.8V  
2.5  
2
1.5  
1
0.5  
0
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
84  
8067O–AVR–06/2013  
 
 
35.5 Pin Pull-up  
Figure 35-7. I/O Reset Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
100  
80  
60  
40  
20  
0
-40 °C  
85 °C  
25 °C  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
vreset [V]  
Figure 35-8. I/O Reset Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
180  
160  
140  
120  
100  
80  
60  
-40 °C  
85 °C  
40  
25 °C  
20  
0
0
0.5  
1
1.5  
2
2.5  
vreset [V]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
85  
8067O–AVR–06/2013  
 
Figure 35-9. I/O Reset Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
180  
160  
140  
120  
100  
80  
-40 °C  
85 °C  
60  
40  
20  
0
25 °C  
0
0.5  
1
1.5  
vreset [V]  
2
2.5  
3
35.6 Pin Thresholds and Hysteresis  
Figure 35-10.I/O Pin Input Threshold Voltage vs. VCC  
VIH - I/O Pin Read as “1”  
2.5  
-40 °C  
25 °C  
85 °C  
2
1.5  
1
0.5  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
86  
8067O–AVR–06/2013  
 
Figure 35-11.I/O Pin Input Threshold Voltage vs. VCC  
VIL - I/O Pin Read as “0”  
1.8  
1.6  
1.4  
1.2  
1
85 °C  
25 °C  
-40 °C  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
cc [V]  
Figure 35-12.I/O Pin Input Hysteresis vs. VCC.  
0.8  
0.6  
0.4  
0.2  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
87  
8067O–AVR–06/2013  
Figure 35-13.Reset Input Threshold Voltage vs. VCC  
VIH - I/O Pin Read as “1”  
1.8  
-40 °C  
25 °C  
85 °C  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
Figure 35-14.Reset Input Threshold Voltage vs. VCC  
VIL - I/O Pin Read as “0”  
1.8  
-40 °C  
25 °C  
85 °C  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
88  
8067O–AVR–06/2013  
35.7 Bod Thresholds  
Figure 35-15.BOD Thresholds vs. Temperature  
BOD Level = 1.6V  
1.638  
1.632  
1.626  
1.62  
Rising Vcc  
1.614  
1.608  
1.602  
Falling Vcc  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
Figure 35-16.BOD Thresholds vs. Temperature  
BOD Level = 2.9V  
3.01  
2.995  
2.98  
Rising Vcc  
2.965  
2.95  
2.935  
2.92  
Falling Vcc  
2.905  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
89  
8067O–AVR–06/2013  
 
35.8 Bandgap  
Figure 35-17.Internal 1.00V Reference vs. Temperature.  
1.004  
1.0035  
1.003  
1.0025  
1.002  
1.0015  
1.001  
1.0005  
1
3.0V  
1.8V  
0.9995  
0.999  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
35.9 Analog Comparator  
Figure 35-18.Analog Comparator Hysteresis vs. VCC  
High-speed, Small hysteresis  
30  
25  
20  
15  
10  
5
25°C  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
cc [V]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
90  
8067O–AVR–06/2013  
 
 
Figure 35-19.Analog Comparator Hysteresis vs. VCC, High-speed  
Large hysteresis  
60  
50  
40  
30  
20  
10  
0
25°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
Figure 35-20.Analog Comparator Propagation Delay vs. VCC  
High-speed  
120  
100  
80  
60  
40  
20  
0
25°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
91  
8067O–AVR–06/2013  
35.10 Oscillators and Wake-up Time  
Figure 35-21.Internal 32.768 kHz Oscillator Frequency vs. Temperature  
1.024 kHz output  
1.03  
1.025  
1.8 V  
3.0 V  
1.02  
1.015  
1.01  
1.005  
1
0.995  
0.99  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
T [°C]  
Figure 35-22.Ultra Low-Power (ULP) Oscillator Frequency vs. Temperature  
1 kHz output  
0.93  
0.92  
0.91  
0.9  
3.0 V  
0.89  
0.88  
0.87  
1.8 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
T [°C]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
92  
8067O–AVR–06/2013  
 
Figure 35-23.Internal 2 MHz Oscillator CalA Calibration Step Size  
T = -40 to 85C, VCC = 3V  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
0
20  
40  
60  
80  
100  
120  
140  
CALA [LSB]  
Figure 35-24.Internal 2 MHz Oscillator CalB Calibration Step Size  
T = -40 to 85C, VCC = 3V  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
0
10  
20  
30  
40  
50  
60  
70  
CALB [LSB]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
93  
8067O–AVR–06/2013  
Figure 35-25.Internal 32 MHz Oscillator CalA Calibration Step Size  
T = -40 to 85C, VCC = 3V  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0
20  
40  
60  
80  
100  
120  
140  
CALA  
Figure 35-26.Internal 32 MHz Oscillator CalB Calibration Step Size  
T = -40 to 85C, VCC = 3V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
10  
20  
30  
40  
50  
60  
70  
CALB  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
94  
8067O–AVR–06/2013  
35.11 PDI Speed  
Figure 35-27.PDI Speed vs. VCC  
35  
30  
25  
20  
15  
10  
5
25 °C  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
95  
8067O–AVR–06/2013  
 
 
36. Errata  
36.1 ATxmega64A1and ATxmega128A1 rev. H  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
The ADC has up to ±2 LSB inaccuracy  
ADC gain stage output range is limited to 2.4 V  
Sampling speed limited to 500 ksps for supply voltage below 2.0V  
ADC Event on compare match non-functional  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
The input difference between two succeeding ADC samples is limited by VREF  
Increased noise when using internal 1.0V reference at low temperature  
Configuration of PGM and CWCM not as described in XMEGA A Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD will be enabled at any reset  
BODACT fuse location is not correct  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
DAC has up to ±10 LSB noise in Sampled Mode  
DAC is nonlinear and inaccurate when reference is above 2.4V or VCC - 0.6V  
DAC refresh may be blocked in S/H mode  
Conversion lost on DAC channel B in event triggered mode  
Both DFLLs and both oscillators have to be enabled for one to work  
Access error when multiple bus masters are accessing SDRAM  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
Low level interrupt triggered when pin input is disabled  
JTAG enable does not override Analog Comparator B output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
Flash Power Reduction Mode can not be enabled when entering sleep  
Some NVM Commands are non-functional  
Crystal start-up time required after power-save even if crystal is source for RTC  
Setting PRHIRES bit makes PWM output unavailable  
Accessing EBI address space with PREBI set will lock Bus Master  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI, the minimum I2C SCL low time could be violated in Master Read mode  
TWI address-mask feature is non-functional  
TWI, a general address call will match independent of the R/W-bit value  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
96  
8067O–AVR–06/2013  
 
 
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag erroneously read as set  
WDR instruction inside closed window will not issue reset  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as input  
for another AC, the first comparator will be affected for up to 1 µs and could potentially give a wrong comparison  
result.  
Problem fix/Workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before enabling  
any of them.  
2. VCC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
Figure 36-1. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3.3 V  
3
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/Workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed  
3. The ADC has up to ±2 LSB inaccuracy  
The ADC will have up to ±2 LSB inaccuracy, visible as a saw-tooth pattern on the input voltage/ output value trans-  
fer function of the ADC. The inaccuracy increases with increasing voltage reference reaching ±2 LSB with 3V  
reference.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
97  
8067O–AVR–06/2013  
Problem fix/Workaround  
None, the actual ADC resolution will be reduced with up to ±2 LSB.  
4. ADC gain stage output range is limited to 2.4 V  
The amplified output of the ADC gain stage will never go above 2.4 V, hence the differential input will only give cor-  
rect output when below 2.4 V/gain. For the available gain settings, this gives a differential input range of:  
1x gain:  
2x gain:  
4x gain:  
8x gain:  
16x gain:  
32x gain:  
64x gain:  
2.4  
1.2  
0.6  
V
V
V
300 mV  
150 mV  
75 mV  
38 mV  
Problem fix/Workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4 V in order to get a correct result, or keep  
ADC voltage reference below 2.4 V.  
5. Sampling speed limited to 500 ksps for supply voltage below 2.0V  
The sampling frequency is limited to 500 ksps for supply voltage below 2.0V. At higher sampling rate the INL error  
will be several hundred LSB.  
Problem fix/Workaround  
None.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to  
BELOW or ABOVE.  
Problem fix/Workaround  
Enable and use interrupt on compare match when using the compare function.  
7. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/Workaround  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
98  
8067O–AVR–06/2013  
None.  
8. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be disre-  
garded to achieve 12-bit accuracy.  
Problem fix/Workaround  
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.  
9. The input difference between two succeeding ADC samples is limited by VREF  
If the difference in input between two samples changes more than the size of the reference, the ADC will not be  
able to convert the data correctly. Two conversions will be required before the conversion is correct.  
Problem fix/Workaround  
Discard the first conversion if input is changed more than VREF, or ensure that the input never changes more then  
VREF.  
10. Increased noise when using internal 1.0V reference at low temperature  
When operating at below 0C and using internal 1.0V reference the RMS noise will be up 4 LSB, Peak-to-peak  
noise up to 25 LSB.  
Problem fix/Workaround  
Use averaging to remove noise.  
11. Configuration of PGM and CWCM not as described in XMEGA A Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common Wave-  
form Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable both  
Pattern Generation Mode and Common Waveform Channel Mode.  
Problem fix/Workaround  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
12 PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal operation  
at first update after fault condition is no longer present.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
99  
8067O–AVR–06/2013  
Problem fix/Workaround  
Do a write to any AWeX I/O register to re-enable the output.  
13. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is below  
the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the pro-  
grammed BOD level even if the BOD is disabled.  
Problem fix/Workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
14. BODACT fuse location is not correct  
The fuses for enabling BOD in active mode (BODACT) are located at FUSEBYTE2, bit 2 and 3 and not in FUSE-  
BYTE 5 as described in the XMEGA A Manual.  
Problem fix/Workaround  
Access the fuses in FUSEBYTE2.  
15. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/Workaround  
If the bandgap is used as reference for either the ADC, DAC or Analog Comparator, the BOD must not be set in  
sampled mode.  
16. DAC has up to ±10 LSB noise in Sampled Mode  
The DAC has noise of up to ±10 LSB in Sampled Mode for entire operation range.  
Problem fix/Workaround  
Use the DAC in continuous mode.  
17. DAC is nonlinear and inaccurate when reference is above 2.4V or VCC - 0.6V  
Using the DAC with a reference voltage above 2.4V or VCC - 0.6V will give inaccurate output when converting  
codes that give below 0.75V output:  
±10 LSB for continuous mode  
±200 LSB for Sample and Hold mode  
Problem fix/Workaround  
None.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
100  
8067O–AVR–06/2013  
18. DAC has up to ±10 LSB noise in Sampled Mode  
If the DAC is running in Sample and Hold (S/H) mode and conversion for one channel is done at maximum rate  
(i.e. the DAC is always busy doing conversion for this channel), this will block refresh signals to the second chan-  
nel.  
Problem fix/Workaround  
When using the DAC in S/H mode, ensure that none of the channels is running at maximum conversion rate, or  
ensure that the conversion rate of both channels is high enough to not require refresh.  
19. Conversion lost on DAC channel B in event triggered mode  
If during dual channel operation channel 1 is set in auto trigged conversion mode, channel 1 conversions are occa-  
sionally lost. This means that not all data-values written to the Channel 1 data register are converted.  
Problem fix/Workaround  
Keep the DAC conversion interval in the range 000-001 (1 and 3 CLK), and limit the Peripheral clock frequency so  
the conversion internal never is shorter than 1.5 µs.  
20. Both DFLLs and both oscillators have to be enabled for one to work  
In order to use the automatic runtime calibration for the 2 MHz or the 32 MHz internal oscillators, the DFLL for both  
oscillators and both oscillators have to be enabled for one to work.  
Problem fix/Workaround  
Enable both DFLLs and both oscillators when using automatic runtime calibration for either of the internal  
oscillators.  
21. Access error when multiple bus masters are accessing SDRAM  
If one bus master (CPU and DMA channels) is using the EBI to access an SDRAM in burst mode and another bus  
master is accessing the same row number in a different BANK of the SDRAM in the cycle directly after the burst  
access is complete, the access for the second bus master will fail.  
Problem fix/Workaround  
Do not put stack pointer in SDRAM and use DMA Controller in 1 byte burst mode if CPU and DMA Controller are  
required to access SDRAM at the same time.  
22. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.  
Problem fix/Workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if EEPROM  
page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.  
23. Pending full asynchronous pin change interrupts will not wake the device  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
101  
8067O–AVR–06/2013  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction is  
executed, will be ignored until the device is woken from another source or the source triggers again. This applies  
when entering all sleep modes where the System Clock is stopped.  
Problem fix/Workaround  
None.  
24. Pin configuration does not affect Analog Comparator Output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output function.  
Problem fix/Workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (i.e. connect positive input to the neg-  
ative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator output.  
25. Low level interrupt triggered when pin input is disabled  
If a pin input is disabled, but pin is configured to trigger on low level, interrupt request will be sent.  
Problem fix/Workaround  
Ensure that Interrupt mask for the disabled pin is cleared.  
26. JTAG enable does not override Analog Comparator B output  
When JTAG is enabled this will not override the Analog Comparator B (ACB) output, AC0OUT on pin 7 if this is  
enabled.  
Problem fix/Workaround  
Use Analog Comparator output for ACA when JTAG is used, or use the PDI as debug interface.  
27. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI interrupt  
handler.  
Problem fix/Workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not  
required.  
28. Flash Power Reduction Mode can not be enabled when entering sleep  
If Flash Power Reduction Mode is enabled when entering Power-save or Extended Standby sleep mode, the  
device will only wake up on every fourth wake-up request. If Flash Power Reduction Mode is enabled when enter-  
ing Idle sleep mode, the wake-up time will vary with up to 16 CPU clock cycles.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
102  
8067O–AVR–06/2013  
Problem fix/Workaround  
Disable Flash Power Reduction mode before entering sleep mode.  
29. Some NVM Commands are non-functional  
The following NVM commands are non-functional:  
0x2B Erase Flash Page  
0x2E Write Flash Page  
0x2F Erase & Write Flash Page  
0x3A Flash Range CRC  
Problem fix/Workaround  
None for Flash Range CRC  
Use separate programming commands for accessing application and boot section.  
0x22 Erase Application Section Page  
0x24 Write Application Section Page  
0x25 Erase & Write Application Section Page  
0x2A Erase Boot Loader Section Page  
0x2C Write Boot Loader Section Page  
0x2D Erase & Write Boot Loader Section Page  
30. Crystal start-up time required after power-save even if crystal is source for RTC  
Even if 32.768 kHz crystal is used for RTC during sleep, the clock from the crystal will not be ready for the system  
before the specified start-up time. See "XOSCSEL[3:0]: Crystal Oscillator Selection" in XMEGA A Manual. If BOD  
is used in active mode, the BOD will be on during this period (0.5s).  
Problem fix/Workaround  
If faster start-up is required, go to sleep with internal oscillator as system clock.  
31. Setting PRHIRES bit makes PWM output unavailable  
Setting the HIRES Power Reduction (PR) bit for PORTx will make any Frequency or PWM output for the corre-  
sponding Timer/Counters (TCx0 and TCx1) unavailable on the pin even if the Hi-Res is not used.  
Problem fix/Workaround  
Do not write the HIRES PR bit on PORTx when frequency or PWM output from TCx0/1 is used.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
103  
8067O–AVR–06/2013  
32. Accessing EBI address space with PREBI set will lock Bus Master  
If EBI Power Reduction Bit is set while EBI is enabled, accessing external memory could result in bus hang-up,  
blocking all further access to all data memory.  
Problem fix/Workaround  
Ensure that EBI is disabled before setting EBI Power Reduction bit.  
33. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC PER as  
the device is entering sleep, the value in the RTC count register can not be read correctly within the first prescaled  
RTC clock cycle after wakeup. The value read will be the same as the value in the register when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/Workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
34. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed, will  
be ignored until the device is woken from another source or the source triggers again.  
Problem fix/Workaround  
None.  
35. TWI, the minimum I2C SCL low time could be violated in Master Read mode  
If the TWI is in Master Read mode and issues a Repeated Start on the bus, this will immediately release the SCL  
line even if one complete SCL low period has not passed. This means that the minimum SCL low time in the I2C  
specification could be violated.  
Problem fix/Workaround  
If this is a problem in the application, ensure in software that the Repeated Start is never issued before one SCL  
low time has passed.  
36. TWI address-mask feature is non-functional  
The address-mask feature is non-functional, so the TWI can not perform hardware address match on more than  
one address.  
Problem fix/Workaround  
If the TWI must respond to multiple addresses, enable Promiscuous Mode for the TWI to respond to all address  
and implement the address-mask function in software.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
104  
8067O–AVR–06/2013  
37. TWI, a general address call will match independent of the R/W-bit value  
When the TWI is in Slave mode and a general address call is issued on the bus, the TWI Slave will get an address  
match regardless of the received R/W bit.  
Problem fix/Workaround  
Use software to check the R/W-bit on general call address match.  
38. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only cleared on  
start.  
Problem fix/Workaround  
Clear the flag in software after address interrupt.  
39. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets this  
flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will lock the  
bus.  
Problem fix/Workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for the  
SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
105  
8067O–AVR–06/2013  
40. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected, the  
transaction will be dropped.  
Problem fix/Workaround  
None.  
41. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes 1 Peripheral Clock cycle to clear the data  
interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.  
Problem fix/Workaround  
Add one NOP instruction before checking DIF.  
42. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window control register, the  
counter can be cleared without giving a system reset.  
Problem fix/Workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
106  
8067O–AVR–06/2013  
36.2 ATxmega64A1 and ATxmega128A1 rev. G  
Bootloader Section in Flash is non-functional  
Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
DAC is nonlinear and inaccurate when reference is above 2.4V  
ADC gain stage output range is limited to 2.4 V  
The ADC has up to ±2 LSB inaccuracy  
TWI, a general address call will match independent of the R/W-bit value  
TWI, the minimum I2C SCL low time could be violated in Master Read mode  
Setting HIRES PR bit makes PWM output unavailable  
EEPROM erase and write does not work with all System Clock sources  
BOD will be enabled after any reset  
Propagation delay analog Comparator increasing to 2 ms at -40C  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Default setting for SDRAM refresh period too low  
Flash Power Reduction Mode can not be enabled when entering sleep mode  
Enabling Analog Comparator B output will cause JTAG failure  
JTAG enable does not override Analog Comparator B output  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
DAC refresh may be blocked in S/H mode  
Inverted I/O enable does not affect Analog Comparator Output  
Both DFLLs and both oscillators has to be enabled for one to work  
1. Bootloader Section in Flash is non-functional  
The Bootloader Section is non-functional, and bootloader or application code cannot reside in this part of the  
Flash.  
Problem fix/Workaround  
None, do not use the Bootloader Section.  
2. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as input  
for the another AC, the first comparator will be affected for up to 1 us and could potentially give a wrong compari-  
son result.  
Problem fix/Workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before enabling  
any of them.  
3. DAC is nonlinear and inaccurate when reference is above 2.4V  
Using the DAC with a reference voltage above 2.4V give inaccurate output when converting codes that give below  
0.75V output:  
±20 LSB for continuous mode  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
107  
8067O–AVR–06/2013  
 
±200 LSB for Sample and Hold mode  
Problem fix/Workaround  
None, avoid using a voltage reference above 2.4V.  
4. ADC gain stage output range is limited to 2.4 V  
The amplified output of the ADC gain stage will never go above 2.4 V, hence the differential input will only give cor-  
rect output when below 2.4 V/gain. For the available gain settings, this gives a differential input range of:  
1x gain:  
2x gain:  
4x gain:  
8x gain:  
16x gain:  
32x gain:  
64x gain:  
2.4  
1.2  
0.6  
V
V
V
300 mV  
150 mV  
75 mV  
38 mV  
Problem fix/Workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4 V in order to get a correct result, or keep  
ADC voltage reference below 2.4 V.  
5. The ADC has up to ±2 LSB inaccuracy  
The ADC will have up to ±2 LSB inaccuracy, visible as a saw-tooth pattern on the input voltage/ output value trans-  
fer function of the ADC. The inaccuracy increases with increasing voltage reference reaching ±2 LSB with 3V  
reference.  
Problem fix/Workaround  
None, the actual ADC resolution will be reduced with up to ±2 LSB.  
6. TWI, a general address call will match independent of the R/W-bit value  
When the TWI is in Slave mode and a general address call is issued on the bus, the TWI Slave will get an address  
match regardless of the R/W-bit (ADDR[0] bit) value in the Slave Address Register.  
Problem fix/Workaround  
Use software to check the R/W-bit on general call address match.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
108  
8067O–AVR–06/2013  
7. TWI, the minimum I2C SCL low time could be violated in Master Read mode  
When the TWI is in Master Read mode and issuing a Repeated Start on the bus, this will immediately release the  
SCL line even if one complete SCL low period has not passed. This means that the minimum SCL low time in the  
I2C specification could be violated.  
Problem fix/Workaround  
If this causes a potential problem in the application, software must ensure that the Repeated Start is never issued  
before one SCL low time has passed.  
8. Setting HIRES PR bit makes PWM output unavailable  
Setting the HIRES Power Reduction (PR) bit for PORTx will make any Frequency or PWM output for the corre-  
sponding Timer/Counters (TCx0 and TCx1) unavailable on the pin.  
Problem fix/Workaround  
Do not write the HIRES PR bit on PORTx when frequency or PWM output from TCx0/1 is used.  
9. EEPROM erase and write does not work with all System Clock sources  
When doing EEPROM erase or Write operations with other clock sources than the 2 MHz RCOSC, Flash will be  
read wrongly for one or two clock cycles at the end of the EEPROM operation.  
Problem fix/Workaround  
Alt 1: Use the internal 2 MHz RCOSC when doing erase or write operations on EEPROM.  
Alt 2: Ensure to be in sleep mode while completing erase or write on EEPROM. After starting erase or write opera-  
tions on EEPROM, other interrupts should be disabled and the device put to sleep.  
10. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is below  
the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the pro-  
grammed BOD level even if the BOD is disabled.  
Problem fix/Workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
11. Propagation delay analog Comparator increasing to 2 ms at -40 °C  
When the analog comparator is used at temperatures reaching down to -40 °C, the propagation delay will increase  
to ~2 ms.  
Problem fix/Workaround  
None  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
109  
8067O–AVR–06/2013  
12. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC and DAC.  
Problem fix/Workaround  
If the bandgap is used as reference for either the ADC or the DAC, the BOD must not be set in sampled mode.  
13. Default setting for SDRAM refresh period too low  
If the SDRAM refresh period is set to a value less then 0x20, the SDRAM content may be corrupted when access-  
ing through On-Chip Debug sessions.  
Problem fix/Workaround  
The SDRAM refresh period (REFRESHH/L) should not be set to a value less then 0x20.  
14. Flash Power Reduction Mode can not be enabled when entering sleep mode  
If Flash Power Reduction Mode is enabled when entering Power-save or Extended Standby sleep mode, the  
device will only wake up on every fourth wake-up request.  
If Flash Power Reduction Mode is enabled when entering Idle sleep mode, the wake-up time will vary with up to 16  
CPU clock cycles.  
Problem fix/Workaround  
Disable Flash Power Reduction mode before entering sleep mode.  
15. JTAG enable does not override Analog Comparator B output  
When JTAG is enabled this will not override the Anlog Comparator B (ACB)ouput, AC0OUT on pin 7 if this is  
enabled.  
Problem fix/Workaround  
AC0OUT for ACB should not be enabled when JTAG is used. Use only analog comparator output for ACA when  
JTAG is used, or use the PDI as debug interface.  
16. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC cannot be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/Workaround  
If internal voltages must be measured when VCC is below 2.7V, measure the internal 1.00V reference instead of  
the bandgap.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
110  
8067O–AVR–06/2013  
17. DAC refresh may be blocked in S/H mode  
If the DAC is running in Sample and Hold (S/H) mode and conversion for one channel is done at maximum rate  
(i.e. the DAC is always busy doing conversion for this channel), this will block refresh signals to the second chan-  
nel.  
Problem fix/Workarund  
When using the DAC in S/H mode, ensure that none of the channels is running at maximum conversion rate, or  
ensure that the conversion rate of both channels is high enough to not require refresh.  
18. Inverted I/O enable does not affect Analog Comparator Output  
The inverted I/O pin function does not affect the Analog Comparator output function.  
Problem fix/Workarund  
Configure the analog comparator setup to give a inverted result (i.e. connect positive input to the negative AC input  
and vice versa), or use and externel inverter to change polarity of Analog Comparator Output.  
19. Both DFLLs and both oscillators has to be enabled for one to work  
In order to use the automatic runtime calibration for the 2 MHz or the 32 MHz internal oscilla-tors, the DFLL for  
both oscillators and both oscillators has to be enabled for one to work.  
Problem fix/Workarund  
Enabled both DFLLs and oscillators when using automatic runtime calibration for one of the internal oscillators.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
111  
8067O–AVR–06/2013  
37. Datasheet Revision History  
Please note that the referring page numbers in this section are referred to this document. The referring revision in this  
section are referring to the document revision.  
37.1 8067O – 06/2013  
1.  
Not recommended for new designs - Use XMEGA A1U series.  
37.2 8067N – 03/2013  
1.  
2.  
3.  
4.  
5
Removed all references to ATxmega192A1, ATxmega256A1 and ATxmega384A1.  
Updated module description. Based on the XMEGA A1U device datasheet.  
Updated analog comparator (AC) overview, Figure 28-1 on page 53.  
Updated “ADC Characteristics” on page 76.  
Updated page erase time in “Flash and EEPROM Memory Characteristics” on page 76.  
Updated Output low voltage conditions from IOH to IOL in “PAD Characteristics” on page 79.  
6
7.  
Removed TBDs from:  
“DC Characteristics” on page 73.  
“DAC Characteristics” on page 78.  
“Bandgap Characteristics” on page 78.  
8.  
9.  
Updated “Errata” on page 96 to be valid for both ATxmega64A1 and ATxmega128A1.  
Removed Boundary Scan Order table.  
37.3 8067M – 09/2010  
1.  
Updated Errata “ATxmega64A1and ATxmega128A1 rev. H” on page 96  
37.4 8067L – 08/2010  
1.  
2.  
3.  
4.  
5.  
Removed Footnote 3 of Figure 2-1 on page 3  
Updated “Features” on page 32. Event Channel 0 output on port pin 7  
Updated “DC Characteristics” on page 73, by adding ICC for Flash/EEPROM Programming.  
Added AVCC in “ADC Characteristics” on page 76.  
Updated Start up time in “ADC Characteristics” on page 76.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
112  
8067O–AVR–06/2013  
 
 
 
 
 
6.  
7.  
8.  
Updated “DAC Characteristics” on page 78. Removed DC output impedance.  
Fixed typo in “Packaging information” section.  
Fixed typo in “Errata” section.  
37.5 8067K – 02/2010  
1.  
Added “PDI Speed vs. VCC” on page 95.  
37.6 8067J – 02/2010  
1.  
2.  
3.  
3.  
4.  
5.  
6.  
Removed JTAG Reset from the datasheet.  
Updated “Timer/Counter and AWEX functions” on page 56.  
Updated “Alternate Pin Functions” on page 58.  
Updated all “Electrical Characteristics” on page 73.  
Updated “PAD Characteristics” on page 79.  
Changed Internal Oscillator Speed to “Oscillators and Wake-up Time” on page 92.  
Updated “Errata” on page 96  
37.7 8067I – 04/2009  
1.  
2.  
Updated “Ordering Information” on page 2.  
Updated “PAD Characteristics” on page 79.  
37.8 8067H – 04/2009  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Editorial updates.  
Updated “Overview” on page 54.  
Updated Table 29-9 on page 54.  
Updated “Peripheral Module Address Map” on page 62. IRCOM has address map: 0x08F8.  
Updated “Electrical Characteristics” on page 73.  
Updated “PAD Characteristics” on page 79.  
Updated “Typical Characteristics” on page 82.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
113  
8067O–AVR–06/2013  
 
 
 
 
37.9 8067G – 11/2008  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Updated “Block Diagram” on page 6.  
Updated feature list in “Memories” on page 12.  
Updated “Programming and Debugging” on page 54.  
Updated “Peripheral Module Address Map” on page 62. IRCOM has address 0x8F0.  
Added “Electrical Characteristics” on page 73.  
Added “Typical Characteristics” on page 82.  
Added “ATxmega64A1and ATxmega128A1 rev. H” on page 96.  
Updated “ATxmega64A1 and ATxmega128A1 rev. G” on page 107.  
37.10 8067F – 09/2008  
1.  
2.  
3.  
4.  
5.  
6.  
Updated “Features” on page 1  
Updated “Ordering Information” on page 2  
Updated Figure 7-1 on page 11 and Figure 7-2 on page 11.  
Updated Table 7-2 on page 15.  
Updated “Features” on page 48 and “Overview” on page 48.  
Removed “Interrupt Vector Summary” section from datasheet.  
37.11 8067E – 08/2008  
1.  
2.  
3.  
Changed Figure 2-1’s title to “Block diagram and pinout” on page 3.  
Updated Figure 2-2 on page 4.  
Updated Table 29-2 on page 51 and Table 29-3 on page 52.  
37.12 8067D – 07/2008  
1.  
2.  
3.  
Updated “Ordering Information” on page 2.  
Updated “Peripheral Module Address Map” on page 62.  
Inserted “Interrupt Vector Summary” on page 56.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
114  
8067O–AVR–06/2013  
 
 
 
 
37.13 8067C – 06/2008  
1.  
2.  
3.  
4.  
5.  
Updated the Front page and “Features” on page 1.  
Updated the “DC Characteristics” on page 73.  
Updated Figure 3-1 on page 6.  
Added “Flash and EEPROM Page Size” on page 15.  
Updated Table 33-6 on page 72 with new data: Gain Error, Offset Error and Signal -to-Noise  
Ratio (SNR).  
6.  
Updated Errata “ATxmega64A1 and ATxmega128A1 rev. G” on page 107.  
37.14 8067B – 05/2008  
1.  
Updated “Pinout/Block Diagram” on page 3 and “Pinout and Pin Functions” on page 55.  
2.  
Added XMEGA A1 Block Diagram, Figure 3-1 on page 6.  
Updated “Overview” on page 5 included the XMEGA A1 explanation text on page 6.  
Updated AVR CPU “Features” on page 8.  
3.  
4.  
5.  
Updated Event System block diagram, Figure 10-1 on page 20.  
Updated “Interrupts and Programmable Multilevel Interrupt Controller” on page 29.  
Updated “AC - Analog Comparator” on page 52.  
Updated “Alternate Pin Function Description” on page 55.  
Updated “Alternate Pin Functions” on page 58.  
Updated “Typical Characteristics” on page 82.  
6.  
7.  
8.  
9.  
10.  
11.  
12.  
13.  
14.  
15.  
16.  
Updated “Ordering Information” on page 2.  
Updated “Overview” on page 5.  
Updated Figure 6-1 on page 8.  
Inserted a new Figure 16-1 on page 37.  
Updated Speed grades in “Speed” on page 75.  
Added a new ATxmega384A1 device in “Features” on page 1, updated “Ordering Information” on  
page 2 and “Memories” on page 12.  
17.  
18.  
Replaced the Figure 3-1 on page 6 by a new XMEGA A1 detailed block diagram.  
Inserted Errata “ATxmega64A1 and ATxmega128A1 rev. G” on page 107.  
37.15 8067A – 02/2008  
1.  
Initial revision.  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
115  
8067O–AVR–06/2013  
 
 
 
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
116  
8067O–AVR–06/2013  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Pinout/Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1  
Recommended reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
5. Capacitive touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
6. Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
7. AVR CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
ALU - Arithmetic Logic Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
8. Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
In-System Programmable Flash Program Memory. . . . . . . . . . . . . . . . . . . . . 13  
Fuses and Lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
I/O Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
External Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Memory and Bus Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.10 Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
8.11 Device ID and Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
8.12 I/O Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
8.13 JTAG Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
8.14 Flash and EEPROM Page Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
9. DMAC - Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . . 18  
9.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
9.2  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10. Event System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
10.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
11. System Clock and Clock options . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
11.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
1
8067O–AVR–06/2013  
 
11.3 Clock Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
12. Power Management and Sleep Modes . . . . . . . . . . . . . . . . . . . . . . 24  
12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
12.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
12.3 Sleep Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
13. System Control and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
13.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
13.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
13.3 Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
13.4 Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
13.5 WDT - Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
13.6 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
14. Interrupts and Programmable Multilevel Interrupt Controller . . . . . . 29  
14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
14.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
14.3 Interrupt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
15. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
15.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
15.3 Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
15.4 Input sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
15.5 Port Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
15.6 Alternate Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
16. T/C - 16-bit Timer/Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
16.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
16.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
17. AWeX - Advanced Waveform Extension . . . . . . . . . . . . . . . . . . . . . 38  
17.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
17.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
18. Hi-Res - High Resolution Extension . . . . . . . . . . . . . . . . . . . . . . . . . 39  
18.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
18.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
19. RTC - 16-bit Real-Time Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
19.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
19.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
20. TWI - Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
20.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
20.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
21. SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
21.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
21.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
22. USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
2
8067O–AVR–06/2013  
22.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
22.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
23. IRCOM - IR Communication Module . . . . . . . . . . . . . . . . . . . . . . . . 45  
23.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
23.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
24. AES and DES Crypto Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
24.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
24.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
25. EBI – External Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
25.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
25.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
26. ADC - 12-bit Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . 48  
26.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
26.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
27. DAC - 12-bit Digital to Analog Converter . . . . . . . . . . . . . . . . . . . . . 50  
27.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
27.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
28. AC - Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
28.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
28.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
29. Programming and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
29.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
29.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
30. Pinout and Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
30.1 Alternate Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
30.2 Alternate Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
31. Peripheral Module Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
32. Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
33. Packaging information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
33.1 100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
33.2 100C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
33.3 100C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
34. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
34.1 Absolute Maximum Ratings*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
34.2 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
34.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
34.4 Flash and EEPROM Memory Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 76  
34.5 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
34.6 DAC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
34.7 Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
34.8 Bandgap Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
34.9 Brownout Detection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
3
8067O–AVR–06/2013  
34.10 PAD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
34.11 POR Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
34.12 Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
34.13 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
35. Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
35.1 Active Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
35.2 Idle Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
35.3 Power-down Supply Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
35.4 Power-save Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
35.5 Pin Pull-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
35.6 Pin Thresholds and Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
35.7 Bod Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
35.8 Bandgap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
35.9 Analog Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
35.10 Oscillators and Wake-up Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
35.11 PDI Speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
36. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
36.1 ATxmega64A1and ATxmega128A1 rev. H. . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
36.2 ATxmega64A1 and ATxmega128A1 rev. G . . . . . . . . . . . . . . . . . . . . . . . . . 107  
37. Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
37.1 8067O – 06/2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
37.2 8067N – 03/2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
37.3 8067M – 09/2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
37.4 8067L – 08/2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
37.5 8067K – 02/2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
37.6 8067J – 02/2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
37.7 8067I – 04/2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
37.8 8067H – 04/2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
37.9 8067G – 11/2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
37.10 8067F – 09/2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
37.11 8067E – 08/2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
37.12 8067D – 07/2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
37.13 8067C – 06/2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
37.14 8067B – 05/2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
37.15 8067A – 02/2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
4
8067O–AVR–06/2013  
[Not recommended for new designs - Use XMEGA A1U series] XMEGA A1 [DATASHEET]  
5
8067O–AVR–06/2013  
Atmel Corporation  
Atmel Asia Limited  
Atmel Munich GmbH  
Atmel Japan G.K.  
1600 Technology Drive  
Unit 01-5 & 16, 19F  
Business Campus  
16F Shin-Osaki Kangyo Bldg  
San Jose, CA 95110  
USA  
BEA Tower, Millennium City 5  
418 Kwun Tong Roa  
Kwun Tong, Kowloon  
HONG KONG  
Parkring 4  
1-6-4 Osaki, Shinagawa-ku  
Tokyo 141-0032  
D-85748 Garching b. Munich  
GERMANY  
Tel: (+1) (408) 441-0311  
Fax: (+1) (408) 487-2600  
www.atmel.com  
JAPAN  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+81) (3) 6417-0300  
Fax: (+81) (3) 6417-0370  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
© 2013 Atmel Corporation. All rights reserved. / Rev.: 8067O–AVR–06/2013  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its  
subsidiaries. Other terms and product names may be trademarks of others.  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this  
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES  
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,  
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF  
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time  
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,  
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.  

相关型号:

ATXMEGA64A1-C7U

8/16-bit XMEGA A1 Microcontroller
ATMEL

ATXMEGA64A1-C7U

IC MCU 8BIT 64KB FLASH 100VFBGA
MICROCHIP

ATXMEGA64A1-C7UR

IC MCU 8BIT 64KB FLASH 100VFBGA
MICROCHIP

ATXMEGA64A1-CU

8/16-bit XMEGA A1 Microcontroller
ATMEL

ATXMEGA64A1-CU

IC MCU 8BIT 64KB FLASH 100CBGA
MICROCHIP

ATXMEGA64A3

8/16-bit XMEGA A3 Microcontroller
ATMEL

ATXMEGA64A3-AU

8/16-bit XMEGA A3 Microcontroller
ATMEL

ATXMEGA64A3-AU-SL383

Microcontroller, 16-Bit, FLASH, AVR RISC CPU, 32MHz, CMOS, PQFP64, 14 X 14 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026AEB, TQFP-64
ATMEL

ATXMEGA64A3-MH

8/16-bit XMEGA A3 Microcontroller
ATMEL

ATXMEGA64A3-MH-SL383

Microcontroller, 16-Bit, FLASH, AVR RISC CPU, 32MHz, CMOS, 9 X 9 MM, 1 MM HEIGHT, 0.50 MM PITCH, GREEN, MO-220VMMD, QFN-64
ATMEL

ATXMEGA64A3-MU

8/16-bit XMEGA A3 Microcontroller
ATMEL

ATXMEGA64A3U-AU

8/16-bit Atmel XMEGA A3U Microcontroller
ATMEL