DSPIC30F0011AT-20I/PF [MICROCHIP]

High-Performance, 16-Bit Digital Signal Controllers; 高性能16位数字信号控制器
DSPIC30F0011AT-20I/PF
型号: DSPIC30F0011AT-20I/PF
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance, 16-Bit Digital Signal Controllers
高性能16位数字信号控制器

控制器
文件: 总228页 (文件大小:3687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC30F6011/6012/6013/6014  
Data Sheet  
High-Performance, 16-Bit  
Digital Signal Controllers  
© 2006 Microchip Technology Inc.  
DS70117F  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs,  
microperipherals, nonvolatile memory and analog products. In addition,  
Microchip’s quality system for the design and manufacture of  
development systems is ISO 9001:2000 certified.  
DS70117F-page ii  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
dsPIC30F6011/6012/6013/6014 High-Performance  
Digital Signal Controllers  
Peripheral Features:  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
• High current sink/source I/O pins: 25 mA/25 mA  
• Five 16-bit timers/counters; optionally pair up  
16-bit timers into 32-bit timer modules  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
• 16-bit Capture input functions  
• 16-bit Compare/PWM output functions  
• Data Converter Interface (DCI) supports common  
audio Codec protocols, including I2S and AC’97  
High-Performance Modified RISC CPU:  
• 3-wire SPI modules (supports 4 Frame modes)  
• I2C™ module supports Multi-Master/Slave mode  
and 7-bit/10-bit addressing  
• Modified Harvard architecture  
• C compiler optimized instruction set architecture  
• Flexible addressing modes  
• Two addressable UART modules with FIFO  
buffers  
• 83 base instructions  
• 24-bit wide instructions, 16-bit wide data path  
• Up to 144 Kbytes on-chip Flash program space  
• Up to 48K instruction words  
• Two CAN bus modules compliant with CAN 2.0B  
standard  
• Up to 8 Kbytes of on-chip data RAM  
• Up to 4 Kbytes of nonvolatile data EEPROM  
• 16 x 16-bit working register array  
• Up to 30 MIPS operation:  
Analog Features:  
• 12-bit Analog-to-Digital Converter (ADC) with:  
- 200 ksps conversion rate  
- Up to 16 input channels  
- DC to 40 MHz external clock input  
- Conversion available during Sleep and Idle  
• Programmable Low-Voltage Detection (PLVD)  
• Programmable Brown-out Reset  
- 4 MHz-10 MHz oscillator input with PLL  
active (4x, 8x, 16x)  
• Up to 41 interrupt sources:  
- 8 user-selectable priority levels  
- 5 external interrupt sources  
- 4 processor traps  
Special Microcontroller Features:  
• Enhanced Flash program memory:  
- 10,000 erase/write cycle (min.) for  
industrial temperature range, 100K (typical)  
DSP Features:  
• Data EEPROM memory:  
• Dual data fetch  
- 100,000 erase/write cycle (min.) for  
industrial temperature range, 1M (typical)  
• Modulo and Bit-Reversed modes  
• Two 40-bit wide accumulators with optional  
saturation logic  
• Self-reprogrammable under software control  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• 17-bit x 17-bit single cycle hardware fractional/  
integer multiplier  
• Flexible Watchdog Timer (WDT) with on-chip low  
power RC oscillator for reliable operation  
• All DSP instructions are single cycle:  
- Multiply-Accumulate (MAC) operation  
• Single-cycle ±16 shift  
© 2006 Microchip Technology Inc.  
DS70117F-page 1  
dsPIC30F6011/6012/6013/6014  
Special Microcontroller Features (Cont.):  
CMOS Technology:  
• Fail-Safe Clock Monitor operation:  
• Low-power, high-speed Flash technology  
• Wide operating voltage range (2.5V to 5.5V)  
• Industrial and Extended temperature ranges  
• Low power consumption  
- Detects clock failure and switches to on-chip  
low power RC oscillator  
• Programmable code protection  
• In-Circuit Serial Programming™ (ICSP™)  
• Selectable Power Management modes:  
- Sleep, Idle and Alternate Clock modes  
dsPIC30F6011/6012/6013/6014 Controller Families  
Program Memory  
Output  
Comp/Std  
PWM  
SRAM EEPROM Timer Input  
Codec A/D12-bit  
Interface 200 ksps  
Device  
Pins  
Bytes  
Bytes  
16-bit Cap  
Bytes Instructions  
dsPIC30F6011  
dsPIC30F6012  
dsPIC30F6013  
dsPIC30F6014  
64  
64  
80  
80  
132K  
144K  
132K  
144K  
44K  
48K  
44K  
48K  
6144  
8192  
6144  
8192  
2048  
4096  
2048  
4096  
5
5
5
5
8
8
8
8
8
8
8
8
16 ch  
AC’97, I S 16 ch  
16 ch  
AC’97, I S 16 ch  
2
2
2
2
2
2
2
2
1
1
1
1
2
2
2
2
2
2
DS70117F-page 2  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Pin Diagrams  
64-Pin TQFP  
RG15  
T2CK/RC1  
T3CK/RC2  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
EMUC1/SOSCO/T1CK/CN0/RC14  
EMUD1/SOSCI/T4CK/CN1/RC13  
EMUC2/OC1/RD0  
IC4/INT4/RD11  
2
3
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
4
5
IC3/INT3/RD10  
6
IC2/INT2/RD9  
7
IC1/INT1/RD8  
SS2/CN11/RG9  
VSS  
8
VSS  
dsPIC30F6011  
9
OSC2/CLKO/RC15  
OSC1/CLKI  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
VDD  
SCL/RG2  
SDA/RG3  
AN2/SS1/LVDIN/CN4/RB2  
PGC/EMUC/AN1/VREF-/CN3/RB1  
PGD/EMUD/AN0/VREF+/CN2/RB0  
EMUC3/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
EMUD3/U1TX/SDO1/RF3  
*dsPIC30F6011A recommended for new designs  
Note: For descriptions of individual pins, see Section 1.0 “Device Overview”.  
© 2006 Microchip Technology Inc.  
DS70117F-page 3  
dsPIC30F6011/6012/6013/6014  
Pin Diagrams (Continued)  
64-Pin TQFP  
COFS/RG15  
T2CK/RC1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
EMUC1/SOSCO/T1CK/CN0/RC14  
EMUD1/SOSCI/T4CK/CN1/RC13  
EMUC2/OC1/RD0  
IC4/INT4/RD11  
2
T3CK/RC2  
3
SCK2/CN8/RG6  
SDI2/CN9/RG7  
4
5
IC3/INT3/RD10  
SDO2/CN10/RG8  
MCLR  
6
IC2/INT2/RD9  
7
IC1/INT1/RD8  
SS2/CN11/RG9  
8
VSS  
dsPIC30F6012  
VSS  
9
OSC2/CLKO/RC15  
OSC1/CLKI  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
VDD  
SCL/RG2  
SDA/RG3  
AN2/SS1/LVDIN/CN4/RB2  
PGC/EMUC/AN1/VREF-/CN3/RB1  
PGD/EMUD/AN0/VREF+/CN2/RB0  
EMUC3/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
EMUD3/U1TX/SDO1/RF3  
*dsPIC30F6012A recommended for new designs  
Note: For descriptions of individual pins, see Section 1.0 “Device Overview”.  
DS70117F-page 4  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Pin Diagrams (Continued)  
80-Pin TQFP  
EMUC1/SOSCO/T1CK/CN0/RC14  
EMUD1/SOSCI/CN1/RC13  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
RG15  
T2CK/RC1  
2
3
EMUC2/OC1/RD0  
IC4/RD11  
T3CK/RC2  
T4CK/RC3  
4
IC3/RD10  
T5CK/RC4  
5
IC2/RD9  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
6
IC1/RD8  
7
INT4/RA15  
8
INT3/RA14  
VSS  
9
SS2/CN11/RG9  
10  
11  
12  
dsPIC30F6013  
OSC2/CLKO/RC15  
OSC1/CLKI  
VSS  
VDD  
VDD  
INT1/RA12  
13  
14  
15  
16  
17  
18  
19  
20  
SCL/RG2  
SDA/RG3  
INT2/RA13  
AN5/CN7/RB5  
AN4/CN6/RB4  
AN3/CN5/RB3  
EMUC3/SCK1/INT0/RF6  
SDI1/RF7  
EMUD3/SDO1/RF8  
U1RX/RF2  
AN2/SS1/LVDIN/CN4/RB2  
PGC/EMUC/AN1/CN3/RB1  
U1TX/RF3  
PGD/EMUD/AN0/CN2/RB0  
*dsPIC30F6013A recommended for new designs  
Note: For descriptions of individual pins, see Section 1.0 “Device Overview”.  
© 2006 Microchip Technology Inc.  
DS70117F-page 5  
dsPIC30F6011/6012/6013/6014  
Pin Diagrams (Continued)  
80-Pin TQFP  
EMUC1/SOSCO/T1CK/CN0/RC14  
EMUD1/SOSCI/CN1/RC13  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
COFS/RG15  
T2CK/RC1  
2
3
EMUC2/OC1/RD0  
IC4/RD11  
T3CK/RC2  
T4CK/RC3  
4
IC3/RD10  
T5CK/RC4  
5
IC2/RD9  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
6
IC1/RD8  
7
INT4/RA15  
8
INT3/RA14  
VSS  
9
SS2/CN11/RG9  
VSS  
10  
11  
12  
dsPIC30F6014  
OSC2/CLKO/RC15  
OSC1/CLKI  
VDD  
VDD  
INT1/RA12  
INT2/RA13  
AN5/CN7/RB5  
13  
14  
15  
16  
17  
18  
19  
20  
SCL/RG2  
SDA/RG3  
EMUC3/SCK1/INT0/RF6  
SDI1/RF7  
AN4/CN6/RB4  
AN3/CN5/RB3  
EMUD3/SDO1/RF8  
U1RX/RF2  
AN2/SS1/LVDIN/CN4/RB2  
PGC/EMUC/AN1/CN3/RB1  
PGD/EMUD/AN0/CN2/RB0  
U1TX/RF3  
*dsPIC30F6014A recommended for new designs  
Note: For descriptions of individual pins, see Section 1.0 “Device Overview”.  
DS70117F-page 6  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 CPU Architecture Overview........................................................................................................................................................ 15  
3.0 Memory Organization................................................................................................................................................................. 25  
4.0 Address Generator Units............................................................................................................................................................ 39  
5.0 Interrupts .................................................................................................................................................................................... 45  
6.0 Flash Program Memory.............................................................................................................................................................. 51  
7.0 Data EEPROM Memory ............................................................................................................................................................. 57  
8.0 I/O Ports ..................................................................................................................................................................................... 63  
9.0 Timer1 Module ........................................................................................................................................................................... 69  
10.0 Timer2/3 Module ........................................................................................................................................................................ 73  
11.0 Timer4/5 Module ....................................................................................................................................................................... 79  
12.0 Input Capture Module................................................................................................................................................................. 83  
13.0 Output Compare Module............................................................................................................................................................ 87  
14.0 SPI Module................................................................................................................................................................................. 91  
15.0 I2C Module................................................................................................................................................................................. 95  
16.0 Universal Asynchronous Receiver Transmitter (UART) Module .............................................................................................. 103  
17.0 CAN Module............................................................................................................................................................................. 111  
18.0 Data Converter Interface (DCI) Module.................................................................................................................................... 125  
19.0 12-bit Analog-to-Digital Converter (A/D) Module...................................................................................................................... 135  
20.0 System Integration ................................................................................................................................................................... 145  
21.0 Instruction Set Summary.......................................................................................................................................................... 161  
22.0 Development Support............................................................................................................................................................... 169  
23.0 Electrical Characteristics.......................................................................................................................................................... 173  
24.0 Packaging Information.............................................................................................................................................................. 211  
Appendix A: Revision History............................................................................................................................................................. 215  
Index .................................................................................................................................................................................................. 217  
The Microchip Web Site..................................................................................................................................................................... 223  
Customer Change Notification Service .............................................................................................................................................. 223  
Customer Support.............................................................................................................................................................................. 223  
Reader Response.............................................................................................................................................................................. 224  
Product Identification System ............................................................................................................................................................ 225  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2006 Microchip Technology Inc.  
DS70117F-page 7  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 8  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
This document contains specific information for the  
dsPIC30F6011/6012/6013/6014 Digital Signal Control-  
1.0  
DEVICE OVERVIEW  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
ler (DSC) devices. The dsPIC30F devices contain  
extensive Digital Signal Processor (DSP) functionality  
within a high-performance 16-bit microcontroller (MCU)  
architecture. Figure 1-1 and Figure 1-2 show device  
block diagrams for dsPIC30F6011/6012 and  
dsPIC30F6013/6014 respectively.  
© 2006 Microchip Technology Inc.  
DS70117F-page 9  
dsPIC30F6011/6012/6013/6014  
FIGURE 1-1:  
dsPIC30F6011/6012 BLOCK DIAGRAM  
Y Data Bus  
X Data Bus  
16  
16  
16  
16  
Data Latch  
Data Latch  
Interrupt  
Controller  
PSV & Table  
Data Access  
Control Block  
X Data  
RAM  
Y Data  
RAM  
8
16  
24  
24  
16  
Address  
Latch  
Address  
Latch  
PGD/EMUD/AN0/VREF+/CN2/RB0  
PGC/EMUC/AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
24  
16  
16  
16  
X RAGU  
X WAGU  
Y AGU  
PCH PCL  
PCU  
AN4/IC7/CN6/RB4  
AN5/IC8/CN7/RB5  
AN6/OCFA/RB6  
AN7/RB7  
AN8/RB8  
AN9/RB9  
Program Counter  
Stack  
Control  
Logic  
Loop  
Control  
Logic  
Address Latch  
Program Memory  
(Up to 144 Kbytes)  
Data EEPROM  
(Up to 4 Kbytes)  
AN10/RB10  
AN11/RB11  
Effective Address  
AN12/RB12  
AN13/RB13  
16  
Data Latch  
AN14/RB14  
ROM Latch  
AN15/OCFB/CN12/RB15  
16  
24  
PORTB  
PORTC  
T2CK/RC1  
T3CK/RC2  
IR  
16  
EMUD1/SOSCI/T4CK/CN1/RC13  
EMUC1/SOSCO/T1CK/CN0/RC14  
OSC2/CLKO/RC15  
16  
16 x 16  
W Reg Array  
Decode  
Instruction  
Decode &  
Control  
16 16  
EMUC2/OC1/RD0  
EMUD2/OC2/RD1  
OC3/RD2  
Control Signals  
OSC1/CLKI  
DSP  
Engine  
Divide  
Unit  
to Various Blocks  
Power-up  
Timer  
OC4/RD3  
OC5/IC5/CN13/RD4  
OC6/IC6/CN14/RD5  
OC7/CN15/RD6  
OC8/CN16/RD7  
IC1/INT1/RD8  
Timing  
Generation  
Oscillator  
Start-up Timer  
ALU<16>  
16  
POR/BOR  
Reset  
IC2/INT2/RD9  
IC3/INT3/RD10  
IC4/INT4/RD11  
16  
Watchdog  
Timer  
MCLR  
Low-Voltage  
Detect  
PORTD  
VDD, VSS  
AVDD, AVSS  
Input  
Capture  
Module  
Output  
Compare  
Module  
C1RX/RF0  
C1TX/RF1  
U1RX/SDI1/RF2  
EMUD3/U1TX/SDO1/RF3  
CAN1,  
CAN2  
I2C™  
12-bit ADC  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
EMUC3/SCK1/INT0/RF6  
PORTF  
SPI1,  
SPI2  
UART1,  
UART2  
DCI  
Timers  
C2RX/RG0  
C2TX/RG1  
SCL/RG2  
SDA/RG3  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
SS2/CN11/RG9  
CSDI*/RG12  
CSDO*/RG13  
CSCK*/RG14  
COFS*/RG15  
*Present in the dsPIC30F6012 only.  
PORTG  
DS70117F-page 10  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 1-2:  
dsPIC30F6013/6014 BLOCK DIAGRAM  
CN22/RA6  
CN23/RA7  
Y Data Bus  
X Data Bus  
VREF-/RA9  
16  
VREF+/RA10  
16  
16  
16  
INT1/RA12  
INT2/RA13  
INT3/RA14  
INT4/RA15  
Data Latch  
Data Latch  
Interrupt  
Controller  
PSV & Table  
Data Access  
Control Block  
X Data  
RAM  
Y Data  
RAM  
8
16  
24  
24  
PORTA  
16  
Address  
Latch  
Address  
Latch  
24  
PGD/EMUD/AN0/CN2/RB0  
PGC/EMUC/AN1/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
AN4/CN6/RB4  
AN5/CN7/RB5  
AN6/OCFA/RB6  
AN7/RB7  
16  
16  
16  
X RAGU  
X WAGU  
Y AGU  
PCH PCL  
Program Counter  
PCU  
Stack  
Control  
Logic  
Loop  
Control  
Logic  
Address Latch  
Program Memory  
(Up to 144 Kbytes)  
AN8/RB8  
AN9/RB9  
Data EEPROM  
(Up to 4 Kbytes)  
AN10/RB10  
AN11/RB11  
AN12/RB12  
Effective Address  
16  
Data Latch  
AN13/RB13  
AN14/RB14  
AN15/OCFB/CN12/RB15  
ROM Latch  
16  
24  
PORTB  
T2CK/RC1  
T3CK/RC2  
IR  
T4CK/RC3  
T5CK/RC4  
16  
16  
16 x 16  
W Reg Array  
EMUD1/SOSCI/CN1/RC13  
EMUC1/SOSCO/T1CK/CN0/RC14  
OSC2/CLKO/RC15  
Decode  
Instruction  
Decode &  
Control  
PORTC  
16 16  
EMUC2/OC1/RD0  
EMUD2/OC2/RD1  
OC3/RD2  
Control Signals  
OSC1/CLKI  
DSP  
Engine  
OC4/RD3  
Divide  
Unit  
to Various Blocks  
Power-up  
Timer  
OC5/CN13/RD4  
OC6/CN14/RD5  
OC7/CN15/RD6  
OC8/CN16/RD7  
IC1/RD8  
Timing  
Generation  
Oscillator  
Start-up Timer  
ALU<16>  
16  
POR/BOR  
Reset  
IC2/RD9  
IC3/RD10  
IC4/RD11  
16  
Watchdog  
Timer  
MCLR  
IC5/RD12  
IC6/CN19/RD13  
IC7/CN20/RD14  
IC8/CN21/RD15  
Low-Voltage  
Detect  
VDD, VSS  
AVDD, AVSS  
PORTD  
C1RX/RF0  
C1TX/RF1  
U1RX/RF2  
U1TX/RF3  
Input  
Capture  
Module  
Output  
Compare  
Module  
CAN1,  
CAN2  
I2C™  
12-bit ADC  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
EMUC3/SCK1/INT0/RF6  
SDI1/RF7  
SPI1,  
SPI2  
UART1,  
UART2  
DCI  
EMUD3/SDO1/RF8  
Timers  
PORTF  
C2RX/RG0  
C2TX/RG1  
SCL/RG2  
SDA/RG3  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
SS2/CN11/RG9  
CSDI*/RG12  
CSDO*/RG13  
CSCK*/RG14  
COFS*/RG15  
PORTG  
*Present in the dsPIC30F6014 only.  
© 2006 Microchip Technology Inc.  
DS70117F-page 11  
dsPIC30F6011/6012/6013/6014  
Table 1-1 provides a brief description of device I/O  
pinouts and the functions that may be multiplexed to a  
port pin. Multiple functions may exist on one port pin.  
When multiplexing occurs, the peripheral module’s  
functional requirements may force an override of the  
data direction of the port pin.  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
AN0-AN15  
I
Analog  
Analog input channels.  
AN0 and AN1 are also used for device programming data and  
clock inputs, respectively.  
AVDD  
AVSS  
CLKI  
P
P
I
P
P
Positive supply for analog module.  
Ground reference for analog module.  
ST/CMOS  
External clock source input. Always associated with OSC1 pin  
function.  
CLKO  
O
Oscillator crystal output. Connects to crystal or resonator in  
Crystal Oscillator mode. Optionally functions as CLKO in RC  
and EC modes. Always associated with OSC2 pin  
function.  
CN0-CN23  
I
ST  
Input change notification inputs.  
Can be software programmed for internal weak pull-ups on all  
inputs.  
COFS  
CSCK  
CSDI  
I/O  
I/O  
I
ST  
ST  
ST  
Data Converter Interface frame synchronization pin.  
Data Converter Interface serial clock input/output pin.  
Data Converter Interface serial data input pin.  
Data Converter Interface serial data output pin.  
CSDO  
O
C1RX  
C1TX  
C2RX  
C2TX  
I
O
I
ST  
ST  
CAN1 bus receive pin.  
CAN1 bus transmit pin.  
CAN2 bus receive pin.  
CAN2 bus transmit pin  
O
EMUD  
EMUC  
EMUD1  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ICD Primary Communication Channel data input/output pin.  
ICD Primary Communication Channel clock input/output pin.  
ICD Secondary Communication Channel data  
input/output pin.  
EMUC1  
EMUD2  
EMUC2  
EMUD3  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ICD Secondary Communication Channel clock input/output pin.  
ICD Tertiary Communication Channel data input/output pin.  
ICD Tertiary Communication Channel clock input/output pin.  
ICD Quaternary Communication Channel data  
input/output pin.  
EMUC3  
IC1-IC8  
I/O  
I
ST  
ST  
ICD Quaternary Communication Channel clock input/output pin.  
Capture inputs 1 through 8.  
INT0  
INT1  
INT2  
INT3  
INT4  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
External interrupt 0.  
External interrupt 1.  
External interrupt 2.  
External interrupt 3.  
External interrupt 4.  
LVDIN  
MCLR  
I
Analog  
ST  
Low-Voltage Detect Reference Voltage input pin.  
I/P  
Master Clear (Reset) input or programming voltage input. This  
pin is an active low Reset to the device.  
OCFA  
OCFB  
OC1-OC8  
I
I
O
ST  
ST  
Compare Fault A input (for Compare channels 1, 2, 3 and 4).  
Compare Fault B input (for Compare channels 5, 6, 7 and 8).  
Compare outputs 1 through 8.  
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
P
= Output  
= Power  
DS70117F-page 12  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
OSC1  
OSC2  
I
ST/CMOS  
Oscillator crystal input. ST buffer when configured in RC mode;  
CMOS otherwise.  
Oscillator crystal output. Connects to crystal or resonator in  
Crystal Oscillator mode. Optionally functions as CLKO in RC  
and EC modes.  
I/O  
PGD  
PGC  
I/O  
I
ST  
ST  
In-Circuit Serial Programming data input/output pin.  
In-Circuit Serial Programming clock input pin.  
RA6-RA7  
RA9-RA10  
RA12-RA15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTA is a bidirectional I/O port.  
RB0-RB15  
I/O  
ST  
PORTB is a bidirectional I/O port.  
PORTC is a bidirectional I/O port.  
RC1-RC4  
RC13-RC15  
I/O  
I/O  
ST  
ST  
RD0-RD15  
RF0-RF8  
I/O  
I/O  
ST  
ST  
PORTD is a bidirectional I/O port.  
PORTF is a bidirectional I/O port.  
PORTG is a bidirectional I/O port.  
RG0-RG3  
RG6-RG9  
RG12-RG15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
SCK1  
SDI1  
SDO1  
SS1  
SCK2  
SDI2  
SDO2  
SS2  
I/O  
ST  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for SPI1.  
SPI1 Data In.  
SPI1 Data Out.  
SPI1 Slave Synchronization.  
Synchronous serial clock input/output for SPI2.  
SPI2 Data In.  
I
O
I
I/O  
I
O
I
SPI2 Data Out.  
SPI2 Slave Synchronization.  
ST  
2
SCL  
SDA  
I/O  
I/O  
ST  
ST  
Synchronous serial clock input/output for I C™.  
2
Synchronous serial data input/output for I C.  
SOSCO  
SOSCI  
O
I
32 kHz low power oscillator crystal output.  
32 kHz low power oscillator crystal input. ST buffer when  
configured in RC mode; CMOS otherwise.  
ST/CMOS  
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
Timer1 external clock input.  
Timer2 external clock input.  
Timer3 external clock input.  
Timer4 external clock input.  
Timer5 external clock input.  
U1RX  
U1TX  
U1ARX  
U1ATX  
U2RX  
U2TX  
I
O
I
O
I
ST  
ST  
ST  
UART1 Receive.  
UART1 Transmit.  
UART1 Alternate Receive.  
UART1 Alternate Transmit.  
UART2 Receive.  
O
UART2 Transmit.  
VDD  
P
P
I
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Analog Voltage Reference (High) input.  
Analog Voltage Reference (Low) input.  
Analog = Analog input  
VSS  
VREF+  
VREF-  
Analog  
Analog  
I
Legend: CMOS = CMOS compatible input or output  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
P
= Output  
= Power  
© 2006 Microchip Technology Inc.  
DS70117F-page 13  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 14  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
There are two methods of accessing data stored in  
program memory:  
2.0  
CPU ARCHITECTURE  
OVERVIEW  
• The upper 32 Kbytes of data space memory can  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
be mapped into the lower half (user space) of pro-  
gram space at any 16K program word boundary,  
defined by the 8-bit Program Space Visibility Page  
(PSVPAG) register. This lets any instruction  
access program space as if it were data space,  
with a limitation that the access requires an addi-  
tional cycle. Moreover, only the lower 16 bits of  
each instruction word can be accessed using this  
method.  
2.1  
Core Overview  
• Linear indirect access of 32K word pages within  
program space is also possible using any working  
register, via table read and write instructions.  
Table read and write instructions can be used to  
access all 24 bits of an instruction word.  
This section contains a brief overview of the CPU  
architecture of the dsPIC30F. For additional hard-  
ware and programming information, please refer to  
the “dsPIC30F Family Reference Manual” (DS70046)  
and the dsPIC30F/33F Programmer’s Reference  
Manual” (DS70157) respectively.  
Overhead-free circular buffers (Modulo Addressing)  
are supported in both X and Y address spaces. This is  
primarily intended to remove the loop overhead for  
DSP algorithms.  
The core has a 24-bit instruction word. The Program  
Counter (PC) is 23 bits wide with the Least Significant  
bit (LSb) always clear (refer to Section 3.1 “Program  
Address Space”), and the Most Significant bit (MSb)  
is ignored during normal program execution, except for  
certain specialized instructions. Thus, the PC can  
address up to 4M instruction words of user program  
space. An instruction prefetch mechanism is used to  
help maintain throughput. Program loop constructs,  
free from loop count management overhead, are sup-  
ported using the DOand REPEAT instructions, both of  
which are interruptible at any point.  
The X AGU also supports Bit-Reversed Addressing on  
destination effective addresses to greatly simplify input  
or output data reordering for radix-2 FFT algorithms.  
Refer to Section 4.0 “Address Generator Units” for  
details on Modulo and Bit-Reversed Addressing.  
The core supports Inherent (no operand), Relative,  
Literal, Memory Direct, Register Direct, Register  
Indirect, Register Offset and Literal Offset Addressing  
modes. Instructions are associated with predefined  
addressing modes, depending upon their functional  
requirements.  
The working register array consists of 16 x 16-bit regis-  
ters, each of which can act as data, address or offset  
registers. One working register (W15) operates as a  
software Stack Pointer for interrupts and calls.  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working reg-  
ister (data) read, a data memory write and a program  
(instruction) memory read per instruction cycle. As a  
result, 3-operand instructions are supported, allowing  
C = A + B operations to be executed in a single cycle.  
The data space is 64 Kbytes (32K words) and is split  
into two blocks, referred to as X and Y data memory.  
Each block has its own independent Address Genera-  
tion Unit (AGU). Most instructions operate solely  
through the X memory, AGU, which provides the  
appearance of a single unified data space. The  
Multiply-Accumulate (MAC) class of dual source DSP  
instructions operate through both the X and Y AGUs,  
splitting the data address space into two parts (see  
Section 3.2 “Data Address Space”). The X and Y  
data space boundary is device specific and cannot be  
altered by the user. Each data word consists of 2 bytes,  
and most instructions can address data either as words  
or bytes.  
A DSP engine has been included to significantly  
enhance the core arithmetic capability and throughput.  
It features a high-speed 17-bit by 17-bit multiplier, a  
40-bit ALU, two 40-bit saturating accumulators and a  
40-bit bidirectional barrel shifter. Data in the accumula-  
tor or any working register can be shifted up to 15 bits  
right, or 16 bits left in a single cycle. The DSP instruc-  
tions operate seamlessly with all other instructions and  
have been designed for optimal real-time performance.  
The MAC class of instructions can concurrently fetch  
two data operands from memory while multiplying two  
W registers. To enable this concurrent fetching of data  
operands, the data space has been split for these  
instructions and linear for all others. This has been  
achieved in a transparent and flexible manner, by ded-  
icating certain working registers to each address space  
for the MAC class of instructions.  
© 2006 Microchip Technology Inc.  
DS70117F-page 15  
dsPIC30F6011/6012/6013/6014  
The core does not support a multi-stage instruction  
pipeline. However, a single stage instruction prefetch  
mechanism is used, which accesses and partially  
decodes instructions a cycle ahead of execution, in  
order to maximize available execution time. Most  
instructions execute in a single cycle with certain  
exceptions.  
2.2.1  
SOFTWARE STACK POINTER/  
FRAME POINTER  
The dsPIC® DSC devices contain a software stack.  
W15 is the dedicated software Stack Pointer (SP), and  
will be automatically modified by exception processing  
and subroutine calls and returns. However, W15 can be  
referenced by any instruction in the same manner as all  
other W registers. This simplifies the reading, writing  
and manipulation of the Stack Pointer (e.g., creating  
stack frames).  
The core features a vectored exception processing  
structure for traps and interrupts, with 62 independent  
vectors. The exceptions consist of up to 8 traps (of  
which 4 are reserved) and 54 interrupts. Each interrupt  
is prioritized based on a user assigned priority between  
1 and 7 (1 being the lowest priority and 7 being the  
highest), in conjunction with a predetermined ‘natural  
order’. Traps have fixed priorities ranging from 8 to 15.  
Note:  
In order to protect against misaligned  
stack accesses, W15<0> is always clear.  
W15 is initialized to 0x0800 during a Reset. The user  
may reprogram the SP during initialization to any  
location within data space.  
2.2  
Programmer’s Model  
W14 has been dedicated as a Stack Frame Pointer as  
defined by the LNK and ULNK instructions. However,  
W14 can be referenced by any instruction in the same  
manner as all other W registers.  
The programmer’s model is shown in Figure 2-1 and  
consists of 16 x 16-bit working registers (W0 through  
W15), 2 x 40-bit accumulators (ACCA and ACCB),  
STATUS register (SR), Data Table Page register  
(TBLPAG), Program Space Visibility Page register  
(PSVPAG), DO and REPEAT registers (DOSTART,  
DOEND, DCOUNT and RCOUNT) and Program  
Counter (PC). The working registers can act as data,  
address or offset registers. All registers are memory  
mapped. W0 acts as the W register for file register  
addressing.  
2.2.2  
STATUS REGISTER  
The dsPIC DSC core has a 16-bit STATUS register  
(SR), the LSB of which is referred to as the SR Low  
byte (SRL) and the Most Significant Byte (MSB) as the  
SR High byte (SRH). See Figure 2-1 for SR layout.  
SRL contains all the MCU ALU operation status flags  
(including the Z bit), as well as the CPU Interrupt Prior-  
ity Level status bits, IPL<2:0> and the Repeat Active  
status bit, RA. During exception processing, SRL is  
concatenated with the MSB of the PC to form a  
complete word value which is then stacked.  
Some of these registers have a shadow register asso-  
ciated with each of them, as shown in Figure 2-1. The  
shadow register is used as a temporary holding register  
and can transfer its contents to or from its host register  
upon the occurrence of an event. None of the shadow  
registers are accessible directly. The following rules  
apply for transfer of registers into and out of shadows.  
The upper byte of the STATUS register contains the  
DSP Adder/Subtracter status bits, the DO Loop Active  
bit (DA) and the Digit Carry (DC) status bit.  
PUSH.Sand POP.S  
W0, W1, W2, W3, SR (DC, N, OV, Z and C bits  
only) are transferred.  
2.2.3  
PROGRAM COUNTER  
The program counter is 23 bits wide; bit 0 is always  
clear. Therefore, the PC can address up to 4M  
instruction words.  
DOinstruction  
DOSTART, DOEND, DCOUNT shadows are  
pushed on loop start, and popped on loop end.  
When a byte operation is performed on a working reg-  
ister, only the Least Significant Byte (LSB) of the target  
register is affected. However, a benefit of memory  
mapped working registers is that both the Least and  
Most Significant Bytes can be manipulated through  
byte wide data memory space accesses.  
DS70117F-page 16  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 2-1:  
PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD0  
AD15  
AD39  
ACCA  
AD31  
DSP  
Accumulators  
ACCB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB  
SA SB OAB SAB DA DC  
SRH  
IPL0 RA  
N
OV  
Z
C
IPL2 IPL1  
STATUS Register  
SRL  
© 2006 Microchip Technology Inc.  
DS70117F-page 17  
dsPIC30F6011/6012/6013/6014  
The divide instructions must be executed within a  
REPEAT loop. Any other form of execution (e.g., a  
series of discrete divide instructions) will not function  
correctly because the instruction flow depends on  
RCOUNT. The divide instruction does not automatically  
set up the RCOUNT value and it must, therefore, be  
explicitly and correctly specified in the REPEATinstruc-  
tion as shown in Table 2-1 (REPEATwill execute the tar-  
get instruction {operand value + 1} times). The REPEAT  
loop count must be setup for 18 iterations of the DIV/  
DIVF instruction. Thus, a complete divide operation  
requires 19 cycles.  
2.3  
Divide Support  
The dsPIC DSC devices feature a 16/16-bit signed  
fractional divide operation, as well as 32/16-bit and 16/  
16-bit signed and unsigned integer divide operations, in  
the form of single instruction iterative divides. The fol-  
lowing instructions and data sizes are supported:  
1. DIVF- 16/16 signed fractional divide  
2. DIV.sd- 32/16 signed divide  
3. DIV.ud- 32/16 unsigned divide  
4. DIV.sw- 16/16 signed divide  
5. DIV.uw- 16/16 unsigned divide  
Note:  
The divide flow is interruptible. However,  
the user needs to save the context as  
appropriate.  
The 16/16 divides are similar to the 32/16 (same number  
of iterations), but the dividend is either zero-extended or  
sign-extended during the first iteration.  
TABLE 2-1:  
Instruction  
DIVIDE INSTRUCTIONS  
Function  
DIVF  
Signed fractional divide: Wm/Wn W0; Rem W1  
Signed divide: (Wm + 1:Wm)/Wn W0; Rem W1  
Unsigned divide: (Wm + 1:Wm/Wn W0; Rem W1  
Signed divide: Wm/Wn W0; Rem W1  
DIV.sd  
DIV.ud  
DIV.sw  
DIV.uw  
Unsigned divide: Wm/Wn W0; Rem W1  
DS70117F-page 18  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
The DSP engine has various options selected through  
various bits in the CPU Core Configuration register  
(CORCON), as listed below:  
2.4  
DSP Engine  
The DSP engine consists of a high-speed 17-bit x  
17-bit multiplier, a barrel shifter and a 40-bit adder/  
subtracter (with two target accumulators, round and  
saturation logic).  
1. Fractional or integer DSP multiply (IF).  
2. Signed or unsigned DSP multiply (US).  
3. Conventional or convergent rounding (RND).  
4. Automatic saturation on/off for ACCA (SATA).  
5. Automatic saturation on/off for ACCB (SATB).  
The dsPIC30F is a single-cycle instruction flow archi-  
tecture, therefore, concurrent operation of the DSP  
engine with MCU instruction flow is not possible.  
However, some MCU ALU and DSP engine resources  
may be used concurrently by the same instruction (e.g.,  
ED, EDAC).  
6. Automatic saturation on/off for writes to data  
memory (SATDW).  
7. Accumulator Saturation mode selection  
(ACCSAT).  
The DSP engine also has the capability to perform  
inherent  
accumulator-to-accumulator  
operations,  
Note:  
For CORCON layout, see Table 3-3.  
which require no additional data. These instructions are  
ADD,SUBand NEG.  
A block diagram of the DSP engine is shown in  
Figure 2-2.  
TABLE 2-2:  
DSP INSTRUCTIONS SUMMARY  
Algebraic Operation  
A = 0  
Instruction  
ACC WB?  
CLR  
Yes  
No  
ED  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x * y)  
A = A + x2  
EDAC  
MAC  
No  
Yes  
No  
MAC  
MOVSAC  
MPY  
No change in A  
A = x * y  
Yes  
No  
MPY.N  
MSC  
A = – x * y  
No  
A = A – x * y  
Yes  
© 2006 Microchip Technology Inc.  
DS70117F-page 19  
dsPIC30F6011/6012/6013/6014  
FIGURE 2-2:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
16  
40-bit Accumulator A  
40-bit Accumulator B  
40  
t
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Saturate  
e
Adder  
Carry/Borrow In  
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
DS70117F-page 20  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
2.4.1  
MULTIPLIER  
2.4.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The 17 x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the mul-  
tiplier input value. The output of the 17 x 17-bit multi-  
plier/scaler is a 33-bit value which is sign-extended to  
40 bits. Integer data is inherently represented as a  
signed two’s complement value, where the MSB is  
defined as a sign bit. Generally speaking, the range of  
an N-bit two’s complement integer is -2N-1 to 2N-1 – 1.  
For a 16-bit integer, the data range is -32768 (0x8000)  
to 32767 (0x7FFF) including ‘0’. For a 32-bit integer,  
the data range is -2,147,483,648 (0x8000 0000) to  
2,147,483,645 (0x7FFF FFFF).  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side and either true, or complement  
data into the other input. In the case of addition, the  
carry/borrow input is active high and the other input is  
true data (not complemented), whereas in the case of  
subtraction, the carry/borrow input is active low and the  
other input is complemented. The adder/subtracter  
generates overflow status bits SA/SB and OA/OB,  
which are latched and reflected in the STATUS  
register:  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• Overflow into guard bits 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits bits are not identical to each other.  
When the multiplier is configured for fractional multipli-  
cation, the data is represented as a two’s complement  
fraction, where the MSB is defined as a sign bit and the  
radix point is implied to lie just after the sign bit (QX for-  
mat). The range of an N-bit two’s complement fraction  
with this implied radix point is -1.0 to (1 – 21-N). For a  
16-bit fraction, the Q15 data range is -1.0 (0x8000) to  
0.999969482 (0x7FFF) including ‘0’ and has a preci-  
sion of 3.01518x10-5. In Fractional mode, the 16x16  
multiply operation generates a 1.31 product which has  
The adder has an additional saturation block which  
controls accumulator data saturation, if selected. It  
uses the result of the adder, the overflow status bits  
described above, and the SATA/B (CORCON<7:6>)  
and ACCSAT (CORCON<4>) mode control bits to  
determine when and to what value to saturate.  
Six STATUS register bits have been provided to  
support saturation and overflow; they are:  
a precision of 4.65661 x 10-10  
.
1. OA:  
The same multiplier is used to support the MCU multi-  
ply instructions which include integer 16-bit signed,  
unsigned and mixed sign multiplies.  
ACCA overflowed into guard bits  
2. OB:  
ACCB overflowed into guard bits  
The MUL instruction may be directed to use byte or  
word sized operands. Byte operands will direct a 16-bit  
result, and word operands will direct a 32-bit result to  
the specified register(s) in the W array.  
3. SA:  
ACCA saturated (bit 31 overflow and saturation)  
or  
ACCA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
2.4.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
4. SB:  
ACCB saturated (bit 31 overflow and saturation)  
or  
ACCB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
The data accumulator consists of a 40-bit adder/  
subtracter with automatic sign extension logic. It can  
select one of two accumulators (A or B) as its pre-  
accumulation source and post-accumulation destina-  
tion. For the ADDand LACinstructions, the data to be  
accumulated or loaded can be optionally scaled via the  
barrel shifter, prior to accumulation.  
5. OAB:  
Logical OR of OA and OB  
6. SAB:  
Logical OR of SA and SB  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when set and the correspond-  
ing overflow trap flag enable bit (OVATE, OVBTE) in  
the INTCON1 register (refer to Section 5.0 “Inter-  
rupts”) is set. This allows the user to take immediate  
action, for example, to correct system gain.  
© 2006 Microchip Technology Inc.  
DS70117F-page 21  
dsPIC30F6011/6012/6013/6014  
The SA and SB bits are modified each time data  
passes through the adder/subtracter but can only be  
cleared by the user. When set, they indicate that the  
accumulator has overflowed its maximum range (bit 31  
for 32-bit saturation, or bit 39 for 40-bit saturation) and  
will be saturated (if saturation is enabled). When satu-  
ration is not enabled, SA and SB default to bit 39 over-  
flow and thus indicate that a catastrophic overflow has  
occurred. If the COVTE bit in the INTCON1 register is  
set, SA and SB bits will generate an arithmetic warning  
trap when saturation is disabled.  
2.4.2.2  
Accumulator ‘Write Back’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
1. W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as a 1.15  
fraction.  
The overflow and saturation status bits can optionally  
be viewed in the STATUS register (SR) as the logical  
OR of OA and OB (in bit OAB) and the logical OR of SA  
and SB (in bit SAB). This allows programmers to check  
one bit in the STATUS register to determine if either  
accumulator has overflowed, or one bit to determine if  
either accumulator has saturated. This would be useful  
for complex number arithmetic which typically uses  
both the accumulators.  
2. [W13] + = 2, Register Indirect with  
Post-Increment:  
The rounded contents of the non-target accumu-  
lator are written into the address pointed to by  
W13 as  
a
1.15 fraction. W13 is then  
incremented by 2 (for a word write).  
2.4.2.3  
Round Logic  
The device supports three saturation and overflow  
modes:  
The round logic is a combinational block which per-  
forms a conventional (biased) or convergent (unbi-  
ased) round function during an accumulator write  
(store). The Round mode is determined by the state of  
the RND bit in the CORCON register. It generates a 16-  
bit, 1.15 data value which is passed to the data space  
write saturation logic. If rounding is not indicated by the  
instruction, a truncated 1.15 data value is stored and  
the least significant word (lsw) is simply discarded.  
1. Bit 39 Overflow and Saturation:  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive 9.31  
(0x7FFFFFFFFF), or maximally negative 9.31  
value (0x8000000000) into the target accumula-  
tor. The SA or SB bit is set and remains set until  
cleared by the user. This is referred to as ‘super  
saturation’ and provides protection against erro-  
neous data, or unexpected algorithm problems  
(e.g., gain calculations).  
Conventional rounding takes bit 15 of the accumulator,  
zero-extends it and adds it to the ACCxH word (bits 16  
through 31 of the accumulator). If the ACCxL word  
(bits 0 through 15 of the accumulator) is between  
0x8000 and 0xFFFF (0x8000 included), ACCxH is  
incremented. If ACCxL is between 0x0000 and  
0x7FFF, ACCxH is left unchanged. A consequence of  
this algorithm is that over a succession of random  
rounding operations, the value will tend to be biased  
slightly positive.  
2. Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally posi-  
tive 1.31 value (0x007FFFFFFF), or maximally  
negative 1.31 value (0x0080000000) into the  
target accumulator. The SA or SB bit is set and  
remains set until cleared by the user. When this  
Saturation mode is in effect, the guard bits are  
not used (so the OA, OB or OAB bits are never  
set).  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. If this is the case, the LSb  
(bit 16 of the accumulator) of ACCxH is examined. If it  
is ‘1’, ACCxH is incremented. If it is ‘0’, ACCxH is not  
modified. Assuming that bit 16 is effectively random in  
nature, this scheme will remove any rounding bias that  
may accumulate.  
3. Bit 39 Catastrophic Overflow:  
The bit 39 overflow status bit from the adder is  
used to set the SA or SB bit which remain set  
until cleared by the user. No saturation opera-  
tion is performed and the accumulator is allowed  
to overflow (destroying its sign). If the COVTE  
bit in the INTCON1 register is set, a catastrophic  
overflow can initiate a trap exception.  
The SAC and SAC.R instructions store either a trun-  
cated (SAC) or rounded (SAC.R) version of the contents  
of the target accumulator to data memory via the X bus  
(subject to data saturation, see Section 2.4.2.4 “Data  
Space Write Saturation”). Note that for the MACclass  
of instructions, the accumulator write back operation  
will function in the same manner, addressing combined  
MCU (X and Y) data space though the X bus. For this  
class of instructions, the data is always subject to  
rounding.  
DS70117F-page 22  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
2.4.2.4  
Data Space Write Saturation  
2.4.3  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space may also be saturated but without affecting the  
contents of the source accumulator. The data space  
write saturation logic block accepts a 16-bit, 1.15 frac-  
tional value from the round logic block as its input,  
together with overflow status from the original source  
(accumulator) and the 16-bit round adder. These are  
combined and used to select the appropriate 1.15  
fractional value as output to write to data space  
memory.  
The barrel shifter is capable of performing up to 16-bit  
arithmetic or logic right shifts, or up to 16-bit left shifts  
in a single cycle. The source can be either of the two  
DSP accumulators, or the X bus (to support multi-bit  
shifts of register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value will shift the operand  
right. A negative value will shift the operand left. A  
value of ‘0’ will not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly, For input data greater than  
0x007FFF, data written to memory is forced to the max-  
imum positive 1.15 value, 0x7FFF. For input data less  
than 0xFF8000, data written to memory is forced to the  
maximum negative 1.15 value, 0x8000. The MSb of the  
source (bit 39) is used to determine the sign of the  
operand being tested.  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is pre-  
sented to the barrel shifter between bit positions 16 to  
31 for right shifts, and bit positions 0 to 16 for left shifts.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
© 2006 Microchip Technology Inc.  
DS70117F-page 23  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 24  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
User program space access is restricted to the lower  
3.0  
MEMORY ORGANIZATION  
4M instruction word address range (0x000000 to  
0x7FFFFE) for all accesses other than TBLRD/TBLWT,  
which use TBLPAG<7> to determine user or configura-  
tion space access. In Table 3-1, Program Space  
Address Construction, bit 23 allows access to the  
Device ID, the User ID and the Configuration bits.  
Otherwise, bit 23 is always clear.  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
Note:  
The address map shown in Figure 3-1 and  
Figure 3-2 is conceptual, and the actual  
memory configuration may vary across  
individual devices depending on available  
memory.  
3.1  
Program Address Space  
The program address space is 4M instruction words. It  
is addressable by a 24-bit value from either the 23-bit  
PC, table instruction Effective Address (EA), or data  
space EA, when program space is mapped into data  
space as defined by Table 3-1. Note that the program  
space address is incremented by two between succes-  
sive program words in order to provide compatibility  
with data space addressing.  
© 2006 Microchip Technology Inc.  
DS70117F-page 25  
dsPIC30F6011/6012/6013/6014  
FIGURE 3-1:  
PROGRAM SPACE MEMORY  
MAP FOR dsPIC30F6011/6013  
FIGURE 3-2:  
PROGRAM SPACE MEMORY  
MAPFORdsPIC30F6012/6014  
Reset - GOTOInstruction  
Reset - Target Address  
000000  
000002  
000004  
Reset - GOTOInstruction  
Reset - Target Address  
000000  
000002  
000004  
Vector Tables  
Vector Tables  
Interrupt Vector Table  
Interrupt Vector Table  
00007E  
000080  
000084  
0000FE  
000100  
00007E  
000080  
000084  
0000FE  
000100  
Reserved  
Reserved  
Alternate Vector Table  
Alternate Vector Table  
User Flash  
Program Memory  
(44K instructions)  
User Flash  
Program Memory  
(48K instructions)  
015FFE  
016000  
017FFE  
018000  
Reserved  
(Read ‘0’s)  
Reserved  
(Read ‘0’s)  
7FF7FE  
7FF800  
7FEFFE  
7FF000  
Data EEPROM  
(2 Kbytes)  
Data EEPROM  
(4 Kbytes)  
7FFFFE  
800000  
7FFFFE  
800000  
Reserved  
Reserved  
8005BE  
8005C0  
8005BE  
8005C0  
UNITID (32 instr.)  
Reserved  
UNITID (32 instr.)  
Reserved  
8005FE  
800600  
8005FE  
800600  
F7FFFE  
F7FFFE  
Device Configuration  
Registers  
F80000  
F8000E  
F80010  
Device Configuration  
Registers  
F80000  
F8000E  
F80010  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
FEFFFE  
FF0000  
FFFFFE  
FEFFFE  
FF0000  
FFFFFE  
DS70117F-page 26  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 3-1:  
PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
User  
User  
(TBLPAG<7> = 0)  
0
PC<22:1>  
0
TBLRD/TBLWT  
TBLPAG<7:0>  
TBLPAG<7:0>  
PSVPAG<7:0>  
Data EA<15:0>  
Data EA<15:0>  
TBLRD/TBLWT  
Configuration  
(TBLPAG<7> = 1)  
Program Space Visibility User  
0
Data EA<14:0>  
FIGURE 3-3:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
23 bits  
Using  
Program  
Counter  
Program Counter  
0
0
0
Select  
1
EA  
Using  
Program  
Space  
PSVPAG Reg  
8 bits  
Visibility  
15 bits  
EA  
Using  
1/0  
TBLPAG Reg  
8 bits  
Table  
Instruction  
16 bits  
User/  
Configuration  
Space  
Select  
Byte  
Select  
24-bit EA  
Note:  
Program space visibility cannot be used to access bits <23:16> of a word in program memory.  
© 2006 Microchip Technology Inc.  
DS70117F-page 27  
dsPIC30F6011/6012/6013/6014  
A set of table instructions are provided to move byte or  
word sized data to and from program space.  
3.1.1  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
1. TBLRDL:Table Read Low  
Word: Read the lsw of the program address;  
P<15:0> maps to D<15:0>.  
This architecture fetches 24-bit wide program memory.  
Consequently, instructions are always aligned.  
However, as the architecture is modified Harvard, data  
can also be present in program space.  
Byte: Read one of the LSBs of the program  
address;  
P<7:0> maps to the destination byte when byte  
select = 0;  
P<15:8> maps to the destination byte when byte  
select = 1.  
There are two methods by which program space can  
be accessed: via special table instructions, or through  
the remapping of a 16K word program space page into  
the upper half of data space (see Section 3.1.2 “Data  
Access From Program Memory using Program  
Space Visibility”). The TBLRDLand TBLWTLinstruc-  
tions offer a direct method of reading or writing the least  
significant word of any address within program space,  
without going through data space. The TBLRDH and  
TBLWTHinstructions are the only method whereby the  
upper 8 bits of a program space word can be accessed  
as data.  
2. TBLWTL:Table Write Low (refer to Section 6.0  
“Flash Program Memory” for details on Flash  
Programming)  
3. TBLRDH:Table Read High  
Word: Read the Most Significant Word of the pro-  
gram address; P<23:16> maps to D<7:0>;  
D<15:8> will always be = 0.  
Byte: Read one of the MSBs of the program  
address;  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
word wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word, and TBLRDHand TBLWTHaccess the space  
which contains the Most Significant Data Byte.  
P<23:16> maps to the destination byte when  
byte select = 0;  
The destination byte will always be = 0 when  
byte select = 1.  
4. TBLWTH:Table Write High (refer to Section 6.0  
“Flash Program Memory” for details on Flash  
Programming)  
Figure 3-3 shows how the EA is created for table oper-  
ations and data space accesses (PSV = 1). Here,  
P<23:0> refers to a program space word, whereas  
D<15:0> refers to a data space word.  
FIGURE 3-4:  
PROGRAM DATA TABLE ACCESS (LEAST SIGNIFICANT WORD)  
PC Address  
23  
8
16  
0
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
TBLRDL.B (Wn<0> = 1)  
DS70117F-page 28  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 3-5:  
PROGRAM DATA TABLE ACCESS (MOST SIGNIFICANT BYTE)  
TBLRDH.W  
PC Address  
23  
8
0
16  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
TBLRDH.B (Wn<0> = 0)  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
TBLRDH.B (Wn<0> = 1)  
Note that by incrementing the PC by 2 for each  
program memory word, the Least Significant 15 bits of  
data space addresses directly map to the Least Signif-  
icant 15 bits in the corresponding program space  
addresses. The remaining bits are provided by the Pro-  
gram Space Visibility Page register, PSVPAG<7:0>, as  
shown in Figure 3-6.  
3.1.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING PROGRAM  
SPACE VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word program space page. This  
provides transparent access of stored constant data  
from X data space without the need to use special  
instructions (i.e., TBLRDL/H, TBLWTL/Hinstructions).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the MSb of the data space EA is set and program  
space visibility is enabled by setting the PSV bit in the  
Core Control register (CORCON). The functions of  
CORCON are discussed in Section 2.4 “DSP  
Engine”.  
For instructions that use PSV which are executed  
outside a REPEATloop:  
• The following instructions will require one  
instruction cycle in addition to the specified  
execution time:  
Data accesses to this area add an additional cycle to  
the instruction being executed, since two program  
memory fetches are required.  
- MACclass of instructions with data operand  
prefetch  
- MOVinstructions  
Note that the upper half of addressable data space is  
always part of the X data space. Therefore, when a  
DSP operation uses program space mapping to access  
this memory region, Y data space should typically con-  
tain state (variable) data for DSP operations, whereas  
X data space should typically contain coefficient  
(constant) data.  
- MOV.Dinstructions  
• All other instructions will require two instruction  
cycles in addition to the specified execution time  
of the instruction.  
For instructions that use PSV which are executed  
inside a REPEATloop:  
• The following instances will require two instruction  
cycles in addition to the specified execution time  
of the instruction:  
Although each data space address, 0x8000 and higher,  
maps directly into a corresponding program memory  
address (see Figure 3-6), only the lower 16 bits of the  
24-bit program word are used to contain the data. The  
upper 8 bits should be programmed to force an illegal  
instruction to maintain machine robustness. Refer to  
the “dsPIC30F/33F Programmer’s Reference Manual”  
(DS70157) for details on instruction encoding.  
- Execution in the first iteration  
- Execution in the last iteration  
- Execution prior to exiting the loop due to an  
interrupt  
- Execution upon re-entering the loop after an  
interrupt is serviced  
• Any other iteration of the REPEAT loop will allow  
the instruction accessing data, using PSV, to  
execute in a single cycle.  
© 2006 Microchip Technology Inc.  
DS70117F-page 29  
dsPIC30F6011/6012/6013/6014  
FIGURE 3-6:  
DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION  
Program Space  
0x000100  
Data Space  
0x0000  
PSVPAG(1)  
15  
EA<15> =  
0
0x01  
8
16  
Data  
Space  
EA  
0x8000  
15  
23  
15  
0
Address  
EA<15> = 1  
0x008000  
0x017FFF  
Concatenation  
15  
23  
Upper Half of Data  
Space is Mapped  
into Program Space  
0xFFFF  
BSET CORCON,#2  
; PSV bit set  
MOV  
MOV  
MOV  
#0x01, W0  
W0, PSVPAG  
0x8000, W0  
; Set PSVPAG register  
; Access program memory location  
; using a data space access  
Data Read  
Note:  
PSVPAG is an 8-bit register, containing bits <22:15> of the program space address (i.e., it defines  
the page in program space to which the upper half of data space is being mapped).  
DS70117F-page 30  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
3.2.2  
DATA SPACES  
3.2  
Data Address Space  
The X data space is used by all instructions and sup-  
ports all addressing modes. There are separate read  
and write data buses. The X read data bus is the return  
data path for all instructions that view data space as  
combined X and Y address space. It is also the X  
address space data path for the dual operand read  
instructions (MAC class). The X write data bus is the  
only write path to data space for all instructions.  
The core has two data spaces. The data spaces can be  
considered either separate (for some DSP instruc-  
tions), or as one unified linear address range (for MCU  
instructions). The data spaces are accessed using two  
Address Generation Units (AGUs) and separate data  
paths.  
3.2.1  
DATA SPACE MEMORY MAP  
The X data space also supports Modulo Addressing for  
all instructions, subject to addressing mode restric-  
tions. Bit-Reversed Addressing is only supported for  
writes to X data space.  
The data space memory is split into two blocks, X and  
Y data space. A key element of this architecture is that  
Y space is a subset of X space, and is fully contained  
within X space. In order to provide an apparent linear  
addressing space, X and Y spaces have contiguous  
addresses.  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to  
provide two concurrent data read paths. No writes  
occur across the Y bus. This class of instructions dedi-  
cates two W register pointers, W10 and W11, to always  
address Y data space, independent of X data space,  
whereas W8 and W9 always address X data space.  
Note that during accumulator write back, the data  
address space is considered a combination of X and Y  
data spaces, so the write occurs across the X bus.  
Consequently, the write can be to any address in the  
entire data space.  
When executing any instruction other than one of the  
MACclass of instructions, the X block consists of the 64-  
Kbyte data address space (including all Y addresses).  
When executing one of the MAC class of instructions,  
the X block consists of the 64-Kbyte data address  
space excluding the Y address block (for data reads  
only). In other words, all other instructions regard the  
entire data memory as one composite address space.  
The MACclass instructions extract the Y address space  
from data space and address it using EAs sourced from  
W10 and W11. The remaining X data space is  
addressed using W8 and W9. Both address spaces are  
concurrently accessed only with the MAC class  
instructions.  
The Y data space can only be used for the data  
prefetch operation associated with the MAC class of  
instructions. It also supports Modulo Addressing for  
automated circular buffers. Of course, all other instruc-  
tions can access the Y data address space through the  
X data path as part of the composite linear space.  
The data space memory maps are shown in Figure 3-8  
and Figure 3-9.  
The boundary between the X and Y data spaces is  
defined as shown in Figure 3-8 and Figure 3-8 and is  
not user programmable. Should an EA point to data  
outside its own assigned address space, or to a loca-  
tion outside physical memory, an all zero word/byte will  
be returned. For example, although Y address space is  
visible by all non-MACinstructions using any address-  
ing mode, an attempt by a MACinstruction to fetch data  
from that space using W8 or W9 (X space pointers) will  
return 0x0000.  
© 2006 Microchip Technology Inc.  
DS70117F-page 31  
dsPIC30F6011/6012/6013/6014  
FIGURE 3-7:  
DATA SPACE MEMORY MAP FOR dsPIC30F6011/6013  
LSB  
Address  
MSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8 Kbyte  
Near  
Data  
Space  
X Data RAM (X)  
Y Data RAM (Y)  
6 Kbyte  
SRAM Space  
0x17FF  
0x1801  
0x17FE  
0x1800  
0x1FFF  
0x2001  
0x1FFE  
0x2000  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFE  
0xFFFF  
DS70117F-page 32  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 3-8:  
DATA SPACE MEMORY MAP FOR dsPIC30F6012/6014  
LSB  
Address  
MSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8 Kbyte  
Near  
Data  
Space  
X Data RAM (X)  
Y Data RAM (Y)  
8 Kbyte  
0x17FF  
0x1801  
0x17FE  
0x1800  
SRAM Space  
0x1FFF  
0x1FFE  
0x27FF  
0x2801  
0x27FE  
0x2800  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
© 2006 Microchip Technology Inc.  
DS70117F-page 33  
dsPIC30F6011/6012/6013/6014  
FIGURE 3-9:  
DATA SPACE FOR MCU AND DSP (MACCLASS) INSTRUCTIONS EXAMPLE  
SFR SPACE  
SFR SPACE  
UNUSED  
Y SPACE  
UNUSED  
(Y SPACE)  
UNUSED  
Non-MACClass Ops (Read)  
MACClass Ops (Read)  
Indirect EA from any W  
Indirect EA from W8, W9  
Indirect EA from W10, W11  
TABLE 3-2:  
EFFECT OF INVALID  
MEMORY ACCESSES  
3.2.4  
DATA ALIGNMENT  
To help maintain backward compatibility with PIC®  
MCU devices and improve data space memory usage  
efficiency, the dsPIC30F instruction set supports both  
word and byte operations. Data is aligned in data mem-  
ory and registers as words, but all data space EAs  
resolve to bytes. Data byte reads will read the complete  
word which contains the byte, using the LSb of any EA  
to determine which byte to select. The selected byte is  
placed onto the LSB of the X data path (no byte  
accesses are possible from the Y data path as the MAC  
class of instruction can only fetch words). That is, data  
memory and registers are organized as two parallel  
byte wide entities with shared (word) address decode  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register which  
matches the byte address.  
Attempted Operation  
Data Returned  
EA = an unimplemented address  
0x0000  
0x0000  
W8 or W9 used to access Y data  
space in a MACinstruction  
W10 or W11 used to access X  
data space in a MACinstruction  
0x0000  
All effective addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes or 32K words.  
3.2.3  
DATA SPACE WIDTH  
The core data width is 16 bits. All internal registers are  
organized as 16-bit wide words. Data space memory is  
organized in byte addressable, 16-bit wide blocks.  
As a consequence of this byte accessibility, all effective  
address calculations (including those generated by the  
DSP operations which are restricted to word sized  
data) are internally scaled to step through word aligned  
memory. For example, the core would recognize that  
Post-Modified Register Indirect Addressing mode  
[Ws++] will result in a value of Ws + 1 for byte  
operations and Ws + 2 for word operations.  
DS70117F-page 34  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported so  
care must be taken when mixing byte and word opera-  
tions, or translating from 8-bit MCU code. Should a mis-  
aligned read or write be attempted, an address error  
trap will be generated. If the error occurred on a read,  
the instruction underway is completed, whereas if it  
occurred on a write, the instruction will be executed but  
the write will not occur. In either case, a trap will then  
be executed, allowing the system and/or user to exam-  
ine the machine state prior to execution of the address  
fault.  
3.2.6  
SOFTWARE STACK  
The dsPIC DSC devices contain a software stack. W15  
is used as the Stack Pointer.  
The Stack Pointer always points to the first available  
free word and grows from lower addresses towards  
higher addresses. It pre-decrements for stack pops and  
post-increments for stack pushes as shown in Figure 3-  
11. Note that for a PC push during any CALLinstruc-  
tion, the MSB of the PC is zero-extended before the  
push, ensuring that the MSB is always clear.  
Note:  
A PC push during exception processing  
will concatenate the SRL register to the  
MSB of the PC prior to the push.  
FIGURE 3-10:  
MSB  
DATA ALIGNMENT  
LSB  
There is a Stack Pointer Limit register (SPLIM) associ-  
ated with the Stack Pointer. SPLIM is uninitialized at  
Reset. As is the case for the Stack Pointer, SPLIM<0>  
is forced to ‘0’ because all stack operations must be  
word aligned. Whenever an Effective Address (EA) is  
generated using W15 as a source or destination  
pointer, the address thus generated is compared with  
the value in SPLIM. If the contents of the Stack Pointer  
(W15) and the SPLIM register are equal and a push  
operation is performed, a stack error trap will not occur.  
The stack error trap will occur on a subsequent push  
operation. Thus, for example, if it is desirable to cause  
a stack error trap when the stack grows beyond  
address 0x2000 in RAM, initialize the SPLIM with the  
value, 0x1FFE.  
15  
8 7  
0
0000  
0002  
0004  
0001  
0003  
0005  
Byte1  
Byte3  
Byte5  
Byte 0  
Byte 2  
Byte 4  
All byte loads into any W register are loaded into the  
LSB. The MSB is not modified.  
A sign-extend (SE) instruction is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSB of any W register by executing a  
zero-extend (ZE) instruction on the appropriate  
address.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800, thus preventing the stack from  
interfering with the Special Function Register (SFR)  
space.  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions, including the DSP instructions, operate  
only on words.  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
3.2.5  
NEAR DATA SPACE  
An 8-Kbyte ‘near’ data space is reserved in X address  
memory space between 0x0000 and 0x1FFF, which is  
directly addressable via a 13-bit absolute address field  
within all memory direct instructions. The remaining X  
address space and all of the Y address space is  
addressable indirectly. Additionally, the whole of X data  
space is addressable using MOV instructions, which  
support memory direct addressing with a 16-bit  
address field.  
FIGURE 3-11:  
CALLSTACK FRAME  
0x0000  
15  
0
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
© 2006 Microchip Technology Inc.  
DS70117F-page 35  
TABLE 3-3:  
CORE REGISTER MAP  
Address  
(Home)  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
W0  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
0026  
0028  
002A  
002C  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
003C  
003E  
0040  
W0 / WREG  
W1  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 1000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuu0  
0000 0000 0uuu uuuu  
uuuu uuuu uuuu uuu0  
0000 0000 0uuu uuuu  
W1  
W2  
W2  
W3  
W3  
W4  
W4  
W5  
W5  
W6  
W6  
W7  
W7  
W8  
W8  
W9  
W9  
W10  
W10  
W11  
W12  
W13  
W14  
W15  
SPLIM  
ACCAL  
ACCAH  
W11  
W12  
W13  
W14  
W15  
SPLIM  
ACCAL  
ACCAH  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
Sign-Extension (ACCA<39>)  
Sign-Extension (ACCB<39>)  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
PCH  
PCH  
TBLPAG  
PSVPAG  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
DOSTARTH  
DOENDL  
DOENDH  
RCOUNT  
DCOUNT  
DOSTARTL  
0
0
DOSTARTH  
DOENDL  
DOENDH  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 3-3:  
CORE REGISTER MAP (CONTINUED)  
Address  
(Home)  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
SR  
0042  
0044  
0046  
0048  
004A  
004C  
004E  
0050  
0052  
OA  
OB  
SA  
SB  
US  
OAB  
EDT  
SAB  
DL2  
DA  
DC  
IPL2  
IPL1  
IPL0  
RA  
N
OV  
Z
C
0000 0000 0000 0000  
0000 0000 0010 0000  
0000 0000 0000 0000  
uuuu uuuu uuuu uuu0  
uuuu uuuu uuuu uuu1  
uuuu uuuu uuuu uuu0  
uuuu uuuu uuuu uuu1  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
CORCON  
MODCON  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
DL1  
DL0  
SATA  
SATB SATDW ACCSAT  
YWM<3:0>  
IPL3  
PSV  
RND  
IF  
XMODEN YMODEN  
BWM<3:0>  
XWM<3:0>  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
0
1
0
1
BREN  
XB<14:0>  
DISICNT  
DISICNT<13:0>  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 38  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
4.1.1  
FILE REGISTER INSTRUCTIONS  
4.0  
ADDRESS GENERATOR UNITS  
Most File register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (Near data space). Most File  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same File register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
The dsPIC DSC core contains two independent  
address generator units: the X AGU and Y AGU. The Y  
AGU supports word-sized data reads for the DSP MAC  
class of instructions only. The dsPIC30F AGUs  
support:  
4.1.2  
MCU INSTRUCTIONS  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
• Linear Addressing  
• Modulo (Circular) Addressing  
• Bit-Reversed Addressing  
where Operand 1 is always a working register (i.e., the  
Addressing mode can only be Register Direct) which is  
referred to as Wb. Operand 2 can be a W register,  
fetched from data memory or a 5-bit literal. The result  
location can be either a W register or a data memory  
location. The following addressing modes are  
supported by MCU instructions:  
Linear and Modulo Data Addressing modes can be  
applied to data space or program space. Bit-Reversed  
Addressing is only applicable to data space addresses.  
4.1  
Instruction Addressing Modes  
• Register Direct  
The addressing modes in Table 4-1 form the basis of  
the addressing modes optimized to support the specific  
features of individual instructions. The addressing  
modes provided in the MAC class of instructions are  
somewhat different from those in the other instruction  
types.  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• 5-bit or 10-bit Literal  
Note:  
Not all instructions support all the address-  
ing modes given above. Individual instruc-  
tions may support different subsets of  
these addressing modes.  
TABLE 4-1:  
FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Description  
The address of the File register is specified explicitly.  
Addressing Mode  
File Register Direct  
Register Direct  
The contents of a register are accessed directly.  
The contents of Wn forms the EA.  
Register Indirect  
Register Indirect Post-modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
© 2006 Microchip Technology Inc.  
DS70117F-page 39  
dsPIC30F6011/6012/6013/6014  
In summary, the following addressing modes are  
supported by the MACclass of instructions:  
4.1.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
• Register Indirect  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU instruc-  
tions, move and accumulator instructions also support  
Register Indirect with Register Offset Addressing  
mode, also referred to as Register Indexed mode.  
• Register Indirect Post-modified by 2  
• Register Indirect Post-modified by 4  
• Register Indirect Post-modified by 6  
• Register Indirect with Register Offset (Indexed)  
4.1.5  
OTHER INSTRUCTIONS  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (register offset)  
field is shared between both source and  
destination (but typically only used by  
one).  
Besides the various addressing modes outlined above,  
some instructions use literal constants of various sizes.  
For example, BRA (branch) instructions use 16-bit  
signed literals to specify the branch destination directly,  
whereas the DISI instruction uses a 14-bit unsigned  
literal field. In some instructions, such as ADD Acc, the  
source of an operand or result is implied by the opcode  
itself. Certain operations, such as NOP, do not have any  
operands.  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
• Register Direct  
4.2  
Modulo Addressing  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
Modulo Addressing is a method of providing an auto-  
mated means to support circular data buffers using  
hardware. The objective is to remove the need for soft-  
ware to perform data address boundary checks when  
executing tightly looped code, as is typical in many  
DSP algorithms.  
• 16-bit Literal  
Modulo Addressing can operate in either data or pro-  
gram space (since the data pointer mechanism is  
essentially the same for both). One circular buffer can  
be supported in each of the X (which also provides the  
pointers into program space) and Y data spaces. Mod-  
ulo Addressing can operate on any W register pointer.  
However, it is not advisable to use W14 or W15 for Mod-  
ulo Addressing since these two registers are used as  
the Stack Frame Pointer and Stack Pointer,  
Note:  
Not all instructions support all the address-  
ing modes given above. Individual instruc-  
tions may support different subsets of  
these addressing modes.  
4.1.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also  
referred to as MACinstructions, utilize a simplified set of  
addressing modes to allow the user to effectively  
manipulate the data pointers through register indirect  
tables.  
respectively.  
In general, any particular circular buffer can only be  
configured to operate in one direction, as there are cer-  
tain restrictions on the buffer start address (for incre-  
menting buffers), or end address (for decrementing  
buffers) based upon the direction of the buffer.  
The 2 source operand prefetch registers must be a  
member of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 will always be directed to the X  
RAGU and W10 and W11 will always be directed to the  
Y AGU. The effective addresses generated (before and  
after modification) must, therefore, be valid addresses  
within X data space for W8 and W9 and Y data space  
for W10 and W11.  
The only exception to the usage restrictions is for buff-  
ers which have a power-of-2 length. As these buffers  
satisfy the start and end address criteria, they may  
operate in a Bidirectional mode (i.e., address boundary  
checks will be performed on both the lower and upper  
address boundaries).  
Note:  
Register indirect with register offset  
addressing is only available for W9 (in X  
space) and W11 (in Y space).  
DS70117F-page 40  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
4.2.1  
START AND END ADDRESS  
4.2.2  
W ADDRESS REGISTER  
SELECTION  
The Modulo Addressing scheme requires that a start-  
ing and an ending address be specified and loaded into  
the 16-bit Modulo Buffer Address registers: XMODSRT,  
XMODEND, YMODSRT, YMODEND (see Table 3-3).  
The Modulo and Bit-Reversed Addressing Control reg-  
ister MODCON<15:0> contains enable flags as well as  
a W register field to specify the W address registers.  
The XWM and YWM fields select which registers will  
operate with Modulo Addressing. If XWM = 15, X  
RAGU and X WAGU Modulo Addressing is disabled.  
Similarly, if YWM = 15, Y AGU Modulo Addressing is  
disabled.  
Note:  
Y space Modulo Addressing EA calcula-  
tions assume word sized data (LSb of  
every EA is always clear).  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the corre-  
sponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 3-3). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The Y Address Space Pointer W register (YWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
15’ and the YMODEN bit is set at MODCON<14>.  
FIGURE 4-1:  
MODULO ADDRESSING OPERATION EXAMPLE  
Byte  
Address  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100,W0  
W0,XMODSRT  
#0x1163,W0  
W0,MODEND  
#0x8001,W0  
W0,MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000,W0  
#0x1110,W1  
DO  
MOV  
AGAIN,#0x31 ;fill the 50 buffer locations  
W0,[W1++] ;fill the next location  
0x1163  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 words  
© 2006 Microchip Technology Inc.  
DS70117F-page 41  
dsPIC30F6011/6012/6013/6014  
If the length of a bit-reversed buffer is M = 2N bytes,  
then the last ‘N’ bits of the data buffer start address  
must be zeros.  
4.2.3  
MODULO ADDRESSING  
APPLICABILITY  
Modulo Addressing can be applied to the effective  
address calculation associated with any W register. It is  
important to realize that the address boundaries check  
for addresses less than, or greater than the upper (for  
incrementing buffers), and lower (for decrementing  
buffers) boundary addresses (not just equal to).  
Address changes may, therefore, jump beyond bound-  
aries and still be adjusted correctly.  
XB<14:0> is the bit-reversed address modifier or ‘pivot  
point’ which is typically a constant. In the case of an  
FFT computation, its value is equal to half of the FFT  
data buffer size.  
Note:  
All bit-reversed EA calculations assume  
word sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
Note:  
The modulo corrected effective address is  
written back to the register only when Pre-  
Modify or Post-Modify Addressing mode is  
used to compute the effective address.  
When an address offset (e.g., [W7 + W2])  
is used, modulo address correction is per-  
formed but the contents of the register  
remain unchanged.  
When enabled, Bit-Reversed Addressing will only be  
executed for register indirect with pre-increment or  
post-increment addressing and word sized data writes.  
It will not function for any other addressing mode or for  
byte sized data, and normal addresses will be gener-  
ated instead. When Bit-Reversed Addressing is active,  
the W address pointer will always be added to the  
address modifier (XB) and the offset associated with  
the Register Indirect Addressing mode will be ignored.  
In addition, as word sized data is a requirement, the  
LSb of the EA is ignored (and always clear).  
4.3  
Bit-Reversed Addressing  
Bit-Reversed Addressing is intended to simplify data  
re-ordering for radix-2 FFT algorithms. It is supported  
by the X AGU for data writes only.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. In the event that the user attempts  
to do this, Bit-Reversed Addressing will  
assume priority when active for the X  
WAGU, and X WAGU Modulo Addressing  
will be disabled. However, Modulo  
Addressing will continue to function in the X  
RAGU.  
The modifier, which may be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
4.3.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing is enabled when:  
1. BWM (W register selection) in the MODCON  
register is any value other than ‘15’ (the stack  
cannot be accessed using Bit-Reversed  
Addressing) and  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, then a write to  
the XBREV register should not be immediately followed  
by an indirect read operation using the W register that  
has been designated as the bit-reversed pointer.  
2. the BREN bit is set in the XBREV register and  
3. the Addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment.  
DS70117F-page 42  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 4-2:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b2 b3 b4  
0
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1  
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-word Bit-Reversed Buffer  
TABLE 4-2:  
BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address  
Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
TABLE 4-3:  
BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER  
Buffer Size (Words)  
XB<14:0> Bit-Reversed Address Modifier Value  
4096  
2048  
1024  
512  
256  
128  
64  
0x0800  
0x0400  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
32  
16  
8
4
2
© 2006 Microchip Technology Inc.  
DS70117F-page 43  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 44  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
• INTCON1<15:0>, INTCON2<15:0>  
Global interrupt control functions are derived from  
5.0  
INTERRUPTS  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
these two registers. INTCON1 contains the con-  
trol and status flags for the processor exceptions.  
The INTCON2 register controls the external  
interrupt request signal behavior and the use of  
the alternate vector table.  
Note:  
Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit. User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The dsPIC30F Sensor and General Purpose Family  
has up to 41 interrupt sources and 4 processor excep-  
tions (traps) which must be arbitrated based on a  
priority scheme.  
The CPU is responsible for reading the Interrupt Vector  
Table (IVT) and transferring the address contained in  
the interrupt vector to the program counter. The inter-  
rupt vector is transferred from the program data bus  
into the program counter via a 24-bit wide multiplexer  
on the input of the program counter.  
All interrupt sources can be user assigned to one of 7  
priority levels, 1 through 7, via the IPCx registers. Each  
interrupt source is associated with an interrupt vector,  
as shown in Table 5-1. Levels 7 and 1 represent the  
highest and lowest maskable priorities, respectively.  
Note:  
Assigning a priority level of ‘0’ to an inter-  
rupt source is equivalent to disabling that  
interrupt.  
The Interrupt Vector Table (IVT) and Alternate Interrupt  
Vector Table (AIVT) are placed near the beginning of  
program memory (0x000004). The IVT and AIVT are  
shown in Table 5-1.  
If the NSTDIS bit (INTCON1<15>) is set, nesting of  
interrupts is prevented. Thus, if an interrupt is currently  
being serviced, processing of a new interrupt is pre-  
vented even if the new interrupt is of higher priority than  
the one currently being serviced.  
The interrupt controller is responsible for pre-  
processing the interrupts and processor exceptions  
prior to them being presented to the processor core.  
The peripheral interrupts and traps are enabled, priori-  
tized and controlled using centralized Special Function  
Registers:  
Note:  
The IPL bits become read only whenever  
the NSTDIS bit has been set to ‘1’.  
Certain interrupts have specialized control bits for fea-  
tures like edge or level triggered interrupts, interrupt-  
on-change, etc. Control of these features remains  
within the peripheral module which generates the  
interrupt.  
• IFS0<15:0>, IFS1<15:0>, IFS2<15:0>  
All interrupt request flags are maintained in these  
three registers. The flags are set by their respec-  
tive peripherals or external signals, and they are  
cleared via software.  
• IEC0<15:0>, IEC1<15:0>, IEC2<15:0>  
All interrupt enable control bits are maintained in  
these three registers. These control bits are used  
to individually enable interrupts from the  
peripherals or external signals.  
The DISIinstruction can be used to disable the pro-  
cessing of interrupts of priorities 6 and lower for a cer-  
tain number of instructions, during which the DISI bit  
(INTCON2<14>) remains set.  
When an interrupt is serviced, the PC is loaded with the  
address stored in the vector location in program mem-  
ory that corresponds to the interrupt. There are 63 dif-  
ferent vectors within the IVT (refer to Table 5-1). These  
vectors are contained in locations 0x000004 through  
0x0000FE of program memory (refer to Table 5-1).  
These locations contain 24-bit addresses and in order  
to preserve robustness, an address error trap will take  
place should the PC attempt to fetch any of these  
words during normal execution. This prevents execu-  
tion of random data as a result of accidentally decre-  
menting a PC into vector space, accidentally mapping  
a data space address into vector space, or the PC roll-  
ing over to 0x000000 after reaching the end of imple-  
mented program memory space. Execution of a GOTO  
instruction to this vector space will also generate an  
address error trap.  
• IPC0<15:0>... IPC10<7:0>  
The user assignable priority level associated with  
each of these 41 interrupts is held centrally in  
these twelve registers.  
• IPL<3:0>  
The current CPU priority level is explicitly stored  
in the IPL bits. IPL<3> is present in the CORCON  
register, whereas IPL<2:0> are present in the  
STATUS register (SR) in the processor core.  
© 2006 Microchip Technology Inc.  
DS70117F-page 45  
dsPIC30F6011/6012/6013/6014  
TABLE 5-1:  
INTERRUPT VECTOR TABLE  
5.1  
Interrupt Priority  
INT  
Vector  
The user assignable interrupt priority (IP<2:0>) bits for  
each individual interrupt source are located in the Least  
Significant 3 bits of each nibble within the IPCx regis-  
ter(s). Bit 3 of each nibble is not used and is read as a  
0’. These bits define the priority level assigned to a  
particular interrupt by the user.  
Interrupt Source  
Number Number  
Highest Natural Order Priority  
0
1
8
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer 1  
9
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Note:  
The user selectable priority levels start at  
0 as the lowest priority and level 7 as the  
highest priority.  
3
4
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer 2  
5
Natural Order Priority is determined by the position of  
an interrupt in the vector table, and only affects  
interrupt operation when multiple interrupts with the  
same user-assigned priority become pending at the  
same time.  
6
7
T3 – Timer 3  
8
SPI1  
9
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC – ADC Convert Done  
NVM – NVM Write Complete  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39-40  
41  
42  
43-53  
Table 5-1 lists the interrupt numbers and interrupt  
sources for the dsPIC DSC device and their associated  
vector numbers.  
2
SI2C – I C Slave Interrupt  
2
Note 1: The natural order priority scheme has 0  
as the highest priority and 53 as the  
lowest priority.  
MI2C – I C Master Interrupt  
Input Change Interrupt  
INT1 – External Interrupt 1  
IC7 – Input Capture 7  
IC8 – Input Capture 8  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
T4 – Timer 4  
2: The natural order priority number is the  
same as the INT number.  
The ability for the user to assign every interrupt to one  
of seven priority levels implies that the user can assign  
a very high overall priority level to an interrupt with a  
low natural order priority. For example, the PLVD (Low-  
Voltage Detect) can be given a priority of 7. The INT0  
(External Interrupt 0) may be assigned to priority level  
1, thus giving it a very low effective priority.  
T5 – Timer 5  
INT2 – External Interrupt 2  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
SPI2  
C1 – Combined IRQ for CAN1  
IC3 – Input Capture 3  
IC4 – Input Capture 4  
IC5 – Input Capture 5  
IC6 – Input Capture 6  
OC5 – Output Compare 5  
OC6 – Output Compare 6  
OC7 – Output Compare 7  
OC8 – Output Compare 8  
INT3 – External Interrupt 3  
INT4 – External Interrupt 4  
C2 – Combined IRQ for CAN2  
47-48 Reserved  
49  
50  
DCI – Codec Transfer Done  
LVD – Low-Voltage Detect  
51-61 Reserved  
Lowest Natural Order Priority  
DS70117F-page 46  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Note that many of these trap conditions can only be  
detected when they occur. Consequently, the question-  
able instruction is allowed to complete prior to trap  
exception processing. If the user chooses to recover  
from the error, the result of the erroneous action that  
caused the trap may have to be corrected.  
5.2  
Reset Sequence  
A Reset is not a true exception, because the interrupt  
controller is not involved in the Reset process. The pro-  
cessor initializes its registers in response to a Reset  
which forces the PC to zero. The processor then begins  
program execution at location 0x000000. A GOTO  
instruction is stored in the first program memory loca-  
tion immediately followed by the address target for the  
GOTOinstruction. The processor executes the GOTOto  
the specified address and then begins operation at the  
specified target (start) address.  
There are 8 fixed priority levels for traps: level 8 through  
level 15, which implies that the IPL3 is always set  
during processing of a trap.  
If the user is not currently executing a trap, and he sets  
the IPL<3:0> bits to a value of ‘0111’ (level 7), then all  
interrupts are disabled but traps can still be processed.  
5.2.1  
RESET SOURCES  
5.3.1  
TRAP SOURCES  
In addition to external Reset and Power-on Reset  
(POR), there are 6 sources of error conditions which  
‘trap’ to the Reset vector.  
The following traps are provided with increasing prior-  
ity. However, since all traps can be nested, priority has  
little effect.  
• Watchdog Time-out:  
The watchdog has timed out, indicating that the  
processor is no longer executing the correct flow  
of code.  
Math Error Trap:  
The math error trap executes under the following four  
circumstances:  
• Uninitialized W Register Trap:  
An attempt to use an uninitialized W register as  
an address pointer will cause a Reset.  
1. Should an attempt be made to divide by zero,  
the divide operation will be aborted on a cycle  
boundary and the trap taken.  
• Illegal Instruction Trap:  
Attempted execution of any unused opcodes will  
result in an illegal instruction trap. Note that a  
fetch of an illegal instruction does not result in an  
illegal instruction trap if that instruction is flushed  
prior to execution due to a flow change.  
2. If enabled, a math error trap will be taken when  
an arithmetic operation on either accumulator A  
or B causes an overflow from bit 31 and the  
accumulator guard bits are not utilized.  
3. If enabled, a math error trap will be taken when  
an arithmetic operation on either accumulator A  
or B causes a catastrophic overflow from bit 39  
and all saturation is disabled.  
• Brown-out Reset (BOR):  
A momentary dip in the power supply to the  
device has been detected which may result in  
malfunction.  
4. If the shift amount specified in a shift instruction  
is greater than the maximum allowed shift  
amount, a trap will occur.  
• Trap Lockout:  
Occurrence of multiple trap conditions  
simultaneously will cause a Reset.  
Address Error Trap:  
5.3  
Traps  
This trap is initiated when any of the following  
circumstances occurs:  
Traps can be considered as non-maskable interrupts  
indicating a software or hardware error, which adhere  
to a predefined priority, as shown in Table 5-1. They are  
intended to provide the user a means to correct  
erroneous operation during debug and when operating  
within the application.  
1. A misaligned data word access is attempted.  
2. A data fetch from and unimplemented data  
memory location is attempted.  
3. A data fetch from an unimplemented program  
memory location is attempted.  
4. An instruction fetch from vector space is  
attempted.  
Note:  
If the user does not intend to take correc-  
tive action in the event of a trap error con-  
dition, these vectors must be loaded with  
the address of a default handler that sim-  
ply contains the RESET instruction. If, on  
the other hand, one of the vectors contain-  
ing an invalid address is called, an  
address error trap is generated.  
Note:  
In the MAC class of instructions, wherein  
the data space is split into X and Y data  
space, unimplemented X space includes  
all of Y space, and unimplemented Y  
space includes all of X space.  
© 2006 Microchip Technology Inc.  
DS70117F-page 47  
dsPIC30F6011/6012/6013/6014  
5. Execution of a “BRA #literal” instruction or a  
GOTO #literal” instruction, where literal  
is an unimplemented program memory address.  
FIGURE 5-1:  
TRAP VECTORS  
Reset - GOTOInstruction  
Reset - GOTOAddress  
0x000000  
0x000002  
0x000004  
6. Executing instructions after modifying the PC to  
point to unimplemented program memory  
addresses. The PC may be modified by loading  
a value into the stack and executing a RETURN  
instruction.  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved Vector  
Reserved Vector  
Reserved Vector  
Interrupt 0 Vector  
Interrupt 1 Vector  
~
IVT  
0x000014  
Stack Error Trap:  
This trap is initiated under the following conditions:  
~
~
Interrupt 52 Vector  
Interrupt 53 Vector  
Reserved  
1. The Stack Pointer is loaded with a value which  
is greater than the (user programmable) limit  
value written into the SPLIM register (stack  
overflow).  
0x00007E  
0x000080  
0x000082  
Reserved  
0x000084  
Reserved  
Oscillator Fail Trap Vector  
Stack Error Trap Vector  
Address Error Trap Vector  
Math Error Trap Vector  
Reserved Vector  
Reserved Vector  
Reserved Vector  
Interrupt 0 Vector  
Interrupt 1 Vector  
~
2. The Stack Pointer is loaded with a value which  
is less than 0x0800 (simple stack underflow).  
AIVT  
Oscillator Fail Trap:  
0x000094  
0x0000FE  
This trap is initiated if the external oscillator fails and  
operation becomes reliant on an internal RC backup.  
~
~
Interrupt 52 Vector  
Interrupt 53 Vector  
5.3.2  
HARD AND SOFT TRAPS  
It is possible that multiple traps can become active  
within the same cycle (e.g., a misaligned word stack  
write to an overflowed address). In such a case, the  
fixed priority shown in Figure 5-1 is implemented,  
which may require the user to check if other traps are  
pending in order to completely correct the fault.  
5.4  
Interrupt Sequence  
All interrupt event flags are sampled in the beginning of  
each instruction cycle by the IFSx registers. A pending  
interrupt request (IRQ) is indicated by the flag bit being  
equal to a ‘1’ in an IFSx register. The IRQ will cause an  
interrupt to occur if the corresponding bit in the Interrupt  
Enable (IECx) register is set. For the remainder of the  
instruction cycle, the priorities of all pending interrupt  
requests are evaluated.  
‘Soft’ traps include exceptions of priority level 8 through  
level 11, inclusive. The arithmetic error trap (level 11)  
falls into this category of traps.  
‘Hard’ traps include exceptions of priority level 12  
through level 15, inclusive. The address error (level  
12), stack error (level 13) and oscillator error (level 14)  
traps fall into this category.  
If there is a pending IRQ with a priority level greater  
than the current processor priority level in the IPL bits,  
the processor will be interrupted.  
Each hard trap that occurs must be Acknowledged  
before code execution of any type may continue. If a  
lower priority hard trap occurs while a higher priority  
trap is pending, Acknowledged, or is being processed,  
a hard trap conflict will occur.  
The processor then stacks the current program counter  
and the low byte of the processor STATUS register  
(SRL), as shown in Figure 5-2. The low byte of the  
STATUS register contains the processor priority level at  
the time prior to the beginning of the interrupt cycle.  
The processor then loads the priority level for this inter-  
rupt into the STATUS register. This action will disable  
all lower priority interrupts until the completion of the  
Interrupt Service Routine.  
The device is automatically reset in a hard trap conflict  
condition. The TRAPR status bit (RCON<15>) is set  
when the Reset occurs so that the condition may be  
detected in software.  
DS70117F-page 48  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 5-2:  
INTERRUPT STACK  
FRAME  
5.6  
Fast Context Saving  
A context saving option is available using shadow reg-  
isters. Shadow registers are provided for the DC, N,  
OV, Z and C bits in SR, and the registers W0 through  
W3. The shadows are only one level deep. The shadow  
registers are accessible using the PUSH.Sand POP.S  
instructions only.  
0x0000 15  
0
When the processor vectors to an interrupt, the  
PUSH.S instruction can be used to store the current  
value of the aforementioned registers into their  
respective shadow registers.  
W15 (before CALL)  
W15 (after CALL)  
PC<15:0>  
SRL IPL3 PC<22:16>  
<Free Word>  
If an ISR of a certain priority uses the PUSH.S and  
POP.S instructions for fast context saving, then a  
higher priority ISR should not include the same instruc-  
tions. Users must save the key registers in software  
during a lower priority interrupt if the higher priority ISR  
uses fast context saving.  
POP :[--W15]  
PUSH:[W15++]  
Note 1: The user can always lower the priority  
level by writing a new value into SR. The  
Interrupt Service Routine must clear the  
interrupt flag bits in the IFSx register  
before lowering the processor interrupt  
priority, in order to avoid recursive  
interrupts.  
5.7  
External Interrupt Requests  
The interrupt controller supports up to five external  
interrupt request signals, INT0-INT4. These inputs are  
edge sensitive; they require a low-to-high or a high-to-  
low transition to generate an interrupt request. The  
INTCON2 register has five bits, INT0EP-INT4EP, that  
select the polarity of the edge detection circuitry.  
2: The IPL3 bit (CORCON<3>) is always  
clear when interrupts are being pro-  
cessed. It is set only during execution of  
traps.  
5.8  
Wake-up from Sleep and Idle  
The RETFIE (Return from Interrupt) instruction will  
unstack the program counter and STATUS registers to  
return the processor to its state prior to the interrupt  
sequence.  
The interrupt controller may be used to wake-up the  
processor from either Sleep or Idle modes, if Sleep or  
Idle mode is active when the interrupt is generated.  
If an enabled interrupt request of sufficient priority is  
received by the interrupt controller, then the standard  
interrupt request is presented to the processor. At the  
same time, the processor will wake-up from Sleep or  
Idle and begin execution of the Interrupt Service  
Routine (ISR) needed to process the interrupt request.  
5.5  
Alternate Vector Table  
In program memory, the Interrupt Vector Table (IVT) is  
followed by the Alternate Interrupt Vector Table (AIVT),  
as shown in Table 5-1. Access to the alternate vector  
table is provided by the ALTIVT bit in the INTCON2 reg-  
ister. If the ALTIVT bit is set, all interrupt and exception  
processes will use the alternate vectors instead of the  
default vectors. The alternate vectors are organized in  
the same manner as the default vectors. The AIVT sup-  
ports emulation and debugging efforts by providing a  
means to switch between an application and a support  
environment without requiring the interrupt vectors to  
be reprogrammed. This feature also enables switching  
between applications for evaluation of different  
software algorithms at run time.  
If the AIVT is not required, the program memory allo-  
cated to the AIVT may be used for other purposes.  
AIVT is not a protected section and may be freely  
programmed by the user.  
© 2006 Microchip Technology Inc.  
DS70117F-page 49  
TABLE 5-2:  
INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
ADR Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0000 0100 0100 0100  
0000 0100 0100 0000  
INTCON1 0080 NSTDIS  
INTCON2 0082 ALTIVT  
OVATE OVBTE COVTE  
MATHERR ADDRERR STKERR OSCFAIL  
DISI  
INT4EP  
IC2IF  
INT3EP  
T1IF  
OC3IF  
OC8IF  
T1IE  
OC3IE  
OC8IE  
INT2EP INT1EP INT0EP  
IFS0  
IFS1  
IFS2  
IEC0  
IEC1  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
0084 CNIF MI2CIF SI2CIF NVMIF  
ADIF U1TXIF U1RXIF SPI1IF  
T3IF  
T2IF OC2IF  
T5IF T4IF  
OC1IF  
IC8IF  
IC1IF  
IC7IF  
INT0IF  
INT1IF  
OC5IF  
INT0IE  
INT1IE  
OC5IE  
0086 IC6IF  
0088  
IC5IF  
IC4IF  
IC3IF  
C1IF  
SPI2IF U2TXIF U2RXIF INT2IF  
OC4IF  
INT3IF  
IC2IE  
LVDIF  
DCIIF  
C2IF INT4IF  
T2IE OC2IE  
OC7IF  
OC1IE  
IC8IE  
OC6IF  
008C CNIE MI2CIE SI2CIE NVMIE ADIE U1TXIE U1RXIE SPI1IE  
T3IE  
IC1IE  
008E IC6IE  
IC5IE  
IC4IE  
IC3IE  
C1IE  
SPI2IE U2TXIE U2RXIE INT2IE T5IE  
T4IE  
C2IE INT4IE  
IC1IP<2:0>  
OC4IE  
IC7IE  
0090  
0094  
0096  
0098  
009A  
009C  
009E  
00A0  
00A2  
00A4  
00A6  
00A8  
LVDIE  
DCIIE  
INT3IE  
OC7IE  
OC6IE  
T1IP<2:0>  
T31P<2:0>  
ADIP<2:0>  
CNIP<2:0>  
OC3IP<2:0>  
INT2IP<2:0>  
C1IP<2:0>  
IC6IP<2:0>  
OC8IP<2:0>  
OC1IP<2:0>  
T2IP<2:0>  
INT0IP<2:0>  
IC2IP<2:0>  
SPI1IP<2:0>  
NVMIP<2:0>  
INT1IP<2:0>  
OC4IP<2:0>  
U2RXIP<2:0>  
IC3IP<2:0>  
OC5IP<2:0>  
INT3IP<2:0>  
OC2IP<2:0>  
U1RXIP<2:0>  
SI2CIP<2:0>  
IC7IP<2:0>  
T4IP<2:0>  
U1TXIP<2:0>  
MI2CIP<2:0>  
IC8IP<2:0>  
T5IP<2:0>  
SPI2IP<2:0>  
IC5IP<2:0>  
OC7IP<2:0>  
C2IP<2:0>  
LVDIP<2:0>  
U2TXIP<2:0>  
IC4IP<2:0>  
OC6IP<2:0>  
INT41IP<2:0>  
DCIIP<2:0>  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
6.2  
Run-Time Self-Programming  
(RTSP)  
6.0  
FLASH PROGRAM MEMORY  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
RTSP is accomplished using TBLRD (table read) and  
TBLWT(table write) instructions.  
With RTSP, the user may erase program memory, 32  
instructions (96 bytes) at a time and can write program  
memory data, 32 instructions (96 bytes) at a time.  
The dsPIC30F family of devices contains internal pro-  
gram Flash memory for executing user code. There are  
two methods by which the user can program this  
memory:  
6.3  
Table Instruction Operation  
Summary  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
Word or Byte mode.  
1. Run-Time Self-Programming (RTSP)  
2. In-Circuit Serial Programming (ICSP)  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan access program memory in Word or  
Byte mode.  
6.1  
In-Circuit Serial Programming  
(ICSP)  
dsPIC30F devices can be serially programmed while in  
the end application circuit. This is simply done with two  
lines for Programming Clock and Programming Data  
(which are named PGC and PGD respectively), and  
three other lines for Power (VDD), Ground (VSS) and  
Master Clear (MCLR). This allows customers to manu-  
facture boards with unprogrammed devices, and then  
program the microcontroller just before shipping the  
product. This also allows the most recent firmware or a  
custom firmware to be programmed.  
A 24-bit program memory address is formed using  
bits<7:0> of the TBLPAG register and the effective  
address (EA) from a W register specified in the table  
instruction, as shown in Figure 6-1.  
FIGURE 6-1:  
ADDRESSING FOR TABLE AND NVM REGISTERS  
24 bits  
Using  
Program  
Counter  
Program Counter  
0
0
NVMADR Reg EA  
Using  
NVMADR  
Addressing  
1/0 NVMADRU Reg  
8 bits  
16 bits  
Working Reg EA  
Using  
Table  
Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
Byte  
Select  
User/Configuration  
Space Select  
24-bit EA  
© 2006 Microchip Technology Inc.  
DS70117F-page 51  
dsPIC30F6011/6012/6013/6014  
6.4  
RTSP Operation  
6.5  
Control Registers  
The dsPIC30F Flash program memory is organized  
into rows and panels. Each row consists of 32 instruc-  
tions or 96 bytes. Each panel consists of 128 rows or  
4K x 24 instructions. RTSP allows the user to erase one  
row (32 instructions) at a time and to program four  
instructions at one time. RTSP may be used to program  
multiple program memory panels, but the table pointer  
must be changed at each panel boundary.  
The four SFRs used to read and write the program  
Flash memory are:  
• NVMCON  
• NVMADR  
• NVMADRU  
• NVMKEY  
6.5.1  
NVMCON REGISTER  
Each panel of program memory contains write latches  
that hold 32 instructions of programming data. Prior to  
the actual programming operation, the write data must  
be loaded into the panel write latches. The data to be  
programmed into the panel is loaded in sequential  
order into the write latches: instruction 0, instruction 1,  
etc. The instruction words loaded must always be from  
a group of 32 boundary.  
The NVMCON register controls which blocks are to be  
erased, which memory type is to be programmed and  
start of the programming cycle.  
6.5.2  
NVMADR REGISTER  
The NVMADR register is used to hold the lower two  
bytes of the effective address. The NVMADR register  
captures the EA<15:0> of the last table instruction that  
has been executed and selects the row to write.  
The basic sequence for RTSP programming is to set up  
a table pointer, then do a series of TBLWTinstructions  
to load the write latches. Programming is performed by  
setting the special bits in the NVMCON register. Four  
TBLWTL and four TBLWTH instructions are required to  
load the four instructions. If multiple panel program-  
ming is required, the table pointer needs to be changed  
and the next set of multiple write latches written.  
6.5.3  
NVMADRU REGISTER  
The NVMADRU register is used to hold the upper byte  
of the effective address. The NVMADRU register cap-  
tures the EA<23:16> of the last table instruction that  
has been executed.  
All of the table write operations are single word writes  
(2 instruction cycles) because only the table latches  
are written. A programming cycle is required for  
programming each row.  
6.5.4  
NVMKEY REGISTER  
NVMKEY is a write only register that is used for write  
protection. To start a programming or an erase  
sequence, the user must consecutively write 0x55and  
0xAA to the NVMKEY register. Refer to Section 6.6  
“Programming Operations” for further details.  
The Flash program memory is readable, writable, and  
erasable during normal operation over the entire VDD  
range.  
Note:  
The user can also directly write to the  
NVMADR and NVMADRU registers to  
specify a program memory address for  
erasing or programming.  
DS70117F-page 52  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
4. Write 32 instruction words of data from data  
6.6  
Programming Operations  
RAM “image” into the program Flash write  
latches.  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. A programming operation is nominally 2 msec in  
duration and the processor stalls (waits) until the oper-  
ation is finished. Setting the WR bit (NVMCON<15>)  
starts the operation, and the WR bit is automatically  
cleared when the operation is finished.  
5. Program 32 instruction words into program  
Flash.  
a) Setup NVMCON register for multi-word,  
program Flash, program, and set WREN  
bit.  
b) Write 55’ to NVMKEY.  
c) Write AA’ to NVMKEY.  
6.6.1  
PROGRAMMING ALGORITHM FOR  
PROGRAM FLASH  
d) Set the WR bit. This will begin program  
cycle.  
The user can erase and program one row of program  
Flash memory at a time. The general process is:  
e) CPU will stall for duration of the program  
cycle.  
1. Read one row of program Flash (32 instruction  
words) and store into data RAM as a data  
“image”.  
f) The WR bit is cleared by the hardware  
when program cycle ends.  
6. Repeat steps 1 through 5 as needed to program  
desired amount of program Flash memory.  
2. Update the data image with the desired new  
data.  
3. Erase program Flash row.  
6.6.2  
ERASING A ROW OF PROGRAM  
MEMORY  
a) Setup NVMCON register for multi-word,  
program Flash, erase, and set WREN bit.  
Example 6-1 shows a code sequence that can be used  
to erase a row (32 instructions) of program memory.  
b) Write address of row to be erased into  
NVMADRU/NVMADR.  
c) Write 55’ to NVMKEY.  
d) Write AA’ to NVMKEY.  
e) Set the WR bit. This will begin erase cycle.  
f) CPU will stall for the duration of the erase  
cycle.  
g) The WR bit is cleared when erase cycle  
ends.  
EXAMPLE 6-1:  
ERASING A ROW OF PROGRAM MEMORY  
; Setup NVMCON for erase operation, multi word write  
; program memory selected, and writes enabled  
MOV  
MOV  
#0x4041,W0  
W0 NVMCON  
;
; Init NVMCON SFR  
,
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
MOV  
DISI  
#tblpage(PROG_ADDR),W0  
;
W0 NVMADRU  
; Initialize PM Page Boundary SFR  
; Intialize in-page EA[15:0] pointer  
; Initialize NVMADR SFR  
; Block all interrupts with priority <7 for  
; next 5 instructions  
,
#tbloffset(PROG_ADDR),W0  
W0, NVMADR  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0 NVMKEY  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
,
#0xAA,W1  
W1 NVMKEY  
,
NVMCON,#WR  
© 2006 Microchip Technology Inc.  
DS70117F-page 53  
dsPIC30F6011/6012/6013/6014  
6.6.3  
LOADING WRITE LATCHES  
Example 6-2 shows a sequence of instructions that can  
be used to load the 96 bytes of write latches. 32  
TBLWTL and 32 TBLWTH instructions are needed to  
load the write latches selected by the table pointer.  
EXAMPLE 6-2:  
LOADING WRITE LATCHES  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000,W0  
;
W0 TBLPAG  
; Initialize PM Page Boundary SFR  
; An example program memory address  
,
#0x6000,W0  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0,W2  
#HIGH_BYTE_0,W3  
;
;
TBLWTL W2 [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
,
TBLWTH W3 [W0++]  
,
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1,W2  
#HIGH_BYTE_1,W3  
;
;
TBLWTL W2 [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
,
TBLWTH W3 [W0++]  
,
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2,W2  
#HIGH_BYTE_2,W3  
;
;
TBLWTL W2 [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
,
TBLWTH W3 [W0++]  
,
; 31st_program_word  
MOV  
MOV  
#LOW_WORD_31,W2  
#HIGH_BYTE_31,W3  
;
;
TBLWTL W2 [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
,
TBLWTH W3 [W0++]  
,
Note: In Example 6-2, the contents of the upper byte of W3 has no effect.  
executed, the user must wait for the programming time  
6.6.4  
INITIATING THE PROGRAMMING  
SEQUENCE  
until programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs.  
For protection, the write initiate sequence for NVMKEY  
must be used to allow any erase or program operation  
to proceed. After the programming command has been  
EXAMPLE 6-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
;
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0 NVMKEY  
#0xAA,W1  
W1 NVMKEY  
,
,
NVMCON,#WR  
DS70117F-page 54  
© 2006 Microchip Technology Inc.  
TABLE 6-1:  
NVM REGISTER MAP  
File Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All RESETS  
NVMCON  
NVMADR  
NVMADRU  
NVMKEY  
0760  
0762  
0764  
0766  
WR  
WREN  
WRERR  
TWRI  
PROGOP<6:0>  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
NVMADR<15:0>  
NVMADR<23:16>  
KEY<7:0>  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 56  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Control bit WR initiates write operations similar to pro-  
7.0  
DATA EEPROM MEMORY  
gram Flash writes. This bit cannot be cleared, only set,  
in software. They are cleared in hardware at the com-  
pletion of the write operation. The inability to clear the  
WR bit in software prevents the accidental or  
premature termination of a write operation.  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset or a WDT Time-out Reset during normal opera-  
tion. In these situations, following Reset, the user can  
check the WRERR bit and rewrite the location. The  
address register NVMADR remains unchanged.  
The Data EEPROM Memory is readable and writable  
during normal operation over the entire VDD range. The  
data EEPROM memory is directly mapped in the  
program memory address space.  
The four SFRs used to read and write the program  
Flash memory are used to access data EEPROM  
memory, as well. As described in Section 6.5 “Control  
Registers”, these registers are:  
Note:  
Interrupt flag bit NVMIF in the IFS0 regis-  
ter is set when write is complete. It must be  
cleared in software.  
• NVMCON  
• NVMADR  
• NVMADRU  
• NVMKEY  
7.1  
Reading the Data EEPROM  
A TBLRD instruction reads a word at the current pro-  
gram word address. This example uses W0 as a  
pointer to data EEPROM. The result is placed in  
register W4 as shown in Example 7-1.  
The EEPROM data memory allows read and write of  
single words and 16-word blocks. When interfacing to  
data memory, NVMADR in conjunction with the  
NVMADRU register are used to address the EEPROM  
location being accessed. TBLRDL and TBLWTL  
instructions are used to read and write data EEPROM.  
The dsPIC30F devices have up to 8 Kbytes (4K  
words) of data EEPROM with an address range from  
0x7FF000 to 0x7FFFFE.  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOV  
MOV  
MOV  
#LOW_ADDR_WORD,W0 ; Init Pointer  
#HIGH_ADDR_WORD,W1  
W1 TBLPAG  
,
TBLRDL [ W0 ], W4  
; read data EEPROM  
A word write operation should be preceded by an erase  
of the corresponding memory location(s). The write typ-  
ically requires 2 ms to complete but the write time will  
vary with voltage and temperature.  
A program or erase operation on the data EEPROM  
does not stop the instruction flow. The user is respon-  
sible for waiting for the appropriate duration of time  
before initiating another data EEPROM write/erase  
operation. Attempting to read the data EEPROM while  
a programming or erase operation is in progress results  
in unspecified data.  
© 2006 Microchip Technology Inc.  
DS70117F-page 57  
dsPIC30F6011/6012/6013/6014  
7.2  
Erasing Data EEPROM  
7.2.1  
ERASING A BLOCK OF DATA  
EEPROM  
In order to erase a block of data EEPROM, the  
NVMADRU and NVMADR registers must initially point  
to the block of memory to be erased. Configure  
NVMCON for erasing a block of data EEPROM, and  
set the ERASE and WREN bits in the NVMCON  
register. Setting the WR bit initiates the erase as  
shown in Example 7-2.  
EXAMPLE 7-2:  
DATA EEPROM BLOCK ERASE  
; Select data EEPROM block, ERASE, WREN bits  
MOV  
MOV  
#0x4045,W0  
W0 NVMCON  
; Initialize NVMCON SFR  
,
; Start erase cycle by setting WR after writing key sequence  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
;
W0 NVMKEY  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Initiate erase sequence  
,
#0xAA,W1  
W1 NVMKEY  
,
NVMCON,#WR  
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete  
7.2.2  
ERASING A WORD OF DATA  
EEPROM  
The NVMADRU and NVMADR registers must point to  
the block. Select erase a block of data Flash, and set  
the ERASE and WREN bits in the NVMCON register.  
Setting the WR bit initiates the erase as shown in  
Example 7-3.  
EXAMPLE 7-3:  
DATA EEPROM WORD ERASE  
; Select data EEPROM word, ERASE, WREN bits  
MOV  
MOV  
#0x4044,W0  
W0 NVMCON  
,
; Start erase cycle by setting WR after writing key sequence  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
;
W0 NVMKEY  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Initiate erase sequence  
,
#0xAA,W1  
W1 NVMKEY  
,
NVMCON,#WR  
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete  
DS70117F-page 58  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
The write will not initiate if the above sequence is not  
7.3  
Writing to the Data EEPROM  
exactly followed (write 0x55to NVMKEY, write 0xAAto  
NVMCON, then set WR bit) for each word. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
To write an EEPROM data location, the following  
sequence must be followed:  
1. Erase data EEPROM word.  
a) Select word, data EEPROM erase, and set  
WREN bit in NVMCON register.  
Additionally, the WREN bit in NVMCON must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution. The WREN bit should be kept clear at all times  
except when updating the EEPROM. The WREN bit is  
not cleared by hardware.  
b) Write address of word to be erased into  
NVMADR.  
c) Enable NVM interrupt (optional).  
d) Write 55’ to NVMKEY.  
After a write sequence has been initiated, clearing the  
WREN bit will not affect the current write cycle. The WR  
bit will be inhibited from being set unless the WREN bit  
is set. The WREN bit must be set on a previous instruc-  
tion. Both WR and WREN cannot be set with the same  
instruction.  
e) Write AA’ to NVMKEY.  
f) Set the WR bit. This will begin erase cycle.  
g) Either poll NVMIF bit or wait for NVMIF  
interrupt.  
h) The WR bit is cleared when the erase cycle  
ends.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the Non-Volatile Memory  
Write Complete Interrupt Flag bit (NVMIF) is set. The  
user may either enable this interrupt or poll this bit.  
NVMIF must be cleared by software.  
2. Write data word into data EEPROM write  
latches.  
3. Program 1 data word into data EEPROM.  
a) Select word, data EEPROM program, and  
set WREN bit in NVMCON register.  
7.3.1  
WRITING A WORD OF DATA  
EEPROM  
b) Enable NVM write done interrupt (optional).  
c) Write 55’ to NVMKEY.  
Once the user has erased the word to be programmed,  
then a table write instruction is used to write one write  
latch, as shown in Example 7-4.  
d) Write AA’ to NVMKEY.  
e) Set the WR bit. This will begin program  
cycle.  
f) Either poll NVMIF bit or wait for NVM  
interrupt.  
g) The WR bit is cleared when the write cycle  
ends.  
EXAMPLE 7-4:  
DATA EEPROM WORD WRITE  
; Point to data memory  
MOV  
MOV  
#LOW_ADDR_WORD,W0  
#HIGH_ADDR_WORD,W1  
; Init pointer  
MOV  
W1 TBLPAG  
,
MOV  
#LOW(WORD),W2  
; Get data  
TBLWTL  
W2 [ W0]  
; Write data  
,
; The NVMADR captures last table access address  
; Select data EEPROM for 1 word op  
MOV  
MOV  
#0x4004,W0  
W0 NVMCON  
,
; Operate key to allow write operation  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0 NVMKEY  
; Write the 0x55 key  
,
#0xAA,W1  
W1 NVMKEY  
; Write the 0xAA key  
; Initiate program sequence  
,
NVMCON,#WR  
; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete  
© 2006 Microchip Technology Inc.  
DS70117F-page 59  
dsPIC30F6011/6012/6013/6014  
7.3.2  
WRITING A BLOCK OF DATA  
EEPROM  
To write a block of data EEPROM, write to all sixteen  
latches first, then set the NVMCON register and  
program the block.  
EXAMPLE 7-5:  
DATA EEPROM BLOCK WRITE  
MOV  
MOV  
#LOW_ADDR_WORD,W0 ; Init pointer  
#HIGH_ADDR_WORD,W1  
MOV  
W1 TBLPAG  
,
MOV  
#data1,W2  
; Get 1st data  
TBLWTL  
MOV  
W2 [ W0]++  
#data2,W2  
; write data  
; Get 2nd data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data3,W2  
; write data  
; Get 3rd data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data4,W2  
; write data  
; Get 4th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data5,W2  
; write data  
; Get 5th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data6,W2  
; write data  
; Get 6th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data7,W2  
; write data  
; Get 7th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data8,W2  
; write data  
; Get 8th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data9,W2  
; write data  
; Get 9th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data10,W2  
; write data  
; Get 10th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data11,W2  
; write data  
; Get 11th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data12,W2  
; write data  
; Get 12th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data13,W2  
; write data  
; Get 13th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data14,W2  
; write data  
; Get 14th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data15,W2  
; write data  
; Get 15th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data16,W2  
; write data  
; Get 16th data  
,
TBLWTL  
MOV  
MOV  
W2 [ W0]++  
#0x400A,W0  
; write data. The NVMADR captures last table access address.  
; Select data EEPROM for multi word op  
; Operate Key to allow program operation  
; Block all interrupts with priority <7 for  
; next 5 instructions  
,
W0 NVMCON  
,
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0 NVMKEY  
; Write the 0x55 key  
,
#0xAA,W1  
W1 NVMKEY  
; Write the 0xAA key  
; Start write cycle  
,
NVMCON,#WR  
DS70117F-page 60  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
7.4  
Write Verify  
7.5  
Protection Against Spurious Write  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared;  
also, the Power-up Timer prevents EEPROM write.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
© 2006 Microchip Technology Inc.  
DS70117F-page 61  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 62  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Any bit and its associated data and control registers  
that are not valid for a particular device will be dis-  
8.0  
I/O PORTS  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
abled. That means the corresponding LATx and TRISx  
registers and the port pin will read as zeros.  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is nevertheless  
regarded as a dedicated port because there is no  
other competing source of outputs. An example is the  
INT4 pin.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared between the peripherals and  
the parallel I/O ports.  
The format of the registers for PORTA are shown in  
Table 8-1.  
All I/O input ports feature Schmitt Trigger inputs for  
improved noise immunity.  
The TRISA (Data Direction Control) register controls  
the direction of the RA<7:0> pins, as well as the INTx  
pins and the VREF pins. The LATA register supplies  
data to the outputs and is readable/writable. Reading  
the PORTA register yields the state of the input pins,  
while writing the PORTA register modifies the contents  
of the LATA register.  
8.1  
Parallel I/O (PIO) Ports  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
may be read but the output driver for the parallel port bit  
will be disabled. If a peripheral is enabled but the  
peripheral is not actively driving a pin, that pin may be  
driven by a port.  
A parallel I/O (PIO) port that shares a pin with a periph-  
eral is, in general, subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pad cell. Figure 8-2 shows how ports are shared  
with other peripherals and the associated I/O cell (pad)  
to which they are connected. Table 8-2 through  
Table 8-9 show the formats of the registers for the  
shared ports, PORTB through PORTG.  
All port pins have three registers directly associated  
with the operation of the port pin. The Data Direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx), read the latch.  
Writes to the latch, write the latch (LATx). Reads from  
the port (PORTx), read the port pins and writes to the  
port pins, write the latch (LATx).  
Note:  
The actual bits in use vary between  
devices.  
FIGURE 8-1:  
BLOCK DIAGRAM OF A DEDICATED PORT STRUCTURE  
Dedicated Port Module  
Read TRIS  
I/O Cell  
TRIS Latch  
D
Q
Data Bus  
WR TRIS  
CK  
Data Latch  
I/O Pad  
D
Q
WR LAT +  
WR Port  
CK  
Read LAT  
Read Port  
© 2006 Microchip Technology Inc.  
DS70117F-page 63  
dsPIC30F6011/6012/6013/6014  
When reading the Port register, all pins configured as  
analog input channels will read as cleared (a low level).  
8.2  
Configuring Analog Port Pins  
The use of the ADPCFG and TRIS registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bit set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
Pins configured as digital inputs will not convert an ana-  
log input. Analog levels on any pin that is defined as a  
digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
FIGURE 8-2:  
BLOCK DIAGRAM OF A SHARED PORT STRUCTURE  
Output Multiplexers  
Peripheral Module  
Peripheral Input Data  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
I/O Cell  
1
Output Enable  
0
1
PIO Module  
Read TRIS  
Output Data  
0
I/O Pad  
Data Bus  
WR TRIS  
D
Q
CK  
TRIS Latch  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
Read LAT  
Input Data  
Read Port  
DS70117F-page 64  
© 2006 Microchip Technology Inc.  
TABLE 8-1:  
PORTA REGISTER MAP FOR dsPIC30F6013/6014  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
1111 0110 1100 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
TRISA  
PORTA  
LATA  
02C0 TRISA15 TRISA14 TRISA13 TRISA12  
02C2 RA15 RA14 RA13 RA12  
02C4 LATA15 LATA14 LATA13 LATA12  
TRISA10 TRISA9  
TRISA7 TRISA6  
RA10  
RA9  
RA7  
RA6  
LATA10  
LATA9  
LATA7  
LATA6  
Note 1: PORTA is not implemented in the dsPIC30F6011/6012 devices.  
2: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-2:  
PORTB REGISTER MAP FOR dsPIC30F6011/6012/6013/6014  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISB  
PORTB  
LATB  
02C6 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 1111 1111 1111  
02C8  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
0000 0000 0000 0000  
02CB LATB15 LATB14 LATB13 LATB12 LATB11 LATB10  
LATB9  
LATB8  
LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-3:  
PORTC REGISTER MAP FOR dsPIC30F6011/6012  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISC  
PORTC  
LATC  
02CC  
02CE  
02D0  
TRISC15 TRISC14 TRISC13  
RC15 RC14 RC13  
LATC15 LATC14 LATC13  
TRISC2 TRISC1  
1110 0000 0000 0110  
0000 0000 0000 0000  
0000 0000 0000 0000  
RC2  
RC1  
LATC2  
LATC1  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-4:  
PORTC REGISTER MAP FOR dsPIC30F6013/6014  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISC  
PORTC  
LATC  
02CC  
02CE  
02D0  
TRISC15 TRISC14 TRISC13  
RC15 RC14 RC13  
LATC15 LATC14 LATC13  
TRISC4 TRISC3 TRISC2 TRISC1  
1110 0000 0001 1110  
0000 0000 0000 0000  
0000 0000 0000 0000  
RC4  
RC3  
RC2  
RC1  
LATC4  
LATC3  
LATC2  
LATC1  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-5:  
PORTD REGISTER MAP FOR dsPIC30F6011/6012  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISD  
02D2  
TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 0000 1111 1111 1111  
PORTD 02D4  
RD11  
RD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
0000 0000 0000 0000  
LATD  
02D6  
LATD11 LATD10 LATD9  
LATD8  
LATD7  
LATD6  
LATD5  
LATD4 LATD3 LATD2 LATD1  
LATD0 0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-6:  
PORTD REGISTER MAP FOR dsPIC30F6013/6014  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISD  
02D2 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 1111 1111 1111  
PORTD 02D4  
RD15  
RD14  
RD13  
RD12  
RD11  
RD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
0000 0000 0000 0000  
LATD  
02D6 LATD15 LATD14 LATD13 LATD12 LATD11 LATD10 LATD9  
LATD8  
LATD7  
LATD6  
LATD5  
LATD4 LATD3 LATD2 LATD1  
LATD0 0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-7:  
PORTF REGISTER MAP FOR dsPIC30F6011/6012  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISF  
02DE  
TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 0000 0000 0111 1111  
PORTF 02E0  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
0000 0000 0000 0000  
LATF  
02E2  
LATF6  
LATF5  
LATF4  
LATF3  
LATF2  
LATF1  
LATF0 0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-8:  
PORTF REGISTER MAP FOR dsPIC30F6013/6014  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISF  
02DE  
TRISF8 TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 0000 0001 1111 1111  
PORTF 02E0  
RF8  
RF7  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
0000 0000 0000 0000  
LATF  
02E2  
LATF8  
LATF7  
LATF6  
LATF5  
LATF4  
LATF3  
LATF2  
LATF1  
LATF0 0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-9:  
PORTG REGISTER MAP FOR dsPIC30F6011/6012/6013/6014  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISG  
PORTG  
LATG  
02E4 TRISG15 TRISG14 TRISG13 TRISG12  
TRISG9 TRISG8 TRISG7 TRISG6  
TRISG3 TRISG2 TRISG1 TRISG0 1111 0011 1100 1111  
02E6  
RG15  
RG14  
RG13  
RG12  
RG9  
RG8  
RG7  
RG6  
RG3  
RG2  
RG1  
RG0  
0000 0000 0000 0000  
0000 0000 0000 0000  
02E8 LATG15  
LATG14  
LATG13  
LATG12  
LATG9  
LATG8  
LATG7  
LATG6  
LATG3  
LATG2  
LATG1  
LATG0  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
8.3  
Input Change Notification Module  
The input change notification module provides the  
dsPIC30F devices the ability to generate interrupt  
requests to the processor, in response to a change of  
state on selected input pins. This module is capable of  
detecting input change of states even in Sleep mode,  
when the clocks are disabled. There are up to 24 exter-  
nal signals (CN0 through CN23) that may be selected  
(enabled) for generating an interrupt request on a  
change of state.  
TABLE 8-10: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6011/6012 (BITS 15-8)  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Reset State  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
00C0  
00C2  
00C4  
00C6  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE  
CN8PUE 0000 0000 0000 0000  
0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-11: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6011/6012 (BITS 7-0)  
SFR  
Name  
Addr.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
00C0  
00C2  
00C4  
00C6  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
CN18IE  
CN17IE  
CN16IE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE  
CN0PUE 0000 0000 0000 0000  
CN18PUE CN17PUE CN16PUE 0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-12: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6013/6014 (BITS 15-8)  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Reset State  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
00C0  
00C2  
00C4  
00C6  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE  
CN8PUE 0000 0000 0000 0000  
0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-13: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6013/6014 (BITS 7-0)  
SFR  
Name  
Addr.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
00C0  
00C2  
00C4  
00C6  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
CN23IE  
CN22IE  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE  
CN0PUE 0000 0000 0000 0000  
CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
© 2006 Microchip Technology Inc.  
DS70117F-page 67  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 68  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
16-bit Timer Mode: In the 16-bit Timer mode, the timer  
increments on every instruction cycle up to a match  
9.0  
TIMER1 MODULE  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
value preloaded into the Period register PR1, then  
resets to ‘0’ and continues to count.  
When the CPU goes into the Idle mode, the timer will  
stop incrementing unless the TSIDL (T1CON<13>)  
bit = 0. If TSIDL = 1, the timer module logic will resume  
the incrementing sequence upon termination of the  
CPU Idle mode.  
This section describes the 16-bit General Purpose  
Timer1 module and associated operational modes.  
Figure 9-1 depicts the simplified block diagram of the  
16-bit Timer1 module.  
16-bit Synchronous Counter Mode: In the 16-bit  
Synchronous Counter mode, the timer increments on  
the rising edge of the applied external clock signal  
which is synchronized with the internal phase clocks.  
The timer counts up to a match value preloaded in PR1,  
then resets to ‘0’ and continues.  
The following sections provide a detailed description  
including setup and control registers, along with asso-  
ciated block diagrams for the operational modes of the  
timers.  
When the CPU goes into the Idle mode, the timer will  
stop incrementing unless the respective TSIDL bit = 0.  
If TSIDL = 1, the timer module logic will resume the  
incrementing sequence upon termination of the CPU  
Idle mode.  
The Timer1 module is a 16-bit timer which can serve as  
the time counter for the real-time clock, or operate as a  
free-running interval timer/counter. The 16-bit timer has  
the following modes:  
• 16-bit Timer  
16-bit Asynchronous Counter Mode: In the 16-bit  
Asynchronous Counter mode, the timer increments on  
every rising edge of the applied external clock signal.  
The timer counts up to a match value preloaded in PR1,  
then resets to ‘0’ and continues.  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
Further, the following operational characteristics are  
supported:  
• Timer gate operation  
When the timer is configured for the Asynchronous  
mode of operation and the CPU goes into the Idle  
mode, the timer will stop incrementing if TSIDL = 1.  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
These Operating modes are determined by setting the  
appropriate bit(s) in the 16-bit SFR, T1CON. Figure 9-1  
presents a block diagram of the 16-bit timer module.  
© 2006 Microchip Technology Inc.  
DS70117F-page 69  
dsPIC30F6011/6012/6013/6014  
FIGURE 9-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
PR1  
Equal  
Comparator x 16  
TSYNC  
1
Sync  
TMR1  
Reset  
0
0
T1IF  
Event Flag  
Q
Q
D
TGATE  
1
CK  
TGATE  
TCKPS<1:0>  
2
TON  
SOSCO/  
T1CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
LPOSCEN  
SOSCI  
TCY  
9.1  
Timer Gate Operation  
9.3  
Timer Operation During Sleep  
Mode  
The 16-bit timer can be placed in the Gated Time Accu-  
mulation mode. This mode allows the internal TCY to  
increment the respective timer when the gate input sig-  
nal (T1CK pin) is asserted high. Control bit TGATE  
(T1CON<6>) must be set to enable this mode. The  
timer must be enabled (TON = 1) and the timer clock  
source set to internal (TCS = 0).  
During CPU Sleep mode, the timer will operate if:  
• The timer module is enabled (TON = 1) and  
• The timer clock source is selected as external  
(TCS = 1) and  
• The TSYNC bit (T1CON<2>) is asserted to a logic  
0’ which defines the external clock source as  
asynchronous.  
When the CPU goes into the Idle mode, the timer will  
stop incrementing unless TSIDL = 0. If TSIDL = 1, the  
timer will resume the incrementing sequence upon  
termination of the CPU Idle mode.  
When all three conditions are true, the timer will con-  
tinue to count up to the Period register and be reset to  
0x0000.  
9.2  
Timer Prescaler  
When a match between the timer and the Period regis-  
ter occurs, an interrupt can be generated if the  
respective timer interrupt enable bit is asserted.  
The input clock (FOSC/4 or external clock) to the 16-bit  
Timer has a prescale option of 1:1, 1:8, 1:64 and 1:256,  
selected by control bits TCKPS<1:0> (T1CON<5:4>).  
The prescaler counter is cleared when any of the  
following occurs:  
• a write to the TMR1 register  
• a write to the T1CON register  
• device Reset, such as POR and BOR  
However, if the timer is disabled (TON = 0), then the  
timer prescaler cannot be reset since the prescaler  
clock is halted.  
TMR1 is not cleared when T1CON is written. It is  
cleared by writing to the TMR1 register.  
DS70117F-page 70  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
9.5.1  
RTC OSCILLATOR OPERATION  
9.4  
Timer Interrupt  
When the TON = 1, TCS = 1and TGATE = 0, the timer  
increments on the rising edge of the 32 kHz LP oscilla-  
tor output signal, up to the value specified in the Period  
register and is then Reset to ‘0’.  
The 16-bit timer has the ability to generate an interrupt on  
period match. When the timer count matches the Period  
register, the T1IF bit is asserted and an interrupt will be  
generated if enabled. The T1IF bit must be cleared in  
software. The timer interrupt flag, T1IF, is located in the  
IFS0 Control register in the interrupt controller.  
The TSYNC bit must be asserted to a logic ‘0’  
(Asynchronous mode) for correct operation.  
When the Gated Time Accumulation mode is enabled,  
an interrupt will also be generated on the falling edge of  
the gate signal (at the end of the accumulation cycle).  
Enabling LPOSCEN (OSCCON<1>) will disable the  
normal Timer and Counter modes and enable a timer  
carry-out wake-up event.  
Enabling an interrupt is accomplished via the respec-  
tive timer interrupt enable bit, T1IE. The timer interrupt  
enable bit is located in the IEC0 Control register in the  
interrupt controller.  
When the CPU enters Sleep mode, the RTC will con-  
tinue to operate provided the 32 kHz external crystal  
oscillator is active and the control bits have not been  
changed. The TSIDL bit should be cleared to ‘0’ in  
order for RTC to continue operation in Idle mode.  
9.5  
Real-Time Clock  
9.5.2  
RTC INTERRUPTS  
Timer1, when operating in Real-Time Clock (RTC)  
mode, provides time of day and event time-stamping  
capabilities. Key operational features of the RTC are:  
When an interrupt event occurs, the respective interrupt  
flag, T1IF, is asserted and an interrupt will be generated  
if enabled. The T1IF bit must be cleared in software. The  
respective Timer interrupt flag, T1IF, is located in the  
IFS0 Status register in the interrupt controller.  
• Operation from 32 kHz LP oscillator  
• 8-bit prescaler  
• Low power  
Enabling an interrupt is accomplished via the respec-  
tive timer interrupt enable bit, T1IE. The timer interrupt  
enable bit is located in the IEC0 Control register in the  
interrupt controller.  
• Real-Time Clock interrupts  
These Operating modes are determined by setting the  
appropriate bit(s) in the T1CON Control register.  
FIGURE 9-2:  
RECOMMENDED  
COMPONENTS FOR  
TIMER1 LP OSCILLATOR  
RTC  
C1  
SOSCI  
32.768 kHz  
XTAL  
dsPIC30FXXXX  
SOSCO  
C2  
R
C1 = C2 = 18 pF; R = 100K  
© 2006 Microchip Technology Inc.  
DS70117F-page 71  
TABLE 9-1:  
TIMER1 REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TMR1  
PR1  
0100  
0102  
0104  
Timer1 Register  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
0000 0000 0000 0000  
Period Register 1  
TGATE TCKPS1 TCKPS0  
T1CON  
TON  
TSIDL  
TSYNC  
TCS  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
16-bit Timer Mode: In the 16-bit mode, Timer2 and  
Timer3 can be configured as two independent 16-bit  
10.0 TIMER2/3 MODULE  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
timers. Each timer can be set up in either 16-bit Timer  
mode or 16-bit Synchronous Counter mode. See  
Section 9.0 “Timer1 Module”, Timer1 Module for  
details on these two Operating modes.  
The only functional difference between Timer2 and  
Timer3 is that Timer2 provides synchronization of the  
clock prescaler output. This is useful for high frequency  
external clock inputs.  
This section describes the 32-bit General Purpose  
Timer module (Timer2/3) and associated operational  
modes. Figure 10-1 depicts the simplified block dia-  
gram of the 32-bit Timer2/3 module. Figure 10-2 and  
Figure 10-3 show Timer2/3 configured as two  
independent 16-bit timers, Timer2 and Timer3,  
respectively.  
32-bit Timer Mode: In the 32-bit Timer mode, the timer  
increments on every instruction cycle, up to a match  
value preloaded into the combined 32-bit Period  
register PR3/PR2, then resets to ‘0’ and continues to  
count.  
The Timer2/3 module is a 32-bit timer (which can be  
configured as two 16-bit timers) with selectable  
operating modes. These timers are utilized by other  
peripheral modules, such as:  
For synchronous 32-bit reads of the Timer2/Timer3  
pair, reading the least significant word (TMR2 register)  
will cause the most significant word (msw) to be read  
and latched into a 16-bit holding register, termed  
TMR3HLD.  
• Input Capture  
• Output Compare/Simple PWM  
For synchronous 32-bit writes, the holding register  
(TMR3HLD) must first be written to. When followed by  
a write to the TMR2 register, the contents of TMR3HLD  
will be transferred and latched into the MSB of the  
32-bit timer (TMR3).  
The following sections provide a detailed description,  
including setup and control registers, along with asso-  
ciated block diagrams for the operational modes of the  
timers.  
The 32-bit timer has the following modes:  
32-bit Synchronous Counter Mode: In the 32-bit  
Synchronous Counter mode, the timer increments on  
the rising edge of the applied external clock signal  
which is synchronized with the internal phase clocks.  
The timer counts up to a match value preloaded in the  
combined 32-bit period register PR3/PR2, then resets  
to ‘0’ and continues.  
• Two independent 16-bit timers (Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
• Single 32-bit timer operation  
• Single 32-bit synchronous counter  
Further, the following operational characteristics are  
supported:  
When the timer is configured for the Synchronous  
Counter mode of operation and the CPU goes into the  
Idle mode, the timer will stop incrementing unless the  
TSIDL (T2CON<13>) bit = 0. If TSIDL = 1, the timer  
module logic will resume the incrementing sequence  
upon termination of the CPU Idle mode.  
• ADC event trigger  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during Idle and Sleep modes  
• Interrupt on a 32-bit period register match  
These Operating modes are determined by setting the  
appropriate bit(s) in the 16-bit T2CON and T3CON  
SFRs.  
For 32-bit timer/counter operation, Timer2 is the least  
significant word and Timer3 is the most significant word  
of the 32-bit timer.  
Note:  
For 32-bit timer operation, T3CON control  
bits are ignored. Only T2CON control bits  
are used for setup and control. Timer2  
clock and gate inputs are utilized for the  
32-bit timer module but an interrupt is gen-  
erated with the Timer3 interrupt flag (T3IF)  
and the interrupt is enabled with the  
Timer3 interrupt enable bit (T3IE).  
© 2006 Microchip Technology Inc.  
DS70117F-page 73  
dsPIC30F6011/6012/6013/6014  
FIGURE 10-1:  
32-BIT TIMER2/3 BLOCK DIAGRAM  
Data Bus<15:0>  
TMR3HLD  
16  
16  
Write TMR2  
Read TMR2  
16  
Reset  
Sync  
TMR3  
MSB  
TMR2  
LSB  
ADC Event Trigger  
Comparator x 32  
Equal  
PR3  
PR2  
0
1
T3IF  
Event Flag  
Q
Q
D
TGATE (T2CON<6>)  
CK  
TGATE  
(T2CON<6>)  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
Note:  
Timer Configuration bit T32 (T2CON<3>) must be set to ‘1’ for a 32-bit timer/counter operation. All control  
bits are respective to the T2CON register.  
DS70117F-page 74  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 10-2:  
16-BIT TIMER2 BLOCK DIAGRAM  
PR2  
Comparator x 16  
TMR2  
Equal  
Reset  
Sync  
0
1
T2IF  
Event Flag  
TGATE  
Q
D
Q
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
FIGURE 10-3:  
16-BIT TIMER3 BLOCK DIAGRAM  
PR3  
ADC Event Trigger  
Equal  
Comparator x 16  
TMR3  
Reset  
0
1
T3IF  
Event Flag  
TGATE  
Q
Q
D
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T3CK  
Sync  
TCY  
1x  
Prescaler  
1, 8, 64, 256  
01  
00  
© 2006 Microchip Technology Inc.  
DS70117F-page 75  
dsPIC30F6011/6012/6013/6014  
10.1 Timer Gate Operation  
10.4 Timer Operation During Sleep  
Mode  
The 32-bit timer can be placed in the Gated Time Accu-  
mulation mode. This mode allows the internal TCY to  
increment the respective timer when the gate input sig-  
nal (T2CK pin) is asserted high. Control bit TGATE  
(T2CON<6>) must be set to enable this mode. When in  
this mode, Timer2 is the originating clock source. The  
TGATE setting is ignored for Timer3. The timer must be  
enabled (TON = 1) and the timer clock source set to  
internal (TCS = 0).  
During CPU Sleep mode, the timer will not operate  
because the internal clocks are disabled.  
10.5 Timer Interrupt  
The 32-bit timer module can generate an interrupt on  
period match or on the falling edge of the external gate  
signal. When the 32-bit timer count matches the  
respective 32-bit period register, or the falling edge of  
the external “gate” signal is detected, the T3IF bit  
(IFS0<7>) is asserted and an interrupt will be gener-  
ated if enabled. In this mode, the T3IF interrupt flag is  
used as the source of the interrupt. The T3IF bit must  
be cleared in software.  
The falling edge of the external signal terminates the  
count operation but does not reset the timer. The user  
must reset the timer in order to start counting from zero.  
10.2 ADC Event Trigger  
When a match occurs between the 32-bit timer (TMR3/  
TMR2) and the 32-bit combined period register (PR3/  
PR2), or between the 16-bit timer TMR3 and the 16-bit  
period register PR3, a special ADC trigger event signal  
is generated by Timer3.  
Enabling an interrupt is accomplished via the  
respective timer interrupt enable bit, T3IE (IEC0<7>).  
10.3 Timer Prescaler  
The input clock (FOSC/4 or external clock) to the timer  
has a prescale option of 1:1, 1:8, 1:64, and 1:256,  
selected by control bits TCKPS<1:0> (T2CON<5:4>  
and T3CON<5:4>). For the 32-bit timer operation, the  
originating clock source is Timer2. The prescaler oper-  
ation for Timer3 is not applicable in this mode. The  
prescaler counter is cleared when any of the following  
occurs:  
• a write to the TMR2/TMR3 register  
• a write to the T2CON/T3CON register  
• device Reset, such as POR and BOR  
However, if the timer is disabled (TON = 0), then the  
Timer 2 prescaler cannot be reset since the prescaler  
clock is halted.  
TMR2/TMR3 is not cleared when T2CON/T3CON is  
written.  
DS70117F-page 76  
© 2006 Microchip Technology Inc.  
TABLE 10-1: TIMER2/3 REGISTER MAP  
SFR Name Addr.  
TMR2 0106  
TMR3HLD 0108  
Bit 15  
Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
Timer2 Register  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Legend: u= uninitialized bit  
Note: Refer to dsPIC30F Family Reference Manual (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 78  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
• The Timer4/5 module does not support the ADC  
event trigger feature  
11.0 TIMER4/5 MODULE  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
• Timer4/5 can not be utilized by other peripheral  
modules, such as input capture and  
output compare  
The operating modes of the Timer4/5 module are deter-  
mined by setting the appropriate bit(s) in the  
T4CON and T5CON SFRs.  
16-bit  
This section describes the second 32-bit General Pur-  
pose Timer module (Timer4/5) and associated opera-  
tional modes. Figure 11-1 depicts the simplified block  
diagram of the 32-bit Timer4/5 module. Figure 11-2 and  
Figure 11-3 show Timer4/5 configured as two indepen-  
dent 16-bit timers, Timer4 and Timer5, respectively.  
For 32-bit timer/counter operation, Timer4 is the lsw  
and Timer5 is the msw of the 32-bit timer.  
Note:  
For 32-bit timer operation, T5CON control  
bits are ignored. Only T4CON control bits  
are used for setup and control. Timer4  
clock and gate inputs are utilized for the  
32-bit timer module but an interrupt is gen-  
erated with the Timer5 interrupt flag (T5IF)  
and the interrupt is enabled with the  
Timer5 interrupt enable bit (T5IE).  
The Timer4/5 module is similar in operation to the  
Timer2/3 module. However, there are some differences  
which are as follows:  
FIGURE 11-1:  
32-BIT TIMER4/5 BLOCK DIAGRAM  
Data Bus<15:0>  
TMR5HLD  
16  
16  
Write TMR4  
Read TMR4  
16  
Reset  
Sync  
TMR5  
MSB  
TMR4  
LSB  
Comparator x 32  
Equal  
PR5  
PR4  
0
1
T5IF  
Event Flag  
Q
Q
D
TGATE (T4CON<6>)  
CK  
TGATE  
(T4CON<6>)  
TCKPS<1:0>  
2
TON  
T4CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
01  
00  
Sync  
TCY  
Note:  
Timer Configuration bit T45 (T4CON<3>) must be set to ‘1’ for a 32-bit timer/counter operation. All control  
bits are respective to the T4CON register.  
© 2006 Microchip Technology Inc.  
DS70117F-page 79  
dsPIC30F6011/6012/6013/6014  
FIGURE 11-2:  
16-BIT TIMER4 BLOCK DIAGRAM  
PR4  
Equal  
Comparator x 16  
TMR4  
Reset  
Sync  
0
T4IF  
Event Flag  
Q
Q
D
TGATE  
1
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T4CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
FIGURE 11-3:  
16-BIT TIMER5 BLOCK DIAGRAM  
PR5  
ADC Event Trigger  
Equal  
Reset  
Comparator x 16  
TMR5  
0
1
T5IF  
Event Flag  
Q
D
TGATE  
Q
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T5CK  
1x  
Sync  
TCY  
Prescaler  
1, 8, 64, 256  
01  
00  
Note:  
In the dsPIC30F6011 and dsPIC30F6012 devices, there is no T5CK pin. Therefore, in this device the  
following modes should not be used for Timer5:  
1: TCS = 1(16-bit counter)  
2: TCS = 0, TGATE = 1(Gated Time Accumulation)  
DS70117F-page 80  
© 2006 Microchip Technology Inc.  
TABLE 11-1: TIMER4/5 REGISTER MAP  
SFR Name  
Addr.  
Bit 15 Bit 14 Bit 13 Bit 12  
Bit 11  
Bit 10 Bit 9 Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TMR4  
TMR5HLD  
TMR5  
PR4  
0114  
0116  
0118  
011A  
011C  
011E  
0120  
Timer 4 Register  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
Timer 5 Holding Register (for 32-bit operations only)  
Timer 5 Register  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T45  
TCS  
TCS  
Legend: u= uninitialized  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 82  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
These operating modes are determined by setting the  
12.0 INPUT CAPTURE MODULE  
appropriate bits in the ICxCON register (where  
x = 1,2,...,N). The dsPIC DSC devices contain up to 8  
capture channels (i.e., the maximum value of N is 8).  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
12.1 Simple Capture Event Mode  
The simple capture events in the dsPIC30F product  
family are:  
This section describes the input capture module and  
associated operational modes. The features provided  
by this module are useful in applications requiring fre-  
quency (period) and pulse measurement. Figure 12-1  
depicts a block diagram of the input capture module.  
Input capture is useful for such modes as:  
• Capture every falling edge  
• Capture every rising edge  
• Capture every 4th rising edge  
• Capture every 16th rising edge  
• Capture every rising and falling edge  
• Frequency/Period/Pulse Measurements  
• Additional Sources of External Interrupts  
These simple Input Capture modes are configured by  
setting the appropriate bits ICM<2:0> (ICxCON<2:0>).  
The key operational features of the input capture  
module are:  
12.1.1  
CAPTURE PRESCALER  
• Simple Capture Event mode  
There are four input capture prescaler settings speci-  
fied by bits ICM<2:0> (ICxCON<2:0>). Whenever the  
capture channel is turned off, the prescaler counter will  
be cleared. In addition, any Reset will clear the  
prescaler counter.  
• Timer2 and Timer3 mode selection  
• Interrupt on input capture event  
FIGURE 12-1:  
INPUT CAPTURE MODE BLOCK DIAGRAM  
T3_CNT  
16  
From GP Timer Module  
T2_CNT  
16  
ICTMR  
1
0
ICx pin  
Edge  
Detection  
Logic  
FIFO  
R/W  
Logic  
Prescaler  
1, 4, 16  
Clock  
Synchronizer  
ICM<2:0>  
Mode Select  
3
ICxBUF  
ICBNE, ICOV  
ICI<1:0>  
Interrupt  
Logic  
ICxCON  
Data Bus  
Set Flag  
ICxIF  
Note:  
Where ‘x’ is shown, reference is made to the registers or bits associated to the respective input capture  
channels 1 through N.  
© 2006 Microchip Technology Inc.  
DS70117F-page 83  
dsPIC30F6011/6012/6013/6014  
12.1.2  
CAPTURE BUFFER OPERATION  
12.2 Input Capture Operation During  
Sleep and Idle Modes  
Each capture channel has an associated FIFO buffer  
which is four 16-bit words deep. There are two status  
flags which provide status on the FIFO buffer:  
An input capture event will generate a device wake-up  
or interrupt, if enabled, if the device is in CPU Idle or  
Sleep mode.  
• ICBFNE – Input Capture Buffer Not Empty  
• ICOV – Input Capture Overflow  
Independent of the timer being enabled, the input cap-  
ture module will wake-up from the CPU Sleep or Idle  
mode when a capture event occurs if ICM<2:0> = 111  
and the interrupt enable bit is asserted. The same wake-  
up can generate an interrupt if the conditions for pro-  
cessing the interrupt have been satisfied. The wake-up  
feature is useful as a method of adding extra external pin  
interrupts.  
The ICBFNE will be set on the first input capture event  
and remain set until all capture events have been read  
from the FIFO. As each word is read from the FIFO, the  
remaining words are advanced by one position within  
the buffer.  
In the event that the FIFO is full with four capture  
events and a fifth capture event occurs prior to a read  
of the FIFO, an overflow condition will occur and the  
ICOV bit will be set to a logic ‘1’. The fifth capture event  
is lost and is not stored in the FIFO. No additional  
events will be captured until all four events have been  
read from the buffer.  
12.2.1  
INPUT CAPTURE IN CPU SLEEP  
MODE  
CPU Sleep mode allows input capture module opera-  
tion with reduced functionality. In the CPU Sleep mode,  
the ICI<1:0> bits are not applicable and the input cap-  
ture module can only function as an external interrupt  
source.  
If a FIFO read is performed after the last read and no  
new capture event has been received, the read will  
yield indeterminate results.  
The capture module must be configured for interrupt  
only on rising edge (ICM<2:0> = 111) in order for the  
input capture module to be used while the device is in  
Sleep mode. The prescale settings of 4:1 or 16:1 are  
not applicable in this mode.  
12.1.3  
TIMER2 AND TIMER3 SELECTION  
MODE  
The input capture module consists of up to 8 input cap-  
ture channels. Each channel can select between one of  
two timers for the time base, Timer2 or Timer3.  
12.2.2  
INPUT CAPTURE IN CPU IDLE  
MODE  
Selection of the timer resource is accomplished  
through SFR bit, ICTMR (ICxCON<7>). Timer3 is the  
default timer resource available for the input capture  
module.  
CPU Idle mode allows input capture module operation  
with full functionality. In the CPU Idle mode, the Inter-  
rupt mode selected by the ICI<1:0> bits is applicable,  
as well as the 4:1 and 16:1 capture prescale settings  
which are defined by control bits ICM<2:0>. This mode  
requires the selected timer to be enabled. Moreover,  
the ICSIDL bit must be asserted to a logic ‘0’.  
12.1.4  
HALL SENSOR MODE  
When the input capture module is set for capture on  
every edge, rising and falling, ICM<2:0> = 001, the fol-  
lowing operations are performed by the input capture  
logic:  
If the input capture module is defined as  
ICM<2:0> = 111 in CPU Idle mode, the input capture  
pin will serve only as an external interrupt pin.  
• The input capture interrupt flag is set on every  
edge, rising and falling.  
• The interrupt on Capture mode setting bits,  
ICI<1:0>, is ignored since every capture  
generates an interrupt.  
12.3 Input Capture Interrupts  
The input capture channels have the ability to generate  
an interrupt based upon the selected number of cap-  
ture events. The selection number is set by control bits  
ICI<1:0> (ICxCON<6:5>).  
• A capture overflow condition is not generated in  
this mode.  
Each channel provides an interrupt flag (ICxIF) bit. The  
respective capture channel interrupt flag is located in  
the corresponding IFSx Status register.  
Enabling an interrupt is accomplished via the respec-  
tive capture channel interrupt enable (ICxIE) bit. The  
capture interrupt enable bit is located in the  
corresponding IEC Control register.  
DS70117F-page 84  
© 2006 Microchip Technology Inc.  
TABLE 12-1: INPUT CAPTURE REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
Input 4 Capture Register  
ICTMR  
Input 5 Capture Register  
ICTMR  
Input 6 Capture Register  
ICTMR  
Input 7 Capture Register  
ICTMR  
Input 8 Capture Register  
ICTMR  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
IC4BUF  
IC4CON  
IC5BUF  
IC5CON  
IC6BUF  
IC6CON  
IC7BUF  
IC7CON  
IC8BUF  
IC8CON  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
0150  
0152  
0154  
0156  
0158  
015A  
015C  
015E  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 86  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
The key operational features of the output compare  
module include:  
13.0 OUTPUT COMPARE MODULE  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
• Timer2 and Timer3 Selection mode  
• Simple Output Compare Match mode  
• Dual Output Compare Match mode  
• Simple PWM mode  
• Output Compare During Sleep and Idle modes  
• Interrupt on Output Compare/PWM Event  
This section describes the output compare module and  
associated operational modes. The features provided  
by this module are useful in applications requiring  
operational modes, such as:  
These operating modes are determined by setting the  
appropriate bits in the 16-bit OCxCON SFR (where  
x = 1,2,3,...,N). The dsPIC DSC devices contain up to  
8 compare channels (i.e., the maximum value of N is 8).  
• Generation of Variable Width Output Pulses  
• Power Factor Correction  
OCxRS and OCxR in Figure 13-1 represent the Dual  
Compare registers. In the Dual Compare mode, the  
OCxR register is used for the first compare and OCxRS  
is used for the second compare.  
Figure 13-1 depicts a block diagram of the output  
compare module.  
FIGURE 13-1:  
OUTPUT COMPARE MODE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
Output  
Enable  
3
OCM<2:0>  
Mode Select  
Comparator  
OCFA  
(for x = 1, 2, 3 or 4)  
OCTSEL  
0
1
0
1
or OCFB  
(for x = 5, 6, 7 or 8)  
From General Purpose  
Timer Module  
TMR2<15:0  
TMR3<15:0> T2P2_MATCH  
T3P3_MATCH  
Note:  
Where ‘x’ is shown, reference is made to the registers associated with the respective output compare  
channels 1 through N.  
© 2006 Microchip Technology Inc.  
DS70117F-page 87  
dsPIC30F6011/6012/6013/6014  
13.3.2  
CONTINUOUS PULSE MODE  
13.1 Timer2 and Timer3 Selection Mode  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required:  
Each output compare channel can select between one  
of two 16-bit timers, Timer2 or Timer3.  
The selection of the timers is controlled by the OCTSEL  
bit (OCxCON<3>). Timer2 is the default timer resource  
for the output compare module.  
• Determine instruction cycle time TCY.  
• Calculate desired pulse value based on TCY.  
• Calculate timer to start pulse width from timer start  
value of 0x0000.  
13.2 Simple Output Compare Match  
Mode  
• Write pulse width start and stop times into OCxR  
and OCxRS (x denotes channel 1, 2, ...,N)  
Compare registers, respectively.  
When control bits OCM<2:0> (OCxCON<2:0>) = 001,  
010 or 011, the selected output compare channel is  
configured for one of three simple Output Compare  
Match modes:  
• Set Timer Period register to value equal to, or  
greater than value in OCxRS Compare register.  
• Set OCM<2:0> = 101.  
• Compare forces I/O pin low  
• Compare forces I/O pin high  
• Compare toggles I/O pin  
• Enable timer, TON (TxCON<15>) = 1.  
13.4 Simple PWM Mode  
The OCxR register is used in these modes. The OCxR  
register is loaded with a value and is compared to the  
selected incrementing timer count. When a compare  
occurs, one of these Compare Match modes occurs. If  
the counter resets to zero before reaching the value in  
OCxR, the state of the OCx pin remains unchanged.  
When control bits OCM<2:0> (OCxCON<2:0>) = 110  
or 111, the selected output compare channel is config-  
ured for the PWM mode of operation. When configured  
for the PWM mode of operation, OCxR is the main latch  
(read only) and OCxRS is the secondary latch. This  
enables glitchless PWM transitions.  
The user must perform the following steps in order to  
configure the output compare module for PWM  
operation:  
13.3 Dual Output Compare Match Mode  
When control bits OCM<2:0> (OCxCON<2:0>) = 100  
or 101, the selected output compare channel is config-  
ured for one of two Dual Output Compare modes,  
which are:  
1. Set the PWM period by writing to the appropriate  
period register.  
2. Set the PWM duty cycle by writing to the OCxRS  
register.  
• Single Output Pulse mode  
• Continuous Output Pulse mode  
3. Configure the output compare module for PWM  
operation.  
13.3.1  
SINGLE PULSE MODE  
4. Set the TMRx prescale value and enable the  
For the user to configure the module for the generation  
of a single output pulse, the following steps are  
required (assuming timer is off):  
Timer, TON (TxCON<15>) = 1.  
13.4.1  
INPUT PIN FAULT PROTECTION  
FOR PWM  
• Determine instruction cycle time TCY.  
• Calculate desired pulse width value based on TCY.  
When control bits OCM<2:0> (OCxCON<2:0>) = 111,  
the selected output compare channel is again config-  
ured for the PWM mode of operation with the additional  
feature of input Fault protection. While in this mode, if  
a logic ‘0’ is detected on the OCFA/B pin, the respective  
PWM output pin is placed in the high impedance input  
state. The OCFLT bit (OCxCON<4>) indicates whether  
a Fault condition has occurred. This state will be main-  
tained until both of the following events have occurred:  
• Calculate time to start pulse from timer start value  
of 0x0000.  
• Write pulse width start and stop times into OCxR  
and OCxRS Compare registers (x denotes  
channel 1, 2, ...,N).  
• Set Timer Period register to value equal to, or  
greater than value in OCxRS Compare register.  
• Set OCM<2:0> = 100.  
• The external Fault condition has been removed.  
• Enable timer, TON (TxCON<15>) = 1.  
• The PWM mode has been re-enabled by writing  
to the appropriate control bits.  
To initiate another single pulse, issue another write to  
set OCM<2:0> = 100.  
DS70117F-page 88  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
When the selected TMRx is equal to its respective  
period register, PRx, the following four events occur on  
the next increment cycle:  
13.4.2  
PWM PERIOD  
The PWM period is specified by writing to the PRx  
register. The PWM period can be calculated using  
Equation 13-1.  
• TMRx is cleared.  
• The OCx pin is set.  
EQUATION 13-1:  
- Exception 1: If PWM duty cycle is 0x0000,  
the OCx pin will remain low.  
PWM period = [(PRx) + 1] • 4 • TOSC •  
(TMRx prescale value)  
- Exception 2: If duty cycle is greater than PRx,  
the pin will remain high.  
• The PWM duty cycle is latched from OCxRS into  
OCxR.  
PWM frequency is defined as 1/[PWM period].  
• The corresponding timer interrupt flag is set.  
See Figure 13-2 for key PWM period comparisons.  
Timer3 is referred to in Figure 13-2 for clarity.  
FIGURE 13-2:  
PWM OUTPUT TIMING  
Period  
Duty Cycle  
TMR3 = PR3  
T3IF = 1  
(Interrupt Flag)  
TMR3 = PR3  
T3IF = 1  
(Interrupt Flag)  
OCxR = OCxRS  
OCxR = OCxRS  
TMR3 = Duty Cycle  
(OCxR)  
TMR3 = Duty Cycle  
(OCxR)  
13.5 Output Compare Operation During  
CPU Sleep Mode  
13.7 Output Compare Interrupts  
The output compare channels have the ability to gener-  
ate an interrupt on a compare match, for whichever  
Match mode has been selected.  
When the CPU enters Sleep mode, all internal clocks  
are stopped. Therefore, when the CPU enters the  
Sleep state, the output compare channel will drive the  
pin to the active state that was observed prior to  
entering the CPU Sleep state.  
For all modes except the PWM mode, when a compare  
event occurs, the respective interrupt flag (OCxIF) is  
asserted and an interrupt will be generated if enabled.  
The OCxIF bit is located in the corresponding IFS  
Status register and must be cleared in software. The  
interrupt is enabled via the respective compare inter-  
rupt enable (OCxIE) bit located in the corresponding  
IEC Control register.  
For example, if the pin was high when the CPU entered  
the Sleep state, the pin will remain high. Likewise, if the  
pin was low when the CPU entered the Sleep state, the  
pin will remain low. In either case, the output compare  
module will resume operation when the device wakes  
up.  
For the PWM mode, when an event occurs, the respec-  
tive timer interrupt flag (T2IF or T3IF) is asserted and  
an interrupt will be generated if enabled. The IF bit is  
located in the IFS0 Status register and must be cleared  
in software. The interrupt is enabled via the respective  
timer interrupt enable bit (T2IE or T3IE) located in the  
IEC0 Control register. The output compare interrupt  
flag is never set during the PWM mode of operation.  
13.6 Output Compare Operation During  
CPU Idle Mode  
When the CPU enters the Idle mode, the output  
compare module can operate with full functionality.  
The output compare channel will operate during the  
CPU Idle mode if the OCSIDL bit (OCxCON<13>) is at  
logic ‘0’ and the selected time base (Timer2 or Timer3)  
is enabled and the TSIDL bit of the selected timer is set  
to logic ‘0’.  
© 2006 Microchip Technology Inc.  
DS70117F-page 89  
TABLE 13-1: OUTPUT COMPARE REGISTER MAP  
SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
0198  
019A  
019C  
019E  
01A0  
01A2  
01A4  
01A6  
01A8  
01AA  
01AC  
01AE  
Output Compare 1 Secondary Register  
Output Compare 1 Main Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSE  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Main Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Main Register  
OC3CON  
OC4RS  
OC4R  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
Output Compare 4 Secondary Register  
Output Compare 4 Main Register  
OC4CON  
OC5RS  
OC5R  
Output Compare 5 Secondary Register  
Output Compare 5 Main Register  
OC5CON  
OC6RS  
OC6R  
Output Compare 6 Secondary Register  
Output Compare 6 Main Register  
OC6CON  
OC7RS  
OC7R  
Output Compare 7 Secondary Register  
Output Compare 7 Main Register  
OC7CON  
OC8RS  
OC8R  
Output Compare 8 Secondary Register  
Output Compare 8 Main Register  
OC8CON  
OCSIDL  
OCFLT  
OCTSEL  
OCM<2:0>  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
In Master mode, the clock is generated by prescaling  
the system clock. Data is transmitted as soon as a  
14.0 SPI MODULE  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
value is written to SPIxBUF. The interrupt is generated  
at the middle of the transfer of the last bit.  
In Slave mode, data is transmitted and received as  
external clock pulses appear on SCK. Again, the inter-  
rupt is generated when the last bit is latched. If SSx  
control is enabled, then transmission and reception are  
enabled only when SSx = low. The SDOx output will be  
disabled in SSx mode with SSx high.  
The Serial Peripheral Interface (SPI) module is a syn-  
chronous serial interface. It is useful for communicating  
with other peripheral devices, such as EEPROMs, shift  
registers, display drivers and A/D converters, or other  
microcontrollers. It is compatible with Motorola's SPI  
and SIOP interfaces.  
The clock provided to the module is (FOSC/4). This  
clock is then prescaled by the primary (PPRE<1:0>)  
and the secondary (SPRE<2:0>) prescale factors. The  
CKE bit determines whether transmit occurs on transi-  
tion from active clock state to Idle clock state, or vice  
versa. The CKP bit selects the Idle state (high or low)  
for the clock.  
14.1 Operating Function Description  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates various status  
conditions.  
14.1.1  
WORD AND BYTE  
COMMUNICATION  
A control bit, MODE16 (SPIxCON<10>), allows the  
module to communicate in either 16-bit or 8-bit mode.  
16-bit operation is identical to 8-bit operation except  
that the number of bits transmitted is 16 instead of 8.  
The serial interface consists of 4 pins: SDIx (serial data  
input), SDOx (serial data output), SCKx (shift clock  
input or output), and SSx (active-low slave select).  
The user software must disable the module prior to  
changing the MODE16 bit. The SPI module is reset  
when the MODE16 bit is changed by the user.  
In Master mode operation, SCK is a clock output but in  
Slave mode, it is a clock input.  
A series of eight (8) or sixteen (16) clock pulses shift  
out bits from the SPIxSR to SDOx pin and simulta-  
neously shift in data from SDIx pin. An interrupt is gen-  
erated when the transfer is complete and the  
corresponding interrupt flag bit (SPI1IF or SPI2IF) is  
set. This interrupt can be disabled through an interrupt  
enable bit (SPI1IE or SPI2IE).  
A basic difference between 8-bit and 16-bit operation is  
that the data is transmitted out of bit 7 of the SPIxSR for  
8-bit operation, and data is transmitted out of bit15 of  
the SPIxSR for 16-bit operation. In both modes, data is  
shifted into bit 0 of the SPIxSR.  
14.1.2  
SDOx DISABLE  
The receive operation is double-buffered. When a com-  
plete byte is received, it is transferred from SPIxSR to  
SPIxBUF.  
A control bit, DISSDO, is provided to the SPIxCON reg-  
ister to allow the SDOx output to be disabled. This will  
allow the SPI module to be connected in an input only  
configuration. SDO can also be used for general  
purpose I/O.  
If the receive buffer is full when new data is being trans-  
ferred from SPIxSR to SPIxBUF, the module will set the  
SPIROV bit indicating an overflow condition. The trans-  
fer of the data from SPIxSR to SPIxBUF will not be  
completed and the new data will be lost. The module  
will not respond to SCL transitions while SPIROV is ‘1’,  
effectively disabling the module until SPIxBUF is read  
by user software.  
14.2 Framed SPI Support  
The module supports a basic framed SPI protocol in  
Master or Slave mode. The control bit FRMEN enables  
framed SPI support and causes the SSx pin to perform  
the frame synchronization pulse (FSYNC) function.  
The control bit SPIFSD determines whether the SSx  
pin is an input or an output (i.e., whether the module  
receives or generates the frame synchronization  
pulse). The frame pulse is an active high pulse for a  
single SPI clock cycle. When frame synchronization is  
enabled, the data transmission starts only on the  
subsequent transmit edge of the SPI clock.  
Transmit writes are also double-buffered. The user  
writes to SPIxBUF. When the master or slave transfer  
is completed, the contents of the shift register (SPIxSR)  
are moved to the receive buffer. If any transmit data has  
been written to the buffer register, the contents of the  
transmit buffer are moved to SPIxSR. The received  
data is thus placed in SPIxBUF and the transmit data in  
SPIxSR is ready for the next transfer.  
Note:  
Both the transmit buffer (SPIxTXB) and  
the receive buffer (SPIxRXB) are mapped  
to the same register address, SPIxBUF.  
© 2006 Microchip Technology Inc.  
DS70117F-page 91  
dsPIC30F6011/6012/6013/6014  
FIGURE 14-1:  
SPI BLOCK DIAGRAM  
Internal  
Data Bus  
Read  
Write  
SPIxBUF  
Transmit  
SPIxBUF  
Receive  
SPIxSR  
bit 0  
SDIx  
SDOx  
Shift  
Clock  
Clock  
Control  
Edge  
Select  
SS and FSYNC  
Control  
SSx  
Secondary  
Prescaler  
1:1-1:8  
Primary  
Prescaler  
1, 4, 16, 64  
FCY  
SCKx  
Enable Master Clock  
Note: x = 1 or 2.  
FIGURE 14-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master  
SPI Slave  
SDOx  
SDIy  
Serial Input Buffer  
(SPIxBUF)  
Serial Input Buffer  
(SPIyBUF)  
SDIx  
SDOy  
SCKy  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIySR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCKx  
PROCESSOR 1  
PROCESSOR 2  
Note: x = 1 or 2, y = 1 or 2.  
DS70117F-page 92  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
14.3 Slave Select Synchronization  
14.5 SPI Operation During CPU Idle  
Mode  
The SSx pin allows a Synchronous Slave mode. The  
SPI must be configured in SPI Slave mode with SSx pin  
control enabled (SSEN = 1). When the SSx pin is low,  
transmission and reception are enabled and the SDOx  
pin is driven. When SSx pin goes high, the SDOx pin is  
no longer driven. Also, the SPI module is re-  
synchronized, and all counters/control circuitry are  
reset. Therefore, when the SSx pin is asserted low  
again, transmission/reception will begin at the MSb  
even if SSx had been de-asserted in the middle of a  
transmit/receive.  
When the device enters Idle mode, all clock sources  
remain functional. The SPISIDL bit (SPIxSTAT<13>)  
selects if the SPI module will stop or continue on Idle. If  
SPISIDL = 0, the module will continue to operate when  
the CPU enters Idle mode. If SPISIDL = 1, the module  
will stop when the CPU enters Idle mode.  
14.4 SPI Operation During CPU Sleep  
Mode  
During Sleep mode, the SPI module is shutdown. If the  
CPU enters Sleep mode while an SPI transaction is in  
progress, then the transmission and reception is  
aborted.  
The transmitter and receiver will stop in Sleep mode.  
However, register contents are not affected by entering  
or exiting Sleep mode.  
© 2006 Microchip Technology Inc.  
DS70117F-page 93  
TABLE 14-1: SPI1 REGISTER MAP  
SFR  
Name  
Addr. Bit 15 Bit 14  
Bit 13  
Bit 12 Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
SPI1STAT 0220 SPIEN  
SPISIDL  
SPIROV  
CKP  
SPITBF SPIRBF 0000 0000 0000 0000  
SPI1CON  
SPI1BUF  
0222  
0224  
FRMEN SPIFSD  
DISSDO MODE16 SMP  
CKE  
SSEN  
MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000 0000 0000 0000  
Transmit and Receive Buffer  
0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 14-2: SPI2 REGISTER MAP  
SFR Name  
Addr.  
Bit 15 Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
SPI2STAT  
SPI2CON  
SPI2BUF  
0226  
0228  
022A  
SPIEN  
SPISIDL  
SPIROV  
CKP  
SPITBF SPIRBF 0000 0000 0000 0000  
FRMEN SPIFSD  
DISSDO MODE16 SMP  
CKE  
SSEN  
MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000 0000 0000 0000  
Transmit and Receive Buffer  
0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
2
15.1.1  
VARIOUS I2C MODES  
15.0 I C MODULE  
The following types of I2C operation are supported:  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
• I2C slave operation with 7-bit address  
• I2C slave operation with 10-bit address  
• I2C master operation with 7 or 10-bit address  
See the I2C programmer’s model in Figure 15-1.  
The Inter-Integrated Circuit (I2CTM) module provides  
complete hardware support for both Slave and Multi-  
Master modes of the I2C serial communication  
standard, with a 16-bit interface.  
15.1.2  
PIN CONFIGURATION IN I2C MODE  
I2C has a 2-pin interface: the SCL pin is clock and the  
SDA pin is data.  
This module offers the following key features:  
• I2C interface supporting both master and slave  
operation.  
• I2C Slave mode supports 7 and 10-bit address.  
• I2C Master mode supports 7 and 10-bit address.  
• I2C port allows bidirectional transfers between  
master and slaves.  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control).  
• I2C supports multi-master operation; detects bus  
collision and will arbitrate accordingly.  
15.1.3  
I2C REGISTERS  
I2CCON and I2CSTAT are control and status registers,  
respectively. The I2CCON register is readable and writ-  
able. The lower 6 bits of I2CSTAT are read only. The  
remaining bits of the I2CSTAT are read/write.  
I2CRSR is the shift register used for shifting data,  
whereas I2CRCV is the buffer register to which data  
bytes are written, or from which data bytes are read.  
I2CRCV is the receive buffer as shown in Figure 15-1.  
I2CTRN is the transmit register to which bytes are  
written during a transmit operation, as shown in  
Figure 15-2.  
The I2CADD register holds the slave address. A status  
bit, ADD10, indicates 10-bit Address mode. The  
I2CBRG acts as the Baud Rate Generator (BRG)  
reload value.  
15.1 Operating Function Description  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7 and 10-bit addressing.  
In receive operations, I2CRSR and I2CRCV together  
Thus, the I2C module can operate either as a slave or  
a master on an I2C bus.  
form  
a double-buffered receiver. When I2CRSR  
receives a complete byte, it is transferred to I2CRCV  
and an interrupt pulse is generated. During  
transmission, the I2CTRN is not double-buffered.  
Note:  
Following a Restart condition in 10-bit  
mode, the user only needs to match the  
first 7-bit address.  
FIGURE 15-1:  
PROGRAMMER’S MODEL  
I2CRCV (8 bits)  
Bit 0  
Bit 7  
I2CTRN (8 bits)  
Bit 0  
Bit 7  
Bit 8  
I2CBRG (9 bits)  
Bit 0  
I2CCON (16 bits)  
Bit 0  
Bit 15  
Bit 15  
I2CSTAT (16 bits)  
Bit 0  
I2CADD (10 bits)  
Bit 0  
Bit 9  
© 2006 Microchip Technology Inc.  
DS70117F-page 95  
dsPIC30F6011/6012/6013/6014  
FIGURE 15-2:  
I2C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CRCV  
Read  
Shift  
Clock  
SCL  
SDA  
I2CRSR  
LSB  
Addr_Match  
Match Detect  
I2CADD  
Write  
Read  
Start and  
Stop bit Detect  
Write  
Read  
Start, Restart,  
Stop bit Generate  
Collision  
Detect  
Write  
Read  
Acknowledge  
Generation  
Clock  
Stretching  
Write  
Read  
I2CTRN  
LSB  
Shift  
Clock  
Reload  
Control  
Write  
Read  
I2CBRG  
BRG Down  
Counter  
FCY  
DS70117F-page 96  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
2
15.3.2  
SLAVE RECEPTION  
15.2 I C Module Addresses  
If the R_W bit received is a ‘0’ during an address  
match, then Receive mode is initiated. Incoming bits  
are sampled on the rising edge of SCL. After 8 bits are  
received, if I2CRCV is not full or I2COV is not set,  
I2CRSR is transferred to I2CRCV. ACK is sent on the  
ninth clock.  
The I2CADD register contains the Slave mode  
addresses. The register is a 10-bit register.  
If the A10M bit (I2CCON<10>) is ‘0’, the address is  
interpreted by the module as a 7-bit address. When an  
address is received, it is compared to the 7 LSbs of the  
I2CADD register.  
If the RBF flag is set, indicating that I2CRCV is still  
holding data from a previous operation (RBF = 1), then  
ACK is not sent; however, the interrupt pulse is gener-  
ated. In the case of an overflow, the contents of the  
I2CRSR are not loaded into the I2CRCV.  
If the A10M bit is ‘1’, the address is assumed to be a  
10-bit address. When an address is received, it will be  
compared with the binary value ‘11110 A9 A8’ (where  
A9and A8are two Most Significant bits of I2CADD). If  
that value matches, the next address will be compared  
with the Least Significant 8 bits of I2CADD, as specified  
in the 10-bit addressing protocol.  
TABLE 15-1: 7-BIT I2C™ SLAVE  
ADDRESSES SUPPORTED  
BY DSPIC30F  
Note:  
The I2CRCV will be loaded if the I2COV  
bit = 1and the RBF flag = 0. In this case,  
a read of the I2CRCV was performed but  
the user did not clear the state of the  
I2COV bit before the next receive  
occurred. The Acknowledgement is not  
sent (ACK = 1) and the I2CRCV is  
updated.  
0x00  
General call address or Start byte  
Reserved  
0x01-0x03  
0x04-0x07  
0x08-0x77  
0x78-0x7b  
Hs mode Master codes  
Valid 7-bit addresses  
2
15.4 I C 10-bit Slave Mode Operation  
Valid 10-bit addresses (lower 7  
bits)  
In 10-bit mode, the basic receive and transmit opera-  
tions are the same as in the 7-bit mode. However, the  
criteria for address match is more complex.  
0x7c-0x7f  
Reserved  
2
The I2C specification dictates that a slave must be  
addressed for a write operation with two address bytes  
following a Start bit.  
15.3 I C 7-bit Slave Mode Operation  
Once enabled (I2CEN = 1), the slave module will wait  
for a Start bit to occur (i.e., the I2C module is ‘Idle’). Fol-  
lowing the detection of a Start bit, 8 bits are shifted into  
I2CRSR and the address is compared against  
I2CADD. In 7-bit mode (A10M = 0), bits I2CADD<6:0>  
are compared against I2CRSR<7:1> and I2CRSR<0>  
is the R_W bit. All incoming bits are sampled on the  
rising edge of SCL.  
The A10M bit is a control bit that signifies that the  
address in I2CADD is a 10-bit address rather than a 7-bit  
address. The address detection protocol for the first byte  
of a message address is identical for 7-bit and 10-bit  
messages, but the bits being compared are different.  
I2CADD holds the entire 10-bit address. Upon receiv-  
ing an address following a Start bit, I2CRSR <7:3> is  
compared against a literal ‘11110’ (the default 10-bit  
address) and I2CRSR<2:1> are compared against  
I2CADD<9:8>. If a match occurs and if R_W = 0, the  
interrupt pulse is sent. The ADD10 bit will be cleared to  
indicate a partial address match. If a match fails or  
R_W = 1, the ADD10 bit is cleared and the module  
returns to the Idle state.  
If an address match occurs, an Acknowledgement will  
be sent, and the slave event interrupt flag (SI2CIF) is  
set on the falling edge of the ninth (ACK) bit. The  
address match does not affect the contents of the  
I2CRCV buffer or the RBF bit.  
15.3.1  
SLAVE TRANSMISSION  
If the R_W bit received is a ‘1’, then the serial port will  
go into Transmit mode. It will send ACK on the ninth bit  
and then hold SCL to ‘0’ until the CPU responds by writ-  
ing to I2CTRN. SCL is released by setting the SCLREL  
bit, and 8 bits of data are shifted out. Data bits are  
shifted out on the falling edge of SCL, such that SDA is  
valid during SCL high. The interrupt pulse is sent on the  
falling edge of the ninth clock pulse, regardless of the  
status of the ACK received from the master.  
The low byte of the address is then received and com-  
pared with I2CADD<7:0>. If an address match occurs,  
the interrupt pulse is generated and the ADD10 bit is  
set, indicating a complete 10-bit address match. If an  
address match did not occur, the ADD10 bit is cleared  
and the module returns to the Idle state.  
15.4.1  
10-BIT MODE SLAVE  
TRANSMISSION  
Once a slave is addressed in this fashion with the full  
10-bit address (we will refer to this state as  
“PRIOR_ADDR_MATCH”), the master can begin  
sending data bytes for a slave reception operation.  
© 2006 Microchip Technology Inc.  
DS70117F-page 97  
dsPIC30F6011/6012/6013/6014  
vice the ISR and read the contents of the I2CRCV  
before the master device can initiate another receive  
sequence. This will prevent buffer overruns from  
occurring.  
15.4.2  
10-BIT MODE SLAVE RECEPTION  
Once addressed, the master can generate a Repeated  
Start, reset the high byte of the address and set the  
R_W bit without generating a Stop bit, thus initiating a  
slave transmit operation.  
Note 1: If the user reads the contents of the  
I2CRCV, clearing the RBF bit before the  
falling edge of the ninth clock, the  
SCLREL bit will not be cleared and clock  
stretching will not occur.  
15.5 Automatic Clock Stretch  
In the Slave modes, the module can synchronize buffer  
reads and write to the master device by clock stretching.  
2: The SCLREL bit can be set in software  
regardless of the state of the RBF bit. The  
user should be careful to clear the RBF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
15.5.1  
TRANSMIT CLOCK STRETCHING  
Both 10-bit and 7-bit Transmit modes implement clock  
stretching by asserting the SCLREL bit after the falling  
edge of the ninth clock, if the TBF bit is cleared, indicat-  
ing the buffer is empty.  
In Slave Transmit modes, clock stretching is always  
performed irrespective of the STREN bit.  
15.5.4  
CLOCK STRETCHING DURING  
10-BIT ADDRESSING (STREN = 1)  
Clock synchronization takes place following the ninth  
clock of the transmit sequence. If the device samples  
an ACK on the falling edge of the ninth clock and if the  
TBF bit is still clear, then the SCLREL bit is automati-  
cally cleared. The SCLREL being cleared to ‘0’ will  
assert the SCL line low. The user’s ISR must set the  
SCLREL bit before transmission is allowed to continue.  
By holding the SCL line low, the user has time to ser-  
vice the ISR and load the contents of the I2CTRN  
before the master device can initiate another transmit  
sequence.  
Clock stretching takes place automatically during the  
addressing sequence. Because this module has a  
register for the entire address, it is not necessary for  
the protocol to wait for the address to be updated.  
After the address phase is complete, clock stretching  
will occur on each data receive or transmit sequence as  
was described earlier.  
15.6 Software Controlled Clock  
Stretching (STREN = 1)  
Note 1: If the user loads the contents of I2CTRN,  
setting the TBF bit before the falling edge  
of the ninth clock, the SCLREL bit will not  
be cleared and clock stretching will not  
occur.  
When the STREN bit is ‘1’, the SCLREL bit may be  
cleared by software to allow software to control the  
clock stretching. The logic will synchronize writes to the  
SCLREL bit with the SCL clock. Clearing the SCLREL  
bit will not assert the SCL output until the module  
detects a falling edge on the SCL output and SCL is  
sampled low. If the SCLREL bit is cleared by the user  
while the SCL line has been sampled low, the SCL out-  
put will be asserted (held low). The SCL output will  
remain low until the SCLREL bit is set, and all other  
devices on the I2C bus have de-asserted SCL. This  
ensures that a write to the SCLREL bit will not violate  
the minimum high time requirement for SCL.  
2: The SCLREL bit can be set in software,  
regardless of the state of the TBF bit.  
15.5.2  
RECEIVE CLOCK STRETCHING  
The STREN bit in the I2CCON register can be used to  
enable clock stretching in Slave Receive mode. When  
the STREN bit is set, the SCL pin will be held low at the  
end of each data receive sequence.  
If the STREN bit is ‘0’, a software write to the SCLREL  
bit will be disregarded and have no effect on the  
SCLREL bit.  
15.5.3  
CLOCK STRETCHING DURING  
7-BIT ADDRESSING (STREN = 1)  
When the STREN bit is set in Slave Receive mode, the  
SCL line is held low when the buffer register is full. The  
method for stretching the SCL output is the same for  
both 7 and 10-bit addressing modes.  
15.7 Interrupts  
The I2C module generates two interrupt flags, MI2CIF  
(I2C Master Interrupt Flag) and SI2CIF (I2C Slave Inter-  
rupt Flag). The MI2CIF interrupt flag is activated on  
completion of a master message event. The SI2CIF  
interrupt flag is activated on detection of a message  
directed to the slave.  
Clock stretching takes place following the ninth clock of  
the receive sequence. On the falling edge of the ninth  
clock at the end of the ACK sequence, if the RBF bit is  
set, the SCLREL bit is automatically cleared, forcing  
the SCL output to be held low. The user’s ISR must set  
the SCLREL bit before reception is allowed to continue.  
By holding the SCL line low, the user has time to ser-  
DS70117F-page 98  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
2
15.8 Slope Control  
15.12 I C Master Operation  
The I2C standard requires slope control on the SDA  
and SCL signals for Fast mode (400 kHz). The control  
bit, DISSLW, enables the user to disable slew rate con-  
trol if desired. It is necessary to disable the slew rate  
control for 1 MHz mode.  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
15.9 IPMI Support  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the data direction bit. In  
this case, the data direction bit (R_W) is logic ‘0’. Serial  
data is transmitted 8 bits at a time. After each byte is  
transmitted, an ACK bit is received. Start and Stop con-  
ditions are output to indicate the beginning and the end  
of a serial transfer.  
The control bit, IPMIEN, enables the module to support  
Intelligent Peripheral Management Interface (IPMI).  
When this bit is set, the module accepts and acts upon  
all addresses.  
15.10 General Call Address Support  
The general call address can address all devices.  
When this address is used, all devices should, in  
theory, respond with an Acknowledgement.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the data direction bit. In this case, the data  
direction bit (R_W) is logic ‘1’. Thus, the first byte trans-  
mitted is a 7-bit slave address, followed by a ‘1’ to indi-  
cate receive bit. Serial data is received via SDA while  
SCL outputs the serial clock. Serial data is received  
8 bits at a time. After each byte is received, an ACK bit  
is transmitted. Start and Stop conditions indicate the  
beginning and end of transmission.  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R_W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable (GCEN) bit is set (I2CCON<7> = 1).  
Following a Start bit detection, 8 bits are shifted into  
I2CRSR and the address is compared with I2CADD,  
and is also compared with the general call address  
which is fixed in hardware.  
15.12.1 I2C MASTER TRANSMISSION  
If a general call address match occurs, the I2CRSR is  
transferred to the I2CRCV after the eighth clock, the  
RBF flag is set and on the falling edge of the ninth bit  
(ACK bit), the master event interrupt flag (MI2CIF) is  
set.  
Transmission of a data byte, a 7-bit address, or the sec-  
ond half of a 10-bit address is accomplished by simply  
writing a value to I2CTRN register. The user should  
only write to I2CTRN when the module is in a WAIT  
state. This action will set the Buffer Full Flag (TBF) and  
allow the Baud Rate Generator to begin counting and  
start the next transmission. Each bit of address/data  
will be shifted out onto the SDA pin after the falling  
edge of SCL is asserted. The Transmit Status Flag,  
TRSTAT (I2CSTAT<14>), indicates that a master  
transmit is in progress.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
I2CRCV to determine if the address was device  
specific or a general call address.  
2
15.11 I C Master Support  
15.12.2 I2C MASTER RECEPTION  
As a master device, six operations are supported:  
• Assert a Start condition on SDA and SCL.  
• Assert a Restart condition on SDA and SCL.  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (I2CCON<3>). The I2C  
module must be Idle before the RCEN bit is set, other-  
wise the RCEN bit will be disregarded. The Baud Rate  
Generator begins counting and on each rollover, the  
state of the SCL pin ACK and data are shifted into the  
I2CRSR on the rising edge of each clock.  
• Write to the I2CTRN register initiating  
transmission of data/address.  
• Generate a Stop condition on SDA and SCL.  
• Configure the I2C port to receive data.  
• Generate an ACK condition at the end of a  
received byte of data.  
© 2006 Microchip Technology Inc.  
DS70117F-page 99  
dsPIC30F6011/6012/6013/6014  
If a Start, Restart, Stop or Acknowledge condition was  
15.12.3 BAUD RATE GENERATOR  
in progress when the bus collision occurred, the condi-  
tion is aborted, the SDA and SCL lines are de-asserted,  
and the respective control bits in the I2CCON register  
are cleared to ‘0’. When the user services the bus col-  
lision Interrupt Service Routine, and if the I2C bus is  
free, the user can resume communication by asserting  
a Start condition.  
In I2C Master mode, the reload value for the BRG is  
located in the I2CBRG register. When the BRG is  
loaded with this value, the BRG counts down to ‘0’ and  
stops until another reload has taken place. If clock arbi-  
tration is taking place, for instance, the BRG is reloaded  
when the SCL pin is sampled high.  
As per the I2C standard, FSCK may be 100 kHz or  
400 kHz. However, the user can specify any baud rate  
up to 1 MHz. I2CBRG values of ‘0’ or ‘1’ are illegal.  
The master will continue to monitor the SDA and SCL  
pins, and if a Stop condition occurs, the MI2CIF bit will  
be set.  
A write to the I2CTRN will start the transmission of data  
at the first data bit regardless of where the transmitter  
left off when bus collision occurred.  
EQUATION 15-1: SERIAL CLOCK RATE  
FCY  
FSCK  
FCY  
1,111,111  
I2CBRG =  
– 1  
(
)
In a multi-master environment, the interrupt generation  
on the detection of Start and Stop conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the I2CSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
15.12.4 CLOCK ARBITRATION  
Clock arbitration occurs when the master de-asserts  
the SCL pin (SCL allowed to float high) during any  
receive, transmit, or Restart/Stop condition. When the  
SCL pin is allowed to float high, the Baud Rate Gener-  
ator is suspended from counting until the SCL pin is  
actually sampled high. When the SCL pin is sampled  
high, the Baud Rate Generator is reloaded with the  
contents of I2CBRG and begins counting. This ensures  
that the SCL high time will always be at least one BRG  
rollover count in the event that the clock is held low by  
an external device.  
2
15.13 I C Module Operation During CPU  
Sleep and Idle Modes  
15.13.1 I2C OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shutdown and stay at logic 0’. If  
Sleep occurs in the middle of a transmission and the  
state machine is partially into a transmission as the  
clocks stop, then the transmission is aborted. Similarly,  
if Sleep occurs in the middle of a reception, then the  
reception is aborted.  
15.12.5 MULTI-MASTER COMMUNICATION,  
BUS COLLISION, AND BUS  
ARBITRATION  
Multi-master operation support is achieved by bus arbi-  
tration. When the master outputs address/data bits  
onto the SDA pin, arbitration takes place when the  
master outputs a ‘1’ on SDA by letting SDA float high  
while another master asserts a ‘0’. When the SCL pin  
floats high, data should be stable. If the expected data  
on SDA is a ‘1’ and the data sampled on the SDA  
pin = 0, then a bus collision has taken place. The  
master will set the MI2CIF pulse and reset the master  
portion of the I2C port to its Idle state.  
15.13.2 I2C OPERATION DURING CPU IDLE  
MODE  
For the I2C, the I2CSIDL bit selects if the module will  
stop on Idle or continue on Idle. If I2CSIDL = 0, the  
module will continue operation on assertion of the Idle  
mode. If I2CSIDL = 1, the module will stop on Idle.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the TBF flag is  
cleared, the SDA and SCL lines are de-asserted and a  
value can now be written to I2CTRN. When the user  
services the I2C master event Interrupt Service Rou-  
tine, if the I2C bus is free (i.e., the P bit is set), the user  
can resume communication by asserting a Start  
condition.  
DS70117F-page 100  
© 2006 Microchip Technology Inc.  
TABLE 15-2: I2C REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
I2CRCV  
I2CTRN  
I2CBRG  
I2CCON  
I2CSTAT  
I2CADD  
0200  
0202  
0204  
0206  
Receive Register  
Transmit Register  
0000 0000 0000 0000  
0000 0000 1111 1111  
0000 0000 0000 0000  
Baud Rate Generator  
GCEN STREN ACKDT ACKEN RCEN  
GCSTAT ADD10 IWCOL I2COV D_A  
Address Register  
I2CEN  
I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN  
PEN  
R_W  
RSEN  
RBF  
SEN 0001 0000 0000 0000  
0208 ACKSTAT TRSTAT  
020A  
BCL  
P
S
TBF  
0000 0000 0000 0000  
0000 0000 0000 0000  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 102  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
16.1 UART Module Overview  
16.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART) MODULE  
The key features of the UART module are:  
• Full-duplex, 8 or 9-bit data communication  
• Even, odd or no parity options (for 8-bit data)  
• One or two Stop bits  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
• Fully integrated Baud Rate Generator with 16-bit  
prescaler  
• Baud rates range from 38 bps to 1.875 Mbps at a  
30 MHz instruction rate  
This section describes the Universal Asynchronous  
Receiver/Transmitter Communications module.  
• 4-word deep transmit data buffer  
• 4-word deep receive data buffer  
• Parity, framing and buffer overrun error detection  
• Support for interrupt only on address detect  
(9th bit = 1)  
• Separate transmit and receive interrupts  
• Loopback mode for diagnostic support  
FIGURE 16-1:  
UART TRANSMITTER BLOCK DIAGRAM  
Internal Data Bus  
Control and Status bits  
Write  
Write  
UTX8 UxTXREG Low Byte  
Transmit Control  
– Control TSR  
– Control Buffer  
– Generate Flags  
– Generate Interrupt  
Load TSR  
UxTXIF  
UTXBRK  
Data  
Transmit Shift Register (UxTSR)  
0’ (Start)  
1’ (Stop)  
UxTX  
16x Baud Clock  
from Baud Rate  
Generator  
Parity  
Generator  
16 Divider  
Parity  
Control  
Signals  
Note:  
x = 1 or 2.  
© 2006 Microchip Technology Inc.  
DS70117F-page 103  
dsPIC30F6011/6012/6013/6014  
FIGURE 16-2:  
UART RECEIVER BLOCK DIAGRAM  
Internal Data Bus  
16  
Read  
Write  
Read Read  
Write  
UxMODE  
UxSTA  
UxRXREG Low Byte  
URX8  
Receive Buffer Control  
– Generate Flags  
– Generate Interrupt  
– Shift Data Characters  
8-9  
LPBACK  
From UxTX  
Load RSR  
to Buffer  
Receive Shift Register  
(UxRSR)  
1
0
Control  
Signals  
UxRX  
· Start bit Detect  
· Parity Check  
· Stop bit Detect  
· Shift Clock Generation  
· Wake Logic  
16 Divider  
16x Baud Clock from  
Baud Rate Generator  
UxRXIF  
DS70117F-page 104  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
16.2 Enabling and Setting Up UART  
16.3 Transmitting Data  
16.2.1 ENABLING THE UART  
16.3.1 TRANSMITTING IN 8-BIT DATA  
MODE  
The UART module is enabled by setting the UARTEN  
bit in the UxMODE register (where x = 1 or 2). Once  
enabled, the UxTX and UxRX pins are configured as an  
output and an input respectively, overriding the TRIS  
and LATCH register bit settings for the corresponding  
I/O port pins. The UxTX pin is at logic ‘1’ when no  
transmission is taking place.  
The following steps must be performed in order to  
transmit 8-bit data:  
1. Set up the UART:  
First, the data length, parity and number of Stop  
bits must be selected. Then, the transmit and  
receive interrupt enable and priority bits are  
setup in the UxMODE and UxSTA registers.  
Also, the appropriate baud rate value must be  
written to the UxBRG register.  
16.2.2  
DISABLING THE UART  
The UART module is disabled by clearing the UARTEN  
bit in the UxMODE register. This is the default state  
after any Reset. If the UART is disabled, all I/O pins  
operate as port pins under the control of the latch and  
TRIS bits of the corresponding port pins.  
2. Enable the UART by setting the UARTEN bit  
(UxMODE<15>).  
3. Set the UTXEN bit (UxSTA<10>), thereby  
enabling a transmission.  
Disabling the UART module resets the buffers to empty  
states. Any data characters in the buffers are lost and  
the baud rate counter is reset.  
4. Write the byte to be transmitted to the lower byte  
of UxTXREG. The value will be transferred to the  
Transmit Shift register (UxTSR) immediately  
and the serial bit stream will start shifting out  
during the next rising edge of the baud clock.  
Alternatively, the data byte may be written while  
UTXEN = 0, following which, the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
All error and status flags associated with the UART  
module are reset when the module is disabled. The  
URXDA, OERR, FERR, PERR, UTXEN, UTXBRK and  
UTXBF bits are cleared, whereas RIDLE and TRMT  
are set. Other control bits, including ADDEN,  
URXISEL<1:0>, UTXISEL, as well as the UxMODE  
and UxBRG registers, are not affected.  
5. A transmit interrupt will be generated, depend-  
ing on the value of the interrupt control bit  
UTXISEL (UxSTA<15>).  
Clearing the UARTEN bit while the UART is active will  
abort all pending transmissions and receptions and  
reset the module as defined above. Re-enabling the  
UART will restart the UART in the same configuration.  
16.3.2  
TRANSMITTING IN 9-BIT DATA  
MODE  
16.2.3  
SETTING UP DATA, PARITY AND  
STOP BIT SELECTIONS  
The sequence of steps involved in the transmission of  
9-bit data is similar to 8-bit transmission, except that a  
16-bit data word (of which the upper 7 bits are always  
clear) must be written to the UxTXREG register.  
Control bits PDSEL<1:0> in the UxMODE register are  
used to select the data length and parity used in the  
transmission. The data length may either be 8 bits with  
even, odd or no parity, or 9 bits with no parity.  
16.3.3  
TRANSMIT BUFFER (UXTXB)  
The STSEL bit determines whether one or two Stop bits  
will be used during data transmission.  
The transmit buffer is 9 bits wide and 4 characters  
deep. Including the Transmit Shift register (UxTSR),  
the user effectively has a 5-deep FIFO (First-In, First-  
Out) buffer. The UTXBF status bit (UxSTA<9>)  
indicates whether the transmit buffer is full.  
The default (power-on) setting of the UART is 8 bits, no  
parity and 1 Stop bit (typically represented as 8, N, 1).  
If a user attempts to write to a full buffer, the new data  
will not be accepted into the FIFO, and no data shift will  
occur within the buffer. This enables recovery from a  
buffer overrun condition.  
The FIFO is reset during any device Reset but is not  
affected when the device enters or wakes up from a  
power-saving mode.  
© 2006 Microchip Technology Inc.  
DS70117F-page 105  
dsPIC30F6011/6012/6013/6014  
FERR values will be updated.  
16.3.4  
TRANSMIT INTERRUPT  
The transmit interrupt flag (U1TXIF or U2TXIF) is  
located in the corresponding interrupt flag register.  
16.4.2  
RECEIVE BUFFER (UXRXB)  
The receive buffer is 4 words deep. Including the  
Receive Shift register (UxRSR), the user effectively  
has a 5-word deep FIFO buffer.  
The transmitter generates an edge to set the UxTXIF  
bit. The condition for generating the interrupt depends  
on the UTXISEL control bit:  
URXDA (UxSTA<0>) = 1 indicates that the receive  
buffer has data available. URXDA = 0implies that the  
buffer is empty. If a user attempts to read an empty  
buffer, the old values in the buffer will be read and no  
data shift will occur within the FIFO.  
a) If UTXISEL = 0, an interrupt is generated when  
a word is transferred from the transmit buffer to  
the Transmit Shift register (UxTSR). This implies  
that the transmit buffer has at least one empty  
word.  
The FIFO is reset during any device Reset. It is not  
affected when the device enters or wakes up from a  
power-saving mode.  
b) If UTXISEL = 1, an interrupt is generated when  
a word is transferred from the transmit buffer to  
the Transmit Shift register (UxTSR) and the  
transmit buffer is empty.  
16.4.3  
RECEIVE INTERRUPT  
Switching between the two Interrupt modes during  
operation is possible and sometimes offers more  
flexibility.  
The receive interrupt flag (U1RXIF or U2RXIF) can be  
read from the corresponding interrupt flag register. The  
interrupt flag is set by an edge generated by the  
receiver. The condition for setting the receive interrupt  
flag depends on the settings specified by the  
URXISEL<1:0> (UxSTA<7:6>) control bits.  
16.3.5  
TRANSMIT BREAK  
Setting the UTXBRK bit (UxSTA<11>) will cause the  
UxTX line to be driven to logic ‘0’. The UTXBRK bit  
overrides all transmission activity. Therefore, the user  
should generally wait for the transmitter to be Idle  
before setting UTXBRK.  
a) If URXISEL<1:0> = 00or 01, an interrupt is gen-  
erated every time a data word is transferred  
from the Receive Shift register (UxRSR) to the  
receive buffer. There may be one or more  
characters in the receive buffer.  
To send a break character, the UTXBRK bit must be set  
by software and must remain set for a minimum of 13  
baud clock cycles. The UTXBRK bit is then cleared by  
software to generate Stop bits. The user must wait for  
a duration of at least one or two baud clock cycles in  
order to ensure a valid Stop bit(s) before reloading the  
UxTXB, or starting other transmitter activity. Transmis-  
sion of a break character does not generate a  
transmit interrupt.  
b) If URXISEL<1:0> = 10, an interrupt is generated  
when a word is transferred from the Receive Shift  
register (UxRSR) to the receive buffer, which as a  
result of the transfer, contains 3 characters.  
c) If URXISEL<1:0> = 11, an interrupt is set when  
a word is transferred from the Receive Shift reg-  
ister (UxRSR) to the receive buffer, which as a  
result of the transfer, contains 4 characters (i.e.,  
becomes full).  
16.4 Receiving Data  
Switching between the Interrupt modes during opera-  
tion is possible, though generally not advisable during  
normal operation.  
16.4.1  
RECEIVING IN 8-BIT OR 9-BIT  
DATA MODE  
The following steps must be performed while receiving  
8-bit or 9-bit data:  
16.5 Reception Error Handling  
1. Set up the UART (see Section 16.3.1 “Trans-  
mitting in 8-bit data mode”).  
16.5.1  
RECEIVE BUFFER OVERRUN  
ERROR (OERR BIT)  
2. Enable the UART (see Section 16.3.1 “Trans-  
mitting in 8-bit data mode”).  
The OERR bit (UxSTA<1>) is set if all of the following  
conditions occur:  
3. A receive interrupt will be generated when one  
or more data words have been received,  
depending on the receive interrupt settings  
specified by the URXISEL bits (UxSTA<7:6>).  
a) The receive buffer is full.  
b) The Receive Shift register is full, but unable to  
transfer the character to the receive buffer.  
c) The Stop bit of the character in the UxRSR is  
detected, indicating that the UxRSR needs to  
transfer the character to the buffer.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
5. Read the received data from UxRXREG. The act  
of reading UxRXREG will move the next word to  
the top of the receive FIFO, and the PERR and  
DS70117F-page 106  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Once OERR is set, no further data is shifted in UxRSR  
16.6 Address Detect Mode  
(until the OERR bit is cleared in software or a Reset  
occurs). The data held in UxRSR and UxRXREG  
remains valid.  
Setting the ADDEN bit (UxSTA<5>) enables this spe-  
cial mode in which a 9th bit (URX8) value of ‘1’ identi-  
fies the received word as an address, rather than data.  
This mode is only applicable for 9-bit data communica-  
tion. The URXISEL control bit does not have any  
impact on interrupt generation in this mode since an  
interrupt (if enabled) will be generated every time the  
received word has the 9th bit set.  
16.5.2  
FRAMING ERROR (FERR)  
The FERR bit (UxSTA<2>) is set if a ‘0’ is detected  
instead of a Stop bit. If two Stop bits are selected, both  
Stop bits must be ‘1’, otherwise FERR will be set. The  
read only FERR bit is buffered along with the received  
data. It is cleared on any Reset.  
16.7 Loopback Mode  
16.5.3  
PARITY ERROR (PERR)  
Setting the LPBACK bit enables this special mode in  
which the UxTX pin is internally connected to the UxRX  
pin. When configured for the Loopback mode, the  
UxRX pin is disconnected from the internal UART  
receive logic. However, the UxTX pin still functions as  
in a normal operation.  
The PERR bit (UxSTA<3>) is set if the parity of the  
received word is incorrect. This error bit is applicable  
only if a Parity mode (odd or even) is selected. The  
read only PERR bit is buffered along with the received  
data bytes. It is cleared on any Reset.  
To select this mode:  
16.5.4  
IDLE STATUS  
a) Configure UART for desired mode of operation.  
When the receiver is active (i.e., between the initial  
detection of the Start bit and the completion of the Stop  
bit), the RIDLE bit (UxSTA<4>) is ‘0’. Between the com-  
pletion of the Stop bit and detection of the next Start bit,  
the RIDLE bit is ‘1’, indicating that the UART is Idle.  
b) Set LPBACK = 1to enable Loopback mode.  
c) Enable transmission as defined in Section 16.3  
“Transmitting Data”.  
16.8 Baud Rate Generator  
16.5.5  
RECEIVE BREAK  
The UART has a 16-bit Baud Rate Generator to allow  
maximum flexibility in baud rate generation. The Baud  
Rate Generator register (UxBRG) is readable and  
writable. The baud rate is computed as follows:  
The receiver will count and expect a certain number of  
bit times based on the values programmed in the  
PDSEL (UxMODE<2:1>) and STSEL (UxMODE<0>)  
bits.  
BRG = 16-bit value held in UxBRG register  
(0 through 65535)  
If the break is longer than 13 bit times, the reception is  
considered complete after the number of bit times  
specified by PDSEL and STSEL. The URXDA bit is set,  
FERR is set, zeros are loaded into the receive FIFO,  
interrupts are generated if appropriate and the RIDLE  
bit is set.  
FCY = Instruction Clock Rate (1/TCY)  
The Baud Rate is given by Equation 16-1.  
EQUATION 16-1: BAUD RATE  
When the module receives a long break signal and the  
receiver has detected the Start bit, the data bits and the  
invalid Stop bit (which sets the FERR), the receiver  
must wait for a valid Stop bit before looking for the next  
Start bit. It cannot assume that the break condition on  
the line is the next Start bit.  
Baud Rate = FCY/(16 * (BRG + 1))  
Therefore, the maximum baud rate possible is  
FCY/16 (if BRG = 0),  
and the minimum baud rate possible is  
FCY/(16 * 65536).  
Break is regarded as a character containing all ‘0’s with  
the FERR bit set. The break character is loaded into the  
buffer. No further reception can occur until a Stop bit is  
received. Note that RIDLE goes high when the Stop bit  
has not yet been received.  
With a full 16-bit Baud Rate Generator at 30 MIPS  
operation, the minimum baud rate achievable is  
28.5 bps.  
© 2006 Microchip Technology Inc.  
DS70117F-page 107  
dsPIC30F6011/6012/6013/6014  
16.10.2 UART OPERATION DURING CPU  
16.9 Auto Baud Support  
IDLE MODE  
To allow the system to determine baud rates of  
received characters, the input can be optionally linked  
to a capture input (IC1 for UART1, IC2 for UART2). To  
enable this mode, the user must program the input cap-  
ture module to detect the falling and rising edges of the  
Start bit.  
For the UART, the USIDL bit selects if the module will  
stop operation when the device enters Idle mode or  
whether the module will continue on Idle. If USIDL = 0,  
the module will continue operation during Idle mode. If  
USIDL = 1, the module will stop on Idle.  
16.10 UART Operation During CPU  
Sleep and Idle Modes  
16.10.1 UART OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shutdown and stay at logic ‘0’. If entry  
into Sleep mode occurs while a transmission is in  
progress, then the transmission is aborted. The UxTX  
pin is driven to logic ‘1’. Similarly, if entry into Sleep  
mode occurs while a reception is in progress, then the  
reception is aborted. The UxSTA, UxMODE, transmit  
and receive registers and buffers, and the UxBRG  
register are not affected by Sleep mode.  
If the WAKE bit (UxMODE<7>) is set before the device  
enters Sleep mode, then a falling edge on the UxRX pin  
will generate a receive interrupt. The Receive Interrupt  
Select mode bit (URXISEL) has no effect for this func-  
tion. If the receive interrupt is enabled, then this will  
wake-up the device from Sleep. The UARTEN bit must  
be set in order to generate a wake-up interrupt.  
DS70117F-page 108  
© 2006 Microchip Technology Inc.  
TABLE 16-1: UART1 REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14 Bit 13 Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
U1MODE  
U1STA  
020C UARTEN  
020E UTXISEL  
USIDL  
WAKE  
LPBACK ABAUD  
PDSEL1 PDSEL0 STSEL 0000 0000 0000 0000  
UTXBRK UTXEN UTXBF  
TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR  
FERR  
OERR URXDA 0000 0001 0001 0000  
0000 000u uuuu uuuu  
U1TXREG 0210  
U1RXREG 0212  
UTX8  
Transmit Register  
Receive Register  
URX8  
0000 0000 0000 0000  
U1BRG  
0214  
Baud Rate Generator Prescaler  
0000 0000 0000 0000  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 16-2: UART2 REGISTER MAP  
SFR  
Name  
Addr.  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
U2MODE  
U2STA  
0216 UARTEN  
0218 UTXISEL  
USIDL  
WAKE  
LPBACK ABAUD  
PDSEL1 PDSEL0 STSEL 0000 0000 0000 0000  
UTXBRK UTXEN UTXBF  
TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR  
FERR  
OERR URXDA 0000 0001 0001 0000  
0000 000u uuuu uuuu  
U2TXREG 021A  
U2RXREG 021C  
UTX8  
Transmit Register  
Receive Register  
URX8  
0000 0000 0000 0000  
U2BRG  
021E  
Baud Rate Generator Prescaler  
0000 0000 0000 0000  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 110  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
The CAN bus module consists of a protocol engine and  
message buffering/control. The CAN protocol engine  
17.0 CAN MODULE  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
handles all functions for receiving and transmitting  
messages on the CAN bus. Messages are transmitted  
by first loading the appropriate data registers. Status  
and errors can be checked by reading the appropriate  
registers. Any message detected on the CAN bus is  
checked for errors and then matched against filters to  
see if it should be received and stored in one of the  
receive registers.  
17.1 Overview  
The Controller Area Network (CAN) module is a serial  
interface, useful for communicating with other CAN  
modules or microcontroller devices. This interface/  
protocol was designed to allow communications within  
noisy environments.  
17.2 Frame Types  
The CAN module transmits various types of frames  
which include data messages or remote transmission  
requests initiated by the user, as other frames that are  
automatically generated for control purposes. The  
following frame types are supported:  
The CAN module is a communication controller imple-  
menting the CAN 2.0 A/B protocol, as defined in the  
BOSCH specification. The module will support  
CAN 1.2, CAN 2.0A, CAN 2.0B Passive, and CAN 2.0B  
Active versions of the protocol. The module implemen-  
tation is a full CAN system. The CAN specification is  
not covered within this data sheet. The reader may  
refer to the BOSCH CAN specification for further  
details.  
• Standard Data Frame:  
A standard data frame is generated by a node  
when the node wishes to transmit data. It includes  
an 11-bit standard identifier (SID) but not an 18-bit  
extended identifier (EID).  
• Extended Data Frame:  
The module features are as follows:  
An extended data frame is similar to a standard  
data frame but includes an extended identifier as  
well.  
• Implementation of the CAN protocol CAN 1.2,  
CAN 2.0A and CAN 2.0B  
• Standard and extended data frames  
• 0-8 bytes data length  
• Remote Frame:  
It is possible for a destination node to request the  
data from the source. For this purpose, the desti-  
nation node sends a remote frame with an identi-  
fier that matches the identifier of the required data  
frame. The appropriate data source node will then  
send a data frame as a response to this remote  
request.  
• Programmable bit rate up to 1 Mbit/sec  
• Support for remote frames  
• Double-buffered receiver with two prioritized  
received message storage buffers (each buffer  
may contain up to 8 bytes of data)  
• 6 full (standard/extended identifier) acceptance  
filters, 2 associated with the high priority receive  
buffer and 4 associated with the low priority  
receive buffer  
• Error Frame:  
An error frame is generated by any node that  
detects a bus error. An error frame consists of 2  
fields: an error flag field and an error delimiter  
field.  
• 2 full acceptance filter masks, one each  
associated with the high and low priority receive  
buffers  
• Overload Frame:  
• Three transmit buffers with application specified  
prioritization and abort capability (each buffer may  
contain up to 8 bytes of data)  
An overload frame can be generated by a node as  
a result of 2 conditions. First, the node detects a  
dominant bit during interframe space which is an  
illegal condition. Second, due to internal condi-  
tions, the node is not yet able to start reception of  
the next message. A node may generate a maxi-  
mum of 2 sequential overload frames to delay the  
start of the next message.  
• Programmable wake-up functionality with  
integrated low-pass filter  
• Programmable Loopback mode supports self-test  
operation  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
• Interframe Space:  
• Programmable clock source  
Interframe space separates a proceeding frame  
(of whatever type) from a following data or remote  
frame.  
• Programmable link to Input Capture module (IC2,  
for both CAN1 and CAN2) for time-stamping and  
network synchronization  
• Low-power Sleep and Idle mode  
© 2006 Microchip Technology Inc.  
DS70117F-page 111  
dsPIC30F6011/6012/6013/6014  
FIGURE 17-1:  
CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM  
Acceptance Mask  
RXM1  
BUFFERS  
Acceptance Filter  
RXF2  
A
c
c
e
p
t
Acceptance Mask  
Acceptance Filter  
RXF3  
TXB0  
TXB1  
TXB2  
RXM0  
A
c
c
e
p
t
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
Acceptance Filter  
RXF1  
Acceptance Filter  
RXF5  
R
X
B
0
R
X
B
1
M
A
B
Identifier  
Identifier  
Message  
Queue  
Control  
Transmit Byte Sequencer  
Data Field  
Data Field  
Receive  
Error  
Counter  
RERRCNT  
TERRCNT  
PROTOCOL  
ENGINE  
Transmit  
Error  
Err Pas  
Bus Off  
Counter  
Transmit Shift  
Receive Shift  
CRC Check  
Protocol  
Finite  
State  
CRC Generator  
Machine  
Bit  
Timing  
Logic  
Transmit  
Logic  
Bit Timing  
Generator  
CiTX(1)  
CiRX(1)  
Note 1: i = 1 or 2 refers to a particular CAN module (CAN1 or CAN2).  
DS70117F-page 112  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
The module can be programmed to apply a low-pass  
filter function to the CiRX input line while the module or  
the CPU is in Sleep mode. The WAKFIL bit  
(CiCFG2<14>) enables or disables the filter.  
17.3 Modes of Operation  
The CAN module can operate in one of several Operation  
modes selected by the user. These modes include:  
• Initialization Mode  
• Disable Mode  
• Normal Operation Mode  
• Listen Only Mode  
• Loopback Mode  
Note:  
Typically, if the CAN module is allowed to  
transmit in a particular mode of operation  
and a transmission is requested immedi-  
ately after the CAN module has been  
placed in that mode of operation, the mod-  
ule waits for 11 consecutive recessive bits  
on the bus before starting transmission. If  
the user switches to Disable Mode within  
this 11-bit period, then this transmission is  
aborted and the corresponding TXABT bit  
is set and TXREQ bit is cleared.  
• Error Recognition Mode  
Modes are requested by setting the REQOP<2:0> bits  
(CiCTRL<10:8>). Entry into a mode is Acknowledged  
by monitoring the OPMODE<2:0> bits (CiCTRL<7:5>).  
The module will not change the mode and the  
OPMODE bits until a change in mode is acceptable,  
generally during bus Idle time which is defined as at  
least 11 consecutive recessive bits.  
17.3.3  
NORMAL OPERATION MODE  
Normal Operating mode is selected when  
REQOP<2:0> = 000. In this mode, the module is acti-  
vated and the I/O pins will assume the CAN bus func-  
tions. The module will transmit and receive CAN bus  
messages via the CxTX and CxRX pins.  
17.3.1  
INITIALIZATION MODE  
In the Initialization mode, the module will not transmit or  
receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The programmer will  
have access to configuration registers that are access  
restricted in other modes. The module will protect the  
user from accidentally violating the CAN protocol  
through programming errors. All registers which control  
the configuration of the module can not be modified  
while the module is on-line. The CAN module will not  
be allowed to enter the Configuration mode while a  
transmission is taking place. The Configuration mode  
serves as a lock to protect the following registers.  
17.3.4  
LISTEN ONLY MODE  
If the Listen Only mode is activated, the module on the  
CAN bus is passive. The transmitter buffers revert to  
the port I/O function. The receive pins remain inputs.  
For the receiver, no error flags or Acknowledge signals  
are sent. The error counters are deactivated in this  
state. The Listen Only mode can be used for detecting  
the baud rate on the CAN bus. To use this, it is neces-  
sary that there are at least two further nodes that  
communicate with each other.  
• All Module Control Registers  
• Baud Rate and Interrupt Configuration Registers  
• Bus Timing Registers  
• Identifier Acceptance Filter Registers  
• Identifier Acceptance Mask Registers  
17.3.5  
LISTEN ALL MESSAGES MODE  
The module can be set to ignore all errors and receive  
any message. The Error Recognition mode is activated  
by setting REQOP<2:0> = ‘111’. In this mode, the data  
which is in the message assembly buffer until the time  
an error occurred, is copied in the receive buffer and  
can be read via the CPU interface.  
17.3.2  
DISABLE MODE  
In Disable mode, the module will not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts will  
remain and the error counters will retain their value.  
17.3.6  
LOOPBACK MODE  
If the REQOP<2:0> bits (CiCTRL<10:8>) = 001, the  
module will enter the Module Disable mode. If the module  
is active, the module will wait for 11 recessive bits on the  
CAN bus, detect that condition as an Idle bus, then  
accept the module disable command. When the  
OPMODE<2:0> bits (CiCTRL<7:5>) = 001, that indi-  
cates whether the module successfully went into Module  
Disable mode. The I/O pins will revert to normal I/O  
function when the module is in the Module Disable mode.  
If the Loopback mode is activated, the module will con-  
nect the internal transmit signal to the internal receive  
signal at the module boundary. The transmit and  
receive pins revert to their port I/O function.  
© 2006 Microchip Technology Inc.  
DS70117F-page 113  
dsPIC30F6011/6012/6013/6014  
17.4.4  
RECEIVE OVERRUN  
17.4 Message Reception  
17.4.1 RECEIVE BUFFERS  
An overrun condition occurs when the Message  
Assembly Buffer (MAB) has assembled a valid  
received message, the message is accepted through  
the acceptance filters, and when the receive buffer  
associated with the filter has not been designated as  
clear of the previous message.  
The CAN bus module has 3 receive buffers. However,  
one of the receive buffers is always committed to mon-  
itoring the bus for incoming messages. This buffer is  
called the Message Assembly Buffer (MAB). So there  
are 2 receive buffers visible, RXB0 and RXB1, that can  
The overrun error flag, RXnOVR (CiINTF<15> or  
CiINTF<14>), and the ERRIF bit (CiINTF<5>) will be  
set and the message in the MAB will be discarded.  
essentially instantaneously receive  
message from the protocol engine.  
a
complete  
All messages are assembled by the MAB and are trans-  
ferred to the RXBn buffers only if the acceptance filter  
criterion are met. When a message is received, the  
RXnIF flag (CiINTF<0> or CiINRF<1>) will be set. This  
bit can only be set by the module when a message is  
received. The bit is cleared by the CPU when it has com-  
pleted processing the message in the buffer. If the  
RXnIE bit (CiINTE<0> or CiINTE<1>) is set, an interrupt  
will be generated when a message is received.  
If the DBEN bit is clear, RXB1 and RXB0 operate inde-  
pendently. When this is the case, a message intended  
for RXB0 will not be diverted into RXB1 if RXB0 con-  
tains an unread message and the RX0OVR bit will be  
set.  
If the DBEN bit is set, the overrun for RXB0 is handled  
differently. If a valid message is received for RXB0 and  
RXFUL = 1indicates that RXB0 is full and RXFUL = 0  
indicates that RXB1 is empty, the message for RXB0  
will be loaded into RXB1. An overrun error will not be  
generated for RXB0. If a valid message is received for  
RXB0 and RXFUL = 1, indicating that both RXB0 and  
RXB1 are full, the message will be lost and an overrun  
will be indicated for RXB1.  
RXF0 and RXF1 filters with RXM0 mask are associated  
with RXB0. The filters RXF2, RXF3, RXF4, and RXF5  
and the mask RXM1 are associated with RXB1.  
17.4.2  
MESSAGE ACCEPTANCE FILTERS  
The message acceptance filters and masks are used to  
determine if a message in the message assembly  
buffer should be loaded into either of the receive buff-  
ers. Once a valid message has been received into the  
Message Assembly Buffer (MAB), the identifier fields of  
the message are compared to the filter values. If there  
is a match, that message will be loaded into the  
appropriate receive buffer.  
17.4.5  
RECEIVE ERRORS  
The CAN module will detect the following receive  
errors:  
• Cyclic Redundancy Check (CRC) Error  
• Bit Stuffing Error  
• Invalid Message Receive Error  
The acceptance filter looks at incoming messages for  
the RXIDE bit (CiRXnSID<0>) to determine how to  
compare the identifiers. If the RXIDE bit is clear, the  
message is a standard frame and only filters with the  
EXIDE bit (CiRXFnSID<0>) clear are compared. If the  
RXIDE bit is set, the message is an extended frame,  
and only filters with the EXIDE bit set are compared.  
Configuring the RXM<1:0> bits to ‘01’ or ‘10’ can  
override the EXIDE bit.  
These receive errors do not generate an interrupt.  
However, the receive error counter is incremented by  
one in case one of these errors occur. The RXWAR bit  
(CiINTF<9>) indicates that the receive error counter  
has reached the CPU warning limit of 96 and an  
interrupt is generated.  
17.4.6  
RECEIVE INTERRUPTS  
Receive interrupts can be divided into 3 major groups,  
each including various conditions that generate  
interrupts:  
17.4.3  
MESSAGE ACCEPTANCE FILTER  
MASKS  
• Receive Interrupt:  
The mask bits essentially determine which bits to apply  
the filter to. If any mask bit is set to a zero, then that bit  
will automatically be accepted regardless of the filter  
bit. There are 2 programmable acceptance filter masks  
associated with the receive buffers, one for each buffer.  
A message has been successfully received and  
loaded into one of the receive buffers. This inter-  
rupt is activated immediately after receiving the  
End of Frame (EOF) field. Reading the RXnIF flag  
will indicate which receive buffer caused the  
interrupt.  
• Wake-up Interrupt:  
The CAN module has woken up from Disable  
mode or the device has woken up from Sleep  
mode.  
DS70117F-page 114  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
• Receive Error Interrupts:  
Setting TXREQ bit simply flags a message buffer as  
enqueued for transmission. When the module detects  
an available bus, it begins transmitting the message  
which has been determined to have the highest priority.  
A receive error interrupt will be indicated by the  
ERRIF bit. This bit shows that an error condition  
occurred. The source of the error can be deter-  
mined by checking the bits in the CAN Interrupt  
Status register, CiINTF.  
If the transmission completes successfully on the first  
attempt, the TXREQ bit is cleared automatically, and  
an interrupt is generated if TXIE was set.  
- Invalid Message Received:  
If the message transmission fails, one of the error con-  
dition flags will be set, and the TXREQ bit will remain  
set indicating that the message is still pending for trans-  
mission. If the message encountered an error condition  
during the transmission attempt, the TXERR bit will be  
set, and the error condition may cause an interrupt. If  
the message loses arbitration during the transmission  
attempt, the TXLARB bit is set. No interrupt is  
generated to signal the loss of arbitration.  
If any type of error occurred during reception of  
the last message, an error will be indicated by  
the IVRIF bit.  
- Receiver Overrun:  
The RXnOVR bit indicates that an overrun  
condition occurred.  
- Receiver Warning:  
The RXWAR bit indicates that the receive error  
counter (RERRCNT<7:0>) has reached the  
warning limit of 96.  
17.5.4  
ABORTING MESSAGE  
TRANSMISSION  
- Receiver Error Passive:  
The system can also abort a message by clearing the  
TXREQ bit associated with each message buffer. Set-  
ting the ABAT bit (CiCTRL<12>) will request an abort  
of all pending messages. If the message has not yet  
started transmission, or if the message started but is  
interrupted by loss of arbitration or an error, the abort  
will be processed. The abort is indicated when the  
module sets the TXABT bit and the TXnIF flag is not  
automatically set.  
The RXEP bit indicates that the receive error  
counter has exceeded the error passive limit of  
127 and the module has gone into error passive  
state.  
17.5 Message Transmission  
17.5.1  
TRANSMIT BUFFERS  
The CAN module has three transmit buffers. Each of  
the three buffers occupies 14 bytes of data. Eight of the  
bytes are the maximum 8 bytes of the transmitted mes-  
sage. Five bytes hold the standard and extended  
identifiers and other message arbitration information.  
17.5.5  
TRANSMISSION ERRORS  
The CAN module will detect the following transmission  
errors:  
• Acknowledge Error  
• Form Error  
17.5.2  
TRANSMIT MESSAGE PRIORITY  
• Bit Error  
Transmit priority is a prioritization within each node of  
the pending transmittable messages. There are  
4 levels of transmit priority. If TXPRI<1:0>  
(CiTXnCON<1:0>, where n = 0, 1 or 2 represents a par-  
ticular transmit buffer) for a particular message buffer is  
set to ‘11’, that buffer has the highest priority. If  
TXPRI<1:0> for a particular message buffer is set to  
10’ or ‘01’, that buffer has an intermediate priority. If  
TXPRI<1:0> for a particular message buffer is ‘00’, that  
buffer has the lowest priority.  
These transmission errors will not necessarily generate  
an interrupt but are indicated by the transmission error  
counter. However, each of these errors will cause the  
transmission error counter to be incremented by one.  
Once the value of the error counter exceeds the value  
of 96, the ERRIF (CiINTF<5>) and the TXWAR bit  
(CiINTF<10>) are set. Once the value of the error  
counter exceeds the value of 96, an interrupt is  
generated and the TXWAR bit in the Error Flag register  
is set.  
17.5.3  
TRANSMISSION SEQUENCE  
To initiate transmission of the message, the TXREQ bit  
(CiTXnCON<3>) must be set. The CAN bus module  
resolves any timing conflicts between setting of the  
TXREQ bit and the Start of Frame (SOF), ensuring that if  
the priority was changed, it is resolved correctly before the  
SOF occurs. When TXREQ is set, the TXABT  
(CiTXnCON<6>), TXLARB (CiTXnCON<5>) and TXERR  
(CiTXnCON<4>) flag bits are automatically cleared.  
© 2006 Microchip Technology Inc.  
DS70117F-page 115  
dsPIC30F6011/6012/6013/6014  
17.5.6  
TRANSMIT INTERRUPTS  
17.6 Baud Rate Setting  
Transmit interrupts can be divided into 2 major groups,  
each including various conditions that generate  
interrupts:  
All nodes on any particular CAN bus must have the  
same nominal bit rate. In order to set the baud rate, the  
following parameters have to be initialized:  
• Transmit Interrupt:  
• Synchronization Jump Width  
• Baud Rate Prescaler  
At least one of the three transmit buffers is empty  
(not scheduled) and can be loaded to schedule a  
message for transmission. Reading the TXnIF  
flags will indicate which transmit buffer is available  
and caused the interrupt.  
• Phase Segments  
• Length determination of Phase Segment 2  
• Sample Point  
• Propagation Segment bits  
• Transmit Error Interrupts:  
A transmission error interrupt will be indicated by  
the ERRIF flag. This flag shows that an error con-  
dition occurred. The source of the error can be  
determined by checking the error flags in the CAN  
Interrupt Status register, CiINTF. The flags in this  
register are related to receive and transmit errors.  
17.6.1  
BIT TIMING  
All controllers on the CAN bus must have the same  
baud rate and bit length. However, different controllers  
are not required to have the same master oscillator  
clock. At different clock frequencies of the individual  
controllers, the baud rate has to be adjusted by  
adjusting the number of time quanta in each segment.  
- Transmitter Warning Interrupt:  
The TXWAR bit indicates that the transmit error  
counter has reached the CPU warning limit of  
96.  
The nominal bit time can be thought of as being divided  
into separate non-overlapping time segments. These  
segments are shown in Figure 17-2.  
- Transmitter Error Passive:  
Synchronization Segment (Sync Seg)  
Propagation Time Segment (Prop Seg)  
Phase Segment 1 (Phase1 Seg)  
Phase Segment 2 (Phase2 Seg)  
The TXEP bit (CiINTF<12>) indicates that the  
transmit error counter has exceeded the error  
passive limit of 127 and the module has gone to  
error passive state.  
The time segments and also the nominal bit time are  
made up of integer units of time called time quanta or  
TQ. By definition, the nominal bit time has a minimum  
of 8 TQ and a maximum of 25 TQ. Also, by definition,  
the minimum nominal bit time is 1 μsec corresponding  
to a maximum bit rate of 1 MHz.  
- Bus Off:  
The TXBO bit (CiINTF<13>) indicates that the  
transmit error counter has exceeded 255 and  
the module has gone to the bus off state.  
FIGURE 17-2:  
CAN BIT TIMING  
Input Signal  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
Sync  
Sample Point  
TQ  
DS70117F-page 116  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
17.6.2  
PRESCALER SETTING  
17.6.5  
SAMPLE POINT  
There is a programmable prescaler with integral values  
ranging from 1 to 64, in addition to a fixed divide-by-2  
for clock generation. The time quantum (TQ) is a fixed  
unit of time derived from the oscillator period, and is  
given by Equation 17-1. .  
The sample point is the point of time at which the bus  
level is read and interpreted as the value of that respec-  
tive bit. The location is at the end of Phase1 Seg. If the  
bit timing is slow and contains many TQ, it is possible to  
specify multiple sampling of the bus line at the sample  
point. The level determined by the CAN bus then corre-  
sponds to the result from the majority decision of three  
values. The majority samples are taken at the sample  
point and twice before with a distance of TQ/2. The  
CAN module allows the user to choose between sam-  
pling three times at the same point or once at the same  
point, by setting or clearing the SAM bit (CiCFG2<6>).  
Note:  
FCAN must not exceed 30 MHz. If  
CANCKS = 0, then FCY must not exceed  
7.5 MHz.  
EQUATION 17-1: TIME QUANTUM FOR  
CLOCK GENERATION  
Typically, the sampling of the bit should take place at  
about 60-70% through the bit time, depending on the  
system parameters.  
TQ = 2 (BRP<5:0> + 1)/FCAN  
17.6.3  
PROPAGATION SEGMENT  
17.6.6  
SYNCHRONIZATION  
This part of the bit time is used to compensate physical  
delay times within the network. These delay times con-  
sist of the signal propagation time on the bus line and  
the internal delay time of the nodes. The Prop Seg can  
be programmed from 1 TQ to 8 TQ by setting the  
PRSEG<2:0> bits (CiCFG2<2:0>).  
To compensate for phase shifts between the oscillator  
frequencies of the different bus stations, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. When an edge in  
the transmitted data is detected, the logic will compare  
the location of the edge to the expected time (Synchro-  
nous Segment). The circuit will then adjust the values  
of Phase1 Seg and Phase2 Seg. There are 2  
mechanisms used to synchronize.  
17.6.4  
PHASE SEGMENTS  
The phase segments are used to optimally locate the  
sampling of the received bit within the transmitted bit  
time. The sampling point is between Phase1 Seg and  
Phase2 Seg. These segments are lengthened or short-  
ened by resynchronization. The end of the Phase1 Seg  
determines the sampling point within a bit period. The  
segment is programmable from 1 TQ to 8 TQ. Phase2  
Seg provides delay to the next transmitted data transi-  
tion. The segment is programmable from 1 TQ to 8 TQ,  
or it may be defined to be equal to the greater of  
Phase1 Seg or the information processing time (2 TQ).  
The Phase1 Seg is initialized by setting bits  
SEG1PH<2:0> (CiCFG2<5:3>), and Phase2 Seg is  
initialized by setting SEG2PH<2:0> (CiCFG2<10:8>).  
17.6.6.1  
Hard Synchronization  
Hard synchronization is only done whenever there is a  
‘recessive’ to ‘dominant’ edge during bus Idle indicating  
the start of a message. After hard synchronization, the  
bit time counters are restarted with the Sync Seg. Hard  
synchronization forces the edge which has caused the  
hard synchronization to lie within the synchronization  
segment of the restarted bit time. If a hard synchroniza-  
tion is done, there will not be a resynchronization within  
that bit time.  
17.6.6.2  
Resynchronization  
The following requirement must be fulfilled while setting  
the lengths of the phase segments:  
As a result of resynchronization, Phase1 Seg may be  
lengthened or Phase2 Seg may be shortened. The  
amount of lengthening or shortening of the phase  
buffer segment has an upper bound known as the syn-  
chronization jump width, and is specified by the  
SJW<1:0> bits (CiCFG1<7:6>). The value of the syn-  
chronization jump width will be added to Phase1 Seg or  
subtracted from Phase2 Seg. The resynchronization  
jump width is programmable between 1 TQ and 4 TQ.  
Prop Seg + Phase1 Seg > = Phase2 Seg  
The following requirement must be fulfilled while setting  
the SJW<1:0> bits:  
Phase2 Seg > Synchronization Jump Width  
© 2006 Microchip Technology Inc.  
DS70117F-page 117  
TABLE 17-1: CAN1 REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Receive Acceptance Filter 0 Standard Identifier <10:0>  
Receive Acceptance Filter 0 Extended Identifier <17:6>  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2 Bit 1  
Bit 0  
Reset State  
C1RXF0SID 0300  
EXIDE 000u uuuu uuuu uu0u  
C1RXF0EIDH 0302  
C1RXF0EIDL 0304  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 0 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
C1RXF1SID  
0308  
Receive Acceptance Filter 1 Standard Identifier <10:0>  
Receive Acceptance Filter 1 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF1EIDH 030A  
C1RXF1EIDL 030C  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 1 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
C1RXF2SID  
0310  
Receive Acceptance Filter 2 Standard Identifier <10:0>  
Receive Acceptance Filter 2 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF2EIDH 0312  
C1RXF2EIDL 0314  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 2 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
C1RXF3SID  
0318  
Receive Acceptance Filter 3 Standard Identifier <10:0>  
Receive Acceptance Filter 3 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF3EIDH 031A  
C1RXF3EIDL 031C  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 3 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
C1RXF4SID  
0320  
Receive Acceptance Filter 4 Standard Identifier <10:0>  
Receive Acceptance Filter 4 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF4EIDH 0322  
C1RXF4EIDL 0324  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 4 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
C1RXF5SID  
0328  
Receive Acceptance Filter 5 Standard Identifier <10:0>  
Receive Acceptance Filter 5 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF5EIDH 032A  
C1RXF5EIDL 032C  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 5 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
C1RXM0SID  
0330  
Receive Acceptance Mask 0 Standard Identifier <10:0>  
Receive Acceptance Mask 0 Extended Identifier <17:6>  
MIDE 000u uuuu uuuu uu0u  
C1RXM0EIDH 0332  
C1RXM0EIDL 0334  
0000 uuuu uuuu uuuu  
Receive Acceptance Mask 0 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
C1RXM1SID  
0338  
Receive Acceptance Mask 1 Standard Identifier <10:0>  
Receive Acceptance Mask 1 Extended Identifier <17:6>  
MIDE 000u uuuu uuuu uu0u  
C1RXM1EIDH 033A  
C1RXM1EIDL 033C  
0000 uuuu uuuu uuuu  
Receive Acceptance Mask 1 Extended Identifier <5:0>  
Transmit Buffer 2 Standard Identifier <10:6>  
uuuu uu00 0000 0000  
C1TX2SID  
C1TX2EID  
0340  
0342  
Transmit Buffer 2 Standard Identifier <5:0>  
Transmit Buffer 2 Extended Identifier <13:6>  
SRR TXIDE uuuu u000 uuuu uuuu  
Transmit Buffer 2 Extended Identifier  
<17:14>  
uuuu 0000 uuuu uuuu  
C1TX2DLC  
C1TX2B1  
C1TX2B2  
C1TX2B3  
C1TX2B4  
C1TX2CON  
C1TX1SID  
0344  
0346  
0348  
034A  
034C  
034E  
0350  
Transmit Buffer 2 Extended Identifier <5:0>  
Transmit Buffer 2 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
Transmit Buffer 2 Byte 0  
Transmit Buffer 2 Byte 2  
Transmit Buffer 2 Byte 4  
Transmit Buffer 2 Byte 6  
TXABT TXLARB TXERR TXREQ  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Transmit Buffer 2 Byte 3  
Transmit Buffer 2 Byte 5  
Transmit Buffer 2 Byte 7  
TXPRI<1:0>  
Transmit Buffer 1 Standard Identifier <10:6>  
Transmit Buffer 1 Standard Identifier <5:0>  
SRR TXIDE uuuu u000 uuuu uuuu  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 17-1: CAN1 REGISTER MAP (CONTINUED)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2 Bit 1  
Bit 0  
Reset State  
C1TX1EID  
0352  
Transmit Buffer 1 Extended Identifier  
<17:14>  
Transmit Buffer 1 Extended Identifier <13:6>  
uuuu 0000 uuuu uuuu  
C1TX1DLC  
C1TX1B1  
C1TX1B2  
C1TX1B3  
C1TX1B4  
C1TX1CON  
C1TX0SID  
C1TX0EID  
0354  
0356  
0358  
035A  
035C  
035E  
0360  
0362  
Transmit Buffer 1 Extended Identifier <5:0>  
Transmit Buffer 1 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
Transmit Buffer 1 Byte 0  
Transmit Buffer 1 Byte 2  
Transmit Buffer 1 Byte 4  
Transmit Buffer 1 Byte 6  
TXABT TXLARB TXERR TXREQ  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Transmit Buffer 1 Byte 3  
Transmit Buffer 1 Byte 5  
Transmit Buffer 1 Byte 7  
TXPRI<1:0>  
Transmit Buffer 0 Standard Identifier <10:6>  
Transmit Buffer 0 Standard Identifier <5:0>  
Transmit Buffer 0 Extended Identifier <13:6>  
SRR TXIDE uuuu u000 uuuu uuuu  
Transmit Buffer 0 Extended Identifier  
<17:14>  
uuuu 0000 uuuu uuuu  
C1TX0DLC  
C1TX0B1  
C1TX0B2  
C1TX0B3  
C1TX0B4  
C1TX0CON  
C1RX1SID  
C1RX1EID  
C1RX1DLC  
C1RX1B1  
C1RX1B2  
C1RX1B3  
C1RX1B4  
C1RX1CON  
C1RX0SID  
C1RX0EID  
C1RX0DLC  
C1RX0B1  
C1RX0B2  
C1RX0B3  
C1RX0B4  
C1RX0CON  
C1CTRL  
0364  
0366  
0368  
036A  
036C  
036E  
0370  
0372  
0374  
0376  
0378  
037A  
037C  
037E  
0380  
0382  
0384  
0386  
0388  
038A  
038C  
038E  
Transmit Buffer 0 Extended Identifier <5:0>  
Transmit Buffer 0 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
Transmit Buffer 0 Byte 0  
Transmit Buffer 0 Byte 2  
Transmit Buffer 0 Byte 4  
Transmit Buffer 0 Byte 6  
TXABT TXLARB TXERR TXREQ  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Transmit Buffer 0 Byte 3  
Transmit Buffer 0 Byte 5  
Transmit Buffer 0 Byte 7  
Receive Buffer 1 Standard Identifier <10:0>  
Receive Buffer 1 Extended Identifier <17:6>  
TXPRI<1:0>  
SRR RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
Receive Buffer 1 Extended Identifier <5:0>  
Receive Buffer 1 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Receive Buffer 1 Byte 0  
Receive Buffer 1 Byte 2  
Receive Buffer 1 Byte 4  
Receive Buffer 1 Byte 6  
Receive Buffer 1 Byte 3  
Receive Buffer 1 Byte 5  
Receive Buffer 1 Byte 7  
RXFUL  
RXRTRRO  
FILHIT<2:0>  
Receive Buffer 0 Standard Identifier <10:0>  
Receive Buffer 0 Extended Identifier <17:6>  
SRR RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
Receive Buffer 0 Extended Identifier <5:0>  
Receive Buffer 0 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
Receive Buffer 0 Byte 0  
Receive Buffer 0 Byte 2  
Receive Buffer 0 Byte 4  
Receive Buffer 0 Byte 6  
Receive Buffer 0 Byte 3  
Receive Buffer 0 Byte 5  
Receive Buffer 0 Byte 7  
REQOP<2:0>  
RXFUL  
RXRTRRO DBEN JTOFF FILHIT0 0000 0000 0000 0000  
0390 CANCAP  
CSIDLE ABAT CANCKS  
OPMODE<2:0>  
SJW<1:0>  
ICODE<2:0>  
BRP<5:0>  
0000 0100 1000 0000  
0000 0000 0000 0000  
0u00 0uuu uuuu uuuu  
C1CFG1  
0392  
0394  
C1CFG2  
WAKFIL  
SEG2PH<2:0>  
SEG2PHTS SAM  
SEG1PH<2:0>  
PRSEG<2:0>  
C1INTF  
0396 RX0OVR RX1OVR TXBO  
TXEP  
RXEP TXWAR RXWAR EWARN  
IVRIF  
WAKIF ERRIF TX2IF  
TX1IF  
TX0IF RX1IF RX0IF 0000 0000 0000 0000  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 17-1: CAN1 REGISTER MAP (CONTINUED)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2 Bit 1  
Bit 0  
Reset State  
C1INTE  
C1EC  
0398  
039A  
IVRIE  
WAKIE ERRIE TX2IE  
TX1IE  
TX0IE RX1E RX0IE 0000 0000 0000 0000  
Transmit Error Count Register  
Receive Error Count Register  
0000 0000 0000 0000  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 17-2: CAN2 REGISTER MAP  
SFR Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Receive Acceptance Filter 0 Standard Identifier <10:0>  
Receive Acceptance Filter 0 Extended Identifier <17:6>  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
C2RXF0SID  
C2RXF0EIDH  
C2RXF0EIDL  
C2RXF1SID  
EXIDE 000u uuuu uuuu uu0u  
03C0  
03C2  
03C4  
03C8  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 0 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 1 Standard Identifier <10:0>  
Receive Acceptance Filter 1 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
C2RXF1EIDH 03CA  
0000 uuuu uuuu uuuu  
C2RXF1EIDL  
C2RXF2SID  
03CC  
03D0  
03D2  
03D4  
03D8  
Receive Acceptance Filter 1 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 2 Standard Identifier <10:0>  
Receive Acceptance Filter 2 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
C2RXF2EIDH  
C2RXF2EIDL  
C2RXF3SID  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 2 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 3 Standard Identifier <10:0>  
Receive Acceptance Filter 3 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
C2RXF3EIDH 03DA  
0000 uuuu uuuu uuuu  
C2RXF3EIDL  
C2RXF4SID  
C2RXF4EIDH  
C2RXF4EIDL  
C2RXF5SID  
03DC  
Receive Acceptance Filter 3 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 4 Standard Identifier <10:0>  
Receive Acceptance Filter 4 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
03E0  
03E2  
03E4  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 4 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 5 Standard Identifier <10:0>  
Receive Acceptance Filter 5 Extended Identifier <17:6>  
EXIDE 000u uuuu uuuu uu0u  
03E8  
C2RXF5EIDH 03EA  
0000 uuuu uuuu uuuu  
C2RXF5EIDL  
C2RXM0SID  
03EC  
03F0  
Receive Acceptance Filter 5 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Mask 0 Standard Identifier <10:0>  
Receive Acceptance Mask 0 Extended Identifier <17:6>  
MIDE 000u uuuu uuuu uu0u  
C2RXM0EIDH 03F2  
0000 uuuu uuuu uuuu  
C2RXM0EIDL  
C2RXM1SID  
03F4  
03F8  
Receive Acceptance Mask 0 Extended Identifier <5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Mask 1 Standard Identifier <10:0>  
Receive Acceptance Mask 1 Extended Identifier <17:6>  
MIDE 000u uuuu uuuu uu0u  
C2RXM1EIDH 03FA  
C2RXM1EIDL 03FC  
0000 uuuu uuuu uuuu  
Receive Acceptance Mask 1 Extended Identifier <5:0>  
Transmit Buffer 2 Standard Identifier <10:6>  
uuuu uu00 0000 0000  
C2TX2SID  
C2TX2EID  
0400  
0402  
Transmit Buffer 2 Standard Identifier <5:0>  
Transmit Buffer 2 Extended Identifier <13:6>  
SRR  
TXIDE uuuu u000 uuuu uuuu  
Transmit Buffer 2 Extended Identifier  
<17:14>  
uuuu 0000 uuuu uuuu  
C2TX2DLC  
C2TX2B1  
C2TX2B2  
C2TX2B3  
C2TX2B4  
C2TX2CON  
C2TX1SID  
0404  
0406  
0408  
040A  
040C  
040E  
0410  
Transmit Buffer 2 Extended Identifier <5:0>  
Transmit Buffer 2 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Transmit Buffer 2 Byte 0  
Transmit Buffer 2 Byte 2  
Transmit Buffer 2 Byte 4  
Transmit Buffer 2 Byte 6  
Transmit Buffer 2 Byte 3  
Transmit Buffer 2 Byte 5  
Transmit Buffer 2 Byte 7  
TXABT TXLARB TXERR  
TXREQ  
TXPRI<1:0>  
SRR TXIDE uuuu u000 uuuu uuuu  
Transmit Buffer 1 Standard Identifier <10:6>  
Transmit Buffer 1 Standard Identifier <5:0>  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 17-2: CAN2 REGISTER MAP (CONTINUED)  
SFR Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
C2TX1EID  
0412  
Transmit Buffer 1 Extended Identifier  
<17:14>  
Transmit Buffer 1 Extended Identifier <13:6>  
uuuu 0000 uuuu uuuu  
C2TX1DLC  
C2TX1B1  
C2TX1B2  
C2TX1B3  
C2TX1B4  
C2TX1CON  
C2TX0SID  
C2TX0EID  
0414  
0416  
0418  
041A  
041C  
041E  
0420  
0422  
Transmit Buffer 1 Extended Identifier <5:0>  
Transmit Buffer 1 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Transmit Buffer 1 Byte 0  
Transmit Buffer 1 Byte 2  
Transmit Buffer 1 Byte 4  
Transmit Buffer 1 Byte 6  
Transmit Buffer 1 Byte 3  
Transmit Buffer 1 Byte 5  
Transmit Buffer 1 Byte 7  
TXABT TXLARB TXERR  
Transmit Buffer 0 Standard Identifier <5:0>  
Transmit Buffer 0 Extended Identifier <13:6>  
TXREQ  
TXPRI<1:0>  
Transmit Buffer 0 Standard Identifier <10:6>  
SRR  
TXIDE uuuu u000 uuuu uuuu  
Transmit Buffer 0 Extended Identifier  
<17:14>  
uuuu 0000 uuuu uuuu  
C2TX0DLC  
C2TX0B1  
C2TX0B2  
C2TX0B3  
C2TX0B4  
C2TX0CON  
C2RX1SID  
C2RX1EID  
C2RX1DLC  
C2RX1B1  
C2RX1B2  
C2RX1B3  
C2RX1B4  
C2RX1CON  
C2RX0SID  
C2RX0EID  
C2RX0DLC  
C2RX0B1  
C2RX0B2  
C2RX0B3  
C2RX0B4  
C2RX0CON  
C2CTRL  
0424  
0426  
0428  
042A  
042C  
042E  
0430  
0432  
0434  
0436  
0438  
043A  
043C  
043E  
0440  
0442  
0444  
0446  
0448  
044A  
044C  
044E  
Transmit Buffer 0 Extended Identifier <5:0>  
Transmit Buffer 0 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Transmit Buffer 0 Byte 0  
Transmit Buffer 0 Byte 2  
Transmit Buffer 0 Byte 4  
Transmit Buffer 0 Byte 6  
Transmit Buffer 0 Byte 3  
Transmit Buffer 0 Byte 5  
Transmit Buffer 0 Byte 7  
TXABT TXLARB TXERR  
TXREQ  
TXPRI<1:0>  
SRR  
Receive Buffer 1 Standard Identifier <10:0>  
Receive Buffer 1 Extended Identifier <17:6>  
RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
FILHIT0 0000 0000 0000 0000  
Receive Buffer 1 Extended Identifier <5:0>  
Receive Buffer 1 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
Receive Buffer 1 Byte 0  
Receive Buffer 1 Byte 2  
Receive Buffer 1 Byte 4  
Receive Buffer 1 Byte 6  
Receive Buffer 1 Byte 3  
Receive Buffer 1 Byte 5  
Receive Buffer 1 Byte 7  
RXFUL  
RXRTRRO  
FILHIT<2:0>  
SRR  
Receive Buffer 0 Standard Identifier <10:0>  
Receive Buffer 0 Extended Identifier <17:6>  
Receive Buffer 0 Extended Identifier <5:0>  
Receive Buffer 0 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
Receive Buffer 0 Byte 0  
Receive Buffer 0 Byte 2  
Receive Buffer 0 Byte 4  
Receive Buffer 0 Byte 6  
Receive Buffer 0 Byte 3  
Receive Buffer 0 Byte 5  
Receive Buffer 0 Byte 7  
CSIDLE  
RXFUL  
RXRTRRO DBEN  
ICODE<2:0>  
BRP<5:0>  
JTOFF  
0450 CANCAP  
ABAT CANCKS  
REQOP<2:0>  
OPMODE<2:0>  
SJW<1:0>  
SEG2PHTS SAM  
0000 0100 1000 0000  
0000 0000 0000 0000  
0u00 0uuu uuuu uuuu  
C2CFG1  
0452  
0454  
C2CFG2  
WAKFIL  
SEG2PH<2:0>  
SEG1PH<2:0>  
PRSEG<2:0>  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 17-2: CAN2 REGISTER MAP (CONTINUED)  
SFR Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
C2INTF  
C2INTE  
C2EC  
0456 RX0OVR RX1OVR  
TXBO  
TXEP  
RXEP  
TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF  
WAKIE  
ERRIF  
ERRIE  
TX2IF  
TX2IE  
TX1IF  
TX1IE  
TX0IF  
TX0IE  
RX1IF  
RX1E  
RX0IF 0000 0000 0000 0000  
RX0IE 0000 0000 0000 0000  
0000 0000 0000 0000  
0458  
045A  
Transmit Error Count Register  
Receive Error Count Register  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 124  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
18.2.3  
CSDI PIN  
18.0 DATA CONVERTER  
INTERFACE (DCI) MODULE  
The serial data input (CSDI) pin is configured as an  
input only pin when the module is enabled.  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
18.2.3.1  
COFS PIN  
The Codec frame synchronization (COFS) pin is used  
to synchronize data transfers that occur on the CSDO  
and CSDI pins. The COFS pin may be configured as an  
input or an output. The data direction for the COFS pin  
is determined by the COFSD control bit in the  
DCICON1 register.  
18.1 Module Introduction  
The dsPIC30F Data Converter Interface (DCI) module  
allows simple interfacing of devices, such as audio  
coder/decoders (Codecs), A/D converters and D/A  
converters. The following interfaces are supported:  
The DCI module accesses the shadow registers while  
the CPU is in the process of accessing the memory  
mapped buffer registers.  
• Framed Synchronous Serial Transfer (Single or  
Multi-Channel)  
18.2.4  
BUFFER DATA ALIGNMENT  
• Inter-IC Sound (I2S) Interface  
Data values are always stored left justified in the buff-  
ers since most Codec data is represented as a signed  
2’s complement fractional number. If the received word  
length is less than 16 bits, the unused LSbs in the  
receive buffer registers are set to ‘0’ by the module. If  
the transmitted word length is less than 16 bits, the  
unused LSbs in the transmit buffer register are ignored  
by the module. The word length setup is described in  
subsequent sections of this document.  
• AC-Link Compliant mode  
The DCI module provides the following general  
features:  
• Programmable word size up to 16 bits  
• Support for up to 16 time slots, for a maximum  
frame size of 256 bits  
• Data buffering for up to 4 samples without CPU  
overhead  
18.2.5  
TRANSMIT/RECEIVE SHIFT  
REGISTER  
18.2 Module I/O Pins  
The DCI module has a 16-bit shift register for shifting  
serial data in and out of the module. Data is shifted in/  
out of the shift register MSb first, since audio PCM data  
is transmitted in signed 2’s complement format.  
There are four I/O pins associated with the module.  
When enabled, the module controls the data direction  
of each of the four pins.  
18.2.1  
CSCK PIN  
18.2.6  
DCI BUFFER CONTROL  
The CSCK pin provides the serial clock for the DCI  
module. The CSCK pin may be configured as an input  
or output using the CSCKD control bit in the DCICON1  
SFR. When configured as an output, the serial clock is  
provided by the dsPIC30F. When configured as an  
input, the serial clock must be provided by an external  
device.  
The DCI module contains a buffer control unit for trans-  
ferring data between the shadow buffer memory and  
the serial shift register. The buffer control unit is a sim-  
ple 2-bit address counter that points to word locations  
in the shadow buffer memory. For the receive memory  
space (high address portion of DCI buffer memory), the  
address counter is concatenated with a ‘0’ in the MSb  
location to form a 3-bit address. For the transmit mem-  
ory space (high portion of DCI buffer memory), the  
address counter is concatenated with a ‘1’ in the MSb  
location.  
18.2.2  
CSDO PIN  
The serial data output (CSDO) pin is configured as an  
output only pin when the module is enabled. The  
CSDO pin drives the serial bus whenever data is to be  
transmitted. The CSDO pin is tri-stated or driven to ‘0’  
during CSCK periods when data is not transmitted,  
depending on the state of the CSDOM control bit. This  
allows other devices to place data on the serial bus  
during transmission periods not used by the DCI  
module.  
Note:  
The DCI buffer control unit always  
accesses the same relative location in the  
transmit and receive buffers, so only one  
address counter is provided.  
© 2006 Microchip Technology Inc.  
DS70117F-page 125  
dsPIC30F6011/6012/6013/6014  
FIGURE 18-1:  
DCI MODULE BLOCK DIAGRAM  
BCG Control bits  
SCKD  
FSD  
Sample Rate  
Generator  
FOSC/4  
CSCK  
COFS  
Word Size Selection bits  
Frame Length Selection bits  
DCI Mode Selection bits  
Frame  
Synchronization  
Generator  
Receive Buffer  
Registers w/Shadow  
DCI Buffer  
Control Unit  
15  
0
Transmit Buffer  
Registers w/Shadow  
DCI Shift Register  
CSDI  
CSDO  
DS70117F-page 126  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
18.3.4  
FRAME SYNC MODE  
CONTROL BITS  
18.3 DCI Module Operation  
18.3.1 MODULE ENABLE  
The type of frame sync signal is selected using the  
Frame Synchronization mode control bits  
(COFSM<1:0>) in the DCICON1 SFR. The following  
operating modes can be selected:  
The DCI module is enabled or disabled by setting/  
clearing the DCIEN control bit in the DCICON1 SFR.  
Clearing the DCIEN control bit has the effect of reset-  
ting the module. In particular, all counters associated  
with CSCK generation, frame sync, and the DCI buffer  
control unit are reset.  
• Multi-Channel mode  
• I2S mode  
• AC-Link mode (16-bit)  
• AC-Link mode (20-bit)  
The DCI clocks are shutdown when the DCIEN bit is  
cleared.  
The operation of the COFSM control bits depends on  
whether the DCI module generates the frame sync  
signal as a master device, or receives the frame sync  
signal as a slave device.  
When enabled, the DCI controls the data direction for  
the four I/O pins associated with the module. The Port,  
LAT and TRIS register values for these I/O pins are  
overridden by the DCI module when the DCIEN bit is set.  
The master device in a DSP/Codec pair is the device  
that generates the frame sync signal. The frame sync  
signal initiates data transfers on the CSDI and CSDO  
pins and usually has the same frequency as the data  
sample rate (COFS).  
It is also possible to override the CSCK pin separately  
when the bit clock generator is enabled. This permits  
the bit clock generator to operate without enabling the  
rest of the DCI module.  
18.3.2  
WORD SIZE SELECTION BITS  
The DCI module is a frame sync master if the COFSD  
control bit is cleared and is a frame sync slave if the  
COFSD control bit is set.  
The WS<3:0> word size selection bits in the DCICON2  
SFR determine the number of bits in each DCI data  
word. Essentially, the WS<3:0> bits determine the  
counting period for a 4-bit counter clocked from the  
CSCK signal.  
18.3.5  
MASTER FRAME SYNC  
OPERATION  
When the DCI module is operating as a frame sync  
master device (COFSD = 0), the COFSM mode bits  
determine the type of frame sync pulse that is  
generated by the frame sync generator logic.  
Any data length, up to 16 bits, may be selected. The  
value loaded into the WS<3:0> bits is one less the  
desired word length. For example, a 16-bit data word  
size is selected when WS<3:0> = 1111.  
A new COFS signal is generated when the frame sync  
generator resets to ‘0’.  
Note:  
These WS<3:0> control bits are used only  
in the Multi-Channel and I2S modes. These  
bits have no effect in AC-Link mode since  
the data slot sizes are fixed by the protocol.  
In the Multi-Channel mode, the frame sync pulse is  
driven high for the CSCK period to initiate a data trans-  
fer. The number of CSCK cycles between successive  
frame sync pulses will depend on the word size and  
frame sync generator control bits. A timing diagram for  
the frame sync signal in Multi-Channel mode is shown  
in Figure 18-2.  
18.3.3  
FRAME SYNC GENERATOR  
The frame sync generator (COFSG) is a 4-bit counter  
that sets the frame length in data words. The frame  
sync generator is incremented each time the word size  
counter is reset (refer to Section 18.3.2 “Word Size  
Selection Bits”). The period for the frame synchroni-  
zation generator is set by writing the COFSG<3:0>  
control bits in the DCICON2 SFR. The COFSG period  
in clock cycles is determined by the following formula:  
In the AC-Link mode of operation, the frame sync sig-  
nal has a fixed period and duty cycle. The AC-Link  
frame sync signal is high for 16 CSCK cycles and is low  
for 240 CSCK cycles. A timing diagram with the timing  
details at the start of an AC-Link frame is shown in  
Figure 18-3.  
In the I2S mode, a frame sync signal having a 50% duty  
cycle is generated. The period of the I2S frame sync  
signal in CSCK cycles is determined by the word size  
and frame sync generator control bits. A new I2S data  
transfer boundary is marked by a high-to-low or a  
low-to-high transition edge on the COFS pin.  
EQUATION 18-1: COFSG PERIOD  
Frame Length = Word Length • (FSG Value + 1)  
Frame lengths, up to 16 data words, may be selected.  
The frame length in CSCK periods can vary up to a  
maximum of 256 depending on the word size that is  
selected.  
Note:  
The COFSG control bits will have no effect  
in AC-Link mode since the frame length is  
set to 256 CSCK periods by the protocol.  
© 2006 Microchip Technology Inc.  
DS70117F-page 127  
dsPIC30F6011/6012/6013/6014  
In the I2S mode, a new data word will be transferred  
one CSCK cycle after a low-to-high or a high-to-low  
transition is sampled on the COFS pin. A rising or fall-  
ing edge on the COFS pin resets the frame sync  
generator logic.  
18.3.6  
SLAVE FRAME SYNC OPERATION  
When the DCI module is operating as a frame sync  
slave (COFSD = 1), data transfers are controlled by the  
Codec device attached to the DCI module. The  
COFSM control bits control how the DCI module  
responds to incoming COFS signals.  
In the AC-Link mode, the tag slot and subsequent data  
slots for the next frame will be transferred one CSCK  
cycle after the COFS pin is sampled high.  
In the Multi-Channel mode, a new data frame transfer  
will begin one CSCK cycle after the COFS pin is sam-  
pled high (see Figure 18-2). The pulse on the COFS  
pin resets the frame sync generator logic.  
The COFSG and WS bits must be configured to pro-  
vide the proper frame length when the module is oper-  
ating in the Slave mode. Once a valid frame sync pulse  
has been sampled by the module on the COFS pin, an  
entire data frame transfer will take place. The module  
will not respond to further frame sync pulses until the  
data frame transfer has completed.  
FIGURE 18-2:  
FRAME SYNC TIMING, MULTI-CHANNEL MODE  
CSCK  
COFS  
CSDI/CSDO  
MSB  
LSB  
FIGURE 18-3:  
FRAME SYNC TIMING, AC-LINK START OF FRAME  
BIT_CLK  
S12 S12 S12 Tag Tag Tag  
bit 2 bit 1 LSb  
CSDO or CSDI  
MSb bit 14 bit 13  
SYNC  
FIGURE 18-4:  
I2S INTERFACE FRAME SYNC TIMING  
CSCK  
CSDI or CSDO  
LSB  
MSB  
LSB MSB  
WS  
2
Note:  
A 5-bit transfer is shown here for illustration purposes. The I S protocol does not specify word length – this  
will be system dependent.  
DS70117F-page 128  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
18.3.7  
BIT CLOCK GENERATOR  
EQUATION 18-2: BIT CLOCK FREQUENCY  
The DCI module has a dedicated 12-bit time base that  
produces the bit clock. The bit clock rate (period) is set  
by writing a non-zero 12-bit value to the BCG<11:0>  
control bits in the DCICON3 SFR.  
FCY  
FBCK =  
2
(BCG + 1)  
When the BCG<11:0> bits are set to zero, the bit clock  
will be disabled. If the BCG<11:0> bits are set to a non-  
zero value, the bit clock generator is enabled. These  
bits should be set to ‘0’ and the CSCKD bit set to ‘1’ if  
the serial clock for the DCI is received from an external  
device.  
The required bit clock frequency will be determined by  
the system sampling rate and frame size. Typical bit  
clock frequencies range from 16x to 512x, the con-  
verter sample rate depending on the data converter  
and the communication protocol that is used.  
To achieve bit clock frequencies associated with com-  
mon audio sampling rates, the user will need to select  
a crystal frequency that has an ‘even’ binary value.  
Examples of such crystal frequencies are listed in  
Table 18-1.  
The formula for the bit clock frequency is given in  
Equation 18-2.  
TABLE 18-1: DEVICE FREQUENCIES FOR COMMON CODEC CSCK FREQUENCIES  
FS (KHz)  
FCSCK/FS  
FCSCK (MHz)(1)  
FOSC (MHZ)  
PLL  
FCY (MIPS)  
BCG(2)  
8
12  
256  
256  
32  
2.048  
3.072  
1.024  
1.4112  
3.072  
8.192  
6.144  
8.192  
5.6448  
6.144  
4
8
8.192  
12.288  
16.384  
11.2896  
24.576  
1
1
7
3
3
32  
8
44.1  
48  
32  
8
64  
16  
Note 1: When the CSCK signal is applied externally (CSCKD = 1), the external clock high and low times must meet  
the device timing requirements.  
2: When the CSCK signal is applied externally (CSCKD = 1), the BCG<11:0> bits have no effect on the  
operation of the DCI module.  
© 2006 Microchip Technology Inc.  
DS70117F-page 129  
dsPIC30F6011/6012/6013/6014  
18.3.8  
SAMPLE CLOCK EDGE  
CONTROL BIT  
18.3.11 RECEIVE SLOT ENABLE BITS  
The RSCON SFR contains control bits that are used to  
enable up to 16 time slots for reception. These control  
bits are the RSE<15:0> bits. The size of each receive  
time slot is determined by the WS<3:0> word size  
selection bits and can vary from 1 to 16 bits.  
The sample clock edge (CSCKE) control bit determines  
the sampling edge for the CSCK signal. If the CSCK bit  
is cleared (default), data will be sampled on the falling  
edge of the CSCK signal. The AC-Link protocols and  
most Multi-Channel formats require that data be sam-  
pled on the falling edge of the CSCK signal. If the  
CSCK bit is set, data will be sampled on the rising edge  
of CSCK. The I2S protocol requires that data be  
sampled on the rising edge of the CSCK signal.  
If a receive time slot is enabled via one of the RSE bits  
(RSEx = 1), the shift register contents will be written to  
the current DCI receive shadow buffer location and the  
buffer control unit will be incremented to point to the  
next buffer location.  
Data is not packed in the receive memory buffer loca-  
tions if the selected word size is less than 16 bits. Each  
received slot data word is stored in a separate 16-bit  
buffer location. Data is always stored in a left justified  
format in the receive memory buffer.  
18.3.9  
DATA JUSTIFICATION  
CONTROL BIT  
In most applications, the data transfer begins one  
CSCK cycle after the COFS signal is sampled active.  
This is the default configuration of the DCI module. An  
alternate data alignment can be selected by setting the  
DJST control bit in the DCICON1 SFR. When DJST = 1,  
data transfers will begin during the same CSCK cycle  
when the COFS signal is sampled active.  
18.3.12 SLOT ENABLE BITS OPERATION  
WITH FRAME SYNC  
The TSE and RSE control bits operate in concert with  
the DCI frame sync generator. In the Master mode, a  
COFS signal is generated whenever the frame sync  
generator is reset. In the Slave mode, the frame sync  
generator is reset whenever a COFS pulse is received.  
18.3.10 TRANSMIT SLOT ENABLE BITS  
The TSCON SFR has control bits that are used to  
enable up to 16 time slots for transmission. These con-  
trol bits are the TSE<15:0> bits. The size of each time  
slot is determined by the WS<3:0> word size selection  
bits and can vary up to 16 bits.  
The TSE and RSE control bits allow up to 16 consecu-  
tive time slots to be enabled for transmit or receive.  
After the last enabled time slot has been transmitted/  
received, the DCI will stop buffering data until the next  
occurring COFS pulse.  
If a transmit time slot is enabled via one of the TSE bits  
(TSEx = 1), the contents of the current transmit shadow  
buffer location will be loaded into the CSDO Shift regis-  
ter and the DCI buffer control unit is incremented to  
point to the next location.  
18.3.13 SYNCHRONOUS DATA  
TRANSFERS  
The DCI buffer control unit will be incremented by one  
word location whenever a given time slot has been  
enabled for transmission or reception. In most cases,  
data input and output transfers will be synchronized,  
which means that a data sample is received for a given  
channel at the same time a data sample is transmitted.  
Therefore, the transmit and receive buffers will be filled  
with equal amounts of data when a DCI interrupt is  
generated.  
During an unused transmit time slot, the CSDO pin will  
drive ‘0’s or will be tri-stated during all disabled time  
slots depending on the state of the CSDOM bit in the  
DCICON1 SFR.  
The data frame size in bits is determined by the chosen  
data word size and the number of data word elements  
in the frame. If the chosen frame size has less than 16  
elements, the additional slot enable bits will have no  
effect.  
In some cases, the amount of data transmitted and  
received during a data frame may not be equal. As an  
example, assume a two-word data frame is used. Fur-  
thermore, assume that data is only received during  
slot #0 but is transmitted during slot #0 and slot #1. In  
this case, the buffer control unit counter would be incre-  
mented twice during a data frame but only one receive  
register location would be filled with data.  
Each transmit data word is written to the 16-bit transmit  
buffer as left justified data. If the selected word size is  
less than 16 bits, then the LSbs of the transmit buffer  
memory will have no effect on the transmitted data. The  
user should write ‘0’s to the unused LSbs of each  
transmit buffer location.  
DS70117F-page 130  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
18.3.14  
BUFFER LENGTH CONTROL  
18.3.16 TRANSMIT STATUS BITS  
The amount of data that is buffered between interrupts  
is determined by the buffer length (BLEN<1:0>) control  
bits in the DCICON2 SFR. The size of the transmit and  
receive buffers may be varied from 1 to 4 data words  
using the BLEN control bits. The BLEN control bits are  
compared to the current value of the DCI buffer control  
unit address counter. When the 2 LSbs of the DCI  
address counter match the BLEN<1:0> value, the  
buffer control unit will be reset to ‘0’. In addition, the  
contents of the receive shadow registers are trans-  
ferred to the receive buffer registers and the contents  
of the transmit buffer registers are transferred to the  
transmit shadow registers.  
There are two transmit status bits in the DCISTAT SFR.  
The TMPTY bit is set when the contents of the transmit  
buffer registers are transferred to the transmit shadow  
registers. The TMPTY bit may be polled in software to  
determine when the transmit buffer registers may be  
written. The TMPTY bit is cleared automatically by the  
hardware when a write to one of the four transmit  
buffers occurs.  
The TUNF bit is read only and indicates that a transmit  
underflow has occurred for at least one of the transmit  
buffer registers that is in use. The TUNF bit is set at the  
time the transmit buffer registers are transferred to the  
transmit shadow registers. The TUNF status bit is  
cleared automatically when the buffer register that  
underflowed is written by the CPU.  
18.3.15 BUFFER ALIGNMENT WITH DATA  
FRAMES  
Note:  
The transmit status bits only indicate sta-  
tus for buffer locations that are used by the  
module. If the buffer length is set to less  
than four words, for example, the unused  
buffer locations will not affect the transmit  
status bits.  
There is no direct coupling between the position of the  
AGU address pointer and the data frame boundaries.  
This means that there will be an implied assignment of  
each transmit and receive buffer that is a function of the  
BLEN control bits and the number of enabled data slots  
via the TSE and RSE control bits.  
As an example, assume that a 4-word data frame is  
chosen and that we want to transmit on all four time  
slots in the frame. This configuration would be estab-  
lished by setting the TSE0, TSE1, TSE2, and TSE3  
control bits in the TSCON SFR. With this module setup,  
the TXBUF0 register would be naturally assigned to  
slot #0, the TXBUF1 register would be naturally  
assigned to slot #1, and so on.  
18.3.17 RECEIVE STATUS BITS  
There are two receive status bits in the DCISTAT SFR.  
The RFUL status bit is read only and indicates that new  
data is available in the receive buffers. The RFUL bit is  
cleared automatically when all receive buffers in use  
have been read by the CPU.  
The ROV status bit is read only and indicates that a  
receive overflow has occurred for at least one of the  
receive buffer locations. A receive overflow occurs  
when the buffer location is not read by the CPU before  
new data is transferred from the shadow registers. The  
ROV status bit is cleared automatically when the buffer  
register that caused the overflow is read by the CPU.  
Note:  
When more than four time slots are active  
within a data frame, the user code must  
keep track of which time slots are to be  
read/written at each interrupt. In some  
cases, the alignment between transmit/  
receive buffers and their respective slot  
assignments could be lost. Examples of  
such cases include an emulation break-  
point or a hardware trap. In these situa-  
tions, the user should poll the SLOT status  
bits to determine what data should be  
loaded into the buffer registers to  
resynchronize the software with the DCI  
module.  
When a receive overflow occurs for a specific buffer  
location, the old contents of the buffer are overwritten.  
Note:  
The receive status bits only indicate status  
for buffer locations that are used by the  
module. If the buffer length is set to less  
than four words, for example, the unused  
buffer locations will not affect the transmit  
status bits.  
© 2006 Microchip Technology Inc.  
DS70117F-page 131  
dsPIC30F6011/6012/6013/6014  
18.3.18 SLOT STATUS BITS  
18.5 DCI Module Operation During CPU  
Sleep and Idle Modes  
The SLOT<3:0> status bits in the DCISTAT SFR indi-  
cate the current active time slot. These bits will corre-  
spond to the value of the frame sync generator counter.  
The user may poll these status bits in software when a  
DCI interrupt occurs to determine what time slot data  
was last received and which time slot data should be  
loaded into the TXBUF registers.  
18.5.1  
DCI MODULE OPERATION DURING  
CPU SLEEP MODE  
The DCI module has the ability to operate while in  
Sleep mode and wake the CPU when the CSCK signal  
is supplied by an external device (CSCKD = 1). The  
DCI module will generate an asynchronous interrupt  
when a DCI buffer transfer has completed and the CPU  
is in Sleep mode.  
18.3.19 CSDO MODE BIT  
The CSDOM control bit controls the behavior of the  
CSDO pin during unused transmit slots. A given trans-  
mit time slot is unused if it’s corresponding TSEx bit in  
the TSCON SFR is cleared.  
18.5.2  
DCI MODULE OPERATION DURING  
CPU IDLE MODE  
If the CSDOM bit is cleared (default), the CSDO pin will  
be low during unused time slot periods. This mode will  
be used when there are only two devices attached to  
the serial bus.  
If the DCISIDL control bit is cleared (default), the mod-  
ule will continue to operate normally even in Idle mode.  
If the DCISIDL bit is set, the module will halt when Idle  
mode is asserted.  
If the CSDOM bit is set, the CSDO pin will be tri-stated  
during unused time slot periods. This mode allows mul-  
tiple devices to share the same CSDO line in a multi-  
channel application. Each device on the CSDO line is  
configured so that it will only transmit data during  
specific time slots. No two devices will transmit data  
during the same time slot.  
18.6 AC-Link Mode Operation  
The AC-Link protocol is a 256-bit frame with one 16-bit  
data slot, followed by twelve 20-bit data slots. The DCI  
module has two Operating modes for the AC-Link pro-  
tocol. These Operating modes are selected by the  
COFSM<1:0> control bits in the DCICON1 SFR. The  
first AC-Link mode is called ‘16-bit AC-Link mode’ and  
is selected by setting COFSM<1:0> = 10. The second  
AC-Link mode is called ‘20-bit AC-Link mode’ and is  
selected by setting COFSM<1:0> = 11.  
18.3.20 DIGITAL LOOPBACK MODE  
Digital Loopback mode is enabled by setting the  
DLOOP control bit in the DCISTAT SFR. When the  
DLOOP bit is set, the module internally connects the  
CSDO signal to CSDI. The actual data input on the  
CSDI I/O pin will be ignored in Digital Loopback mode.  
18.6.1  
16-BIT AC-LINK MODE  
In the 16-bit AC-Link mode, data word lengths are  
restricted to 16 bits. Note that this restriction only  
affects the 20-bit data time slots of the AC-Link proto-  
col. For received time slots, the incoming data is simply  
truncated to 16 bits. For outgoing time slots, the 4 LSbs  
of the data word are set to ‘0’ by the module. This trun-  
cation of the time slots limits the A/D and DAC data to  
16 bits but permits proper data alignment in the TXBUF  
and RXBUF registers. Each RXBUF and TXBUF regis-  
ter will contain one data time slot value.  
18.3.21 UNDERFLOW MODE CONTROL BIT  
When an underflow occurs, one of two actions may  
occur depending on the state of the Underflow mode  
(UNFM) control bit in the DCICON1 SFR. If the UNFM  
bit is cleared (default), the module will transmit ‘0’s on  
the CSDO pin during the active time slot for the buffer  
location. In this Operating mode, the Codec device  
attached to the DCI module will simply be fed digital  
‘silence’. If the UNFM control bit is set, the module will  
transmit the last data written to the buffer location. This  
Operating mode permits the user to send continuous  
data to the Codec device without consuming CPU  
overhead.  
18.6.2  
20-BIT AC-LINK MODE  
The 20-bit AC-Link mode allows all bits in the data time  
slots to be transmitted and received but does not main-  
tain data alignment in the TXBUF and RXBUF  
registers.  
18.4 DCI Module Interrupts  
The 20-bit AC-Link mode functions similar to the Multi-  
Channel mode of the DCI module, except for the duty  
cycle of the frame synchronization signal. The AC-Link  
frame synchronization signal should remain high for 16  
CSCK cycles and should be low for the following  
240 cycles.  
The frequency of DCI module interrupts is dependent  
on the BLEN<1:0> control bits in the DCICON2 SFR.  
An interrupt to the CPU is generated each time the set  
buffer length has been reached and a shadow register  
transfer takes place. A shadow register transfer is  
defined as the time when the previously written TXBUF  
values are transferred to the transmit shadow registers  
and new received values in the receive shadow  
registers are transferred into the RXBUF registers.  
DS70117F-page 132  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
The 20-bit mode treats each 256-bit AC-Link frame as  
sixteen, 16-bit time slots. In the 20-bit AC-Link mode,  
the module operates as if COFSG<3:0> = 1111 and  
WS<3:0> = 1111. The data alignment for 20-bit data  
slots is ignored. For example, an entire AC-Link data  
frame can be transmitted and received in a packed  
fashion by setting all bits in the TSCON and RSCON  
SFRs. Since the total available buffer length is 64 bits,  
it would take 4 consecutive interrupts to transfer the  
AC-Link frame. The application software must keep  
track of the current AC-Link frame segment.  
18.7.1  
I2S FRAME AND DATA WORD  
LENGTH SELECTION  
The WS and COFSG control bits are set to produce the  
period for one half of an I2S data frame. That is, the  
frame length is the total number of CSCK cycles  
required for a left or a right data word transfer.  
The BLEN bits must be set for the desired buffer length.  
Setting BLEN<1:0> = 01will produce a CPU interrupt,  
once per I2S frame.  
18.7.2  
I2S DATA JUSTIFICATION  
2
As per the I2S specification, a data word transfer will, by  
default, begin one CSCK cycle after a transition of the  
WS signal. A ‘MS bit left justified’ option can be  
selected using the DJST control bit in the DCICON2  
SFR.  
If DJST = 1, the I2S data transfers will be MSb left jus-  
tified. The MSb of the data word will be presented on  
the CSDO pin during the same CSCK cycle as the ris-  
ing or falling edge of the COFS signal. The CSDO pin  
is tri-stated after the data word has been sent.  
18.7 I S Mode Operation  
The DCI module is configured for I2S mode by writing  
a value of ‘01’ to the COFSM<1:0> control bits in the  
DCICON1 SFR. When operating in the I2S mode, the  
DCI module will generate frame synchronization sig-  
nals with a 50% duty cycle. Each edge of the frame  
synchronization signal marks the boundary of a new  
data word transfer.  
The user must also select the frame length and data  
word size using the COFSG and WS control bits in the  
DCICON2 SFR.  
© 2006 Microchip Technology Inc.  
DS70117F-page 133  
TABLE 18-2: DCI REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
DCICON1  
DCICON2  
DCICON3  
DCISTAT  
TSCON  
0240  
0242  
0244  
0246  
0248  
DCIEN  
DCISIDL  
DLOOP CSCKD CSCKE COFSD UNFM CSDOM DJST  
COFSM1 COFSM0 0000 0000 0000 0000  
BLEN1  
BLEN0  
COFSG<3:0>  
BCG<11:0>  
WS<3:0>  
0000 0000 0000 0000  
0000 0000 0000 0000  
SLOT3  
TSE11  
SLOT2  
TSE10  
RSE10  
SLOT1 SLOT0  
ROV RFUL  
TUNF  
TSE1  
RSE1  
TMPTY 0000 0000 0000 0000  
TSE15 TSE14  
TSE13  
RSE13  
TSE12  
TSE9  
RSE9  
TSE8  
RSE8  
TSE7  
RSE7  
TSE6  
RSE6  
TSE5 TSE4 TSE3 TSE2  
RSE5 RSE4 RSE3 RSE2  
TSE0  
RSE0  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
RSCON  
024C RSE15 RSE14  
RSE12 RSE11  
RXBUF0  
RXBUF1  
RXBUF2  
RXBUF3  
TXBUF0  
TXBUF1  
TXBUF2  
TXBUF3  
0250  
0252  
0254  
0256  
0258  
025A  
025C  
025E  
Receive Buffer #0 Data Register  
Receive Buffer #1 Data Register  
Receive Buffer #2 Data Register  
Receive Buffer #3 Data Register  
Transmit Buffer #0 Data Register  
Transmit Buffer #1 Data Register  
Transmit Buffer #2 Data Register  
Transmit Buffer #3 Data Register  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
The ADC module has six 16-bit registers:  
19.0 12-BIT ANALOG-TO-DIGITAL  
• ADC Control Register 1 (ADCON1)  
• ADC Control Register 2 (ADCON2)  
• ADC Control Register 3 (ADCON3)  
• ADC Input Select Register (ADCHS)  
• ADC Port Configuration Register (ADPCFG)  
• ADC Input Scan Selection Register (ADCSSL)  
CONVERTER (A/D) MODULE  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046).  
The ADCON1, ADCON2 and ADCON3 registers con-  
trol the operation of the A/D module. The ADCHS reg-  
ister selects the input channels to be converted. The  
ADPCFG register configures the port pins as analog  
inputs or as digital I/O. The ADCSSL register selects  
inputs for scanning.  
The 12-bit Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 12-bit digital  
number. This module is based on a Successive  
Approximation Register (SAR) architecture and pro-  
vides a maximum sampling rate of 200 ksps. The ADC  
module has up to 16 analog inputs which are multi-  
plexed into a sample and hold amplifier. The output of  
the sample and hold is the input into the converter  
which generates the result. The analog reference volt-  
age is software selectable to either the device supply  
voltage (AVDD/AVSS) or the voltage level on the  
(VREF+/VREF-) pin. The ADC has a unique feature of  
being able to operate while the device is in Sleep mode  
with RC oscillator selection.  
Note:  
The SSRC<2:0>, ASAM, SMPI<3:0>,  
BUFM and ALTS bits, as well as the  
ADCON3 and ADCSSL registers, must  
not be written to while ADON = 1. This  
would lead to indeterminate results.  
The block diagram of the 12-bit ADC module is shown  
in Figure 19-1.  
FIGURE 19-1:  
12-BIT ADC FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AVSS  
VREF+  
V
REF  
-
Comparator  
DAC  
0000  
AN0  
0001  
0010  
0011  
AN1  
AN2  
AN3  
12-bit SAR  
Conversion Logic  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AN4  
AN5  
AN6  
AN7  
16-word, 12-bit  
Dual Port  
RAM  
Sample/Sequence  
Control  
Sample  
AN8  
AN9  
Input  
Switches  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
Input MUX  
Control  
CH0  
VREF-  
S/H  
AN1  
© 2006 Microchip Technology Inc.  
DS70117F-page 135  
dsPIC30F6011/6012/6013/6014  
19.1 ADC Result Buffer  
19.3 Selecting the Conversion  
Sequence  
The module contains a 16-word dual port read only  
buffer, called ADCBUF0...ADCBUFF, to buffer the ADC  
results. The RAM is 12 bits wide but the data obtained  
is represented in one of four different 16-bit data for-  
mats. The contents of the sixteen A/D Conversion  
Result Buffer registers, ADCBUF0 through ADCBUFF,  
cannot be written by user software.  
Several groups of control bits select the sequence in  
which the A/D connects inputs to the sample/hold  
channel, converts a channel, writes the buffer memory  
and generates interrupts.  
The sequence is controlled by the sampling clocks.  
The SMPI bits select the number of acquisition/  
conversion sequences that would be performed before  
an interrupt occurs. This can vary from 1 sample per  
interrupt to 16 samples per interrupt.  
19.2 Conversion Operation  
After the ADC module has been configured, the sample  
acquisition is started by setting the SAMP bit. Various  
sources, such as a programmable bit, timer time-outs  
and external events, will terminate acquisition and start  
a conversion. When the A/D conversion is complete,  
the result is loaded into ADCBUF0...ADCBUFF, and  
the DONE bit and the A/D interrupt flag ADIF are set after  
the number of samples specified by the SMPI bit. The  
ADC module can be configured for different interrupt  
rates as described in Section 19.3 “Selecting the  
Conversion Sequence”.  
The BUFM bit will split the 16-word results buffer into  
two 8-word groups. Writing to the 8-word buffers will be  
alternated on each interrupt event.  
Use of the BUFM bit will depend on how much time is  
available for the moving of the buffers after the  
interrupt.  
If the processor can quickly unload a full buffer within  
the time it takes to acquire and convert one channel,  
the BUFM bit can be ‘0’ and up to 16 conversions (cor-  
responding to the 16 input channels) may be done per  
interrupt. The processor will have one acquisition and  
conversion time to move the sixteen conversions.  
The following steps should be followed for doing an  
A/D conversion:  
1. Configure the ADC module:  
If the processor cannot unload the buffer within the  
acquisition and conversion time, the BUFM bit should be  
1’. For example, if SMPI<3:0> (ADCON2<5:2>) = 0111,  
then eight conversions will be loaded into 1/2 of the  
buffer, following which an interrupt occurs. The next  
eight conversions will be loaded into the other 1/2 of the  
buffer. The processor will have the entire time between  
interrupts to move the eight conversions.  
• Configure analog pins, voltage reference and  
digital I/O  
• Select ADC input channels  
• Select ADC conversion clock  
• Select ADC conversion trigger  
• Turn on ADC module  
2. Configure ADC interrupt (if required):  
• Clear ADIF bit  
The ALTS bit can be used to alternate the inputs  
selected during the sampling sequence. The input  
multiplexer has two sets of sample inputs: MUX A and  
MUX B. If the ALTS bit is ‘0’, only the MUX A inputs are  
selected for sampling. If the ALTS bit is ‘1’ and  
SMPI<3:0> = 0000 on the first sample/convert  
sequence, the MUX A inputs are selected and on the  
next acquire/convert sequence, the MUX B inputs are  
selected.  
• Select ADC interrupt priority  
3. Start sampling.  
4. Wait the required acquisition time.  
5. Trigger acquisition end, start conversion:  
6. Wait for A/D conversion to complete, by either:  
• Waiting for the ADC interrupt, or  
• Waiting for the DONE bit to get set.  
7. Read ADC result buffer, clear ADIF if required.  
The CSCNA bit (ADCON2<10>) will allow the multi-  
plexer input to be alternately scanned across a  
selected number of analog inputs for the MUX A group.  
The inputs are selected by the ADCSSL register. If a  
particular bit in the ADCSSL register is ‘1’, the corre-  
sponding input is selected. The inputs are always  
scanned from lower to higher numbered inputs, starting  
after each interrupt. If the number of inputs selected is  
greater than the number of samples taken per interrupt,  
the higher numbered inputs are unused.  
DS70117F-page 136  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
The internal RC oscillator is selected by setting the  
ADRC bit.  
19.4 Programming the Start of  
Conversion Trigger  
For correct ADC conversions, the ADC conversion  
clock (TAD) must be selected to ensure a minimum TAD  
time of 334 nsec (for VDD = 5V). Refer to the Electrical  
Specifications section for minimum TAD under other  
operating conditions.  
The conversion trigger will terminate acquisition and  
start the requested conversions.  
The SSRC<2:0> bits select the source of the conver-  
sion trigger. The SSRC bits provide for up to 4 alternate  
sources of conversion trigger.  
Example 19-1 shows a sample calculation for the  
ADCS<5:0> bits, assuming a device operating speed  
of 30 MIPS.  
When SSRC<2:0> = 000, the conversion trigger is  
under software control. Clearing the SAMP bit will  
cause the conversion trigger.  
EXAMPLE 19-1:  
ADC CONVERSION  
CLOCK AND SAMPLING  
RATE CALCULATION  
When SSRC<2:0> = 111(Auto-Start mode), the con-  
version trigger is under A/D clock control. The SAMC  
bits select the number of A/D clocks between the start  
of acquisition and the start of conversion. This provides  
the fastest conversion rates on multiple channels.  
SAMC must always be at least 1 clock cycle.  
Minimum TAD = 334 nsec  
TCY = 33 .33 nsec (30 MIPS)  
TAD  
TCY  
334 nsec  
33.33 nsec  
Other trigger sources can come from timer modules or  
external interrupts.  
ADCS<5:0> = 2  
– 1  
= 2 •  
– 1  
19.5 Aborting a Conversion  
= 19.04  
Clearing the ADON bit during a conversion will abort  
the current conversion and stop the sampling sequenc-  
ing until the next sampling trigger. The ADCBUF will not  
be updated with the partially completed A/D conversion  
sample. That is, the ADCBUF will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADCBUF register).  
Therefore,  
Set ADCS<5:0> = 19  
TCY  
2
Actual TAD =  
(ADCS<5:0> + 1)  
33.33 nsec  
2
=
(19 + 1)  
If the clearing of the ADON bit coincides with an auto-  
start, the clearing has a higher priority and a new  
conversion will not start.  
= 334 nsec  
If SSRC<2:0> = ‘111’ and SAMC<4:0> = ‘00001’  
Since,  
19.6 Selecting the ADC Conversion  
Clock  
Sampling Time = Acquisition Time + Conversion Time  
= 1 TAD + 14 TAD  
= 15 x 334 nsec  
The ADC conversion requires 14 TAD. The source of  
the ADC conversion clock is software selected, using a  
six-bit counter. There are 64 possible options for TAD.  
Therefore,  
1
Sampling Rate =  
(15 x 334 nsec)  
= ~200 kHz  
EQUATION 19-1: ADC CONVERSION  
CLOCK  
TAD = TCY * (0.5 * (ADCS<5:0> + 1))  
© 2006 Microchip Technology Inc.  
DS70117F-page 137  
dsPIC30F6011/6012/6013/6014  
19.7  
ADC Speeds  
The dsPIC30F 12-bit ADC specifications permit a max-  
imum of 200 ksps sampling rate. The table below sum-  
marizes the conversion speeds for the dsPIC30F 12-bit  
ADC and the required operating conditions.  
TABLE 19-1: 12-BIT ADC EXTENDED CONVERSION RATES  
dsPIC30F 12-bit ADC Conversion Rates  
TAD  
Sampling  
Speed  
Rs Max  
VDD  
Temperature  
Channels Configuration  
Minimum Time Min  
Up to 200  
ksps(1)  
334 ns  
668 ns  
1 TAD  
1 TAD  
2.5 kΩ  
4.5V to 5.5V -40°C to +85°C  
V
REF- VREF+  
CHX  
ANx  
S/H  
ADC  
Up to 100  
ksps  
2.5 kΩ  
3.0V to 5.5V -40°C to +125°C  
VREF  
-
V
REF  
+
or  
or  
AVSS AVDD  
CHX  
ANx  
S/H  
ADC  
ANx or VREF  
-
Note 1: External VREF- and VREF+ pins must be used for correct operation. See Figure 19-2 for recommended  
circuit.  
DS70117F-page 138  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
The following figure depicts the recommended circuit  
for the conversion rates above 200 ksps. The  
dsPIC30F6014 is shown as an example.  
FIGURE 19-2:  
ADC VOLTAGE REFERENCE SCHEMATIC  
VDD  
60  
59  
58  
57  
56  
55  
54  
53  
52  
VSS  
50  
49  
VDD  
47  
46  
45  
44  
43  
42  
41  
1
2
3
4
See Note 1:  
5
6
7
VDD  
VDD  
VDD  
C8  
1 μF  
C7  
0.1 μF  
C6  
0.01 μF  
8
9
10  
VSS  
VDD  
13  
14  
15  
16  
17  
18  
19  
20  
dsPIC30F6014  
VDD  
VDD  
AVDD  
AVDD  
AVDD  
C5  
1 μF  
C4  
0.1 μF  
C3  
0.01 μF  
VDD  
R2  
10  
VDD  
C2  
0.1 μF  
C1  
0.01 μF  
R1  
10  
VDD  
Note 1: Ensure adequate bypass capacitors are provided on each VDD pin.  
The configuration procedures below give the required  
setup values for the conversion speeds above 100  
ksps.  
• Configure the ADC clock period to be:  
1
= 334 ns  
(14 + 1) x 200,000  
19.7.1  
200 KSPS CONFIGURATION  
GUIDELINE  
by writing to the ADCS<5:0> control bits in the  
ADCON3 register.  
The following configuration items are required to  
achieve a 200 ksps conversion rate.  
• Configure the sampling time to be 1 TAD by  
writing: SAMC<4:0> = 00001.  
• Comply with conditions provided in Table 19-2.  
The following figure shows the timing diagram of the  
ADC running at 200 ksps. The TAD selection in conjunc-  
tion with the guidelines described above allows a con-  
version speed of 200 ksps. See Example 19-1 for code  
example.  
• Connect external VREF+ and VREF- pins following  
the recommended circuit shown in Figure 19-2.  
• Set SSRC<2.0> = 111in the ADCON1 register to  
enable the auto convert option.  
• Enable automatic sampling by setting the ASAM  
control bit in the ADCON1 register.  
• Write the SMPI<3.0> control bits in the ADCON2  
register for the desired number of conversions  
between interrupts.  
© 2006 Microchip Technology Inc.  
DS70117F-page 139  
dsPIC30F6011/6012/6013/6014  
FIGURE 19-3:  
CONVERTING 1 CHANNEL AT 200 KSPS, AUTO-SAMPLE START, 1 TAD  
SAMPLING TIME  
TSAMP  
= 1 TAD  
TSAMP  
= 1 TAD  
ADCLK  
TCONV  
TCONV  
= 14 TAD  
= 14 TAD  
SAMP  
DONE  
ADCBUF0  
ADCBUF1  
Instruction Execution BSET ADCON1, ASAM  
DS70117F-page 140  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
required to charge the capacitor CHOLD. The combined  
19.8 A/D Acquisition Requirements  
impedance of the analog sources must therefore be  
small enough to fully charge the holding capacitor  
within the chosen sample time. To minimize the effects  
of pin leakage currents on the accuracy of the A/D con-  
verter, the maximum recommended source imped-  
ance, RS, is 2.5 kΩ. After the analog input channel is  
selected (changed), this sampling function must be  
completed prior to starting the conversion. The internal  
holding capacitor will be in a discharged state prior to  
each sample operation.  
The analog input model of the 12-bit A/D converter  
is shown inFigure 19-4. The total sampling time for the  
A/D is a function of the internal amplifier settling time  
and the holding capacitor charge time.  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the voltage level on the analog input  
pin. The source impedance (RS), the interconnect  
impedance (RIC), and the internal sampling switch  
(RSS) impedance combine to directly affect the time  
FIGURE 19-4:  
12-BIT A/D CONVERTER ANALOG INPUT MODEL  
VDD  
RIC 250Ω  
RSS 3 kΩ  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
ANx  
RSS  
Rs  
CHOLD  
CPIN  
= DAC capacitance  
VA  
I leakage  
500 nA  
= 18 pF  
VSS  
Legend: CPIN  
VT  
= input capacitance  
= threshold voltage  
I leakage = leakage current at the pin due to  
various junctions  
RIC  
= interconnect resistance  
RSS  
= sampling switch resistance  
= sample/hold capacitance (from DAC)  
CHOLD  
Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs 2.5 kΩ.  
© 2006 Microchip Technology Inc.  
DS70117F-page 141  
dsPIC30F6011/6012/6013/6014  
If the A/D interrupt is enabled, the device will wake-up  
19.9 Module Power-down Modes  
from Sleep. If the A/D interrupt is not enabled, the ADC  
module will then be turned off, although the ADON bit  
will remain set.  
The module has 2 internal Power modes.  
When the ADON bit is ‘1’, the module is in Active mode;  
it is fully powered and functional.  
19.10.2 A/D OPERATION DURING CPU IDLE  
MODE  
When ADON is ‘0’, the module is in Off mode. The dig-  
ital and analog portions of the circuit are disabled for  
maximum current savings.  
The ADSIDL bit selects if the module will stop on Idle or  
continue on Idle. If ADSIDL = 0, the module will con-  
tinue operation on assertion of Idle mode. If ADSIDL =  
1, the module will stop on Idle.  
In order to return to the Active mode from Off mode, the  
user must wait for the ADC circuitry to stabilize.  
19.10 ADC Operation During CPU Sleep  
and Idle Modes  
19.11 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the ADC module to be turned off, and any  
conversion and sampling sequence is aborted. The val-  
ues that are in the ADCBUF registers are not modified.  
The A/D Result register will contain unknown data after  
a Power-on Reset.  
19.10.1 ADC OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shutdown and stay at logic ‘0’.  
If Sleep occurs in the middle of a conversion, the con-  
version is aborted. The converter will not continue with  
a partially completed conversion on exit from Sleep  
mode.  
19.12 Output Formats  
The ADC result is 12 bits wide. The data buffer RAM is  
also 12 bits wide. The 12-bit data can be read in one of  
four different formats. The FORM<1:0> bits select the  
format. Each of the output formats translates to a 16-bit  
result on the data bus.  
Register contents are not affected by the device  
entering or leaving Sleep mode.  
The ADC module can operate during Sleep mode if the  
ADC clock source is set to RC (ADRC = 1). When the  
RC clock source is selected, the A/D module waits one  
instruction cycle before starting the conversion. This  
allows the SLEEPinstruction to be executed which elim-  
inates all digital switching noise from the conversion.  
When the conversion is complete, the CONV bit will be  
cleared and the result loaded into the ADCBUF register.  
FIGURE 19-5:  
RAM Contents:  
Read to Bus:  
ADC OUTPUT DATA FORMATS  
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
Signed Fractional  
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
0
0
0
0
0
0
0
0
Fractional  
Signed Integer  
Integer  
d11 d11 d11 d11 d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
0
0
0
0
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
DS70117F-page 142  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
19.13 Configuring Analog Port Pins  
19.14 Connection Considerations  
The use of the ADPCFG and TRIS registers control the  
operation of the ADC port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bit set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
The analog inputs have diodes to VDD and VSS as ESD  
protection. This requires that the analog input be  
between VDD and VSS. If the input voltage exceeds this  
range by greater than 0.3V (either direction), one of the  
diodes becomes forward biased and it may damage the  
device if the input current specification is exceeded.  
The ADC operation is independent of the state of the  
CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits.  
An external RC filter is sometimes added for anti-  
aliasing of the input signal. The R component should be  
selected to ensure that the sampling time requirements  
are satisfied. Any external components connected (via  
high impedance) to an analog input pin (capacitor,  
zener diode, etc.) should have very little leakage  
current at the pin.  
When reading the Port register, all pins configured as  
analog input channels will read as cleared.  
Pins configured as digital inputs will not convert an ana-  
log input. Analog levels on any pin that is defined as a  
digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
© 2006 Microchip Technology Inc.  
DS70117F-page 143  
TABLE 19-2: A/D CONVERTER REGISTER MAP  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
ADCBUF0 0280  
ADCBUF1 0282  
ADCBUF2 0284  
ADCBUF3 0286  
ADCBUF4 0288  
ADCBUF5 028A  
ADCBUF6 028C  
ADCBUF7 028E  
ADCBUF8 0290  
ADCBUF9 0292  
ADCBUFA 0294  
ADCBUFB 0296  
ADCBUFC 0298  
ADCBUFD 029A  
ADCBUFE 029C  
ADCBUFF 029E  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
SSRC<2:0>  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
ADCON1  
ADCON2  
ADCON3  
ADCHS  
02A0  
02A2  
02A4  
02A6  
ADON  
ADSIDL  
CSCNA  
FORM<1:0>  
ASAM SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
ADRC  
SMPI<3:0>  
SAMC<4:0>  
ADCS<5:0>  
CH0SA<3:0>  
CH0NB  
CH0SB<3:0>  
CH0NA  
ADPCFG  
ADCSSL  
02A8 PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0  
02AA CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL9 CSSL8 CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0  
Legend: u= uninitialized bit  
Note: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
20.1 Oscillator System Overview  
20.0 SYSTEM INTEGRATION  
The dsPIC30F oscillator system has the following  
modules and features:  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
• Various external and internal oscillator options as  
clock sources  
• An on-chip PLL to boost internal operating  
frequency  
• A clock switching mechanism between various  
clock sources  
There are several features intended to maximize sys-  
tem reliability, minimize cost through elimination of  
external components, provide power-saving operating  
modes and offer code protection:  
• Programmable clock postscaler for system power  
savings  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures  
• Oscillator Selection  
• Reset  
• Clock Control register (OSCCON)  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Programmable Brown-out Reset (BOR)  
• Watchdog Timer (WDT)  
• Low-Voltage Detect  
• Configuration bits for main oscillator selection  
Table 20-1 provides a summary of the dsPIC30F Oscil-  
lator Operating modes. A simplified diagram of the  
oscillator system is shown in Figure 20-1.  
Configuration bits determine the clock source upon  
Power-on Reset (POR) and Brown-out Reset (BOR).  
Thereafter, the clock source can be changed between  
permissible clock sources. The OSCCON register con-  
trols the clock switching and reflects system clock  
related status bits.  
• Power-Saving Modes (Sleep and Idle)  
• Code Protection  
• Unit ID Locations  
• In-Circuit Serial Programming (ICSP)  
dsPIC30F devices have a Watchdog Timer which is  
permanently enabled via the Configuration bits or can  
be software controlled. It runs off its own RC oscillator  
for added reliability. There are two timers that offer  
necessary delays on power-up. One is the Oscillator  
Start-up Timer (OST), intended to keep the chip in  
Reset until the crystal oscillator is stable. The other is  
the Power-up Timer (PWRT) which provides a delay on  
power-up only, designed to keep the part in Reset while  
the power supply stabilizes. With these two timers  
on-chip, most applications need no external Reset  
circuitry.  
Sleep mode is designed to offer a very low-current  
Power-down mode. The user can wake-up from Sleep  
through external Reset, Watchdog Timer wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit a wide variety of  
applications. In the Idle mode, the clock sources are  
still active but the CPU is shut off. The RC oscillator  
option saves system cost while the LP crystal option  
saves power.  
© 2006 Microchip Technology Inc.  
DS70117F-page 145  
dsPIC30F6011/6012/6013/6014  
TABLE 20-1: OSCILLATOR OPERATING MODES  
Oscillator Mode  
Description  
XTL  
200 kHz-4 MHz crystal on OSC1:OSC2.  
4 MHz-10 MHz crystal on OSC1:OSC2.  
XT  
XT w/PLL 4x  
XT w/PLL 8x  
XT w/PLL 16x  
LP  
4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled.  
4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled.  
4 MHz-10 MHz crystal on OSC1:OSC2, 16x PLL enabled(1)  
.
32 kHz crystal on SOSCO:SOSCI(2)  
.
HS  
10 MHz-25 MHz crystal.  
EC  
External clock input (0-40 MHz).  
ECIO  
External clock input (0-40 MHz), OSC2 pin is I/O.  
EC w/PLL 4x  
EC w/PLL 8x  
EC w/PLL 16x  
ERC  
External clock input (4-10 MHz), OSC2 pin is I/O, 4x PLL enabled(1)  
External clock input (4-10 MHz), OSC2 pin is I/O, 8x PLL enabled(1)  
.
.
External clock input (4-7.5 MHz), OSC2 pin is I/O, 16x PLL enabled(1)  
External RC oscillator, OSC2 pin is FOSC/4 output(3)  
.
.
ERCIO  
External RC oscillator, OSC2 pin is I/O(3)  
7.37 MHz internal RC oscillator.  
512 kHz internal RC oscillator.  
.
FRC  
LPRC  
Note 1: dsPIC30F maximum operating frequency of 120 MHz must be met.  
2: LP oscillator can be conveniently shared as system clock, as well as real-time clock for Timer1.  
3: Requires external R and C. Frequency operation up to 4 MHz.  
DS70117F-page 146  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 20-1:  
OSCILLATOR SYSTEM BLOCK DIAGRAM  
Oscillator Configuration bits  
PWRSAVInstruction  
Wake-up Request  
FPLL  
OSC1  
OSC2  
PLL  
Primary  
Oscillator  
x4, x8, x16  
PLL  
Lock  
COSC<1:0>  
NOSC<1:0>  
OSWEN  
Primary Osc  
Primary  
Oscillator  
Stability Detector  
Oscillator  
Start-up  
Timer  
POR Done  
Clock  
Switching  
and Control  
Block  
Programmable  
Clock Divider  
System  
Secondary Osc  
Clock  
SOSCO  
SOSCI  
Secondary  
2
32 kHz LP  
Oscillator  
Oscillator  
Stability Detector  
POST<1:0>  
FRC  
Internal Fast RC  
Oscillator (FRC)  
Internal Low  
Power RC  
LPRC  
Oscillator (LPRC)  
CF  
Fail-Safe Clock  
Monitor (FSCM)  
FCKSM<1:0>  
2
Oscillator Trap  
to Timer1  
© 2006 Microchip Technology Inc.  
DS70117F-page 147  
dsPIC30F6011/6012/6013/6014  
20.2 Oscillator Configurations  
20.2.1  
INITIAL CLOCK SOURCE  
SELECTION  
While coming out of Power-on Reset or Brown-out  
Reset, the device selects its clock source based on:  
a) FOS<1:0> Configuration bits that select one of  
four oscillator groups,  
b) and FPR<3:0> Configuration bits that select one  
of 13 oscillator choices within the primary group.  
The selection is as shown in Table 20-2.  
TABLE 20-2: CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator  
OSC2  
Function  
Oscillator Mode  
FOS1  
FOS0  
FPR3  
FPR2  
FPR1  
FPR0  
Source  
EC  
Primary  
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
0
1
1
0
1
0
CLKO  
I/O  
ECIO  
Primary  
EC w/ PLL 4x  
EC w/ PLL 8x  
EC w/ PLL 16x  
ERC  
Primary  
1
1
0
1
I/O  
Primary  
1
1
1
0
I/O  
Primary  
1
1
1
1
I/O  
Primary  
1
0
0
1
CLKO  
I/O  
ERCIO  
Primary  
1
0
0
0
XT  
Primary  
0
1
0
0
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
(Notes 1, 2)  
(Notes 1, 2)  
(Notes 1, 2)  
XT w/ PLL 4x  
XT w/ PLL 8x  
XT w/ PLL 16x  
XTL  
Primary  
0
1
0
1
Primary  
0
1
1
0
Primary  
0
1
1
1
Primary  
0
0
0
X
HS  
Primary  
0
0
1
X
LP  
Secondary  
Internal FRC  
Internal LPRC  
FRC  
LPRC  
Note 1: OSC2 pin function is determined by the Primary Oscillator mode selection (FPR<3:0>).  
2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is  
selected at all times.  
20.2.2  
OSCILLATOR START-UP TIMER  
(OST)  
20.2.3  
LP OSCILLATOR CONTROL  
Enabling the LP oscillator is controlled with two  
elements:  
In order to ensure that a crystal oscillator (or ceramic  
resonator) has started and stabilized, an Oscillator  
Start-up Timer is included. It is a simple 10-bit counter  
that counts 1024 TOSC cycles before releasing the  
oscillator clock to the rest of the system. The time-out  
period is designated as TOST. The TOST time is  
involved every time the oscillator has to restart (i.e., on  
POR, BOR and wake-up from Sleep). The Oscillator  
Start-up Timer is applied to the LP oscillator, XT, XTL,  
and HS modes (upon wake-up from Sleep, POR and  
BOR) for the primary oscillator.  
1. The current oscillator group bits COSC<1:0>.  
2. The LPOSCEN bit (OSCON register).  
The LP oscillator is on (even during Sleep mode) if  
LPOSCEN = 1. The LP oscillator is the device clock if:  
• COSC<1:0> = 00(LP selected as main oscillator)  
and  
• LPOSCEN = 1  
Keeping the LP oscillator on at all times allows for a fast  
switch to the 32 kHz system clock for lower power oper-  
ation. Returning to the faster main oscillator will still  
require a start-up time.  
DS70117F-page 148  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
20.2.4  
PHASE LOCKED LOOP (PLL)  
20.2.6  
LOW POWER RC OSCILLATOR  
(LPRC)  
The PLL multiplies the clock which is generated by the  
primary oscillator. The PLL is selectable to have either  
gains of x4, x8, and x16. Input and output frequency  
ranges are summarized in Table 20-3.  
The LPRC oscillator is a component of the Watchdog  
Timer (WDT) and oscillates at a nominal frequency of  
512 kHz. The LPRC oscillator is the clock source for  
the Power-up Timer (PWRT) circuit, WDT, and clock  
monitor circuits. It may also be used to provide a low  
frequency clock source option for applications where  
power consumption is critical and timing accuracy is  
not required  
TABLE 20-3: PLL FREQUENCY RANGE  
PLL  
FIN  
FOUT  
Multiplier  
4 MHz-10 MHz  
4 MHz-10 MHz  
4 MHz-7.5 MHz  
x4  
x8  
16 MHz-40 MHz  
32 MHz-80 MHz  
64 MHz-120 MHz  
The LPRC oscillator is always enabled at a Power-on  
Reset because it is the clock source for the PWRT.  
After the PWRT expires, the LPRC oscillator will  
remain on if one of the following is TRUE:  
x16  
The PLL features a lock output which is asserted when  
the PLL enters a phase locked state. Should the loop  
fall out of lock (e.g., due to noise), the lock signal will be  
rescinded. The state of this signal is reflected in the  
read only LOCK bit in the OSCCON register.  
• The Fail-Safe Clock Monitor is enabled  
• The WDT is enabled  
• The LPRC oscillator is selected as the system  
clock via the COSC<1:0> control bits in the  
OSCCON register  
20.2.5  
FAST RC OSCILLATOR (FRC)  
If one of the above conditions is not true, the LPRC will  
shut off after the PWRT expires.  
The FRC oscillator is a fast (7.37 MHz ±2% nominal)  
internal RC oscillator. This oscillator is intended to pro-  
vide reasonable device operating speeds without the  
use of an external crystal, ceramic resonator, or RC  
network.  
Note 1: OSC2 pin function is determined by the  
Primary Oscillator mode selection  
(FPR<3:0>).  
2: OSC1 pin cannot be used as an I/O pin  
even if the secondary oscillator or an  
internal clock source is selected at all  
times.  
The dsPIC30F operates from the FRC oscillator when-  
ever the current oscillator selection control bits in the  
OSCCON register (COSC<13:12>) are set to ‘01’.  
The four bit field specified by TUN<3:0> (OSCCON  
<15:14> and OSCCON<11:10>) allows the user to tune  
the internal fast RC oscillator (nominal 7.37MHz). The  
user can tune the FRC oscillator within a range of -12%  
(or -960 kHz) to +10.5% (or +840 kHz) in steps of  
1.50% around the factory-calibrated setting, see  
Table 20-4.  
20.2.7  
FAIL-SAFE CLOCK MONITOR  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by appropriately  
programming the FCKSM Configuration bits (clock  
switch and monitor selection bits) in the FOSC Device  
Configuration register. If the FSCM function is enabled,  
the LPRC internal oscillator will run at all times (except  
during Sleep mode) and will not be subject to control by  
the SWDTEN bit.  
TABLE 20-4: FRC TUNING  
TUN<3:0>Bits  
FRC Frequency  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
+ 10.5%  
+ 9.0%  
+ 7.5%  
+ 6.0%  
+ 4.5%  
+ 3.0%  
In the event of an oscillator failure, the FSCM will gen-  
erate a clock failure trap event and will switch the sys-  
tem clock over to the FRC oscillator. The user will then  
have the option to either attempt to restart the oscillator  
or execute a controlled shutdown. The user may decide  
to treat the trap as a warm Reset by simply loading the  
Reset address into the oscillator fail trap vector. In this  
event, the CF (Clock Fail) status bit (OSCCON<3>) is  
also set whenever a clock failure is recognized.  
+ 1.5%  
Center Frequency (oscillator is  
running at calibrated frequency)  
- 1.5%  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
In the event of a clock failure, the WDT is unaffected  
and continues to run on the LPRC clock.  
- 3.0%  
- 4.5%  
- 6.0%  
- 7.5%  
- 9.0%  
- 10.5%  
- 12.0%  
© 2006 Microchip Technology Inc.  
DS70117F-page 149  
dsPIC30F6011/6012/6013/6014  
If the oscillator has a very slow start-up time coming out  
of POR, BOR or Sleep, it is possible that the PWRT  
timer will expire before the oscillator has started. In  
such cases, the FSCM will be activated and the FSCM  
will initiate a clock failure trap, and the COSC<1:0> bits  
are loaded with FRC oscillator selection. This will effec-  
tively shut off the original oscillator that was trying to  
start.  
If Configuration bits FCKSM<1:0> = 1x, then the clock  
switching and Fail-Safe Clock monitoring functions are  
disabled. This is the default Configuration bit setting.  
If clock switching is disabled, then the FOS<1:0> and  
FPR<3:0> bits directly control the oscillator selection  
and the COSC<1:0> bits do not control the clock selec-  
tion. However, these bits will reflect the clock source  
selection.  
The user may detect this situation and restart the  
oscillator in the clock fail trap ISR.  
Note:  
The application should not attempt to  
switch to a clock of frequency lower than  
100 KHz when the fail-safe clock monitor is  
enabled. If such clock switching is  
performed, the device may generate an  
oscillator fail trap and switch to the Fast RC  
oscillator.  
Upon a clock failure detection, the FSCM module will  
initiate a clock switch to the FRC oscillator as follows:  
1. The COSC bits (OSCCON<13:12>) are loaded  
with the FRC oscillator selection value.  
2. CF bit is set (OSCCON<3>).  
3. OSWEN control bit (OSCCON<0>) is cleared.  
20.2.8  
PROTECTION AGAINST  
ACCIDENTAL WRITES TO OSCCON  
For the purpose of clock switching, the clock sources  
are sectioned into four groups:  
A write to the OSCCON register is intentionally made  
difficult because it controls clock switching and clock  
scaling.  
1. Primary  
2. Secondary  
3. Internal FRC  
4. Internal LPRC  
To write to the OSCCON low byte, the following code  
sequence must be executed without any other  
instructions in between:  
The user can switch between these functional groups  
but cannot switch between options within a group. If the  
primary group is selected, then the choice within the  
group is always determined by the FPR<3:0>  
Configuration bits.  
Byte Write “0x46” to OSCCON low  
Byte Write “0x57” to OSCCON low  
Byte write is allowed for one instruction cycle. Write the  
The OSCCON register holds the control and status bits  
related to clock switching.  
desired value or use bit manipulation instruction.  
To write to the OSCCON high byte, the following  
instructions must be executed without any other  
instructions in between:  
• COSC<1:0>: Read-only status bits always reflect  
the current oscillator group in effect.  
• NOSC<1:0>: Control bits which are written to  
indicate the new oscillator group of choice.  
Byte Write0x78to OSCCON high  
Byte Write0x9Ato OSCCON high  
- On POR and BOR, COSC<1:0> and  
NOSC<1:0> are both loaded with the  
Configuration bit values FOS<1:0>.  
Byte write is allowed for one instruction cycle. Write the  
desired value or use bit manipulation instruction.  
• LOCK: The LOCK status bit indicates a PLL lock.  
• CF: Read only status bit indicating if a clock fail  
detect has occurred.  
• OSWEN: Control bit changes from a ‘0’ to a ‘1’  
when a clock transition sequence is initiated.  
Clearing the OSWEN control bit will abort a clock  
transition in progress (used for hang-up  
situations).  
DS70117F-page 150  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Different registers are affected in different ways by var-  
ious Reset conditions. Most registers are not affected  
20.3 Reset  
The dsPIC30F differentiates between various kinds of  
Reset:  
by a WDT wake-up since this is viewed as the resump-  
tion of normal operation. Status bits from the RCON  
register are set or cleared differently in different Reset  
situations, as indicated in Table 20-5. These bits are  
used in software to determine the nature of the Reset.  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
A block diagram of the On-Chip Reset Circuit is shown  
in Figure 20-2.  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
A MCLR noise filter is provided in the MCLR Reset  
path. The filter detects and ignores small pulses.  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
Internally generated Resets do not drive MCLR pin low.  
g) Reset caused by trap lockup (TRAPR)  
h) Reset caused by illegal opcode or by using an  
uninitialized W register as an address pointer  
(IOPUWR)  
FIGURE 20-2:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Digital  
Glitch Filter  
MCLR  
Sleep or Idle  
WDT  
Module  
POR  
VDD Rise  
Detect  
S
VDD  
Brown-out  
Reset  
BOR  
BOREN  
Q
R
SYSRST  
Trap Conflict  
Illegal Opcode/  
Uninitialized W Register  
The POR circuit inserts a small delay, TPOR, which is  
nominally 10 μs and ensures that the device bias cir-  
cuits are stable. Furthermore, a user selected power-  
up time-out (TPWRT) is applied. The TPWRT parameter  
is based on device Configuration bits and can be 0 ms  
(no delay), 4 ms, 16 ms, or 64 ms. The total delay is at  
device power-up, TPOR + TPWRT. When these delays  
have expired, SYSRST will be negated on the next  
leading edge of the Q1 clock and the PC will jump to the  
Reset vector.  
20.3.1  
POR: POWER-ON RESET  
A power-on event will generate an internal POR pulse  
when a VDD rise is detected. The Reset pulse will occur  
at the POR circuit threshold voltage (VPOR) which is  
nominally 1.85V. The device supply voltage character-  
istics must meet specified starting voltage and rise rate  
requirements. The POR pulse will reset a POR timer  
and place the device in the Reset state. The POR also  
selects the device clock source identified by the  
oscillator configuration fuses.  
The timing for the SYSRST signal is shown in  
Figure 20-3 through Figure 20-5.  
© 2006 Microchip Technology Inc.  
DS70117F-page 151  
dsPIC30F6011/6012/6013/6014  
FIGURE 20-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TOST  
OST TIME-OUT  
TPWRT  
PWRT TIME-OUT  
INTERNAL Reset  
FIGURE 20-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TOST  
OST TIME-OUT  
TPWRT  
PWRT TIME-OUT  
INTERNAL Reset  
FIGURE 20-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TOST  
OST TIME-OUT  
TPWRT  
PWRT TIME-OUT  
INTERNAL Reset  
DS70117F-page 152  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
A BOR will generate a Reset pulse which will reset the  
device. The BOR will select the clock source based on  
the device Configuration bit values (FOS<1:0> and  
FPR<3:0>). Furthermore, if an Oscillator mode is  
selected, the BOR will activate the Oscillator Start-up  
Timer (OST). The system clock is held until OST  
expires. If the PLL is used, then the clock will be held  
until the LOCK bit (OSCCON<5>) is ‘1’.  
20.3.1.1  
POR with Long Crystal Start-up Time  
(with FSCM Enabled)  
The oscillator start-up circuitry is not linked to the POR  
circuitry. Some crystal circuits (especially low fre-  
quency crystals) will have a relatively long start-up  
time. Therefore, one or more of the following conditions  
is possible after the POR timer and the PWRT have  
expired:  
Concurrently, the POR time-out (TPOR) and the PWRT  
time-out (TPWRT) will be applied before the internal Reset  
is released. If TPWRT = 0and a crystal oscillator is being  
used, then a nominal delay of TFSCM = 100 μs is applied.  
The total delay in this case is (TPOR + TFSCM).  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has not expired (if a  
crystal oscillator is used).  
• The PLL has not achieved a LOCK (if PLL is  
used).  
The BOR status bit (RCON<1>) will be set to indicate  
that a BOR has occurred. The BOR circuit, if enabled,  
will continue to operate while in Sleep or Idle modes  
and will reset the device should VDD fall below the BOR  
threshold voltage.  
If the FSCM is enabled and one of the above conditions  
is true, then a clock failure trap will occur. The device  
will automatically switch to the FRC oscillator and the  
user can switch to the desired crystal oscillator in the  
trap ISR.  
FIGURE 20-6:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
20.3.1.2  
Operating without FSCM and PWRT  
If the FSCM is disabled and the Power-up Timer  
(PWRT) is also disabled, then the device will exit rap-  
idly from Reset on power-up. If the clock source is  
FRC, LPRC, EXTRC or EC, it will be active  
immediately.  
VDD  
D
R
R1  
If the FSCM is disabled and the system clock has not  
started, the device will be in a frozen state at the Reset  
vector until the system clock starts. From the user’s  
perspective, the device will appear to be in Reset until  
a system clock is available.  
MCLR  
dsPIC30F  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
20.3.2  
BOR: PROGRAMMABLE  
BROWN-OUT RESET  
The BOR (Brown-out Reset) module is based on an  
internal voltage reference circuit. The main purpose of  
the BOR module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (i.e.,  
missing portions of the AC cycle waveform due to bad  
power transmission lines, or voltage sags due to exces-  
sive current draw when a large inductive load is turned  
on).  
2: R should be suitably chosen so as to make  
sure that the voltage drop across R does not  
violate the device’s electrical specifications.  
3: R1 should be suitably chosen so as to limit  
any current flowing into MCLR from external  
capacitor C, in the event of MCLR/VPP pin  
breakdown due to Electrostatic Discharge  
(ESD), or Electrical Overstress (EOS).  
The BOR module allows selection of one of the  
following voltage trip points (see Table 23-11):  
Note:  
Dedicated supervisory devices, such as  
the MCP1XX and MCP8XX, may also be  
used as an external Power-on Reset  
circuit.  
• 2.6V-2.71V  
• 4.1V-4.4V  
• 4.58V-4.73V  
Note:  
The BOR voltage trip points indicated here  
are nominal values provided for design  
guidance only. Refer to the Electrical  
Specifications in the specific device data  
sheet for BOR voltage limit specifications.  
© 2006 Microchip Technology Inc.  
DS70117F-page 153  
dsPIC30F6011/6012/6013/6014  
Table 20-5 shows the Reset conditions for the RCON  
register. Since the control bits within the RCON register  
are R/W, the information in the table implies that all the  
bits are negated prior to the action specified in the  
condition column.  
TABLE 20-5: INITIALIZATION CONDITION FOR RCON REGISTER: CASE 1  
Program  
Condition  
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR  
Counter  
Power-on Reset  
0x000000  
0x000000  
0x000000  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
Brown-out Reset  
MCLR Reset during normal  
operation  
Software Reset during  
normal operation  
0x000000  
0
0
0
1
0
0
0
0
0
MCLR Reset during Sleep  
MCLR Reset during Idle  
WDT Time-out Reset  
WDT Wake-up  
0x000000  
0x000000  
0x000000  
PC + 2  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
PC + 2(1)  
Interrupt Wake-up from  
Sleep  
Clock Failure Trap  
Trap Reset  
0x000004  
0x000000  
0x000000  
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Illegal Operation Trap  
Legend: u= unchanged, x= unknown  
Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.  
DS70117F-page 154  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Table 20-6 shows a second example of the bit  
conditions for the RCON register. In this case, it is not  
assumed the user has set/cleared specific bits prior to  
action specified in the condition column.  
TABLE 20-6: INITIALIZATION CONDITION FOR RCON REGISTER: CASE 2  
Program  
Condition  
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR  
Counter  
Power-on Reset  
0x000000  
0x000000  
0x000000  
0
u
u
0
u
u
0
u
1
0
u
0
0
u
0
0
u
0
0
u
0
1
0
u
1
1
u
Brown-out Reset  
MCLR Reset during normal  
operation  
Software Reset during  
normal operation  
0x000000  
u
u
0
1
0
0
0
u
u
MCLR Reset during Sleep  
MCLR Reset during Idle  
WDT Time-out Reset  
WDT Wake-up  
0x000000  
0x000000  
0x000000  
PC + 2  
u
u
u
u
u
u
u
u
u
u
1
1
0
u
u
u
u
0
u
u
0
0
1
1
u
0
1
0
u
u
1
0
0
1
1
u
u
u
u
u
u
u
u
u
u
PC + 2(1)  
Interrupt Wake-up from  
Sleep  
Clock Failure Trap  
Trap Reset  
0x000004  
0x000000  
0x000000  
u
1
u
u
u
1
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
Illegal Operation Reset  
Legend: u= unchanged  
Note:  
When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.  
© 2006 Microchip Technology Inc.  
DS70117F-page 155  
dsPIC30F6011/6012/6013/6014  
20.4 Watchdog Timer (WDT)  
20.6 Power Saving Modes  
There are two power-saving states that can be entered  
through the execution of a special instruction, PWRSAV.  
These are Sleep and Idle.  
20.4.1  
WATCHDOG TIMER OPERATION  
The primary function of the Watchdog Timer (WDT) is  
to reset the processor in the event of a software mal-  
function. The WDT is a free-running timer which runs  
off an on-chip RC oscillator, requiring no external com-  
ponent. Therefore, the WDT timer will continue to oper-  
ate even if the main processor clock (e.g., the crystal  
oscillator) fails.  
The format of the PWRSAVinstruction is as follows:  
PWRSAV <parameter>, where ‘parameter’ defines  
Idle or Sleep mode.  
20.6.1  
SLEEP MODE  
In Sleep mode, the clock to the CPU and peripherals is  
shutdown. If an on-chip oscillator is being used, it is  
shutdown.  
20.4.2  
ENABLING AND DISABLING  
THE WDT  
The Watchdog Timer can be “enabled” or “disabled”  
only through a Configuration bit (FWDTEN) in the  
Configuration register, FWDT.  
The Fail-Safe Clock Monitor is not functional during  
Sleep since there is no clock to monitor. However,  
LPRC clock remains active if WDT is operational during  
Sleep.  
Setting FWDTEN = 1enables the Watchdog Timer. The  
enabling is done when programming the device. By  
default, after chip erase, FWDTEN bit = 1. Any device  
programmer capable of programming dsPIC30F  
devices allows programming of this and other  
Configuration bits.  
The brown-out protection circuit and the Low-Voltage  
Detect circuit, if enabled, will remain functional during  
Sleep.  
The processor wakes up from Sleep if at least one of  
the following conditions has occurred:  
If enabled, the WDT will increment until it overflows or  
“times out”. A WDT time-out will force a device Reset  
(except during Sleep). To prevent a WDT time-out, the  
user must clear the Watchdog Timer using a CLRWDT  
instruction.  
• any interrupt that is individually enabled and  
meets the required priority level  
• any Reset (POR, BOR and MCLR)  
• WDT time-out  
If a WDT times out during Sleep, the device will wake-  
up. The WDTO bit in the RCON register will be cleared  
to indicate a wake-up resulting from a WDT time-out.  
On waking up from Sleep mode, the processor will  
restart the same clock that was active prior to entry into  
Sleep mode. When clock switching is enabled, bits  
COSC<1:0> will determine the oscillator source that  
will be used on wake-up. If clock switch is disabled,  
then there is only one system clock.  
Setting FWDTEN = 0allows user software to enable/  
disable the Watchdog Timer via the SWDTEN  
(RCON<5>) control bit.  
Note:  
If a POR or BOR occurred, the selection of  
the oscillator is based on the FOS<1:0>  
and FPR<3:0> Configuration bits.  
20.5 Low-Voltage Detect  
The Low-Voltage Detect (LVD) module is used to  
detect when the VDD of the device drops below a  
threshold value, VLVD, which is determined by the  
LVDL<3:0> bits (RCON<11:8>) and is thus user pro-  
grammable. The internal voltage reference circuitry  
requires a nominal amount of time to stabilize, and the  
BGST bit (RCON<13>) indicates when the voltage  
reference has stabilized.  
If the clock source is an oscillator, the clock to the  
device will be held off until OST times out (indicating a  
stable oscillator). If PLL is used, the system clock is  
held off until LOCK = 1 (indicating that the PLL is  
stable). In either case, TPOR, TLOCK and TPWRT delays  
are applied.  
If EC, FRC, LPRC or EXTRC oscillators are used, then  
a delay of TPOR (~ 10 μs) is applied. This is the smallest  
delay possible on wake-up from Sleep.  
In some devices, the LVD threshold voltage may be  
applied externally on the LVDIN pin.  
Moreover, if LP oscillator was active during Sleep and  
LP is the oscillator used on wake-up, then the start-up  
delay will be equal to TPOR. PWRT delay and OST  
timer delay are not applied. In order to have -the small-  
est possible start-up delay when waking up from Sleep,  
one of these faster wake-up options should be selected  
before entering Sleep.  
The LVD module is enabled by setting the LVDEN bit  
(RCON<12>).  
DS70117F-page 156  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Any interrupt that is individually enabled (using the cor-  
Any interrupt that is individually enabled (using IE bit)  
and meets the prevailing priority level will be able to  
wake-up the processor. The processor will process the  
interrupt and branch to the ISR. The Idle status bit in  
the RCON register is set upon wake-up.  
responding IE bit) and meets the prevailing priority level  
will be able to wake-up the processor. The processor will  
process the interrupt and branch to the ISR. The Sleep  
status bit in the RCON register is set upon wake-up.  
Any Reset other than POR will set the Idle status bit.  
On a POR, the Idle bit is cleared.  
Note:  
In spite of various delays applied (TPOR,  
TLOCK and TPWRT), the crystal oscillator  
(and PLL) may not be active at the end of  
the time-out (e.g., for low-frequency crys-  
tals). In such cases, if FSCM is enabled,  
then the device will detect this as a clock  
failure and process the clock failure trap, the  
FRC oscillator will be enabled and the user  
will have to re-enable the crystal oscillator. If  
FSCM is not enabled, then the device will  
simply suspend execution of code until the  
clock is stable and will remain in Sleep until  
the oscillator clock has started.  
If Watchdog Timer is enabled, then the processor will  
wake-up from Idle mode upon WDT time-out. The Idle  
and WDTO status bits are both set.  
Unlike wake-up from Sleep, there are no time delays  
involved in wake-up from Idle.  
20.7 Device Configuration Registers  
The Configuration bits in each device configuration reg-  
ister specify some of the device modes and are  
programmed by a device programmer, or by using the  
In-Circuit Serial Programming (ICSP) feature of the  
device. Each device configuration register is a 24-bit  
register, but only the lower 16 bits of each register are  
used to hold configuration data. There are four device  
configuration registers available to the user:  
All Resets will wake-up the processor from Sleep  
mode. Any Reset, other than POR, will set the Sleep  
status bit. In a POR, the Sleep bit is cleared.  
If the Watchdog Timer is enabled, then the processor  
will wake-up from Sleep mode upon WDT time-out. The  
Sleep and WDTO status bits are both set.  
1. FOSC (0xF80000): Oscillator Configuration  
Register  
20.6.2  
IDLE MODE  
2. FWDT (0xF80002): Watchdog Timer  
Configuration Register  
In Idle mode, the clock to the CPU is shutdown while  
peripherals keep running. Unlike Sleep mode, the clock  
source remains active.  
3. FBORPOR (0xF80004): BOR and POR  
Configuration Register  
4. FGS (0xF8000A): General Code Segment  
Configuration Register  
Several peripherals have a control bit in each module  
that allows them to operate during Idle.  
The placement of the Configuration bits is automati-  
cally handled when you select the device in your device  
programmer. The desired state of the Configuration bits  
may be specified in the source code (dependent on the  
language tool used), or through the programming inter-  
face. After the device has been programmed, the appli-  
cation software may read the Configuration bit values  
through the table read instructions. For additional infor-  
mation, please refer to the programming specifications  
of the device.  
LPRC Fail-Safe Clock remains active if clock failure  
detect is enabled.  
The processor wakes up from Idle if at least one of the  
following conditions has occurred:  
• any interrupt that is individually enabled (IE bit is  
1’) and meets the required priority level  
• any Reset (POR, BOR, MCLR)  
• WDT time-out  
Upon wake-up from Idle mode, the clock is re-applied  
to the CPU and instruction execution begins immedi-  
ately, starting with the instruction following the PWRSAV  
instruction.  
Note:  
If the code protection configuration fuse  
bits (FGS<GCP> and FGS<GWRP>)  
have been programmed, an erase of the  
entire code-protected device is only  
possible at voltages VDD 4.5V.  
© 2006 Microchip Technology Inc.  
DS70117F-page 157  
dsPIC30F6011/6012/6013/6014  
20.8 Peripheral Module Disable (PMD)  
Registers  
20.9 In-Circuit Debugger  
When MPLAB® ICD2 is selected as a debugger, the in-  
circuit debugging functionality is enabled. This function  
allows simple debugging functions when used with  
MPLAB IDE. When the device has this feature enabled,  
some of the resources are not available for general  
use. These resources include the first 80 bytes of Data  
RAM and two I/O pins.  
The Peripheral Module Disable (PMD) registers pro-  
vide a method to disable a peripheral module by stop-  
ping all clock sources supplied to that module. When a  
peripheral is disabled via the appropriate PMD control  
bit, the peripheral is in a minimum power consumption  
state. The control and status registers associated with  
the peripheral will also be disabled so writes to those  
registers will have no effect and read values will be  
invalid.  
One of four pairs of Debug I/O pins may be selected by  
the user using configuration options in MPLAB IDE.  
These pin pairs are named EMUD/EMUC, EMUD1/  
EMUC1, EMUD2/EMUC2 and EMUD3/EMUC3.  
A peripheral module will only be enabled if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC DSC vari-  
ant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
In each case, the selected EMUD pin is the Emulation/  
Debug Data line, and the EMUC pin is the Emulation/  
Debug Clock line. These pins will interface to the  
MPLAB ICD 2 module available from Microchip. The  
selected pair of Debug I/O pins is used by MPLAB  
ICD 2 to send commands and receive responses, as  
well as to send and receive data. To use the in-circuit  
debugger function of the device, the design must imple-  
ment ICSP connections to MCLR, VDD, VSS, PGC,  
PGD, and the selected EMUDx/EMUCx pin pair.  
Note:  
If a PMD bit is set, the corresponding mod-  
ule is disabled after a delay of 1 instruction  
cycle. Similarly, if a PMD bit is cleared, the  
corresponding module is enabled after a  
delay of 1 instruction cycle (assuming the  
module control registers are already  
configured to enable module operation).  
This gives rise to two possibilities:  
1. If EMUD/EMUC is selected as the Debug I/O pin  
pair, then only a 5-pin interface is required, as  
the EMUD and EMUC pin functions are multi-  
plexed with the PGD and PGC pin functions in  
all dsPIC30F devices.  
Note:  
In the dsPIC30F6011 and dsPIC30F6013  
devices, the DCIMD bit is readable and  
writable, and will be read as ‘1’ when set.  
2. If EMUD1/EMUC1, EMUD2/EMUC2 or EMUD3/  
EMUC3 is selected as the Debug I/O pin pair,  
then a 7-pin interface is required, as the  
EMUDx/EMUCx pin functions (x = 1, 2 or 3) are  
not multiplexed with the PGD and PGC pin  
functions.  
DS70117F-page 158  
© 2006 Microchip Technology Inc.  
TABLE 20-7: SYSTEM INTEGRATION REGISTER MAP  
SFR  
Name  
Addr. Bit 15  
Bit 14  
Bit 13 Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
RCON  
0740 TRAPR IOPUWR BGST LVDEN  
LVDL<3:0>  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
(Note 1)  
(Note 2)  
OSCCON 0742  
TUN3  
T5MD  
TUN2  
T4MD  
COSC<1:0>  
TUN1  
T1MD  
TUN0  
NOSC<1:0>  
POST<1:0>  
LOCK  
U1MD  
LPOSCEN OSWEN  
C1MD ADCMD 0000 0000 0000 0000  
PMD1  
PMD2  
0770  
T3MD T2MD  
DCIMD I2CMD  
U2MD  
SPI2MD SPI1MD C2MD  
0772 IC8MD IC7MD IC6MD IC5MD IC4MD IC3MD IC2MD  
IC1MD OC8MD OC7MD OC6MD OC5MD OC4MD OC3MD OC2MD OC1MD 0000 0000 0000 0000  
Note 1: Reset state depends on type of Reset.  
2: Reset state depends on Configuration bits.  
3: Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 20-8: DEVICE CONFIGURATION REGISTER MAP  
File Name  
Addr.  
Bits 23-16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FOSC  
F80000  
F80002  
F80004  
F8000A  
FCKSM<1:0>  
FOS<1:0>  
FPR<3:0>  
FWDT  
FWDTEN  
FWPSA<1:0>  
BORV<1:0>  
FWPSB<3:0>  
FBORPOR  
FGS  
MCLREN  
BOREN  
FPWRT<1:0>  
GCP GWRP  
Note:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 160  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
Most bit-oriented instructions (including simple rotate/  
shift instructions) have two operands:  
21.0 INSTRUCTION SET SUMMARY  
Note: This data sheet summarizes features of this group  
of dsPIC30F devices and is not intended to be a complete  
reference source. For more information on the CPU,  
peripherals, register descriptions and general device  
functionality, refer to the “dsPIC30F Family Reference  
Manual” (DS70046). For more information on the device  
instruction set and programming, refer to the “dsPIC30F/  
33F Programmer’s Reference Manual” (DS70157).  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
The literal instructions that involve data movement may  
use some of the following operands:  
The dsPIC30F instruction set adds many  
enhancements to the previous PIC® MCU instruction  
sets, while maintaining an easy migration from PIC  
MCU instruction sets.  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Each single word instruction is a 24-bit word divided  
into an 8-bit opcode which specifies the instruction  
type, and one or more operands which further specify  
the operation of the instruction.  
• The first source operand which is a register ‘Wb’  
without any address modifier  
• The second source operand which is a literal  
value  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
• The destination of the result (only if not the same  
as the first source operand) which is typically a  
register ‘Wd’ with or without an address modifier  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
The MACclass of DSP instructions may use some of the  
following operands:  
• DSP operations  
• The accumulator (A or B) to be used (required  
operand)  
• Control operations  
Table 21-1 shows the general symbols used in  
describing the instructions.  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write back destination  
The dsPIC30F instruction set summary in Table 21-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
The other DSP instructions do not involve any  
multiplication, and may include:  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The accumulator to be used (required)  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
• The amount of shift specified by a W register ‘Wn’  
or a literal value  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
The control instructions may use some of the following  
operands:  
However, word or byte-oriented file register  
instructions have two operands:  
• A program memory address  
• The file register specified by the value ‘f’  
• The mode of the table read and table write  
instructions  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
© 2006 Microchip Technology Inc.  
DS70117F-page 161  
dsPIC30F6011/6012/6013/6014  
All instructions are a single word, except for certain  
double-word instructions, which were made double-  
word instructions so that all the required information is  
available in these 48 bits. In the second word, the  
8 MSbs are ‘0’s. If this second word is executed as an  
instruction (by itself), it will execute as a NOP.  
which are single-word instructions but take two or three  
cycles. Certain instructions that involve skipping over  
the subsequent instruction require either two or three  
cycles if the skip is performed, depending on whether  
the instruction being skipped is a single word or two-  
word instruction. Moreover, double-word moves  
require two cycles. The double-word instructions  
execute in two instruction cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP. Notable exceptions are the BRA (uncondi-  
tional/computed branch), indirect CALL/GOTO, all table  
reads and writes, and RETURN/RETFIE instructions,  
Note:  
For more details on the instruction set,  
refer to the “dsPIC30F/33F Programmer’s  
Reference Manual” (DS70157)  
TABLE 21-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator write back destination address register {W13, [W13]+=2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSB must be 0  
Field does not require an entry, may be blank  
DSP status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
DS70117F-page 162  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 21-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wb  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register ∈  
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor working register pair (direct addressing)  
Wm*Wm  
Multiplicand and Multiplier working register pair for Square instructions ∈  
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Wm*Wn  
Multiplicand and Multiplier working register pair for DSP instructions ∈  
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register ∈  
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X data space prefetch address register for DSP instructions  
{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,  
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,  
[W9 + W12],none}  
Wxd  
Wy  
X data space prefetch destination register for DSP instructions {W4..W7}  
Y data space prefetch address register for DSP instructions  
{[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,  
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,  
[W11 + W12], none}  
Wyd  
Y data space prefetch destination register for DSP instructions {W4..W7}  
© 2006 Microchip Technology Inc.  
DS70117F-page 163  
dsPIC30F6011/6012/6013/6014  
TABLE 21-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
Wd = Wb + lit5 + (C)  
1
AND  
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
Wd = Wb .AND. Ws  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
None  
None  
None  
None  
None  
None  
Branch if unsigned less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A overflow  
Branch if Accumulator B overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A saturated  
Branch if Accumulator B saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
1
None  
Ws,Wb  
1
None  
DS70117F-page 164  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
9
BTG  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
Bit Toggle f  
1
1
1
1
1
None  
None  
None  
BTG  
Bit Toggle Ws  
10  
11  
12  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
BTSC  
BTSS  
BTSS  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
1
1
1
1
None  
None  
None  
(2 or 3)  
BTSS  
BTST  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
C
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call subroutine  
C
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
CLR  
CLR  
CLR  
CLRWDT  
COM  
COM  
COM  
CP  
lit23  
None  
Wn  
Call indirect subroutine  
f = 0x0000  
None  
f
None  
WREG  
WREG = 0x0000  
None  
Ws  
Ws = 0x0000  
None  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
f
f,WREG  
Ws,Wd  
f
WREG = f  
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb - Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb - Ws - C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if ≠  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = decimal adjust Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
f = f -1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f -1  
DEC  
Wd = Ws - 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f -2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f -2  
Wd = Ws - 2  
Disable Interrupts for k instruction cycles  
© 2006 Microchip Technology Inc.  
DS70117F-page 165  
dsPIC30F6011/6012/6013/6014  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC+Expr, lit14+1 times  
Do code to PC+Expr, (Wn)+1 times  
Euclidean Distance (no accumulate)  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Wm,Wn  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link frame pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
N,Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
Move Wn to f  
None  
None  
None  
None  
N,Z  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns+1) to Wd  
Move Double from Ws to W(nd+1):W(nd)  
Prefetch and store accumulator  
None  
None  
None  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70117F-page 166  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
-(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd+1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd+1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd+1, Wnd} = unsigned(Wb) * signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd+1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd+1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd+1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from top-of-stack (TOS)  
Pop from top-of-stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from top-of-stack (TOS) to  
W(nd):W(nd+1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to top-of-stack (TOS)  
Push Wso to top-of-stack (TOS)  
Push W(ns):W(ns+1) to top-of-stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Go into Sleep or Idle mode  
Relative Call  
1
2
Wn  
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14+1 times  
Repeat Next Instruction (Wn)+1 times  
Software device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
#lit10,Wn  
Return with literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
© 2006 Microchip Technology Inc.  
DS70117F-page 167  
dsPIC30F6011/6012/6013/6014  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
RRNC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
SAC  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = sign-extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
f
f = f - WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f - WREG  
Wn = Wn - lit10  
SUB  
SUB  
Wd = Wb - Ws  
SUB  
Wd = Wb - lit5  
73  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
f = f - WREG - (C)  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f - WREG - (C)  
Wn = Wn - lit10 - (C)  
Wd = Wb - Ws - (C)  
Wd = Wb - lit5 - (C)  
f = WREG - f  
74  
75  
76  
SUBR  
SUBBR  
SWAP  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG - f  
Wd = Ws - Wb  
Wd = lit5 - Wb  
f = WREG - f - (C)  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
WREG = WREG -f - (C)  
Wd = Ws - Wb - (C)  
Wd = lit5 - Wb - (C)  
Wn = nibble swap Wn  
Wn = byte swap Wn  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink frame pointer  
f = f .XOR. WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
Wd = Wb .XOR. lit5  
Wnd = Zero-extend Ws  
Wn  
None  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
None  
XOR  
f
N,Z  
XOR  
f,WREG  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
N,Z  
83  
ZE  
ZE  
C,Z,N  
DS70117F-page 168  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
22.1 MPLAB Integrated Development  
Environment Software  
22.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2006 Microchip Technology Inc.  
DS70117F-page 169  
dsPIC30F6011/6012/6013/6014  
22.2 MPASM Assembler  
22.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
22.6 MPLAB SIM Software Simulator  
22.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 family of microcontrollers and the  
dsPIC30, dsPIC33 and PIC24 family of digital signal  
controllers. These compilers provide powerful integra-  
tion capabilities, superior code optimization and ease  
of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
22.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS70117F-page 170  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
22.7 MPLAB ICE 2000  
High-Performance  
22.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
22.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
22.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC® and MCU devices. It debugs and  
programs PIC® and dsPIC® Flash microcontrollers with  
the easy-to-use, powerful graphical user interface of the  
MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high speed, noise tolerant, low-  
voltage differential signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2006 Microchip Technology Inc.  
DS70117F-page 171  
dsPIC30F6011/6012/6013/6014  
22.11 PICSTART Plus Development  
Programmer  
22.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
22.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS70117F-page 172  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
23.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future  
revisions of this document as it becomes available.  
For detailed information about the dsPIC30F architecture and core, refer to “dsPIC30F Family Reference Manual”  
(DS70046).  
Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for  
extended periods may affect device reliability. Functional operation of the device at these or any other conditions above  
the parameters indicated in the operation listings of this specification is not implied.  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD and MCLR) (Note 1)..................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V  
Voltage on MCLR with respect to VSS ....................................................................................................... 0V to +13.25V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 2)................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..........................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ...................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 2)....................................................................................................200 mA  
Note 1: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latchup.  
Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
2: Maximum allowable current is a function of device maximum power dissipation. See Table 23-2 for PDMAX.  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note: All peripheral electrical characteristics are specified. For exact peripherals available on specific  
devices, please refer the Family Cross Reference Table.  
23.1 DC Characteristics  
TABLE 23-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
Temp Range  
dsPIC30F601X-30I  
dsPIC30F601X-20I  
dsPIC30F601X-20E  
4.75-5.5V  
4.75-5.5V  
3.0-3.6V  
3.0-3.6V  
2.5-3.0V  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
30  
20  
20  
10  
15  
10  
7.5  
7.5  
© 2006 Microchip Technology Inc.  
DS70117F-page 173  
dsPIC30F6011/6012/6013/6014  
TABLE 23-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
dsPIC30F601x-30I  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
dsPIC30F601x-20I  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+150  
+85  
°C  
°C  
dsPIC30F601x-20E  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+150  
+125  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD × (IDD  
IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin power dissipation:  
PI/O  
=
({VDD VOH} × IOH ) + (VOL × IOL)  
∑ ∑  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ - TA) / θJA  
TABLE 23-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 80-pin TQFP (14x14x1mm)  
Package Thermal Resistance, 64-pin TQFP (14x14x1mm)  
θJA  
θJA  
50  
50  
°C/W  
°C/W  
1
1
Note 1: Junction to ambient thermal resistance, Theta-ja (θJA) numbers are achieved by package simulations.  
TABLE 23-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
Operating Voltage(2)  
DC10  
DC11  
DC12  
DC16  
VDD  
VDD  
VDR  
VPOR  
Supply Voltage  
2.5  
3.0  
5.5  
5.5  
V
V
V
V
Industrial temperature  
Extended temperature  
Supply Voltage  
RAM Data Retention Voltage(3)  
1.5  
VSS  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
DC17  
SVDD  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms 0-5V in 0.1 sec  
0-3V in 60 ms  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: This is the limit to which VDD can be lowered without losing RAM data.  
DS70117F-page 174  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Operating Current (IDD)(2)  
DC31a  
DC31b  
DC31c  
DC31e  
DC31f  
DC31g  
DC30a  
DC30b  
DC30c  
DC30e  
DC30f  
DC30g  
DC23a  
DC23b  
DC23c  
DC23e  
DC23f  
DC23g  
DC24a  
DC24b  
DC24c  
DC24e  
DC24f  
DC24g  
DC27a  
DC27b  
DC27d  
DC27e  
DC27f  
DC29a  
DC29b  
6.8  
6.3  
6.1  
16  
10  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
25°C  
85°C  
125°C  
25°C  
85°C  
3.3V  
5V  
10  
0.128 MIPS  
LPRC (512 kHz)  
22  
15  
22  
15  
22  
13  
19  
13  
19  
3.3V  
5V  
13  
19  
(1.8 MIPS)  
FRC (7.37 MHz)  
27  
39  
26  
39  
25  
39  
27  
41  
27  
41  
3.3V  
5V  
27  
41  
4 MIPS  
41  
60  
40  
60  
40  
60  
46  
71  
46  
71  
3.3V  
47  
71  
10 MIPS  
79  
120  
120  
120  
120  
120  
190  
190  
190  
255  
255  
78  
5V  
3.3V  
5V  
78  
83  
83  
138  
137  
136  
194  
192  
20 MIPS  
30 MIPS  
5V  
Note 1: Data in “Typical” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail to rail. All I/O pins are configured as Inputs and pulled to VDD.  
MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, Program Memory and Data  
Memory are operational. No peripheral modules are operating.  
© 2006 Microchip Technology Inc.  
DS70117F-page 175  
dsPIC30F6011/6012/6013/6014  
TABLE 23-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Operating Current (IIDLE)(2)  
DC51a  
DC51b  
DC51c  
DC51e  
DC51f  
DC51g  
DC50a  
DC50b  
DC50c  
DC50e  
DC50f  
DC50g  
DC43a  
DC43b  
DC43c  
DC43e  
DC43f  
DC43g  
DC44a  
DC44b  
DC44c  
DC44e  
DC44f  
DC44g  
DC47a  
DC47b  
DC47d  
DC47e  
DC47f  
DC49a  
DC49b  
6.3  
5.9  
5.7  
16  
15  
15  
10  
10  
10  
21  
20  
19  
15  
15  
15  
30  
29  
29  
28  
28  
28  
50  
49  
49  
49  
50  
84  
84  
83  
117  
117  
9
9
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
25°C  
85°C  
125°C  
25°C  
85°C  
3.3V  
5V  
9
0.128 MIPS  
LPRC (512 kHz)  
21  
21  
21  
15  
15  
15  
30  
30  
30  
23  
23  
23  
45  
45  
45  
42  
42  
42  
70  
70  
70  
70  
70  
110  
110  
110  
145  
145  
3.3V  
5V  
(1.8 MIPS)  
FRC (7.37 MHz)  
3.3V  
5V  
4 MIPS  
3.3V  
10 MIPS  
5V  
3.3V  
5V  
20 MIPS  
30 MIPS  
5V  
Note 1: Data in “Typical” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Base IIDLE current is measured with Core off, Clock on and all modules turned off.  
DS70117F-page 176  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Power Down Current (IPD)  
DC60a  
DC60b  
DC60c  
DC60e  
DC60f  
DC60g  
DC61a  
DC61b  
DC61c  
DC61e  
DC61f  
DC61g  
DC62a  
DC62b  
DC62c  
DC62e  
DC62f  
DC62g  
DC63a  
DC63b  
DC63c  
DC63e  
DC63f  
DC63g  
DC66a  
DC66b  
DC66c  
DC66e  
DC66f  
DC66g  
0.3  
2
60  
120  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
3.3V  
5V  
23  
0.5  
3
Base Power Down Current(2)  
110  
180  
20  
20  
20  
30  
30  
30  
10  
10  
10  
15  
15  
15  
55  
55  
55  
60  
60  
60  
35  
35  
35  
40  
40  
40  
32  
10  
10  
10  
18  
17  
17  
4
3.3V  
5V  
(3)  
Watchdog Timer Current: ΔIWDT  
5
3.3V  
5V  
4
Timer 1 w/32 kHz Crystal: ΔITI32(3)  
4
6
5
30  
32  
34  
34  
37  
38  
18  
20  
21  
22  
23  
24  
3.3V  
5V  
(3)  
BOR On: ΔIBOR  
3.3V  
5V  
(3)  
Low-Voltage Detect: ΔILVD  
Note 1: Data in the Typical column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled high. LVD, BOR, WDT, etc. are all switched off.  
3: The Δ current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
© 2006 Microchip Technology Inc.  
DS70117F-page 177  
dsPIC30F6011/6012/6013/6014  
TABLE 23-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Input Low Voltage(2)  
VIL  
DI10  
I/O pins:  
with Schmitt Trigger buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.3 VDD  
0.2 VDD  
V
V
V
V
V
V
DI15  
DI16  
DI17  
DI18  
DI19  
MCLR  
OSC1 (in XT, HS and LP modes)  
OSC1 (in RC mode)(3)  
SDA, SCL  
SMbus disabled  
SDA, SCL  
SMbus enabled  
VIH  
Input High Voltage(2)  
DI20  
I/O pins:  
with Schmitt Trigger buffer  
0.8 VDD  
0.8 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
DI25  
DI26  
DI27  
DI28  
DI29  
MCLR  
OSC1 (in XT, HS and LP modes) 0.7 VDD  
OSC1 (in RC mode)(3)  
0.9 VDD  
0.7 VDD  
0.8 VDD  
SDA, SCL  
SMbus disabled  
SMbus enabled  
SDA, SCL  
ICNPU  
IIL  
CNXX Pull-up Current(2)  
DI30  
50  
250  
400  
μA VDD = 5V, VPIN = VSS  
Input Leakage Current(2)(4)(5)  
DI50  
DI51  
I/O ports  
0.01  
0.50  
±1  
μA VSS VPIN VDD,  
Pin at high-impedance  
Analog input pins  
μA VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSC1  
0.05  
0.05  
±5  
±5  
μA  
VSS VPIN VDD  
μA VSS VPIN VDD, XT, HS  
and LP Osc mode  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: In RC oscillator configuration, the OSC1/CLKl pin is a Schmitt Trigger input. It is not recommended that  
the dsPIC30F device be driven with an external clock while in RC mode.  
4: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
5: Negative current is defined as current sourced by the pin.  
DS70117F-page 178  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
VOL  
Output Low Voltage(2)  
DO10  
DO16  
I/O ports  
0.6  
TBD  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 5V  
IOL = 2.0 mA, VDD = 3V  
IOL = 1.6 mA, VDD = 5V  
IOL = 2.0 mA, VDD = 3V  
OSC2/CLKO  
(RC or EC Osc mode)  
Output High Voltage(2)  
I/O ports  
TBD  
VOH  
DO20  
DO26  
VDD – 0.7  
TBD  
V
V
V
V
IOH = -3.0 mA, VDD = 5V  
IOH = -2.0 mA, VDD = 3V  
IOH = -1.3 mA, VDD = 5V  
IOH = -2.0 mA, VDD = 3V  
OSC2/CLKO  
VDD – 0.7  
TBD  
(RC or EC Osc mode)  
Capacitive Loading Specs  
on Output Pins(2)  
DO50 COSC2  
OSC2/SOSC2 pin  
15  
pF In XTL, XT, HS and LP modes  
when external clock is used to  
drive OSC1.  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCL, SDA  
50  
pF RC or EC Osc mode  
pF In I2C mode  
400  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
FIGURE 23-1:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
LV10  
LVDIF  
(LVDIF set by hardware)  
© 2006 Microchip Technology Inc.  
DS70117F-page 179  
dsPIC30F6011/6012/6013/6014  
TABLE 23-10: ELECTRICAL CHARACTERISTICS: LVDL  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max Units Conditions  
LV10  
VPLVD  
LVDL Voltage on VDD transition LVDL = 0000(2)  
V
high to low  
LVDL = 0001(2)  
LVDL = 0010(2)  
LVDL = 0011(2)  
LVDL = 0100  
LVDL = 0101  
LVDL = 0110  
LVDL = 0111  
LVDL = 1000  
LVDL = 1001  
LVDL = 1010  
LVDL = 1011  
LVDL = 1100  
LVDL = 1101  
LVDL = 1110  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
2.50  
2.70  
2.80  
3.00  
3.30  
3.50  
3.60  
3.80  
4.00  
4.20  
4.50  
2.65  
2.86  
2.97  
3.18  
3.50  
3.71  
3.82  
4.03  
4.24  
4.45  
4.77  
LV15  
VLVDIN  
External LVD input pin  
threshold voltage  
LVDL = 1111  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: These values not in usable operating range.  
FIGURE 23-2:  
BROWN-OUT RESET CHARACTERISTICS  
VDD  
(Device not in Brown-out Reset)  
BO15  
BO10  
(Device in Brown-out Reset)  
Reset (due to BOR)  
Power Up Time-out  
DS70117F-page 180  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min Typ(1) Max Units  
Conditions  
BO10  
VBOR  
BOR Voltage(2) on  
VDD transition high to  
low  
BORV = 11(3)  
V
Not in operating  
range  
BORV = 10  
BORV = 01  
BORV = 00  
2.6  
4.1  
4.58  
5
2.71  
4.4  
V
V
4.73  
V
BO15  
VBHYS  
mV  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: 11’ values not in usable operating range.  
TABLE 23-12: DC CHARACTERISTICS: PROGRAM AND EEPROM  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Data EEPROM Memory(2)  
Byte Endurance  
D120  
D121  
ED  
100K  
VMIN  
1M  
E/W -40°C TA +85°C  
VDRW  
VDD for Read/Write  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write Cycle Time  
Characteristic Retention  
2
ms  
TRETD  
40  
100  
Year Provided no other specifications  
are violated  
D124  
IDEW  
IDD During Programming  
Program FLASH Memory(2)  
Cell Endurance  
10  
30  
mA Row Erase  
D130  
D131  
EP  
10K  
100K  
E/W -40°C TA +85°C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
D135  
VEB  
VDD for Bulk Erase  
4.5  
3.0  
5.5  
5.5  
V
V
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
Erase/Write Cycle Time  
Characteristic Retention  
2
ms  
40  
100  
Year Provided no other specifications  
are violated  
D136  
D137  
D138  
TEB  
IPEW  
IEB  
ICSP Block Erase Time  
IDD During Programming  
IDD During Programming  
4
30  
30  
ms  
10  
10  
mA Row Erase  
mA Bulk Erase  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
2: These parameters are characterized but not tested in manufacturing.  
© 2006 Microchip Technology Inc.  
DS70117F-page 181  
dsPIC30F6011/6012/6013/6014  
23.2 AC Characteristics and Timing Parameters  
The information contained in this section defines dsPIC30F AC characteristics and timing parameters.  
TABLE 23-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in DC Spec Section 23.0  
“Electrical Characteristics”.  
FIGURE 23-3:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
VSS  
5 pF for OSC2 output  
FIGURE 23-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS25  
OS31 OS31  
OS40  
OS41  
DS70117F-page 182  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-14: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10 FOSC  
External CLKI Frequency(2)  
(External clocks allowed only  
in EC mode)  
DC  
4
4
40  
10  
10  
7.5  
MHz  
MHz  
MHz  
MHz  
EC  
EC with 4x PLL  
EC with 8x PLL  
EC with 16x PLL  
4
Oscillator Frequency(2)  
DC  
0.4  
4
4
4
7.37  
512  
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
kHz  
RC  
XTL  
XT  
XT with 4x PLL  
XT with 8x PLL  
XT with 16x PLL  
HS  
10  
10  
10  
7.5  
25  
33  
4
10  
31  
LP  
MHz  
kHz  
FRC internal  
LPRC internal  
OS20 TOSC  
OS25 TCY  
TOSC = 1/FOSC  
See parameter OS10  
for FOSC value  
Instruction Cycle Time(2)(3)  
External Clock(2) in (OSC1)  
High or Low Time  
33  
DC  
ns  
ns  
See Table 23-17  
EC  
OS30 TosL,  
TosH  
.45 x  
TOSC  
OS31 TosR,  
TosF  
External Clock(2) in (OSC1)  
Rise or Fall Time  
20  
ns  
EC  
OS40 TckR  
OS41 TckF  
CLKO Rise Time(2)(4)  
CLKO Fall Time(2)(4)  
6
6
10  
10  
ns  
ns  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “Min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“Max.” cycle time limit is “DC” (no clock) for all devices.  
4: Measurements are taken in EC or ERC modes. The CLKO signal is measured on the OSC2 pin. CLKO is  
low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
© 2006 Microchip Technology Inc.  
DS70117F-page 183  
dsPIC30F6011/6012/6013/6014  
TABLE 23-15: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.5 TO 5.5 V)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Input Frequency Range(2)  
4
4
4
4
4
4
10  
10  
MHz EC with 4x PLL  
MHz EC with 8x PLL  
MHz EC with 16x PLL  
MHz XT with 4x PLL  
MHz XT with 8x PLL  
MHz XT with 16x PLL  
7.5(3)  
10  
10  
7.5(3)  
OS51  
OS52  
FSYS  
TLOC  
On-Chip PLL Output(2)  
16  
120  
50  
MHz EC, XT modes with PLL  
PLL Start-up Time (Lock Time)  
20  
μs  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: Limited by device operating frequency range.  
TABLE 23-16: PLL JITTER  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
-40°C TA +85°C  
OS61  
x4 PLL  
0.251 0.413  
0.251 0.413  
%
%
%
%
%
%
%
%
%
%
%
VDD = 3.0 to 3.6V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
VDD = 3.0 to 3.6V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +85°C  
-40°C TA +125°C  
0.256  
0.256  
0.47  
0.47  
x8 PLL  
0.355 0.584  
0.355 0.584  
0.362 0.664  
0.362 0.664  
x16 PLL  
0.67  
0.92  
0.632 0.956  
0.632 0.956  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 23-17: INTERNAL CLOCK TIMING EXAMPLES  
Clock  
FOSC  
MIPS(3)  
MIPS(3)  
w/PLL x4  
MIPS(3)  
w/PLL x8  
MIPS(3)  
w/PLL x16  
Oscillator  
Mode  
TCY (μsec)(2)  
(MHz)(1)  
w/o PLL  
EC  
0.200  
4
20.0  
1.0  
0.05  
1.0  
4.0  
10.0  
8.0  
20.0  
16.0  
10  
25  
4
0.4  
2.5  
0.16  
1.0  
6.25  
1.0  
XT  
4.0  
10.0  
8.0  
20.0  
16.0  
10  
0.4  
2.5  
DS70117F-page 184  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-17: INTERNAL CLOCK TIMING EXAMPLES  
Note 1: Assumption: Oscillator Postscaler is divide by 1.  
2: Instruction Execution Cycle Time: TCY = 1 / MIPS.  
3: Instruction Execution Frequency: MIPS = (FOSC * PLLx)/4 [since there are 4 Q clocks per instruction  
cycle].  
TABLE 23-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY(2)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Jitter @ FRC Freq. = 7.37 MHz(1)  
OS62  
FRC  
+0.04 +0.16  
+0.07 +0.23  
%
%
-40°C TA +85°C  
VDD = 3.0-3.6V  
VDD = 4.5-5.5V  
-40°C TA +125°C  
Internal FRC Accuracy @ FRC Freq. = 7.37 MHz(1)  
FRC +1.50  
Internal FRC Drift @ FRC Freq. = 7.37 MHz(1)  
OS63  
OS64  
%
-40°C TA +125°C  
VDD = 3.0-5.5V  
-0.7  
-0.7  
-0.7  
-0.7  
0.5  
0.7  
0.5  
0.7  
%
%
%
%
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
VDD = 4.5-5.5V  
VDD = 4.5-5.5V  
Note 1: Frequency calibrated at 7.372 MHz ±2%, 25°C and 5V. TUN <3:0> bits can be used to compensate for  
temperature drift.  
2: Overall FRC variation can be calculated by adding the absolute values of jitter, accuracy and drift percent-  
ages.  
TABLE 23-19: INTERNAL RC ACCURACY  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ Freq. = 512 kHz(1)  
OS65  
-35  
+35  
%
Note 1: Change of LPRC frequency as VDD changes.  
© 2006 Microchip Technology Inc.  
DS70117F-page 185  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-5:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-20: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)(2)(3)  
Min  
Typ(4)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port output rise time  
7
7
20  
20  
ns  
ns  
ns  
ns  
Port output fall time  
INTx pin high or low time (output)  
CNx high or low time (input)  
20  
DI40  
2 TCY  
Note 1: These parameters are asynchronous events not related to any internal clock edges  
2: Measurements are taken in RC mode and EC mode where CLKO output is 4 x TOSC.  
3: These parameters are characterized but not tested in manufacturing.  
4: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
DS70117F-page 186  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10  
SY11  
TmcL  
MCLR Pulse Width (low)  
Power-up Timer Period  
2
μs  
-40°C to +85°C  
TPWRT  
3
4
6
ms  
-40°C to +85°C  
12  
50  
16  
64  
22  
90  
User programmable  
SY12  
SY13  
TPOR  
TIOZ  
Power On Reset Delay  
3
10  
30  
μs  
μs  
-40°C to +85°C  
I/O High-impedance from MCLR  
Low or Watchdog Timer Reset  
0.8  
1.0  
SY20  
TWDT1  
TWDT2  
Watchdog Timer Time-out Period  
(No Prescaler)  
1.4  
1.4  
2.1  
2.1  
2.8  
2.8  
ms  
ms  
VDD = 3.3V, -40°C to  
+85°C  
VDD = 5.0V, -40°C to  
+85°C  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
3: Refer to Figure 23-2 and Table 23-11 for BOR.  
© 2006 Microchip Technology Inc.  
DS70117F-page 187  
dsPIC30F6011/6012/6013/6014  
TABLE 23-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY25  
SY30  
SY35  
TBOR  
TOST  
Brown-out Reset Pulse Width(3)  
Oscillation Start-up Timer Period  
Fail-Safe Clock Monitor Delay  
100  
1024 TOSC  
500  
μs  
μs  
VDD VBOR (D034)  
TOSC = OSC1 period  
-40°C to +85°C  
TFSCM  
900  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
3: Refer to Figure 23-2 and Table 23-11 for BOR.  
FIGURE 23-7:  
BAND GAP START-UP TIME CHARACTERISTICS  
VBGAP  
0V  
Enable Band Gap  
(see Note)  
Band Gap  
Stable  
SY40  
Note: Set LVDEN bit (RCON<12>) or the BOREN bit (FBORPOR<7>).  
TABLE 23-22: BAND GAP START-UP TIME REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(1)  
Band Gap Start-up Time  
Min Typ(2) Max Units  
Conditions  
SY40  
TBGAP  
40 65  
µs Defined as the time between the  
instant that the band gap is enabled  
and the moment that the band gap  
reference voltage is stable.  
RCON<13>Status bit  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
DS70117F-page 188  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-8:  
TYPE A, B AND C TIMER EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
OS60  
Tx20  
TMRX  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-23: TYPE A TIMER (TIMER1) EXTERNAL CLOCK TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TTXH  
Characteristic  
Synchronous,  
Min  
Typ  
Max Units  
Conditions  
TA10  
TxCK High Time  
0.5 TCY + 20  
ns  
ns  
Must also meet  
parameter TA15  
no prescaler  
Synchronous,  
with prescaler  
10  
Asynchronous  
10  
ns  
ns  
TA11  
TA15  
TTXL  
TTXP  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
TA20  
Ft1  
SOSC1/T1CK oscillator input  
DC  
50  
kHz  
frequency range (oscillator enabled  
by setting bit TCS (T1CON, bit 1))  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5  
TCY  
Note 1: Timer1 is a Type A.  
© 2006 Microchip Technology Inc.  
DS70117F-page 189  
dsPIC30F6011/6012/6013/6014  
TABLE 23-24: TYPE B TIMER (TIMER2 AND TIMER4) EXTERNAL CLOCK TIMING  
REQUIREMENTS(1)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TtxH  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TB10  
TxCK High Time Synchronous, 0.5 TCY + 20  
no prescaler  
ns  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
ns  
ns  
ns  
ns  
TB11  
TB15  
TtxL  
TtxP  
TxCK Low Time  
Synchronous, 0.5 TCY + 20  
no prescaler  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TB20  
TCKEXT-  
MRL  
Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: Timer2 and Timer4 are Type B.  
TABLE 23-25: TYPE C TIMER (TIMER3 AND TIMER5) EXTERNAL CLOCK TIMING  
REQUIREMENTS(1)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
TtxH  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TC10  
TC11  
TC15  
TxCK High Time  
TxCK Low Time  
Synchronous  
Synchronous  
0.5 TCY + 20  
ns  
ns  
ns  
Must also meet  
parameter TC15  
TtxL  
TtxP  
0.5 TCY + 20  
TCY + 10  
Must also meet  
parameter TC15  
TxCK Input Period Synchronous,  
no prescaler  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TC20  
TCKEXT-  
MRL  
Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5  
TCY  
Note 1: Timer3 and Timer5 are Type C.  
DS70117F-page 190  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-9:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICX  
IC10  
IC11  
IC15  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-26: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(2 TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 23-10:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See Parameter D032  
See Parameter D031  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
© 2006 Microchip Technology Inc.  
DS70117F-page 191  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-11:  
OCFA/OCFB  
OCx  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OC15  
TABLE 23-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC15 TFD  
Fault Input to PWM I/O  
Change  
50  
ns  
OC20 TFLT  
Fault Input Pulse Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
DS70117F-page 192  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-12:  
DCI MODULE (MULTICHANNEL, I2S MODES) TIMING CHARACTERISTICS  
CSCK  
(SCKE =  
0
)
)
CS11  
CS10  
CS21  
CS20  
CS20  
CS21  
CSCK  
(SCKE =  
1
COFS  
CS55 CS56  
CS35  
70  
CS51  
HIGH-Z  
CS50  
LSb  
HIGH-Z  
MSb  
CSDO  
CSDI  
CS30  
CS31  
LSb IN  
MSb IN  
CS40 CS41  
Note: Refer to Figure 23-3 for load conditions.  
© 2006 Microchip Technology Inc.  
DS70117F-page 193  
dsPIC30F6011/6012/6013/6014  
TABLE 23-29: DCI MODULE (MULTICHANNEL, I2S MODES) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
CS10  
TcSCKL  
CSCK Input Low Time  
(CSCK pin is an input)  
TCY/2 + 20  
ns  
CSCK Output Low Time(3)  
(CSCK pin is an output)  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
CS11  
TcSCKH  
CSCK Input High Time  
(CSCK pin is an input)  
CSCK Output High Time(3)  
(CSCK pin is an output)  
CSCK Output Fall Time(4)  
(CSCK pin is an output)  
TCY/2 + 20  
30  
CS20  
CS21  
TcSCKF  
TcSCKR  
CSCK Output Rise Time(4)  
(CSCK pin is an output)  
CS30  
CS31  
CS35  
CS36  
CS40  
TcSDOF  
TcSDOR  
TDV  
CSDO Data Output Fall Time(4)  
CSDO Data Output Rise Time(4)  
Clock edge to CSDO data valid  
Clock edge to CSDO tri-stated  
10  
20  
10  
10  
25  
25  
10  
20  
ns  
ns  
ns  
ns  
ns  
TDIV  
TCSDI  
Setup time of CSDI data input to  
CSCK edge (CSCK pin is input  
or output)  
CS41  
THCSDI  
Hold time of CSDI data input to  
CSCK edge (CSCK pin is input  
or output)  
20  
ns  
(1)  
CS50  
CS51  
CS55  
CS56  
TcoFSF  
COFS Fall Time  
(COFS pin is output)  
20  
20  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
(1)  
TcoFSR  
COFS Rise Time  
(COFS pin is output)  
TscoFS  
Setup time of COFS data input to  
CSCK edge (COFS pin is input)  
THCOFS  
Hold time of COFS data input to  
CSCK edge (COFS pin is input)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all DCI pins.  
DS70117F-page 194  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-13:  
DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS  
BIT_CLK  
(CSCK)  
CS62  
CS71  
CS61  
CS60  
CS21  
CS20  
CS70  
CS72  
SYNC  
(COFS)  
CS76  
CS75  
CS80  
MSb  
LSb  
LSb  
SDO  
(CSDO)  
CS76  
CS75  
MSb IN  
SDI  
(CSDI)  
CS65 CS66  
TABLE 23-30: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)(2)  
BIT_CLK Low Time  
Min  
Typ(3)  
Max  
Units  
Conditions  
CS60  
CS61  
CS62  
CS65  
TBCLKL  
TBCLKH  
TBCLK  
TSACL  
36  
36  
40.7  
40.7  
81.4  
45  
45  
10  
ns  
ns  
ns  
ns  
BIT_CLK High Time  
BIT_CLK Period  
Bit clock is input  
Input Setup Time to  
Falling Edge of BIT_CLK  
CS66  
THACL  
Input Hold Time from  
10  
ns  
Falling Edge of BIT_CLK  
CS70  
CS71  
TSYNCLO SYNC Data Output Low Time(1)  
19.5  
1.3  
μs  
μs  
TSYNCHI  
SYNC Data Output High  
Time(1)  
CS72  
CS75  
TSYNC  
TRACL  
SYNC Data Output Period(1)  
20.8  
10  
μs  
Rise Time, SYNC,  
SDATA_OUT  
25  
ns  
CLOAD = 50 pF, VDD =  
5V  
CS76  
CS77  
TFACL  
TRACL  
Fall Time, SYNC, SDATA_OUT  
10  
25  
ns  
ns  
CLOAD = 50 pF, VDD =  
5V  
Rise Time, SYNC,  
SDATA_OUT  
TBD  
TBD  
CLOAD = 50 pF, VDD =  
3V  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: These values assume BIT_CLK frequency is 12.288 MHz.  
3: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
© 2006 Microchip Technology Inc.  
DS70117F-page 195  
dsPIC30F6011/6012/6013/6014  
TABLE 23-30: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)(2)  
Fall Time, SYNC, SDATA_OUT  
Min  
Typ(3)  
Max  
Units  
Conditions  
CS78  
TFACL  
TBD  
TBD  
ns  
CLOAD = 50 pF, VDD =  
3V  
CS80  
TOVDACL Output valid delay from rising  
edge of BIT_CLK  
15  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: These values assume BIT_CLK frequency is 12.288 MHz.  
3: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
FIGURE 23-14:  
SPI MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
BIT14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb IN  
SP40  
LSb IN  
BIT14 - - - -1  
SP41  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-31: SPI MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
TscL  
TscH  
SCKX Output Low Time(3)  
SCKX Output High Time(3)  
TCY / 2  
TCY/2  
ns  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
DS70117F-page 196  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-31: SPI MASTER MODE (CKE = 0) TIMING REQUIREMENTS (CONTINUED)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscF  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP20  
SCKX Output Fall Time(4)  
ns  
See parameter  
D032  
SP21  
SP30  
SP31  
SP35  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKX Output Rise Time(4)  
20  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
D031  
SDOX Data Output Fall Time(4)  
See parameter  
D032  
SDOX Data Output Rise  
Time(4)  
See parameter  
D031  
TscH2doV, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
TdiV2scH, Setup Time of SDIX Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL to SCKX Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
to SCKX Edge  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
FIGURE 23-15:  
SPI MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
SP20  
LSb  
MSb  
SP40  
BIT14 - - - - - -1  
SDOX  
SDIX  
SP30,SP31  
BIT14 - - - -1  
MSb IN  
SP41  
LSb IN  
Note: Refer to Figure 23-3 for load conditions.  
© 2006 Microchip Technology Inc.  
DS70117F-page 197  
dsPIC30F6011/6012/6013/6014  
TABLE 23-32: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SCKX output low time(3)  
SCKX output high time(3)  
SCKX output fall time(4)  
TCY/2  
TCY/2  
ns  
ns  
ns  
TscH  
TscF  
See parameter  
D032  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKX output rise time(4)  
30  
20  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
D031  
SDOX data output fall time(4)  
SDOX data output rise time(4)  
See parameter  
D032  
See parameter  
D031  
TscH2doV, SDOX data output valid after  
TscL2doV SCKX edge  
TdoV2sc, SDOX data output setup to  
TdoV2scL first SCKX edge  
TdiV2scH, Setup time of SDIX data input  
TdiV2scL to SCKX edge  
TscH2diL, Hold time of SDIX data input  
TscL2diL  
to SCKX edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
FIGURE 23-16:  
SPI MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCK  
(CKP =  
X
0
)
)
SP71  
SP70  
SP72  
SP73  
SCK  
(CKP =  
X
1
SP73  
LSb  
SP72  
SP35  
MSb  
BIT14 - - - - - -1  
SDOX  
SP51  
SP30,SP31  
BIT14 - - - -1  
SDIX  
MSb IN  
SP41  
LSb IN  
Note: Refer to Figure 23-3 for load conditions.  
SP40  
DS70117F-page 198  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-33: SPI MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
TscL  
TscH  
TscF  
TscR  
TdoF  
SCKX Input Low Time  
30  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
SCKX Input High Time  
SCKX Input Fall Time(3)  
SCKX Input Rise Time(3)  
SDOX Data Output Fall Time(3)  
See parameter  
D032  
SP31  
SP35  
SP40  
SP41  
SP50  
SP51  
SP52  
TdoR  
SDOX Data Output Rise Time(3)  
30  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
D031  
TscH2doV, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
TdiV2scH, Setup Time of SDIX Data Input  
TdiV2scL to SCKX Edge  
20  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL  
20  
to SCKX Edge  
TssL2scH, SSXto SCKXor SCKXInput  
TssL2scL  
120  
10  
TssH2doZ SSXto SDOX Output  
Hi-Impedance(3)  
TscH2ssH SSX after SCK Edge  
TscL2ssH  
1.5 TCY +  
40  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: Assumes 50 pF load on all SPI pins.  
© 2006 Microchip Technology Inc.  
DS70117F-page 199  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-17:  
SPI MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKX  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
BIT14 - - - - - -1  
MSb  
SDOX  
SDIX  
SP30,SP31  
BIT14 - - - -1  
SP51  
MSb IN  
SP41  
LSb IN  
SP40  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-34: SPI MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SCKX Input Low Time  
30  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
SCKX Input High Time  
SCKX Input Fall Time(3)  
SCKX Input Rise Time(3)  
SDOX Data Output Fall Time(3)  
See parameter  
D032  
SP31  
SP35  
SP40  
SP41  
TdoR  
SDOX Data Output Rise Time(3)  
20  
20  
30  
ns  
ns  
ns  
ns  
See parameter  
D031  
TscH2doV, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
TdiV2scH, Setup Time of SDIX Data Input  
TdiV2scL to SCKX Edge  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL to SCKX Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
DS70117F-page 200  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-34: SPI MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP50  
TssL2scH, SSXto SCKXor SCKXinput  
TssL2scL  
120  
ns  
SP51  
SP52  
SP60  
TssH2doZ SSto SDOX Output  
10  
1.5 TCY + 40  
50  
50  
ns  
ns  
ns  
Hi-Impedance(4)  
TscH2ssH SSXafter SCKX Edge  
TscL2ssH  
TssL2doV SDOX Data Output Valid after  
SSX Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
FIGURE 23-18:  
I2C™ BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCL  
SDA  
IM31  
IM34  
IM30  
IM33  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 23-3 for load conditions.  
FIGURE 23-19:  
I2C™ BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCL  
IM11  
IM26  
IM10  
IM33  
IM25  
SDA  
In  
IM45  
IM40  
IM40  
SDA  
Out  
Note: Refer to Figure 23-3 for load conditions.  
© 2006 Microchip Technology Inc.  
DS70117F-page 201  
dsPIC30F6011/6012/6013/6014  
TABLE 23-35: I2C™ BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
IM50  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
1 MHz mode(2) TCY/2 (BRG + 1)  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDA and SCL  
Fall Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1 CB  
SDA and SCL  
Rise Time  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1 CB  
250  
100  
TBD  
0
TSU:DAT Data Input  
Setup Time  
THD:DAT Data Input  
Hold Time  
0
0.9  
TBD  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
TBD  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
CB  
Bus Capacitive Loading  
400  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to the “Inter-Integrated Circuit™ (I2C)” section  
in the “dsPIC30F Family Reference Manual” (DS70046).  
2: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
DS70117F-page 202  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-20:  
I2C™ BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCL  
SDA  
IS34  
IS31  
IS30  
IS33  
Stop  
Condition  
Start  
Condition  
FIGURE 23-21:  
I2C™ BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCL  
IS30  
IS26  
IS31  
IS33  
IS25  
SDA  
In  
IS45  
IS40  
IS40  
SDA  
Out  
TABLE 23-36: I2C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
1.3  
Device must operate at a  
minimum of 10 MHz.  
1 MHz mode(1)  
0.5  
4.0  
μs  
μs  
IS11  
THI:SCL  
Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
μs  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
300  
300  
100  
1000  
300  
300  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
IS20  
IS21  
TF:SCL  
TR:SCL  
SDA and SCL  
Fall Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
SDA and SCL  
Rise Time  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
© 2006 Microchip Technology Inc.  
DS70117F-page 203  
dsPIC30F6011/6012/6013/6014  
TABLE 23-36: I2C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
IS25  
TSU:DAT Data Input  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
0.9  
0.3  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
Setup Time  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
THD:DAT Data Input  
Hold Time  
0
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL  
Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive  
Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
DS70117F-page 204  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-22:  
CAN MODULE I/O TIMING CHARACTERISTICS  
CXTX Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CA20  
CXRX Pin  
(input)  
TABLE 23-37: CAN MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
TioF  
TioR  
Tcwf  
CA10  
CA11  
CA20  
Port Output Fall Time  
ns  
See parameter  
D032  
Port Output Rise Time  
ns  
ns  
See parameter  
D031  
Pulse Width to Trigger  
CAN Wake-up Filter  
500  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
© 2006 Microchip Technology Inc.  
DS70117F-page 205  
dsPIC30F6011/6012/6013/6014  
TABLE 23-38: 12-BIT ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 2.7V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD - 0.3  
or 2.7  
Lesser of  
VDD + 0.3  
or 5.5  
V
V
VSS - 0.3  
VSS + 0.3  
Reference Inputs  
AD05  
AD06  
AD07  
VREFH  
VREFL  
VREF  
Reference Voltage High  
Reference Voltage Low  
AVSS + 2.7  
AVSS  
AVDD  
V
V
V
AVDD - 2.7  
AVDD + 0.3  
Absolute Reference  
Voltage  
AVSS - 0.3  
AD08  
IREF  
Current Drain  
180  
.001  
300  
2
μA  
μA  
A/D operating  
A/D off  
Analog Input(1)  
AD10 VINH-VINL Full-Scale Input Span  
VREFL  
VREFH  
AVDD + 0.3  
±0.610  
V
V
See Note 1  
AD11  
AD12  
VIN  
Absolute Input Voltage  
Leakage Current  
AVSS - 0.3  
±0.001  
μA  
VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
Source Impedance =  
2.5 KΩ  
AD13  
Leakage Current  
±0.001  
±0.610  
2.5K  
μA  
VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Source Impedance =  
2.5 KΩ  
AD17 RIN  
Recommended Impedance  
of Analog Voltage Source  
Ω
DC Accuracy(1)  
12 data bits  
AD20 Nr  
Resolution  
bits  
AD21 INL  
Integral Nonlinearity(2)  
<±1  
<±1  
<±1  
<±1  
+3  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
AD21A INL  
Integral Nonlinearity(2)  
Differential Nonlinearity(2)  
Differential Nonlinearity(2)  
Gain Error(2)  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
AD22 DNL  
AD22A DNL  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
AD23  
AD23A GERR  
AD24 EOFF  
GERR  
+1.25  
+1.25  
-2  
+1.5  
+1.5  
-1.5  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
Gain Error(2)  
+3  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Offset Error  
-1.25  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.  
3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
DS70117F-page 206  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-38: 12-BIT ADC MODULE SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 2.7V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Offset Error  
Monotonicity(3)  
Min.  
Typ  
Max.  
Units  
Conditions  
AD24A EOFF  
-2  
-1.5  
-1.25  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
AD25  
Guaranteed  
Dynamic Performance  
AD30 THD  
Total Harmonic Distortion  
-71  
68  
dB  
dB  
AD31 SINAD  
Signal to Noise and  
Distortion  
AD32 SFDR  
Spurious Free Dynamic  
Range  
83  
dB  
AD33  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
100  
kHz  
bits  
AD34 ENOB  
10.95  
11.1  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.  
3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
© 2006 Microchip Technology Inc.  
DS70117F-page 207  
dsPIC30F6011/6012/6013/6014  
FIGURE 23-23:  
12-BIT A/D CONVERSION TIMING CHARACTERISTICS (ASAM = 0, SSRC = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
Clear SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
DONE  
ADIF  
ADRES(0)  
1
2
3
4
5
6
7
8
9
– Software sets ADCON. SAMP to start sampling.  
– Sampling starts after discharge period.  
1
2
TSAMP is described in the “dsPIC30F Family Reference Manual” (DS70046), Section 18.  
– Software clears ADCON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 11.  
3
4
5
6
7
8
9
– Convert bit 10.  
– Convert bit 1.  
– Convert bit 0.  
– One TAD for end of conversion.  
DS70117F-page 208  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
TABLE 23-39: 12-BIT A/D CONVERSION TIMING REQUIREMENTS  
Standard Operating Conditions: 2.7V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
tRC  
A/D Clock Period  
A/D Internal RC Oscillator Period  
334  
1.5  
ns  
VDD = 3-5.5V (Note 1)  
1.2  
1.8  
μs  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
Conversion Time  
Throughput Rate  
Sample Time  
14 TAD  
200  
ns  
ksps  
ns  
VDD = VREF = 3-5.5V  
TSAMP  
1 TAD  
VDD = 3-5.5V  
Source resistance  
Rs = 0-2.5 kΩ  
Timing Parameters  
AD60  
AD61  
AD62  
AD63  
tPCS  
tPSS  
tCSS  
tDPU  
Conversion Start from Sample  
Trigger  
0.5 TAD  
1 TAD  
ns  
ns  
ns  
μs  
Sample Start from Setting  
Sample (SAMP) Bit  
1.5  
TAD  
Conversion Completion to  
Sample Start (ASAM = 1)  
0.5 TAD  
20  
Time to Stabilize Analog Stage  
from A/D Off to A/D On  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
© 2006 Microchip Technology Inc.  
DS70117F-page 209  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 210  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
24.0 PACKAGING INFORMATION  
24.1 Package Marking Information  
64-Lead TQFP (14x14x1mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
dsPIC30F6011  
-30I/PF  
041444R  
e
3
80-Lead TQFP (14x14x1mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
dsPIC30F6014  
-30I/PF  
041444R  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
DS70117F-page 211  
dsPIC30F6011/6012/6013/6014  
64-Lead Plastic Thin Quad Flatpack (PF) 14x14x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
#leads = n1  
p
D1 D  
B
2
1
n
α
A
c
A1  
A2  
φ
β
L
(F)  
Units  
INCHES  
NOM  
64  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
64  
MAX  
n
p
Number of Pins  
Pitch  
.031 BSC  
16  
0.80 BSC  
16  
Pins per Side  
n1  
A
Overall Height  
Molded Package Thickness  
Standoff  
.047  
.041  
.006  
.030  
1.20  
A2  
A1  
L
.037  
.039  
0.95  
1.00  
1.05  
0.15  
0.75  
.002  
.018  
0.05  
0.45  
Foot Length  
.024  
.039 REF  
3.5  
.630 BSC  
0.60  
1.00 REF  
3.5  
(F)  
φ
Footprint  
Foot Angle  
0
7
0
7
Overall Width  
E
D
16.00 BSC  
16.00 BSC  
14.00 BSC  
14.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
.630 BSC  
.551 BSC  
.551 BSC  
E1  
D1  
c
.004  
.012  
11  
.008  
.018  
13  
0.09  
0.30  
11  
0.20  
0.45  
13  
B
.015  
0.37  
12  
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
12  
12  
β
11  
13  
11  
12  
13  
*
Controlling Parameter  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
JEDEC Equivalent: MS-026  
Revised 7-20-06  
Drawing No. C04-066  
DS70117F-page 212  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
80-Lead Plastic Thin Quad Flatpack (PF) 14x14x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
#leads = n1  
p
D1 D  
B
2
1
n
α
c
φ
A
β
A1  
(F)  
A2  
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
80  
MAX  
n
p
Number of Pins  
Pitch  
80  
.026  
20  
0.65  
20  
Pins per Side  
n1  
A
Overall Height  
Molded Package Thickness  
Standoff  
.047  
1.20  
A2  
A1  
L
.037  
.039  
.041  
.006  
.030  
0.95  
0.05  
1.00  
1.05  
0.15  
0.75  
.002  
.018  
Foot Length  
.024  
.039 REF.  
3.5°  
0.45  
0.60  
1.00 REF.  
3.5°  
Footprint  
F
φ
Foot Angle  
0°  
7°  
0°  
7°  
Overall Width  
E
D
.630 BSC  
.630 BSC  
.551 BSC  
.551 BSC  
16.00 BSC  
16.00 BSC  
14.00 BSC  
14.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
.004  
.011  
11°  
.008  
.015  
13°  
0.09  
0.27  
11°  
0.20  
0.37  
13°  
B
.013  
12°  
12°  
0.32  
12°  
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
11°  
13°  
11°  
12°  
13°  
*
Controlling Parameter  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MS-026  
Drawing No. C04-116  
Revised 7-20-06  
© 2006 Microchip Technology Inc.  
DS70117F-page 213  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 214  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
APPENDIX A: REVISION HISTORY  
Revision F (November 2006)  
Previous versions of this data sheet contained  
Advance or Preliminary Information. They were distrib-  
uted with incomplete characterization data.  
Revision F of this document reflects the following  
updates:  
• Supported I2C Slave Addresses  
(see Table 15-1)  
• ADC Conversion Clock selection to allow 200 kHz  
sampling rate (see Section 19.0 “12-bit Analog-  
to-Digital Converter (A/D) Module”)  
• Operating Current (Idd) Specifications  
(see Table 23-5)  
• BOR voltage limits  
(see Table 23-11)  
• I/O pin Input Specifications  
(see Table 23-8)  
• Watchdog Timer time-out limits  
(see Table 23-21)  
© 2006 Microchip Technology Inc.  
DS70117F-page 215  
dsPIC30F6011/6012/6013/6014  
NOTES:  
DS70117F-page 216  
© 2006 Microchip Technology Inc.  
dsPIC30F6011A/6012A/6013A/6014A  
Dedicated Port Structure ............................................ 63  
DSP Engine................................................................ 20  
dsPIC30F6011/6012/6013/6014................................. 10  
dsPIC30F6013/6014................................................... 11  
INDEX  
A
A/D.................................................................................... 135  
Aborting a Conversion .............................................. 137  
ADCHS Register....................................................... 135  
ADCON1 Register..................................................... 135  
ADCON2 Register..................................................... 135  
ADCON3 Register..................................................... 135  
ADCSSL Register ..................................................... 135  
ADPCFG Register..................................................... 135  
Configuring Analog Port Pins.............................. 64, 143  
Connection Considerations....................................... 143  
Conversion Operation............................................... 136  
Effects of a Reset...................................................... 142  
Operation During CPU Idle Mode ............................. 142  
Operation During CPU Sleep Mode.......................... 142  
Output Formats......................................................... 142  
Power-down Modes .................................................. 142  
Programming the Sample Trigger............................. 137  
Register Map............................................................. 144  
Result Buffer ............................................................. 136  
Sampling Requirements............................................ 141  
Selecting the Conversion Sequence......................... 136  
AC Characteristics ............................................................ 182  
Load Conditions........................................................ 182  
AC Temperature and Voltage Specifications.................... 182  
AC-Link Mode Operation .................................................. 132  
16-bit Mode............................................................... 132  
20-bit Mode............................................................... 132  
ADC  
External Power-on Reset Circuit .............................. 153  
2
I C .............................................................................. 96  
Input Capture Mode.................................................... 83  
Oscillator System...................................................... 147  
Output Compare Mode............................................... 87  
Reset System ........................................................... 151  
Shared Port Structure................................................. 64  
SPI.............................................................................. 92  
SPI Master/Slave Connection..................................... 92  
UART Receiver......................................................... 104  
UART Transmitter..................................................... 103  
BOR Characteristics ......................................................... 181  
BOR. See Brown-out Reset.  
Brown-out Reset  
Characteristics.......................................................... 180  
Timing Requirements ............................................... 187  
C
C Compilers  
MPLAB C18.............................................................. 170  
MPLAB C30.............................................................. 170  
CAN Module ..................................................................... 111  
Baud Rate Setting .................................................... 116  
CAN1 Register Map.................................................. 118  
Frame Types ............................................................ 111  
I/O Timing Characteristics ........................................ 205  
I/O Timing Requirements.......................................... 205  
Message Reception.................................................. 114  
Message Transmission............................................. 115  
Modes of Operation.................................................. 113  
Overview................................................................... 111  
CLKO and I/O Timing  
Selecting the Conversion Clock................................ 137  
ADC Conversion Speeds.................................................. 138  
Address Generator Units .................................................... 39  
Alternate Vector Table ........................................................ 49  
Analog-to-Digital Converter. See A/D.  
Characteristics.......................................................... 186  
Requirements ........................................................... 186  
Code Examples  
Assembler  
MPASM Assembler................................................... 170  
Automatic Clock Stretch...................................................... 98  
During 10-bit Addressing (STREN = 1)....................... 98  
During 7-bit Addressing (STREN = 1)......................... 98  
Receive Mode............................................................. 98  
Transmit Mode............................................................ 98  
Data EEPROM Block Erase ....................................... 58  
Data EEPROM Block Write ........................................ 60  
Data EEPROM Read.................................................. 57  
Data EEPROM Word Erase ....................................... 58  
Data EEPROM Word Write ........................................ 59  
Erasing a Row of Program Memory ........................... 53  
Initiating a Programming Sequence ........................... 54  
Loading Write Latches................................................ 54  
Code Protection................................................................ 145  
Core Architecture  
Overview..................................................................... 15  
CPU Architecture Overview................................................ 15  
Customer Change Notification Service............................. 223  
Customer Notification Service .......................................... 223  
Customer Support............................................................. 223  
B
Band Gap Start-up Time  
Requirements............................................................ 188  
Timing Characteristics .............................................. 188  
Barrel Shifter ....................................................................... 23  
Bit-Reversed Addressing .................................................... 42  
Example...................................................................... 43  
Implementation ........................................................... 42  
Modifier Values Table ................................................. 43  
Sequence Table (16-Entry)......................................... 43  
Block Diagrams  
12-bit A/D Functional ................................................ 135  
16-bit Timer1 Module.................................................. 70  
16-bit Timer2............................................................... 75  
16-bit Timer3............................................................... 75  
16-bit Timer4............................................................... 80  
16-bit Timer5............................................................... 80  
32-bit Timer2/3............................................................ 74  
32-bit Timer4/5............................................................ 79  
CAN Buffers and Protocol Engine............................. 112  
DCI Module............................................................... 126  
© 2006 Microchip Technology Inc.  
DS70143C-page 217  
dsPIC30F6011A/6012A/6013A/6014A  
Receive Slot Enable Bits .......................................... 130  
D
Receive Status Bits................................................... 131  
Register Map ............................................................ 134  
Sample Clock Edge Control Bit ................................ 130  
Slave Frame Sync Operation.................................... 128  
Slot Enable Bits Operation with Frame Sync............ 130  
Slot Status Bits ......................................................... 132  
Synchronous Data Transfers.................................... 130  
Timing Characteristics  
Data Accumulators and Adder/Subtractor...........................21  
Data Space Write Saturation ......................................23  
Overflow and Saturation .............................................21  
Round Logic................................................................22  
Write Back...................................................................22  
Data Address Space ...........................................................31  
Alignment....................................................................34  
Alignment (Figure) ......................................................35  
Effect of Invalid Memory Accesses (Table).................34  
MCU and DSP (MAC Class) Instructions Example.....34  
Memory Map ...............................................................31  
Memory Map for dsPIC30F6011/6013........................32  
Memory Map for dsPIC30F6012/6014........................33  
Near Data Space ........................................................35  
Software Stack............................................................35  
Spaces........................................................................31  
Width...........................................................................34  
Data Converter Interface (DCI) Module ............................125  
Data EEPROM Memory......................................................57  
Erasing........................................................................58  
Erasing, Block.............................................................58  
Erasing, Word .............................................................58  
Protection Against Spurious Write ..............................61  
Reading.......................................................................57  
Write Verify .................................................................61  
Writing.........................................................................59  
Writing, Block..............................................................60  
Writing, Word ..............................................................59  
DC Characteristics ............................................................173  
BOR ..........................................................................181  
Brown-out Reset .......................................................180  
I/O Pin Input Specifications.......................................178  
I/O Pin Output Specifications ....................................179  
Idle Current (IIDLE) ....................................................176  
Low-Voltage Detect...................................................179  
LVDL .........................................................................180  
Operating Current (IDD).............................................175  
Power-Down Current (IPD) ........................................177  
Program and EEPROM.............................................181  
DCI Module  
AC-Link Mode................................................... 195  
2
Multichannel, I S Modes................................... 193  
Timing Requirements  
AC-Link Mode................................................... 195  
2
Multichannel, I S Modes................................... 194  
Transmit Slot Enable Bits ......................................... 130  
Transmit Status Bits.................................................. 131  
Transmit/Receive Shift Register ............................... 125  
Underflow Mode Control Bit...................................... 132  
Word Size Selection Bits .......................................... 127  
Development Support....................................................... 169  
Device Configuration  
Register Map ............................................................ 159  
Device Configuration Registers  
FBORPOR................................................................ 157  
FGS .......................................................................... 157  
FOSC........................................................................ 157  
FWDT ....................................................................... 157  
Device Overview................................................................... 9  
Disabling the UART .......................................................... 105  
Divide Support .................................................................... 18  
Instructions (Table)..................................................... 18  
DSP Engine ........................................................................ 19  
Multiplier ..................................................................... 21  
Dual Output Compare Match Mode.................................... 88  
Continuous Pulse Mode.............................................. 88  
Single Pulse Mode...................................................... 88  
E
Electrical Characteristics .................................................. 173  
AC............................................................................. 182  
DC ............................................................................ 173  
Enabling and Setting Up UART  
Bit Clock Generator...................................................129  
Buffer Alignment with Data Frames ..........................131  
Buffer Control............................................................125  
Buffer Data Alignment...............................................125  
Buffer Length Control................................................131  
COFS Pin..................................................................125  
CSCK Pin..................................................................125  
CSDI Pin ...................................................................125  
CSDO Mode Bit ........................................................132  
CSDO Pin .................................................................125  
Data Justification Control Bit.....................................130  
Device Frequencies for Common Codec  
CSCK Frequencies (Table)...............................129  
Digital Loopback Mode .............................................132  
Enable.......................................................................127  
Frame Sync Generator .............................................127  
Frame Sync Mode Control Bits.................................127  
I/O Pins .....................................................................125  
Interrupts...................................................................132  
Introduction ...............................................................125  
Master Frame Sync Operation..................................127  
Operation ..................................................................127  
Operation During CPU Idle Mode .............................132  
Operation During CPU Sleep Mode..........................132  
Setting Up Data, Parity and Stop Bit Selections....... 105  
Enabling the UART........................................................... 105  
Equations  
ADC Conversion Clock............................................. 137  
Baud Rate................................................................. 107  
Bit Clock Frequency.................................................. 129  
COFSG Period.......................................................... 127  
Serial Clock Rate...................................................... 100  
Time Quantum for Clock Generation........................ 117  
Errata.................................................................................... 8  
External Clock Timing Characteristics  
Type A, B and C Timer ............................................. 189  
External Clock Timing Requirements ............................... 183  
Type A Timer ............................................................ 189  
Type B Timer ............................................................ 190  
Type C Timer............................................................ 190  
External Interrupt Requests................................................ 49  
DS70143C-page 218  
© 2006 Microchip Technology Inc.  
dsPIC30F6011A/6012A/6013A/6014A  
Input Change Notification Module....................................... 67  
Register Map for dsPIC30F6011/6012 (Bits 15-8) ..... 67  
F
Fast Context Saving............................................................ 49  
Flash Program Memory ...................................................... 51  
Control Registers ........................................................ 52  
NVMADR ............................................................ 52  
NVMADRU.......................................................... 52  
NVMCON............................................................ 52  
NVMKEY............................................................. 52  
Register Map for dsPIC30F6011/6012 (Bits 7-0) ....... 67  
Register Map for dsPIC30F6013/6014 (Bits 15-8) ..... 67  
Register Map for dsPIC30F6013/6014 (Bits 7-0) ....... 67  
Instruction Addressing Modes ............................................ 39  
File Register Instructions............................................ 39  
Fundamental Modes Supported ................................. 39  
MAC Instructions ........................................................ 40  
MCU Instructions........................................................ 39  
Move and Accumulator Instructions ........................... 40  
Other Instructions ....................................................... 40  
Instruction Set  
Overview................................................................... 164  
Summary .................................................................. 161  
Internet Address ............................................................... 223  
Interrupt Controller  
Register Map .............................................................. 50  
Interrupt Priority.................................................................. 46  
Interrupt Sequence ............................................................. 48  
Interrupt Stack Frame................................................. 49  
Interrupts ............................................................................ 45  
I
I/O Pin Specifications  
Input.......................................................................... 178  
Output ....................................................................... 179  
I/O Ports.............................................................................. 63  
Parallel (PIO) .............................................................. 63  
2
I C 10-bit Slave Mode Operation ........................................ 97  
Reception.................................................................... 98  
Transmission............................................................... 97  
2
I C 7-bit Slave Mode Operation.......................................... 97  
Reception.................................................................... 97  
Transmission............................................................... 97  
2
I C Master Mode Operation ................................................ 99  
Baud Rate Generator................................................ 100  
Clock Arbitration........................................................ 100  
Multi-Master Communication, Bus Collision  
and Bus Arbitration ........................................... 100  
Reception.................................................................... 99  
Transmission............................................................... 99  
L
Load Conditions................................................................ 182  
Low Voltage Detect (LVD)................................................ 156  
Low-Voltage Detect Characteristics.................................. 179  
LVDL Characteristics........................................................ 180  
2
I C Master Mode Support ................................................... 99  
M
2
I C Module .......................................................................... 95  
Memory Organization ......................................................... 25  
Core Register Map ..................................................... 35  
Microchip Internet Web Site.............................................. 223  
Modes of Operation  
Addresses................................................................... 97  
Bus Data Timing Characteristics  
Master Mode..................................................... 201  
Slave Mode....................................................... 203  
Bus Data Timing Requirements  
Master Mode..................................................... 202  
Slave Mode....................................................... 203  
Bus Start/Stop Bits Timing Characteristics  
Master Mode..................................................... 201  
Slave Mode....................................................... 203  
General Call Address Support .................................... 99  
Interrupts..................................................................... 98  
IPMI Support............................................................... 99  
Operating Function Description .................................. 95  
Operation During CPU Sleep and Idle Modes .......... 100  
Pin Configuration ........................................................ 95  
Programmer’s Model................................................... 95  
Register Map............................................................. 101  
Registers..................................................................... 95  
Slope Control .............................................................. 99  
Software Controlled Clock Stretching (STREN = 1).... 98  
Various Modes............................................................ 95  
Disable...................................................................... 113  
Initialization............................................................... 113  
Listen All Messages.................................................. 113  
Listen Only................................................................ 113  
Loopback.................................................................. 113  
Normal Operation ..................................................... 113  
Modulo Addressing............................................................. 40  
Applicability................................................................. 42  
Operation Example..................................................... 41  
Start and End Address ............................................... 41  
W Address Register Selection.................................... 41  
MPLAB ASM30 Assembler, Linker, Librarian................... 170  
MPLAB ICD 2 In-Circuit Debugger ................................... 171  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator.................................................... 171  
MPLAB Integrated Development Environment Software.. 169  
MPLAB PM3 Device Programmer .................................... 171  
MPLAB REAL ICE In-Circuit Emulator System ................ 171  
MPLINK Object Linker/MPLIB Object Librarian................ 170  
2
I S Mode Operation .......................................................... 133  
Data Justification....................................................... 133  
Frame and Data Word Length Selection................... 133  
Idle Current (IIDLE) ............................................................ 176  
In-Circuit Serial Programming (ICSP)......................... 51, 145  
Input Capture (CAPX) Timing Characteristics .................. 191  
Input Capture Module ......................................................... 83  
Interrupts..................................................................... 84  
Register Map............................................................... 85  
Input Capture Operation During Sleep and Idle Modes...... 84  
CPU Idle Mode............................................................ 84  
CPU Sleep Mode ........................................................ 84  
Input Capture Timing Requirements................................. 191  
N
NVM  
Register Map .............................................................. 55  
© 2006 Microchip Technology Inc.  
DS70143C-page 219  
dsPIC30F6011A/6012A/6013A/6014A  
Program Address Space..................................................... 25  
O
Construction ............................................................... 27  
Data Access from Program Memory  
Using Program Space Visibility .......................... 29  
Data Access from Program Memory Using  
OC/PWM Module Timing Characteristics..........................192  
Operating Current (IDD).....................................................175  
Oscillator  
Configurations...........................................................148  
Fail-Safe Clock Monitor.....................................149  
Fast RC (FRC)..................................................149  
Initial Clock Source Selection ...........................148  
Low Power RC (LPRC).....................................149  
LP Oscillator Control.........................................148  
Phase Locked Loop (PLL) ................................149  
Start-up Timer (OST) ........................................148  
Operating Modes (Table) ..........................................146  
System Overview ......................................................145  
Oscillator Selection ...........................................................145  
Oscillator Start-up Timer  
Timing Characteristics ..............................................187  
Timing Requirements................................................187  
Output Compare Interrupts .................................................89  
Output Compare Module.....................................................87  
Register Map...............................................................90  
Timing Characteristics ..............................................191  
Timing Requirements................................................191  
Output Compare Operation During CPU Idle Mode............89  
Output Compare Sleep Mode Operation.............................89  
Table Instructions ............................................... 28  
Data Access from, Address Generation ..................... 27  
Data Space Window into Operation............................ 30  
Data Table Access (LS Word) .................................... 28  
Data Table Access (MS Byte)..................................... 29  
Memory Map for dsPIC30F6011/6013........................ 26  
Memory Map for dsPIC30F6012/6014........................ 26  
Table Instructions  
TBLRDH ............................................................. 28  
TBLRDL.............................................................. 28  
TBLWTH............................................................. 28  
TBLWTL ............................................................. 28  
Program and EEPROM Characteristics............................ 181  
Program Counter ................................................................ 16  
Programmable .................................................................. 145  
Programmer’s Model .......................................................... 16  
Diagram ...................................................................... 17  
Programming Operations.................................................... 53  
Algorithm for Program Flash....................................... 53  
Erasing a Row of Program Memory............................ 53  
Initiating the Programming Sequence......................... 54  
Loading Write Latches................................................ 54  
Protection Against Accidental Writes to OSCCON........... 150  
P
Packaging Information ......................................................211  
Marking .....................................................................211  
Peripheral Module Disable (PMD) Registers ....................158  
PICSTART Plus Development Programmer .....................172  
Pinout Descriptions .............................................................12  
PLL Clock Timing Specifications.......................................184  
POR. See Power-on Reset.  
R
Reader Response............................................................. 224  
Reset ........................................................................ 145, 151  
BOR, Programmable ................................................ 153  
Brown-out Reset (BOR)............................................ 145  
Oscillator Start-up Timer (OST)................................ 145  
POR  
Operating without FSCM and PWRT................ 153  
With Long Crystal Start-up Time ...................... 153  
POR (Power-on Reset)............................................. 151  
Power-on Reset (POR)............................................. 145  
Power-up Timer (PWRT).......................................... 145  
Reset Sequence ................................................................. 47  
Reset Sources............................................................ 47  
Reset Sources  
Brown-out Reset (BOR).............................................. 47  
Illegal Instruction Trap ................................................ 47  
Trap Lockout............................................................... 47  
Uninitialized W Register Trap ..................................... 47  
Watchdog Time-out .................................................... 47  
Reset Timing Characteristics............................................ 187  
Reset Timing Requirements ............................................. 187  
RTSP Operation ................................................................. 52  
Run-Time Self-Programming (RTSP)................................. 51  
PORTA  
Register Map for dsPIC30F6013/6014 .......................65  
PORTB  
Register Map for dsPIC30F6011/6012/6013/6014 .....65  
PORTC  
Register Map for dsPIC30F6011/6012 .......................65  
Register Map for dsPIC30F6013/6014 .......................65  
PORTD  
Register Map for dsPIC30F6011/6012 .......................66  
Register Map for dsPIC30F6013/6014 .......................66  
PORTF  
Register Map for dsPIC30F6011/6012 .......................66  
Register Map for dsPIC30F6013/6014 .......................66  
PORTG  
Register Map for dsPIC30F6011/6012/6013/6014 .....66  
Power Saving Modes ........................................................156  
Idle ............................................................................157  
Sleep.........................................................................156  
Sleep and Idle...........................................................145  
Power-Down Current (IPD) ................................................177  
Power-up Timer  
Timing Characteristics ..............................................187  
Timing Requirements................................................187  
DS70143C-page 220  
© 2006 Microchip Technology Inc.  
dsPIC30F6011A/6012A/6013A/6014A  
Timer2/3 Module................................................................. 73  
16-bit Timer Mode ...................................................... 73  
S
Serial Peripheral Interface. See SPI.  
32-bit Synchronous Counter Mode............................. 73  
32-bit Timer Mode ...................................................... 73  
ADC Event Trigger ..................................................... 76  
Gate Operation........................................................... 76  
Interrupt ...................................................................... 76  
Operation During Sleep Mode.................................... 76  
Register Map .............................................................. 77  
Timer Prescaler .......................................................... 76  
Timer4/5 Module................................................................. 79  
Register Map .............................................................. 81  
Timing Characteristics  
Simple Capture Event Mode ............................................... 83  
Buffer Operation.......................................................... 84  
Hall Sensor Mode ....................................................... 84  
Prescaler..................................................................... 83  
Timer2 and Timer3 Selection Mode............................ 84  
Simple OC/PWM Mode Timing Requirements.................. 192  
Simple Output Compare Match Mode................................. 88  
Simple PWM Mode ............................................................. 88  
Input Pin Fault Protection............................................ 88  
Period.......................................................................... 89  
Software Simulator (MPLAB SIM)..................................... 170  
Software Stack Pointer, Frame Pointer............................... 16  
Call Stack Frame ........................................................ 35  
SPI ...................................................................................... 91  
SPI Module ......................................................................... 91  
Framed SPI Support ................................................... 91  
Operating Function Description .................................. 91  
Operation During CPU Idle Mode ............................... 93  
Operation During CPU Sleep Mode............................ 93  
SDOx Disable ............................................................. 91  
Slave Select Synchronization ..................................... 93  
SPI1 Register Map...................................................... 94  
SPI2 Register Map...................................................... 94  
Timing Characteristics  
A/D Conversion  
Low-speed (ASAM = 0, SSRC = 000) .............. 208  
Band Gap Start-up Time........................................... 188  
CAN Module I/O ....................................................... 205  
CLKO and I/O........................................................... 186  
DCI Module  
AC-Link Mode................................................... 195  
2
Multichannel, I S Modes................................... 193  
External Clock .......................................................... 182  
2
I C Bus Data  
Master Mode..................................................... 201  
Slave Mode ...................................................... 203  
I C Bus Start/Stop Bits  
2
Master Mode..................................................... 201  
Slave Mode ...................................................... 203  
Input Capture (CAPX)............................................... 191  
OC/PWM Module...................................................... 192  
Oscillator Start-up Timer........................................... 187  
Output Compare Module .......................................... 191  
Power-up Timer........................................................ 187  
Reset ........................................................................ 187  
SPI Module  
Master Mode (CKE = 0).................................... 196  
Master Mode (CKE = 1).................................... 197  
Slave Mode (CKE = 1).............................. 198, 200  
Timing Requirements  
Master Mode (CKE = 0).................................... 196  
Master Mode (CKE = 1).................................... 198  
Slave Mode (CKE = 0)...................................... 199  
Slave Mode (CKE = 1)...................................... 200  
Word and Byte Communication .................................. 91  
Status Bits, Their Significance and the Initialization  
Condition for RCON Register, Case 1 ...................... 154  
Status Bits, Their Significance and the Initialization  
Condition for RCON Register, Case 2 ...................... 155  
Status Register ................................................................... 16  
Symbols Used in Opcode Descriptions............................. 162  
System Integration ............................................................ 145  
Register Map............................................................. 159  
Master Mode (CKE = 0).................................... 196  
Master Mode (CKE = 1).................................... 197  
Slave Mode (CKE = 0)...................................... 198  
Slave Mode (CKE = 1)...................................... 200  
Type A, B and C Timer External Clock..................... 189  
Watchdog Timer ....................................................... 187  
Timing Diagrams  
CAN Bit..................................................................... 116  
Frame Sync, AC-Link Start of Frame ....................... 128  
Frame Sync, Multi-Channel Mode............................ 128  
T
2
I S Interface Frame Sync ......................................... 128  
Table Instruction Operation Summary ................................ 51  
Temperature and Voltage Specifications  
PWM Output............................................................... 89  
Time-out Sequence on Power-up (MCLR  
AC............................................................................. 182  
Timer1 Module .................................................................... 69  
16-bit Asynchronous Counter Mode ........................... 69  
16-bit Synchronous Counter Mode ............................. 69  
16-bit Timer Mode....................................................... 69  
Gate Operation ........................................................... 70  
Interrupt....................................................................... 71  
Operation During Sleep Mode .................................... 70  
Prescaler..................................................................... 70  
Real-Time Clock ......................................................... 71  
Interrupts............................................................. 71  
Oscillator Operation............................................ 71  
Register Map............................................................... 72  
Timer2 and Timer3 Selection Mode.................................... 88  
Not Tied to VDD), Case 1.................................. 152  
Time-out Sequence on Power-up (MCLR  
Not Tied to VDD), Case 2.................................. 152  
Time-out Sequence on Power-up (MCLR  
Tied to VDD)...................................................... 152  
Timing Diagrams.See Timing Characteristics  
© 2006 Microchip Technology Inc.  
DS70143C-page 221  
dsPIC30F6011A/6012A/6013A/6014A  
Timing Requirements  
U
Band Gap Start-up Time ...........................................188  
Brown-out Reset .......................................................187  
CAN Module I/O........................................................205  
CLKO and I/O ...........................................................186  
DCI Module  
UART Module  
Address Detect Mode ............................................... 107  
Auto Baud Support ................................................... 108  
Baud Rate Generator ............................................... 107  
Enabling and Setting Up........................................... 105  
Framing Error (FERR) .............................................. 107  
Idle Status................................................................. 107  
Loopback Mode ........................................................ 107  
Operation During CPU Sleep and Idle Modes.......... 108  
Overview................................................................... 103  
Parity Error (PERR) .................................................. 107  
Receive Break .......................................................... 107  
Receive Buffer (UxRXB)........................................... 106  
Receive Buffer Overrun Error (OERR Bit) ................ 106  
Receive Interrupt ...................................................... 106  
Receiving Data ......................................................... 106  
Receiving in 8-bit or 9-bit Data Mode ....................... 106  
Reception Error Handling ......................................... 106  
Transmit Break ......................................................... 106  
Transmit Buffer (UxTXB) .......................................... 105  
Transmit Interrupt ..................................................... 106  
Transmitting Data ..................................................... 105  
Transmitting in 8-bit Data Mode................................ 105  
Transmitting in 9-bit Data Mode................................ 105  
UART1 Register Map................................................ 109  
UART2 Register Map................................................ 109  
AC-Link Mode ...................................................195  
Multichannel, I S Modes...................................194  
2
External Clock...........................................................183  
2
I C Bus Data (Master Mode).....................................202  
2
I C Bus Data (Slave Mode).......................................203  
Input Capture ............................................................191  
Oscillator Start-up Timer...........................................187  
Output Compare Module...........................................191  
Power-up Timer ........................................................187  
Reset.........................................................................187  
Simple OC/PWM Mode.............................................192  
SPI Module  
Master Mode (CKE = 0) ....................................196  
Master Mode (CKE = 1) ....................................198  
Slave Mode (CKE = 0) ......................................199  
Slave Mode (CKE = 1) ......................................200  
Type A Timer External Clock ....................................189  
Type B Timer External Clock ....................................190  
Type C Timer External Clock....................................190  
Watchdog Timer........................................................187  
Timing Specifications  
PLL Clock..................................................................184  
Trap Vectors........................................................................48  
Traps...................................................................................47  
Hard and Soft..............................................................48  
Sources.......................................................................47  
Address Error Trap .............................................47  
Math Error Trap...................................................47  
Oscillator Fail Trap..............................................48  
Stack Error Trap..................................................48  
UART Operation  
Idle Mode.................................................................. 108  
Sleep Mode .............................................................. 108  
Unit ID Locations .............................................................. 145  
Universal Asynchronous Receiver Transmitter. See UART.  
W
Wake-up from Sleep......................................................... 145  
Wake-up from Sleep and Idle ............................................. 49  
Watchdog Timer  
Timing Characteristics.............................................. 187  
Timing Requirements................................................ 187  
Watchdog Timer (WDT)............................................ 145, 156  
Enabling and Disabling............................................. 156  
Operation.................................................................. 156  
WWW Address ................................................................. 223  
WWW, On-Line Support ....................................................... 8  
DS70143C-page 222  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2006 Microchip Technology Inc.  
DS70117F-page 223  
dsPIC30F6011/6012/6013/6014  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
dsPIC30F6011/6012/6013/6014  
DS70117F  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70117F-page 224  
© 2006 Microchip Technology Inc.  
dsPIC30F6011/6012/6013/6014  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
dsPIC30F6011AT-30I/PF-ES  
Custom ID (3 digits) or  
Engineering Sample (ES)  
Trademark  
Architecture  
Package  
PF = TQFP 14x14  
Flash  
S
W
= Die (Waffle Pack)  
= Die (Wafers)  
Memory Size in Bytes  
0 = ROMless  
1 = 1K to 6K  
2 = 7K to 12K  
3 = 13K to 24K  
4 = 25K to 48K  
5 = 49K to 96K  
6 = 97K to 192K  
7 = 193K to 384K  
8 = 385K to 768K  
9 = 769K and Up  
Temperature  
I = Industrial -40°C to +85°C  
E = Extended High Temp -40°C to +125°C  
Speed  
20 = 20 MIPS  
30 = 30 MIPS  
Device ID  
T = Tape and Reel  
A,B,C… = Revision Level  
Example:  
dsPIC30F6011AT-30I/PF = 30 MIPS, Industrial temp., TQFP package, Rev. A  
© 2006 Microchip Technology Inc.  
DS70117F-page 225  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
10/19/06  
DS70117F-page 226  
© 2006 Microchip Technology Inc.  

相关型号:

DSPIC30F0011AT-20I/S

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-20I/W

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-30E/PF

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-30E/PT

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-30E/S

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-30E/W

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-30I/P

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-30I/PF

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-30I/PT

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-30I/S

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011AT-30I/W

High-Performance, 16-Bit Digital Signal Controllers
MICROCHIP

DSPIC30F0011BT-20I/P

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP