DSPIC33FJ32GP102 [MICROCHIP]

16-Bit Digital Signal Controllers up to 32-Kbyte Flash and 2-Kbyte SRAM; 16位数字信号控制器多达32 KB的闪存和2 KB的SRAM
DSPIC33FJ32GP102
型号: DSPIC33FJ32GP102
厂家: MICROCHIP    MICROCHIP
描述:

16-Bit Digital Signal Controllers up to 32-Kbyte Flash and 2-Kbyte SRAM
16位数字信号控制器多达32 KB的闪存和2 KB的SRAM

闪存 静态存储器 控制器
文件: 总386页 (文件大小:4102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC33FJ16(GP/MC)101/102 AND  
dsPIC33FJ32(GP/MC)101/102/104  
16-Bit Digital Signal Controllers  
(up to 32-Kbyte Flash and 2-Kbyte SRAM)  
Operating Conditions  
Advanced Analog Features  
• ADC module:  
• 3.0V to 3.6V, -40ºC to +125ºC, DC to 16 MIPS  
- 10-bit, 1.1 Msps with four S&H  
- Four analog inputs on 18-pin devices and up to  
14 analog inputs on 44-pin devices  
• Flexible and Independent ADC Trigger Sources  
Core: 16-bit dsPIC33F CPU  
• Code-Efficient (C and Assembly) Architecture  
• Two 40-Bit Wide Accumulators  
• Three Comparator modules  
• Single-Cycle (MAC/MPY) with Dual Data Fetch  
• Single-Cycle Mixed-Sign MUL plus Hardware Divide  
• 32-Bit Multiply Support  
• Charge Time Measurement Unit (CTMU):  
- Supports mTouch™ capacitive touch sensing  
- Provides high-resolution time measurement (1 ns)  
- On-chip temperature measurement  
Clock Management  
Timers/Output Compare/Input Capture  
• ±0.25% Internal Oscillator  
• Up to Five General Purpose Timers:  
- One 16-bit and up to two 32-bit timers/counters  
• Two Output Compare modules  
• Three Input Capture modules  
• Peripheral Pin Select (PPS) to allow Function Remap  
• Programmable PLLs and Oscillator Clock Sources  
• Fail-Safe Clock Monitor (FSCM)  
• Independent Watchdog Timer (WDT)  
• Fast Wake-up and Start-up  
Communication Interfaces  
Power Management  
• UART module (4 Mbps)  
- With support for LIN/J2602 Protocols and IrDA  
• Low-Power Management modes (Sleep, Idle, Doze)  
• Integrated Power-on Reset and Brown-out Reset  
• 1 mA/MHz Dynamic Current (typical)  
®
• 4-Wire SPI module (8 MHz maximum speed)  
- Remappable Pins in 32-Kbyte Flash Devices  
• 30 µA IPD Current (typical)  
2
• I C™ module (400 kHz)  
PWM  
Input/Output  
• Up to Three PWM Pairs  
• Sink/Source 10 mA or 6 mA, Pin-Specific for Standard  
VOH/VOL, up to 16 mA or 12 mA for Non-Standard VOH1  
• 5V Tolerant Pins  
• Up to 20 Selectable Open-Drain and Pull-ups  
• Three External Interrupts (two are remappable)  
• Two Dead-Time Generators  
• 31.25 ns PWM Resolution  
• PWM Support for:  
- Inverters, PFC, UPS  
- BLDC, PMSM, ACIM, SRM  
• Class B-Compliant Fault Inputs  
• Possibility of ADC Synchronization with PWM Signal  
Qualification and Class B Support  
• AEC-Q100 REVG (Grade 1 -40ºC to +125ºC) Planned  
• Class B Safety Library, IEC 60730, UDE Certified  
Debugger Development Support  
• In-Circuit and In-Application Programming  
• Up to Three Complex Data Breakpoints  
• Trace and Run-Time Watch  
2011-2012 Microchip Technology Inc.  
DS70652E-page 1  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
dsPIC33FJ16(GP/MC)101/102 AND  
dsPIC33FJ32(GP/MC)101/102/104  
PRODUCT FAMILIES  
The device names, pin counts, memory sizes, and  
peripheral availability of each device are listed in  
Table 1. The following pages show their pinout  
diagrams.  
TABLE 1:  
dsPIC33FJ16(GP/MC)101/102 DEVICE FEATURES  
Remappable Peripherals  
Device  
dsPIC33FJ16GP101  
dsPIC33FJ16GP102  
18 16  
20 16  
28 16  
1
1
1
8
8
3
3
3
3
3
3
2
2
2
1
1
1
3
3
3
1
1
1
1 ADC,  
4-ch  
Y
Y
Y
1
1
1
3
3
3
Y
Y
Y
13 PDIP,  
SOIC  
1 ADC,  
4-ch  
15 SSOP  
16  
1 ADC,  
6-ch  
21 SPDIP,  
SOIC,  
SSOP,  
QFN  
36 16  
20 16  
1
1
16  
10  
3
3
3
3
2
2
1
1
3
3
1
1
1
1 ADC,  
6-ch  
Y
Y
1
1
3
3
Y
Y
21 VTLA  
dsPIC33FJ16MC101  
dsPIC33FJ16MC102  
6-ch  
1 ADC,  
4-ch  
15 PDIP,  
SOIC,  
SSOP  
28 16  
36 16  
1
1
16  
16  
3
3
3
3
2
2
1
1
3
3
1
1
6-ch  
6-ch  
2
2
1 ADC,  
6-ch  
Y
Y
1
1
3
3
Y
Y
21 SPDIP,  
SOIC,  
SSOP,  
QFN  
1 ADC,  
6-ch  
21 VTLA  
Note 1: Two out of three timers are remappable.  
2: One pair can be combined to create one 32-bit timer.  
3: Two out of three interrupts are remappable.  
DS70652E-page 2  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 2:  
dsPIC33FJ32(GP/MC)101/102/104 DEVICE FEATURES  
Remappable Peripherals  
Device  
dsPIC33FJ32GP101  
dsPIC33FJ32GP102  
18 32  
20 32  
28 32  
2
2
2
8
8
5
5
5
3
3
3
2
2
2
1
1
1
3
3
3
1
1
1
1 ADC,  
6-ch  
Y
Y
Y
1
1
1
3
3
3
Y
Y
Y
13 PDIP,  
SOIC  
1 ADC,  
6-ch  
15 SSOP  
16  
1 ADC,  
8-ch  
21 SPDIP,  
SOIC,  
SSOP,  
QFN  
36 32  
44 32  
2
2
16  
26  
5
5
3
3
2
2
1
1
3
3
1
1
1 ADC,  
8-ch  
Y
Y
1
1
3
3
Y
Y
21 VTLA  
dsPIC33FJ32GP104  
dsPIC33FJ32MC101  
dsPIC33FJ32MC102  
1 ADC,  
14-ch  
35 TQFP,  
QFN,  
VTLA  
20 32  
28 32  
2
2
10  
16  
5
5
3
3
2
2
1
1
3
3
1
1
6-ch  
6-ch  
1
2
1 ADC,  
6-ch  
Y
Y
1
1
3
3
Y
Y
15 PDIP,  
SOIC,  
SSOP  
1 ADC,  
8-ch  
21 SPDIP,  
SOIC,  
SSOP,  
QFN  
36 32  
44 32  
2
2
16  
26  
5
5
3
3
2
2
1
1
3
3
1
1
6-ch  
6-ch  
2
2
1 ADC,  
8-ch  
Y
Y
1
1
3
3
Y
Y
21 VTLA  
dsPIC33FJ32MC104  
1 ADC,  
14-ch  
35 TQFP,  
QFN,  
VTLA  
Note 1: Four out of five timers are remappable.  
2: Two pairs can be combined to have up to two 32-bit timers.  
3: Two out of three interrupts are remappable.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 3  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams  
= Pins are up to 5V tolerant  
18-Pin PDIP/SOIC  
MCLR  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
1
2
3
4
5
18  
17  
16  
15  
14  
VDD  
VSS  
(1)  
RP15 /CN11/RB15  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
RTCC/RP14 /CN12/RB14  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
VCAP  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
6
7
8
13  
12  
11  
(1)  
SDA1/SDI1/RP9 /CN21/RB9  
(1)  
(1)  
SCL1/SDO1/RP8 /CN22/RB8  
PGED3/SOSCI/RP4 /CN1/RB4  
(1)  
SCK1/INT0/RP7 /CN23/RB7  
PGEC3/SOSCO/T1CK/CN0/RA4  
9
10  
MCLR  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
1
2
3
4
5
18  
17  
16  
15  
14  
VDD  
VSS  
(1)  
RP15 /CN11/RB15  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
RTCC/RP14 /CN12/RB14  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
VCAP  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
6
7
8
13  
12  
11  
(1)  
SDA1/RP9 /CN21/RB9  
(1)  
(1)  
SCL1/RP8 /CN22/RB8  
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
(1)  
INT0/RP7 /CN23/RB7  
PGEC3/SOSCO/AN10/T1CK/CN0/RA4  
9
10  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
DS70652E-page 4  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
20-Pin SSOP  
MCLR  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
1
2
3
4
5
20  
19  
18  
17  
16  
AVDD  
AVSS  
(1)  
RP15 /CN11/RB15  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
RTCC/RP14 /CN12/RB14  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
VDD  
6
7
8
15  
14  
13  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
VCAP  
VSS  
(1)  
SDA1/SDI1/RP9 /CN21/RB9  
(1)  
(1)  
SCL1/SDO1/RP8 /CN22/RB8  
SCK1/INT0/RP7 /CN23/RB7  
PGED3/SOSCI/RP4 /CN1/RB4  
PGEC3/SOSCO/T1CK/CN0/RA4  
9
10  
12  
11  
(1)  
MCLR  
1
20  
AVDD  
AVSS  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
2
3
4
5
19  
18  
17  
16  
(1)  
RP15 /CN11/RB15  
RTCC/RP14 /CN12/RB14  
(1)  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
VDD  
6
7
8
15  
14  
13  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
VCAP  
VSS  
(1)  
SDA1/RP9 /CN21/RB9  
SCL1/RP8 /CN22/RB8  
INT0/RP7 /CN23/RB7  
(1)  
(1)  
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
9
10  
12  
11  
(1)  
PGEC3/SOSCO/AN10/T1CK/CN0/RA4  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 5  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
28-Pin SPDIP/SOIC/SSOP  
MCLR  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
1
2
3
4
5
28  
27  
26  
25  
24  
AVDD  
AVSS  
(1)  
RP15 /CN11/RB15  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
RTCC/RP14 /CN12/RB14  
RP13 /CN13/RB13  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
(1)  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
RP12 /CN14/RB12  
RP11 /CN15/RB11  
6
7
8
23  
22  
21  
(1)  
(1)  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
(1)  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
RP10 /CN16/RB10  
VCAP  
VSS  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
(1)  
(1)  
PGED3/SOSCI/RP4 /CN1/RB4  
SDA1/SDI1/RP9 /CN21/RB9  
SCL1/SDO1/RP8 /CN22/RB8  
(1)  
PGEC3/SOSCO/T1CK/CN0/RA4  
VDD  
(1)  
SCK1/INT0/RP7 /CN23/RB7  
ASCL1/RP6 /CN24/RB6  
(1)  
(1)  
ASDA1/RP5 /CN27/RB5  
MCLR  
1
28  
AVDD  
AVSS  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
2
3
4
5
27  
26  
25  
24  
(1)  
RP15 /CN11/RB15  
RTCC/RP14 /CN12/RB14  
(1)  
(1)  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
RP13 /CN13/RB13  
RP12 /CN14/RB12  
(1)  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
6
7
8
23  
22  
21  
(1)  
(1)  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
RP11 /CN15/RB11  
RP10 /CN16/RB10  
(1)  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
VCAP  
VSS  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
(1)  
(1)  
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
SDA1/RP9 /CN21/RB9  
SCL1/RP8 /CN22/RB8  
INT0/RP7 /CN23/RB7  
(1)  
PGEC3/SOSCO/AN10/T1CK/CN0/RA4  
VDD  
(1)  
(1)  
(1)  
ASDA1/RP5 /CN27/RB5  
ASCL1/RP6 /CN24/RB6  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
DS70652E-page 6  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
20-Pin PDIP/SOIC/SSOP  
MCLR  
1
2
3
4
5
20  
19  
18  
17  
16  
VDD  
VSS  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
(1)  
PWM1L1/RP15 /CN11/RB15  
(1)  
(1)  
PWM1H1/RTCC/RP14 /CN12/RB14  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
PWM1L2/RP13 /CN13/RB13  
(1)  
6
7
8
15  
14  
13  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
PWM1H2/RP12 /CN14/RB12  
VCAP  
(1)  
SDA1/SDI1/PWM1L3/RP9 /CN21/RB9  
SCL1/SDO1/PWM1H3/RP8 /CN22/RB8  
FLTA1 /SCK1/INT0/RP7 /CN23/RB7  
(1)  
(1)  
PGED3/SOSCI/RP4 /CN1/RB4  
PGEC3/SOSCO/T1CK/CN0/RA4  
9
10  
12  
11  
(2)  
(1)  
MCLR  
1
20  
VDD  
VSS  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
2
3
4
5
19  
18  
17  
16  
(1)  
PWM1L1/RP15 /CN11/RB15  
PWM1H1/RTCC/RP14 /CN12/RB14  
(1)  
(1)  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
PWM1L2/RP13 /CN13/RB13  
(1)  
6
7
8
15  
14  
13  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
PWM1H2/RP12 /CN14/RB12  
VCAP  
(1)  
SDA1/PWM1L3/RP9 /CN21/RB9  
(1)  
(1)  
SCL1/PWM1H3/RP8 /CN22/RB8  
FLTA1 /INT0/RP7 /CN23/RB7  
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
9
10  
12  
11  
(2)  
(1)  
PGEC3/SOSCO/AN10/T1CK/CN0/RA4  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 “PWM Faults”  
for more information on the PWM Faults.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 7  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
28-Pin SPDIP/SOIC/SSOP  
MCLR  
1
2
3
4
5
28  
27  
26  
25  
24  
AVDD  
AVSS  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
(1)  
PWM1L1/RP15 /CN11/RB15  
(1)  
(1)  
PWM1H1/RTCC/RP14 /CN12/RB14  
PWM1L2/RP13 /CN13/RB13  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
(1)  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
PWM1H2/RP12 /CN14/RB12  
PWM1L3/RP11 /CN15/RB11  
6
7
8
23  
22  
21  
(1)  
(1)  
(1)  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
PWM1H3/RP10 /CN16/RB10  
VCAP  
VSS  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
(1)  
(1)  
PGED3/SOSCI/RP4 /CN1/RB4  
SDA1/SDI1/RP9 /CN21/RB9  
SCL1/SDO1/RP8 /CN22/RB8  
(1)  
PGEC3/SOSCO/T1CK/CN0/RA4  
VDD  
(1)  
SCK1/INT0/RP7 /CN23/RB7  
FLTA1 /ASCL1/RP6 /CN24/RB6  
(2)  
(1)  
(2)  
(1)  
FLTB1 /ASDA1/RP5 /CN27/RB5  
MCLR  
PGED2/AN0/C3INB/C1INA/CTED1/CN2/RA0  
PGEC2/AN1/C3INA/C1INB/CTED2/CN3/RA1  
1
2
3
4
5
28  
27  
26  
25  
24  
AVDD  
AVSS  
(1)  
PWM1L1/RP15 /CN11/RB15  
PWM1H1/RTCC/RP14 /CN12/RB14  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
PWM1L2/RP13 /CN13/RB13  
PWM1H2/RP12 /CN14/RB12  
(1)  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
6
7
8
23  
22  
21  
(1)  
(1)  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
PWM1L3/RP11 /CN15/RB11  
PWM1H3/RP10 /CN16/RB10  
(1)  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
VCAP  
VSS  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
(1)  
(1)  
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
SDA1/RP9 /CN21/RB9  
(1)  
PGEC3/SOSCO/AN10/T1CK/CN0/RA4  
VDD  
SCL1/RP8 /CN22/RB8  
INT0/RP7 /CN23/RB7  
(1)  
(2)  
(1)  
(2)  
(1)  
FLTB1 /ASDA1/RP5 /CN27/RB5  
FLTA1 /ASCL1/RP6 /CN24/RB6  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 “PWM Faults”  
for more information on the PWM Faults.  
DS70652E-page 8  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
28-Pin QFN  
= Pins are up to 5V tolerant  
28 27 26 25 24 23 22  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
RP13 /CN13/RB13  
1
2
3
4
5
6
7
21  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
RP12 /CN14/RB12  
20  
19  
18  
17  
16  
15  
(1)  
(1)  
RP11 /CN15/RB11  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
(1)  
(1)  
dsPIC33FJ16GP102  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
RP10 /CN16/RB10  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
VCAP  
VSS  
(1)  
SDA1/SDI1/RP9 /CN21/RB9  
8
9 10 11 12 13 14  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 9  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
28-Pin QFN  
= Pins are up to 5V tolerant  
28 27 26 25 24 23 22  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
RP13 /CN13/RB13  
21  
1
2
3
4
5
6
7
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
RP12 /CN14/RB12  
20  
(1)  
RP11 /CN15/RB11  
19  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
(1)  
(1)  
dsPIC33FJ32GP102  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
RP10 /CN16/RB10  
18  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
VCAP  
17  
VSS  
16  
(1)  
SDA1/RP9 /CN21/RB9  
15  
8
9 10 11 12 13 14  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
DS70652E-page 10  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
28-Pin QFN  
= Pins are up to 5V tolerant  
22  
28 27 26 25 24 23  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
PWM1L2/RP13 /CN13/RB13  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
PWM1H2/RP12 /CN14/RB12  
(1)  
(1)  
PWM1L3/RP11 /CN15/RB11  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
(1)  
(1)  
dsPIC33FJ16MC102  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
PWM1H3/RP10 /CN16/RB10  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
VCAP  
VSS  
(1)  
SDA1/SDI1/RP9 /CN21/RB9  
8
9 10 11 12 13 14  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
3: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 “PWM Faults”  
for more information on the PWM Faults.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 11  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
28-Pin QFN  
= Pins are up to 5V tolerant  
22  
28 27 26 25 24 23  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
PWM1L2/RP13 /CN13/RB13  
1
2
3
4
5
6
7
21  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
PWM1H2/RP12 /CN14/RB12  
20  
19  
18  
17  
16  
15  
(1)  
(1)  
PWM1L3/RP11 /CN15/RB11  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
(1)  
(1)  
dsPIC33FJ32MC102  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
PWM1H3/RP10 /CN16/RB10  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
VCAP  
VSS  
(1)  
SDA1/RP9 /CN21/RB9  
8
9 10 11 12 13 14  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
3: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 “PWM  
Faults” for more information on the PWM Faults.  
DS70652E-page 12  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
36-Pin VTLA  
= Pins are up to 5V tolerant  
(1)  
36  
1
34 33 32 31 30 29 28 27 RP13 /CN13/RB13  
35  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
26  
25  
24  
RP12 /CN14/RB12  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
2
3
4
5
6
7
8
9
RP11 /CN15/RB11  
(1)  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
RP10 /CN16/RB10  
(1)  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
23 VDD  
dsPIC33FJ16GP102  
VDD  
VSS  
22 VCAP  
VSS  
N/C  
21  
20  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
(1)  
SDA1/SDI1/RP9 /CN21/RB9  
19  
18  
(1)  
PGED3/SOSCI/RP4 /CN1/RB4  
10 11 12 13 14 15 16 17  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 13  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
36-Pin VTLA  
= Pins are up to 5V tolerant  
(1)  
36  
1
34 33 32 31 30 29 28 27 RP13 /CN13/RB13  
35  
(1)  
(1)  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
26  
25  
24  
RP12 /CN14/RB12  
(1)  
(1)  
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
2
3
4
5
6
7
8
9
RP11 /CN15/RB11  
(1)  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
RP10 /CN16/RB10  
(1)  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
23 VDD  
dsPIC33FJ32GP102  
VDD  
VSS  
22 VCAP  
VSS  
N/C  
21  
20  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
(1)  
SDA1/RP9 /CN21/RB9  
19  
18  
(1)  
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
10 11 12 13 14 15 16 17  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
DS70652E-page 14  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
36-Pin VTLA  
= Pins are up to 5V tolerant  
(1)  
36  
1
34 33 32 31 30 29 28 27  
35  
PWM1L2/RP13 /CN13/RB13  
(1)  
(1)  
26  
25  
24  
23  
22  
21  
20  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
PWM1H2/RP12 /CN14/RB12  
(1)  
(1)  
2
3
4
5
6
7
8
9
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
PWM1L3/RP11 /CN15/RB11  
(1)  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
PWM1H3/RP10 /CN16/RB10  
(1)  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
VDD  
VCAP  
VSS  
N/C  
dsPIC33FJ16MC102  
VDD  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
(1)  
19  
SDA1/SDI1/RP9 /CN21/RB9  
(1)  
17 18  
PGED3/SOSCI/RP4 /CN1/RB4  
10 11 12 13 14 15 16  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
3: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 “PWM Faults”  
for more information on the PWM Faults.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 15  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
36-Pin VTLA  
= Pins are up to 5V tolerant  
(1)  
36  
1
34 33 32 31 30 29 28 27  
35  
PWM1L2/RP13 /CN13/RB13  
(1)  
(1)  
26  
25  
24  
23  
22  
21  
20  
PGED1/AN2/C2INA/C1INC/RP0 /CN4/RB0  
PWM1H2/RP12 /CN14/RB12  
(1)  
(1)  
2
3
4
5
6
7
8
9
PGEC1/AN3/CVREFIN/CVREFOUT/C2INB/C1IND/RP1 /CN5/RB1  
PWM1L3/RP11 /CN15/RB11  
(1)  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
PWM1H3/RP10 /CN16/RB10  
(1)  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
VDD  
VCAP  
VSS  
N/C  
dsPIC33FJ32MC102  
VDD  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
(1)  
19  
SDA1/RP9 /CN21/RB9  
(1)  
17 18  
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
10 11 12 13 14 15 16  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
3: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 “PWM Faults”  
for more information on the PWM Faults.  
DS70652E-page 16  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
44-Pin TQFP  
44 43 42 41 40 39 38 37 36 35 34  
(1)  
(1)  
PEGED3/SOSCI/AN9/RP4 /CN1/RB4  
SDA1/RP9 /CN21/RB9  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
(1)  
RP22 /CN18/RC6  
RA8  
2
(1)  
RP23 /CN17/RC7  
3
OSC2/CLK0/CN29/RA3  
OSC1/CLKI/CN30/RA2  
VSS  
(1)  
RP24 /CN20/RC8  
4
(1)  
RP25 /CN19/RC9  
5
VSS  
VCAP  
dsPIC33FJ32GP104  
6
VDD  
(1)  
7
AN8/RP18 /CN10/RC2  
(1)  
AN7/RP17 /CN9/RC1  
RP10/CN16/RB10  
8
(1)  
(1)  
RP11 /CN15/RB11  
9
AN6/RP16 /CN8/RC0  
(1)  
(1)  
10  
11  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
RP12 /CN14/RB12  
(1)  
(1)  
RP13 /CN13/RB13  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
12 13 14 15 16 17 18 19 20 21 22  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 17  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
44-Pin TQFP  
= Pins are up to 5V tolerant  
44 43 42 41 40 39 38 37 36 35 34  
(1)  
(1)  
PEGED3/SOSCI/AN9/RP4 /CN1/RB4  
SDA1/RP9 /CN21/RB9  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
(1)  
RP22 /CN18/RC6  
RA8  
2
(1)  
RP23 /CN17/RC7  
3
OSC2/CLK0/CN29/RA3  
OSC1/CLKI/CN30/RA2  
VSS  
(1)  
RP24 /CN20/RC8  
4
(1)  
RP25 /CN19/RC9  
5
VSS  
6
dsPIC33FJ32MC104  
VDD  
(1)  
VCAP  
7
AN8/RP18 /CN10/RC2  
(1)  
(1)  
AN7/RP17 /CN9/RC1  
PWM1H3/RP10 /CN16/RB10  
8
(1)  
(1)  
PWM1L3/RP11 /CN15/RB11  
9
AN6/RP16 /CN8/RC0  
(1)  
(1)  
10  
11  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
PWM1H2/RP12 /CN14/RB12  
(1)  
(1)  
PWM1L2/RP13 /CN13/RB13  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
12 13 14 15 16 17 18 19 20 21 22  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 “PWM Faults”  
for more information on the PWM Faults.  
DS70652E-page 18  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
44-Pin QFN  
= Pins are up to 5V tolerant  
44 43 42 41 40 39 38 37 36 35 34  
(1)  
(1)  
SDA1/RP9 /CN21/RB9  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
(1)  
RP22 /CN18/RC6  
RA8  
(1)  
RP23 /CN17/RC7  
OSC2/CLKO/CN29/RA3  
3
(1)  
RP24 /CN20/RC8  
4
OSC1/CLKI/CN30/RA2  
(1)  
RP25 /CN19/RC9  
5
VSS  
VDD  
dsPIC33FJ32GP104  
VSS  
6
(1)  
VCAP  
AN8/RP18 /CN10/RC2  
7
(1)  
(1)  
RP10 /CN16/RB10  
AN7/RP17 /CN9/RC1  
8
(1)  
(1)  
RP11 /CN15/RB11  
9
AN6/RP16 /CN8/RC0  
(1)  
(1)  
RP12 /CN14/RB12  
10  
11  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
(1)  
(1)  
RP13 /CN13/RB13  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
12 13 14 15 16 17 18 19 20 21 22  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 19  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
44-Pin QFN  
= Pins are up to 5V tolerant  
44 43 42 41 40 39 38 37 36 35 34  
(1)  
(1)  
SDA1/RP9 /CN21/RB9  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
(1)  
RP22 /CN18/RC6  
RA8  
(1)  
RP23 /CN17/RC7  
OSC2/CLKO/CN29/RA3  
3
(1)  
RP24 /CN20/RC8  
4
OSC1/CLKI/CN30/RA2  
(1)  
RP25 /CN19/RC9  
5
VSS  
VDD  
dsPIC33FJ32MC104  
VSS  
6
(1)  
VCAP  
AN8/RP18 /CN10/RC2  
7
(1)  
(1)  
PWM1H3/RP10 /CN16/RB10  
AN7/RP17 /CN9/RC1  
8
(1)  
(1)  
PWM1L3/RP11 /CN15/RB11  
9
AN6/RP16 /CN8/RC0  
(1)  
(1)  
PWM1H2/RP12 /CN14/RB12  
10  
11  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
(1)  
(1)  
PWM1L2/RP13 /CN13/RB13  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
12 13 14 15 16 17 18 19 20 21 22  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
3: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 “PWM Faults”  
for more information on the PWM Faults.  
DS70652E-page 20  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
44-Pin TLA  
= Pins are up to 5V tolerant  
(1)  
44 43 42 41 40 39 38 37 36 35 34 33  
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
(1)  
1
2
3
4
5
6
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RA8  
SDA1/RP9 /CN21/RB9  
(1)  
OSC2/CLKO/CN29/RA3  
RP22 /CN18/RC6  
(1)  
OSC1/CLKI/CN30/RA2  
RP23 /CN17/RC7  
(1)  
VSS  
VDD  
RP24 /CN20/RC8  
(1)  
RP25 /CN19/RC9  
dsPIC33FJ32GP104  
(1)  
AN8/RP18 /CN10/RC2  
VSS  
(1)  
AN7/RP17 /CN9/RC1  
VCAP  
7
8
(1)  
(1)  
AN6/RP16 /CN8/RC0  
RP10 /CN16/RB10  
(1)  
(1)  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
RP11 /CN15/RB11  
9
(1)  
(1)  
10  
11  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
RP12 /CN14/RB12  
(1)  
12 13 14 15 16 17 18 19 20 21 22  
RP13 /CN13/RB13  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 21  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Pin Diagrams (Continued)  
(2)  
44-Pin TLA  
= Pins are up to 5V tolerant  
(1)  
44 43 42 41 40 39 38 37 36 35 34 33  
PGED3/SOSCI/AN9/RP4 /CN1/RB4  
(1)  
1
2
3
4
5
6
32  
31  
30  
29  
28  
27  
26  
RA8  
SDA1/RP9 /CN21/RB9  
(1)  
OSC2/CLKO/CN29/RA3  
RP22 /CN18/RC6  
(1)  
OSC1/CLKI/CN30/RA2  
RP23 /CN17/RC7  
(1)  
VSS  
VDD  
RP24 /CN20/RC8  
(1)  
RP25 /CN19/RC9  
dsPIC33FJ32MC104  
(1)  
AN8/RP18 /CN10/RC2  
VSS  
(1)  
AN7/RP17 /CN9/RC1  
VCAP  
7
8
(1)  
(1)  
25 AN6/RP16 /CN8/RC0  
PWM1H3/RP10 /CN16/RB10  
(1)  
(1)  
AN5/C3IND/C2IND/RP3 /CN7/RB3  
PWM1L3/RP11 /CN15/RB11  
24  
23  
9
(1)  
(1)  
AN4/C3INC/C2INC/RP2 /CN6/RB2  
10  
11  
PWM1H2/RP12 /CN14/RB12  
(1)  
12 13 14 15 16 17 18 19 20 21 22  
PWM1L2/RP13 /CN13/RB13  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
3: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 “PWM Faults”  
for more information on the PWM Faults.  
DS70652E-page 22  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Table of Contents  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 Product Families .................................................................. 2  
1.0 Device Overview ........................................................................................................................................................................ 27  
2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers .......................................................................................... 33  
3.0 CPU............................................................................................................................................................................................ 37  
4.0 Memory Organization................................................................................................................................................................. 49  
5.0 Flash Program Memory.............................................................................................................................................................. 83  
6.0 Resets ....................................................................................................................................................................................... 87  
7.0 Interrupt Controller ..................................................................................................................................................................... 95  
8.0 Oscillator Configuration............................................................................................................................................................ 125  
9.0 Power-Saving Features............................................................................................................................................................ 133  
10.0 I/O Ports ................................................................................................................................................................................... 139  
11.0 Timer1 ...................................................................................................................................................................................... 163  
12.0 Timer2/3 and Timer4/5............................................................................................................................................................. 165  
13.0 Input Capture............................................................................................................................................................................ 173  
14.0 Output Compare....................................................................................................................................................................... 175  
15.0 Motor Control PWM Module..................................................................................................................................................... 179  
16.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 195  
17.0 Inter-Integrated Circuit™ (I2C™).............................................................................................................................................. 201  
18.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 209  
19.0 10-Bit Analog-to-Digital Converter (ADC)................................................................................................................................. 215  
20.0 Comparator Module.................................................................................................................................................................. 229  
21.0 Real-Time Clock and Calendar (RTCC) .................................................................................................................................. 241  
22.0 Charge Time Measurement Unit (CTMU) ............................................................................................................................... 253  
23.0 Special Features ...................................................................................................................................................................... 259  
24.0 Instruction Set Summary.......................................................................................................................................................... 267  
25.0 Development Support............................................................................................................................................................... 275  
26.0 Electrical Characteristics.......................................................................................................................................................... 279  
27.0 Packaging Information.............................................................................................................................................................. 337  
Appendix A: Revision History............................................................................................................................................................. 367  
Index ................................................................................................................................................................................................. 375  
The Microchip Web Site..................................................................................................................................................................... 381  
Customer Change Notification Service.............................................................................................................................................. 381  
Customer Support.............................................................................................................................................................................. 381  
Reader Response.............................................................................................................................................................................. 382  
Product Identification System ............................................................................................................................................................ 383  
2011-2012 Microchip Technology Inc.  
DS70652E-page 23  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS70652E-page 24  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Referenced Sources  
This device data sheet is based on the following  
individual chapters of the “dsPIC33F/PIC24H Family  
Reference Manual”. These documents should be  
considered as the primary reference for the operation  
of a particular module or device feature.  
Note 1: To access the documents listed below,  
browse to the documentation section  
of the dsPIC33FJ16MC102 product  
page of the Microchip Web site  
(www.microchip.com).  
In addition to parameters, features, and  
other documentation, the resulting page  
provides links to the related family  
reference manual sections.  
Section 2. “CPU” (DS70204)  
Section 3. “Data Memory” (DS70202)  
Section 4. “Program Memory” (DS70203)  
Section 5. “Flash Programming” (DS70191)  
Section 8. “Reset” (DS70192)  
Section 9. “Watchdog Timer and Power-Saving Modes” (DS70196)  
Section 11. “Timers” (DS70205)  
Section 12. “Input Capture” (DS70198)  
Section 13. “Output Compare” (DS70209)  
Section 14. “Motor Control PWM” (DS70187)  
• Section 16. “Analog-to-Digital Converter (ADC)” (DS70183)  
Section 17. “UART” (DS70188)  
• Section 18. “Serial Peripheral Interface (SPI)” (DS70206)  
• Section 19. “Inter-Integrated Circuit™ (I2C™)” (DS70195)  
Section 23. “CodeGuard Security” (DS70199)  
Section 24. “Programming and Diagnostics” (DS70207)  
Section 25. “Device Configuration” (DS70194)  
Section 30. “I/O Ports with Peripheral Pin Select (PPS)” (DS70190)  
Section 37. “Real-Time Clock and Calendar (RTCC)” (DS70301)  
Section 51. “Introduction (Part VI)” (DS70655)  
Section 52. “Oscillator (Part VI)” (DS70644)  
Section 53. “Interrupts (Part VI)” (DS70633)  
Section 54. “Comparator with Blanking” (DS70647)  
Section 55. “Charge Time Measurement Unit (CTMU)” (DS70635)  
2011-2012 Microchip Technology Inc.  
DS70652E-page 25  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 26  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
This data sheet contains device-specific information for  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
1.0  
DEVICE OVERVIEW  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
devices. However, it is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to the latest family reference  
sections of the “dsPIC33F/PIC24H  
Family Reference Manual”, which are  
available from the Microchip web site  
(www.microchip.com).  
MC)101/102/104 Digital Signal Controller (DSC)  
Devices. These devices contain extensive Digital Signal  
Processor (DSP) functionality with a high-performance,  
16-bit microcontroller (MCU) architecture.  
Figure 1-1 shows a general block diagram of the core  
and peripheral modules in the dsPIC33FJ16(GP/  
MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104  
family of devices. Table 1-1 lists the functions of the  
various pins shown in the pinout diagrams.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 27  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 1-1:  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 BLOCK  
DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
PORTA  
PORTB  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
23  
PCH PCL  
PCU  
Y RAM  
23  
Program Counter  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
16  
23  
16  
16  
Remappable  
Pins  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
Power-up  
Timer  
Timing  
Generation  
W Register Array  
OSC2/CLKO  
OSC1/CLKI  
Divide Support  
16  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
Power-on  
Reset  
16-Bit ALU  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VCAP  
VDD, VSS  
MCLR  
External  
Interrupts  
1-3  
OC/  
PWM1-2  
Timers  
1-5  
RTCC  
UART1  
ADC1  
CNx  
CTMU  
PWM  
6-ch  
Comparators  
1-3  
SPI1  
IC1-IC3  
I2C1  
Note:  
Not all pins or features are implemented on all device pinout configurations. See the Pin Diagramssection for the specific pins  
and features present on each device.  
DS70652E-page 28  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS  
Pin  
Type  
Buffer  
Type  
Pin Name  
PPS  
Description  
AN0-AN12,  
AN15(5)  
I
Analog  
No Analog input channels.  
CLKI  
I
ST/CMOS No External clock source input. Always associated with OSC1 pin function.  
CLKO  
O
No Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator  
mode. Optionally functions as CLKO in RC and EC modes. Always  
associated with OSC2 pin function.  
OSC1  
OSC2  
I
ST/CMOS No Oscillator crystal input. ST buffer when configured in RC mode; CMOS  
otherwise.  
I/O  
No Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator  
mode. Optionally functions as CLKO in RC and EC modes.  
SOSCI  
I
ST/CMOS No 32.768 kHz low-power oscillator crystal input; CMOS otherwise.  
SOSCO  
O
No 32.768 kHz low-power oscillator crystal output.  
CN0-CN30(5)  
I
ST  
No Change Notification inputs. Can be software programmed for internal weak  
pull-ups on all inputs.  
IC1-IC3  
I
ST  
Yes Capture Inputs 1/2/3.  
OCFA  
OC1-OC2  
I
O
ST  
Yes Compare Fault A input (for Compare Channels 1 and 2).  
Yes Compare Outputs 1 through 2.  
INT0  
INT1  
INT2  
I
I
I
ST  
ST  
ST  
No External Interrupt 0.  
Yes External Interrupt 1.  
Yes External Interrupt 2.  
RA0-RA4,  
I/O  
ST  
No PORTA is a bidirectional I/O port.  
RA7-RA10(5)  
RB0-RB15(5) I/O  
ST  
ST  
No PORTB is a bidirectional I/O port.  
No PORTC is a bidirectional I/O port.  
RC0-RC9(5)  
I/O  
T1CK  
T2CK  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
No Timer1 external clock input.  
Yes Timer2 external clock input.  
Yes Timer3 external clock input.  
Yes Timer4 external clock input.  
Yes Timer5 external clock input.  
T3CK  
T4CK(6)  
T5CK(6)  
U1CTS  
U1RTS  
U1RX  
I
O
I
ST  
ST  
Yes UART1 Clear-to-Send.  
Yes UART1 Ready-to-Send.  
Yes UART1 receive.  
U1TX  
O
Yes UART1 transmit.  
SCK1  
SDI1  
SDO1  
I/O  
I
O
ST  
ST  
Yes Synchronous serial clock input/output for SPI1.  
Yes SPI1 data in.  
Yes SPI1 data out.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
PPS = Peripheral Pin Select  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: An external pull-down resistor is required for the FLTA1 pin on dsPIC33FJXXMC101 (20-pin) devices.  
2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.  
3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.  
4: The PWM Fault pins are enabled during any Reset event. Refer to Section 15.2 “PWM Faults” for more  
information on the PWM Faults.  
5: Not all pins are available on all devices. Refer to the specific device in the “Pin Diagrams” section for  
availability.  
6: This pin is available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 29  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
SCL1  
SDA1  
ASCL1  
ASDA1  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
No Synchronous serial clock input/output for I2C1.  
No Synchronous serial data input/output for I2C1.  
No Alternate synchronous serial clock input/output for I2C1.  
No Alternate synchronous serial data input/output for I2C1.  
FLTA1(1,2,4)  
FLTB1(3,4)  
PWM1L1  
PWM1H1  
PWM1L2  
PWM1H2  
PWM1L3  
PWM1H3  
I
I
ST  
ST  
No PWM1 Fault A input.  
No PWM1 Fault B input.  
No PWM1 Low Output 1  
No PWM1 High Output 1  
No PWM1 Low Output 2  
No PWM1 High Output 2  
No PWM1 Low Output 3  
No PWM1 High Output 3  
O
O
O
O
O
O
RTCC  
O
Digital  
No RTCC Alarm output.  
CTPLS  
CTED1  
CTED2  
O
I
I
Digital  
Digital  
Digital  
Yes CTMU pulse output.  
No CTMU External Edge Input 1.  
No CTMU External Edge Input 2.  
CVREFIN  
CVREFOUT  
C1INA  
C1INB  
C1INC  
C1IND  
C1OUT  
C2INA  
C2INB  
C2INC  
C2IND  
C2OUT  
C3INA  
C3INB  
C3INC  
C3IND  
C3OUT  
I
O
I
I
I
I
O
I
I
I
I
O
I
I
I
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Digital  
Analog  
Analog  
Analog  
Analog  
Digital  
Analog  
Analog  
Analog  
Analog  
Digital  
No Comparator Voltage Positive Reference Input.  
No Comparator Voltage Positive Reference Output.  
No Comparator 1 Positive Input A.  
No Comparator 1 Negative Input B.  
No Comparator 1 Negative Input C.  
No Comparator 1 Negative Input D.  
Yes Comparator 1 Output.  
No Comparator 2 Positive Input A.  
No Comparator 2 Negative Input B.  
No Comparator 2 Negative Input C.  
No Comparator 2 Negative Input D.  
Yes Comparator 2 Output.  
No Comparator 3 Positive Input A.  
No Comparator 3 Negative Input B.  
No Comparator 3 Negative Input C.  
No Comparator 3 Negative Input D.  
Yes Comparator 3 Output.  
I
O
PGED1  
PGEC1  
PGED2  
PGEC2  
PGED3  
PGEC3  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
No Data I/O pin for Programming/Debugging Communication Channel 1.  
No Clock input pin for Programming/Debugging Communication Channel 1.  
No Data I/O pin for Programming/Debugging Communication Channel 2.  
No Clock input pin for Programming/Debugging Communication Channel 2.  
No Data I/O pin for Programming/Debugging Communication Channel 3.  
No Clock input pin for Programming/Debugging Communication Channel 3.  
I
I/O  
I
I/O  
I
MCLR  
I/P  
ST  
No Master Clear (Reset) input. This pin is an active-low Reset to the device.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
PPS = Peripheral Pin Select  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: An external pull-down resistor is required for the FLTA1 pin on dsPIC33FJXXMC101 (20-pin) devices.  
2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.  
3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.  
4: The PWM Fault pins are enabled during any Reset event. Refer to Section 15.2 “PWM Faults” for more  
information on the PWM Faults.  
5: Not all pins are available on all devices. Refer to the specific device in the “Pin Diagrams” section for  
availability.  
6: This pin is available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.  
DS70652E-page 30  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 1-1:  
Pin Name  
AVDD  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Type  
Buffer  
Type  
PPS  
Description  
P
P
P
No Positive supply for analog modules. This pin must be connected at all times.  
AVDD is connected to VDD in the 18-pin dsPIC33FJXXGP101 and 20-pin  
dsPIC33FJXXMC101 devices. In all other devices, AVDD is separated from  
VDD.  
AVSS  
P
No Ground reference for analog modules. AVSS is connected to VSS in the  
18-pin dsPIC33FJXXGP101 and 20-pin dsPIC33FJXXMC101 devices. In all  
other devices, AVSS is separated from VSS.  
VDD  
VCAP  
VSS  
P
P
P
No Positive supply for peripheral logic and I/O pins.  
No CPU logic filter capacitor connection.  
No Ground reference for logic and I/O pins.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
PPS = Peripheral Pin Select  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: An external pull-down resistor is required for the FLTA1 pin on dsPIC33FJXXMC101 (20-pin) devices.  
2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.  
3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.  
4: The PWM Fault pins are enabled during any Reset event. Refer to Section 15.2 “PWM Faults” for more  
information on the PWM Faults.  
5: Not all pins are available on all devices. Refer to the specific device in the “Pin Diagrams” section for  
availability.  
6: This pin is available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 31  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 32  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
DIGITAL SIGNAL  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD, and  
AVSS is required.  
CONTROLLERS  
Consider the following criteria when using decoupling  
capacitors:  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be  
a comprehensive reference source. To  
Value and type of capacitor: Recommendation  
of 0.1 µF (100 nF), 10V-20V. This capacitor  
should be a low-ESR and have resonance  
frequency in the range of 20 MHz and higher. It is  
recommended that ceramic capacitors be used.  
complement  
the  
information  
in  
this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
“dsPIC33F/PIC24H Family Reference  
Manual” sections.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within  
one-quarter inch (6 mm) in length.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise, upward of  
tens of MHz, add a second ceramic-type capacitor  
in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 µF to 0.001 µF. Place this  
second capacitor next to the primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible.  
For example, 0.1 µF in parallel with 0.001 µF.  
2.1  
Basic Connection Requirements  
Getting started with the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104 family of 16-bit  
Digital Signal Controllers (DSCs) requires attention to a  
minimal set of device pin connections before  
proceeding with development. The following is a list of  
pin names, which must always be connected:  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum thereby reducing PCB track inductance.  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
• All AVDD and AVSS pins, if present on the device  
(regardless if ADC module is not used)  
(see Section 2.2 “Decoupling Capacitors”)  
• VCAP  
(see Section 2.3 “CPU Logic Filter Capacitor  
Connection (VCAP)”)  
• MCLR pin  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
• OSC1 and OSC2 pins when external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
2011-2012 Microchip Technology Inc.  
DS70652E-page 33  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The placement of this capacitor should be close to the  
VCAP. It is recommended that the trace length not  
exceed one-quarter inch (6 mm). Refer to Section 23.2  
“On-Chip Voltage Regulator” for details.  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
0.1 µF  
Ceramic  
10 µF  
VDD  
Tantalum  
2.4  
Master Clear (MCLR) Pin  
R
The MCLR pin provides two specific device  
functions:  
R1  
MCLR  
• Device Reset  
C
• Device programming and debugging  
dsPIC33F  
During device programming and debugging, the  
resistance and capacitance that can be added to the  
pin must be considered. Device programmers and  
debuggers drive the MCLR pin. Consequently,  
specific voltage levels (VIH and VIL) and fast signal  
transitions must not be adversely affected. Therefore,  
specific values of R and C will need to be adjusted  
based on the application and PCB requirements.  
VDD  
VSS  
VDD  
VSS  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
L1(1)  
For example, as shown in Figure 2-2, it is  
recommended that the capacitor C, be isolated from  
the MCLR pin during programming and debugging  
operations.  
Note 1: As an option, instead of a hard-wired connection, an  
inductor (L1) can be substituted between VDD and  
AVDD to improve ADC noise rejection. The inductor  
impedance should be less than 1and the inductor  
capacity greater than 10 mA.  
Place the components shown in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
Where:  
FCNV  
2
f = -------------  
(i.e., ADC conversion rate/2)  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
1
f = -----------------------  
2LC  
VDD  
2  
1
---------------------  
L =  
2f C  
R(1)  
R1(2)  
MCLR  
2.2.1  
TANK CAPACITORS  
dsPIC33F  
JP  
C
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including DSCs to supply a local  
power source. The value of the tank capacitor should  
be determined based on the trace resistance that con-  
nects the power supply source to the device, and the  
maximum current drawn by the device in the applica-  
tion. In other words, select the tank capacitor so that it  
meets the acceptable voltage sag at the device. Typical  
values range from 4.7 µF to 47 µF.  
Note 1: R 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2: R1 470will limit any current flowing into  
MCLR from the external capacitor C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
2.3  
CPU Logic Filter Capacitor  
Connection (VCAP)  
A low-ESR (< 5 Ohms) capacitor is required on the  
VCAP pin, which is used to stabilize the voltage  
regulator output voltage. The VCAP pin must not be  
connected to VDD, and must have a capacitor between  
4.7 µF and 10 µF, 16V connected to ground. The type  
can be ceramic or tantalum. Refer to Section 26.0  
“Electrical  
Characteristics”  
for  
additional  
information.  
DS70652E-page 34  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
2.5  
ICSP Pins  
2.6  
External Oscillator Pins  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming™ (ICSP™) and debugging pur-  
poses. It is recommended to keep the trace length  
between the ICSP connector and the ICSP pins on the  
device as short as possible. If the ICSP connector is  
expected to experience an ESD event, a series resistor  
is recommended, with the value in the range of a few  
tens of Ohms, not to exceed 100 Ohms.  
Many DSCs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 8.0 “Oscillator  
Configuration” for details).  
The oscillator circuit should be placed on the same  
side of the board as the device. Also, place the  
oscillator circuit close to the respective oscillator pins,  
not exceeding one-half inch (12 mm) distance  
between them. The load capacitors should be placed  
next to the oscillator itself, on the same side of the  
board. Use a grounded copper pour around the  
oscillator circuit to isolate them from surrounding  
circuits. The grounded copper pour should be routed  
directly to the MCU ground. Do not run any signal  
traces or power traces inside the ground pour. Also, if  
using a two-sided board, avoid any traces on the  
other side of the board where the crystal is placed. A  
suggested layout is shown in Figure 2-3.  
Pull-up resistors, series diodes, and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternately, refer to the AC/DC characteristics and  
timing requirements information in the “dsPIC33F  
Flash Programming Specification for Devices with Vol-  
atile Configuration Bits” (DS70659) for information on  
capacitive loading limits and pin Input Voltage High  
(VIH) and Input Voltage Low (VIL) requirements.  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
Ensure that the “Communication Channel Select” (i.e.,  
PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP to  
MPLAB® ICD 3 or MPLAB REAL ICE™.  
Main Oscillator  
Guard Ring  
For more information on ICD 3 and REAL ICE  
connection requirements, refer to the following  
documents that are available on the Microchip web  
site.  
“Using MPLAB® ICD 3” (poster) (DS51765)  
“MPLAB® ICD 3 Design Advisory” (DS51764)  
“MPLAB® REAL ICE™ In-Circuit Debugger  
User’s Guide” (DS51616)  
“Using MPLAB® REAL ICE™” (poster) (DS51749)  
13  
14  
15  
16  
17  
18  
19  
20  
Guard Trace  
Secondary  
Oscillator  
2011-2012 Microchip Technology Inc.  
DS70652E-page 35  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
If your application needs to use certain  
2.7  
Oscillator Value Conditions on  
Device Start-up  
Analog-to-Digital pins as analog input pins during the  
debug session, the user application must clear the  
corresponding bits in the AD1PCFGL register during  
initialization of the ADC module.  
If the PLL of the target device is enabled and  
configured for the device start-up oscillator, the  
maximum oscillator source frequency must be limited  
to 4 MHz < FIN < 8 MHz (for MSPLL mode) or 3 MHz <  
FIN < 8 MHz (for ECPLL mode) to comply with device  
PLL start-up conditions. HSPLL mode is not supported.  
This means that if the external oscillator frequency is  
outside this range, the application must start-up in the  
FRC mode first. The fixed PLL settings of 4x after a  
POR with an oscillator frequency outside this range will  
violate the device operating speed.  
When MPLAB ICD 3 or MPLAB REAL ICE in-circuit  
emulator is used as a programmer, the user application  
firmware must correctly configure the AD1PCFGL  
register. Automatic initialization of this register is only  
done during debugger operation. Failure to correctly  
configure the register(s) will result in all  
Analog-to-Digital pins being recognized as analog input  
pins, resulting in the port value being read as a logic ‘0’,  
which may affect user application functionality.  
Once the device powers up, the application firmware  
can enable the PLL, and then perform a clock switch to  
the Oscillator + PLL clock source. Note that clock  
switching must be enabled in the device Configuration  
Word.  
2.9  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic-low state.  
Alternately, connect a 1k to 10k resistor between VSS  
and unused pins.  
2.8  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
If MPLAB ICD 3 or MPLAB REAL ICE in-circuit  
emulator is selected as a debugger, it automatically  
initializes all of the Analog-to-Digital input pins (ANx) as  
“digital” pins, by setting all bits in the AD1PCFGL  
register.  
The bits in the register that correspond to the  
Analog-to-Digital pins that are initialized by MPLAB  
ICD 3 or MPLAB REAL ICE in-circuit emulator, must  
not be cleared by the user application firmware;  
otherwise, communication errors will result between  
the debugger and the device.  
DS70652E-page 36  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
A block diagram of the CPU is shown in Figure 3-1, and  
the programmer’s model for the dsPIC33FJ16(GP/  
3.0  
CPU  
MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104  
is shown in Figure 3-2.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 2. “CPU”  
(DS70204) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
3.1  
Data Addressing Overview  
The data space can be addressed as 32K words or  
64 Kbytes and is split into two blocks, referred to as X  
and Y data memory. Each memory block has its own  
independent Address Generation Unit (AGU). The  
MCU class of instructions operates solely through the  
X memory AGU, which accesses the entire memory  
map as one linear data space. Certain DSP instructions  
operate through the X and Y AGUs to support dual  
operand reads, which splits the data address space  
into two parts. The X and Y data space boundary is  
device-specific.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Overhead-free circular buffers (Modulo Addressing  
mode) are supported in both X and Y address spaces.  
The Modulo Addressing removes the software  
boundary checking overhead for DSP algorithms.  
Furthermore, the X AGU circular addressing can be  
used with any of the MCU class of instructions. The X  
AGU also supports Bit-Reversed Addressing to greatly  
simplify input or output data reordering for radix-2 FFT  
algorithms.  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 CPU module has  
a 16-bit (data) modified Harvard architecture with an  
enhanced instruction set, including significant support  
for DSP. The CPU has a 24-bit instruction word with a  
variable length opcode field. The Program Counter  
(PC) is 23 bits wide and addresses up to 4M x 24 bits  
of user program memory space. The actual amount of  
program memory implemented varies by device. A  
single-cycle instruction prefetch mechanism is used to  
help maintain throughput and provides predictable  
execution. All instructions execute in a single cycle,  
with the exception of instructions that change the  
program flow, the double-word move (MOV.D)  
instruction and the table instructions. Overhead-free  
program loop constructs are supported using the DO  
and REPEAT instructions, both of which are  
interruptible at any point.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K program word boundary defined by the 8-bit  
Program Space Visibility Page (PSVPAG) register. The  
program-to-data-space mapping feature lets any  
instruction access program space as if it were data  
space.  
3.2  
DSP Engine Overview  
The DSP engine features a high-speed 17-bit by 17-bit  
multiplier, 40-bit ALU, two 40-bit saturating  
a
The  
dsPIC33FJ16(GP/MC)101/102  
and  
accumulators, and a 40-bit bidirectional barrel shifter.  
The barrel shifter is capable of shifting a 40-bit value up  
to 16 bits right or left, in a single cycle. The DSP instruc-  
tions operate seamlessly with all other instructions and  
have been designed for optimal real-time performance.  
The MAC instruction and other associated instructions  
can concurrently fetch two data operands from mem-  
ory, while multiplying two W registers and accumulating  
and optionally saturating the result in the same cycle.  
This instruction functionality requires that the RAM data  
space be split for these instructions and linear for all  
others. Data space partitioning is achieved in a trans-  
parent and flexible manner through dedicating certain  
working registers to each address space.  
dsPIC33FJ32(GP/MC)101/102/104 devices have six-  
teen, 16-bit working registers in the programmer’s  
model. Each of the working registers can serve as a  
data, address, or address offset register. The 16th  
working register (W15) operates as a software Stack  
Pointer (SP) for interrupts and calls.  
There are two classes of instruction in the  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices: MCU and DSP. These two  
instruction classes are seamlessly integrated into a sin-  
gle CPU. The instruction set includes many addressing  
modes and is designed for optimum C compiler effi-  
ciency. For most instructions, dsPIC33FJ16(GP/  
MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104  
devices are capable of executing a data (or program  
data) memory read, a working register (data) read, a  
data memory write, and a program (instruction) memory  
read per instruction cycle. As a result, three parameter  
instructions can be supported, allowing A + B = C  
operations to be executed in a single cycle.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 37  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
3.3  
Special MCU Features  
dsPIC33FJ32(GP/MC)101/102/104 supports 16/16  
and 32/16 divide operations, both fractional and  
integer. All divide instructions are iterative operations.  
They must be executed within a REPEATloop, resulting  
in a total execution time of 19 instruction cycles. The  
divide operation can be interrupted during any of those  
19 cycles without loss of data.  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 features a 17-bit  
by 17-bit single-cycle multiplier that is shared by both  
the MCU ALU and DSP engine. The multiplier can per-  
form signed, unsigned and mixed-sign multiplication.  
Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit  
multiplication not only allows you to perform mixed-sign  
multiplication, it also achieves accurate results for  
special operations, such as (-1.0) x (-1.0).  
A 40-bit barrel shifter is used to perform up to a 16-bit  
left or right shift in a single cycle. The barrel shifter can  
be used by both MCU and DSP instructions.  
FIGURE 3-1:  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
CPU CORE BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
16  
Data Latch  
16  
16  
8
16  
Data Latch  
Y RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
X RAM  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
16  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
16  
DSP Engine  
16 x 16  
W Register Array  
Divide Support  
16  
16-Bit ALU  
16  
To Peripheral Modules  
DS70652E-page 38  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 3-2:  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
PUSH.SShadow  
DOShadow  
W1  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
W8  
Working Registers  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD15  
AD39  
ACCA  
AD31  
AD0  
DSP  
Accumulators  
ACCB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB SA SB OAB SAB DA DC  
SRH  
IPL0 RA  
N
OV  
Z
C
IPL2 IPL1  
STATUS Register  
SRL  
2011-2012 Microchip Technology Inc.  
DS70652E-page 39  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
3.4  
CPU Control Registers  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA(1)  
R/C-0  
SB(1)  
R-0  
R/C-0  
SAB  
R-0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
R/W-0(3)  
IPL<2:0>(2)  
R/W-0(3)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
OA: Accumulator A Overflow Status bit  
1= Accumulator A overflowed  
0= Accumulator A has not overflowed  
OB: Accumulator B Overflow Status bit  
1= Accumulator B overflowed  
0= Accumulator B has not overflowed  
SA: Accumulator A Saturation ‘Sticky’ Status bit(1)  
1= Accumulator A is saturated or has been saturated at some time  
0= Accumulator A is not saturated  
SB: Accumulator B Saturation ‘Sticky’ Status bit(1)  
1= Accumulator B is saturated or has been saturated at some time  
0= Accumulator B is not saturated  
OAB: OA || OB Combined Accumulator Overflow Status bit  
1= Accumulators A or B have overflowed  
0= Neither Accumulators A or B have overflowed  
SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit  
1= Accumulators A or B are saturated or have been saturated at some time in the past  
0= Neither Accumulator A or B are saturated  
This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.  
bit 9  
bit 8  
DA: DOLoop Active bit  
1= DOloop in progress  
0= DOloop not in progress  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized  
data) of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
DS70652E-page 40  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 3-1:  
SR: CPU STATUS REGISTER (CONTINUED)  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts are disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of a magnitude that  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation that affects the Z bit has set it at some time in the past  
0= The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
2011-2012 Microchip Technology Inc.  
DS70652E-page 41  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT(1)  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
US: DSP Multiply Unsigned/Signed Control bit  
1= DSP engine multiplies are unsigned  
0= DSP engine multiplies are signed  
bit 11  
EDT: Early DOLoop Termination Control bit(1)  
1= Terminates executing DOloop at end of current loop iteration  
0= No effect  
bit 10-8  
DL<2:0>: DOLoop Nesting Level Status bits  
111= 7 DOloops are active  
001= 1 DOloop is active  
000= 0 DOloops is active  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SATA: ACCA Saturation Enable bit  
1= Accumulator A saturation is enabled  
0= Accumulator A saturation is disabled  
SATB: ACCB Saturation Enable bit  
1= Accumulator B saturation is enabled  
0= Accumulator B saturation is disabled  
SATDW: Data Space Write from DSP Engine Saturation Enable bit  
1= Data space write saturation is enabled  
0= Data space write saturation is disabled  
ACCSAT: Accumulator Saturation Mode Select bit  
1= 9.31 saturation (super saturation)  
0= 1.31 saturation (normal saturation)  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space is visible in data space  
0= Program space is not visible in data space  
RND: Rounding Mode Select bit  
1= Biased (conventional) rounding is enabled  
0= Unbiased (convergent) rounding is enabled  
IF: Integer or Fractional Multiplier Mode Select bit  
1= Integer mode is enabled for DSP multiply ops  
0= Fractional mode is enabled for DSP multiply ops  
Note 1: This bit will always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS70652E-page 42  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The divide algorithm takes one cycle per bit of divisor,  
so both 32-bit/16-bit and 16-bit/16-bit instructions take  
the same number of cycles to execute.  
3.5  
Arithmetic Logic Unit (ALU)  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 ALU is 16 bits  
wide and is capable of addition, subtraction, bit shifts,  
and logic operations. Unless otherwise mentioned,  
arithmetic operations are 2’s complement in nature.  
Depending on the operation, the ALU can affect the  
values of the Carry (C), Zero (Z), Negative (N), Over-  
flow (OV), and Digit Carry (DC) Status bits in the SR  
register. The C and DC Status bits operate as Borrow  
and Digit Borrow bits, respectively, for subtraction  
operations.  
3.6  
DSP Engine  
The DSP engine consists of a high-speed 17-bit x  
17-bit multiplier, a barrel shifter and a 40-bit adder/  
subtracter (with two target accumulators, round and  
saturation logic).  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 is a single-cycle  
instruction flow architecture; therefore, concurrent  
operation of the DSP engine with MCU instruction flow  
is not possible. However, some MCU ALU and DSP  
engine resources can be used concurrently by the  
same instruction (e.g., ED, EDAC).  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
The DSP engine can also perform inherent accumula-  
tor-to-accumulator operations that require no additional  
data. These instructions are ADD, SUB, and NEG.  
Refer to the “16-Bit MCU and DSC Programmer’s  
Reference Manual” (DS70157) for information on the  
SR bits affected by each instruction.  
The DSP engine has options selected through bits in  
the CPU Core Control register (CORCON), as listed  
below:  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
• Fractional or Integer DSP Multiply (IF)  
dsPIC33FJ32(GP/MC)101/102/104 CPU incorpo-  
rates hardware support for both multiplication and  
division. This includes a dedicated hardware multiplier  
and support hardware for 16-bit-divisor division.  
• Signed or Unsigned DSP Multiply (US)  
• Conventional or Convergent Rounding (RND)  
• Automatic Saturation On/Off for ACCA (SATA)  
• Automatic Saturation On/Off for ACCB (SATB)  
3.5.1  
MULTIPLIER  
• Automatic Saturation On/Off for Writes to Data  
Memory (SATDW)  
Using the high-speed 17-bit x 17-bit multiplier of the  
DSP engine, the ALU supports unsigned, signed or  
mixed-sign operation in several MCU multiplication  
modes:  
• Accumulator Saturation mode Selection (ACCSAT)  
A block diagram of the DSP engine is shown in  
Figure 3-3.  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
TABLE 3-1:  
Instruction  
DSP INSTRUCTIONS  
SUMMARY  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
Algebraic  
Operation  
ACC Write  
Back  
CLR  
A = 0  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x * y)  
A = A + x2  
Yes  
No  
ED  
3.5.2  
DIVIDER  
EDAC  
MAC  
No  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
Yes  
No  
MAC  
MOVSAC  
MPY  
No change in A  
A = x * y  
Yes  
No  
• 32-bit signed/16-bit signed divide  
• 32-bit unsigned/16-bit unsigned divide  
• 16-bit signed/16-bit signed divide  
• 16-bit unsigned/16-bit unsigned divide  
MPY  
A = x 2  
No  
MPY.N  
MSC  
A = – x * y  
No  
A = A – x * y  
Yes  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. The 16-bit signed and  
unsigned DIV instructions can specify any W register  
for both the 16-bit divisor (Wn) and any W register  
(aligned) pair (W(m + 1):Wm) for the 32-bit dividend.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 43  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 3-3:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
40-Bit Accumulator A  
40-Bit Accumulator B  
t
16  
40  
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Saturate  
e
Adder  
Carry/Borrow In  
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-Bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
DS70652E-page 44  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
3.6.1  
MULTIPLIER  
3.6.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The 17-bit x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17-bit x 17-bit  
multiplier/scaler is a 33-bit value that is sign-extended  
to 40 bits. Integer data is inherently represented as a  
signed 2’s complement value, where the Most Signifi-  
cant bit (MSb) is defined as a sign bit. The range of an  
N-bit 2’s complement integer is -2N-1 to 2N-1 – 1.  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side, and either true or complement  
data into the other input.  
• In the case of addition, the Carry/Borrow input is  
active-high and the other input is true data (not  
complemented).  
• In the case of subtraction, the Carry/Borrow input  
is active-low and the other input is complemented.  
The adder/subtracter generates Overflow Status bits,  
SA/SB and OA/OB, which are latched and reflected in  
the STATUS register:  
• For a 16-bit integer, the data range is -32768  
(0x8000) to 32767 (0x7FFF) including 0.  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• For a 32-bit integer, the data range is  
-2,147,483,648 (0x8000 0000) to 2,147,483,647  
(0x7FFF FFFF).  
• Overflow into guard bits 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
When the multiplier is configured for fractional  
multiplication, the data is represented as a 2’s  
complement fraction, where the MSb is defined as a  
sign bit and the radix point is implied to lie just after the  
sign bit (QX format). The range of an N-bit 2’s  
complement fraction with this implied radix point is -1.0  
to (1 – 21-N). For a 16-bit fraction, the Q15 data range  
is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0  
and has a precision of 3.01518x10-5. In Fractional  
mode, the 16 x 16 multiply operation generates a  
The adder has an additional saturation block that  
controls accumulator data saturation, if selected. It  
uses the result of the adder, the Overflow Status bits  
described  
previously,  
and  
the  
SAT<A:B>  
(CORCON<7:6>) and ACCSAT (CORCON<4>) mode  
control bits to determine when and to what value, to  
saturate.  
Six STATUS register bits support saturation and  
overflow:  
1.31 product that has a precision of 4.65661 x 10-10  
.
The same multiplier is used to support the MCU  
multiply instructions, which include integer 16-bit  
signed, unsigned and mixed sign multiply operations.  
• OA: ACCA overflowed into guard bits  
• OB: ACCB overflowed into guard bits  
• SA: ACCA saturated (bit 31 overflow and  
saturation)  
or  
The MUL instruction can be directed to use byte or  
word-sized operands. Byte operands will direct a 16-bit  
result, and word operands will direct a 32-bit result to  
the specified register(s) in the W array.  
ACCA overflowed into guard bits and  
saturated (bit 39 overflow and saturation)  
• SB: ACCB saturated (bit 31 overflow and  
saturation)  
3.6.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
or  
The data accumulator consists of a 40-bit adder/  
subtracter with automatic sign extension logic. It can  
select one of two accumulators (A or B) as its pre-  
ACCB overflowed into guard bits and  
saturated (bit 39 overflow and saturation)  
• OAB: Logical OR of OA and OB  
• SAB: Logical OR of SA and SB  
accumulation  
source  
and  
post-accumulation  
destination. For the ADDand LACinstructions, the data  
to be accumulated or loaded can be optionally scaled  
using the barrel shifter prior to accumulation.  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when OA and OB are set and  
the corresponding Overflow Trap Flag Enable bits  
(OVATE, OVBTE) in the INTCON1 register are set  
(refer to Section 7.0 “Interrupt Controller”). This  
allows the user application to take immediate action; for  
example, to correct system gain.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 45  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The SA and SB bits are modified each time data  
passes through the adder/subtracter, but can only be  
cleared by the user application. When set, they indicate  
that the accumulator has overflowed its maximum  
range (bit 31 for 32-bit saturation or bit 39 for 40-bit  
saturation) and will be saturated (if saturation is  
enabled). When saturation is not enabled, SA and SB  
default to bit 39 overflow, and therefore, indicate that a  
catastrophic overflow has occurred. If the COVTE bit in  
the INTCON1 register is set, the SA and SB bits will  
generate an arithmetic warning trap when saturation is  
disabled.  
3.6.3  
ACCUMULATOR ‘WRITE BACK’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED, and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator which is not targeted by the instruc-  
tion into data space memory. The write is performed  
across the X bus into combined X and Y address  
space. The following addressing modes are supported:  
• W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as a  
1.15 fraction.  
The Overflow and Saturation Status bits can optionally  
be viewed in the STATUS Register (SR) as the logical  
OR of OA and OB (in bit OAB) and the logical OR of SA  
and SB (in bit SAB). Programmers can check one bit in  
the STATUS register to determine whether either  
accumulator has overflowed, or one bit to determine  
whether either accumulator has saturated. This is  
useful for complex number arithmetic, which typically  
uses both accumulators.  
• [W13] + = 2, Register Indirect with Post-Increment:  
The rounded contents of the non-target accumu-  
lator are written into the address pointed to by  
W13 as a 1.15 fraction. W13 is then incremented  
by 2 (for a word write).  
3.6.3.1  
Round Logic  
The round logic is a combinational block that performs  
a conventional (biased) or convergent (unbiased)  
round function during an accumulator write (store). The  
Round mode is determined by the state of the RND bit  
in the CORCON register. It generates a 16-bit,  
1.15 data value that is passed to the data space write  
saturation logic. If rounding is not indicated by the  
instruction, a truncated 1.15 data value is stored and  
the least significant word (lsw) is simply discarded.  
The device supports three Saturation and Overflow  
modes:  
• Bit 39 Overflow and Saturation:  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive 9.31  
value (0x7FFFFFFFFF) or maximally negative 9.31  
value (0x8000000000) into the target accumulator.  
The SA or SB bit is set and remains set until  
cleared by the user application. This condition is  
referred to as ‘super saturation’ and provides pro-  
tection against erroneous data or unexpected  
algorithm problems (such as gain calculations).  
Conventional rounding will zero-extend bit 15 of the  
accumulator and will add it to the ACCxH word (bits 16  
through 31 of the accumulator).  
• If the ACCxL word (bits 0 through 15 of the accu-  
mulator) is between 0x8000 and 0xFFFF (0x8000  
included), ACCxH is incremented.  
• Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally positive  
1.31 value (0x007FFFFFFF) or maximally nega-  
tive 1.31 value (0x0080000000) into the target  
accumulator. The SA or SB bit is set and remains  
set until cleared by the user application. When  
this Saturation mode is in effect, the guard bits are  
not used, so the OA, OB or OAB bits are never  
set.  
• If ACCxL is between 0x0000 and 0x7FFF, ACCxH  
is left unchanged.  
A consequence of this algorithm is that over a succes-  
sion of random rounding operations, the value tends to  
be biased slightly positive.  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. In this case, the Least  
Significant bit (LSb), bit 16 of the accumulator, of  
ACCxH is examined:  
• Bit 39 Catastrophic Overflow:  
The bit 39 Overflow Status bit from the adder is  
used to set the SA or SB bit, which remains set  
until cleared by the user application. No saturation  
operation is performed, and the accumulator is  
allowed to overflow, destroying its sign. If the  
COVTE bit in the INTCON1 register is set, a  
catastrophic overflow can initiate a trap exception.  
• If it is ‘1’, ACCxH is incremented.  
• If it is ‘0’, ACCxH is not modified.  
Assuming that bit 16 is effectively random in nature,  
this scheme removes any rounding bias that may  
accumulate.  
DS70652E-page 46  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The SAC and SAC.R instructions store either a  
truncated (SAC), or rounded (SAC.R) version of the  
contents of the target accumulator to data memory via  
The MSb of the source (bit 39) is used to determine the  
sign of the operand being tested.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
the  
X
bus, subject to data saturation (see  
Section 3.6.3.2 “Data Space Write Saturation”). For  
the MAC class of instructions, the accumulator write-  
back operation functions in the same manner,  
addressing combined MCU (X and Y) data space  
though the X bus. For this class of instructions, the data  
is always subject to rounding.  
3.6.4  
BARREL SHIFTER  
The barrel shifter can perform up to 16-bit arithmetic or  
logic right shifts, or up to 16-bit left shifts, in a single  
cycle. The source can be either of the two DSP  
accumulators or the X bus (to support multi-bit shifts of  
register or memory data).  
3.6.3.2  
Data Space Write Saturation  
In addition to adder/subtracter saturation, writes to data  
space can also be saturated, but without affecting the  
contents of the source accumulator. The data space  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
write saturation logic block accepts  
a
16-bit,  
1.15 fractional value from the round logic block as its  
input, together with overflow status from the original  
source (accumulator) and the 16-bit round adder.  
These inputs are combined and used to select the  
appropriate 1.15 fractional value as output to write to  
data space memory.  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is  
presented to the barrel shifter between Bit Positions 16  
and 31 for right shifts, and between Bit Positions 0 and  
16 for left shifts.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly:  
• For input data greater than 0x007FFF, data  
written to memory is forced to the maximum  
positive 1.15 value, 0x7FFF.  
• For input data less than 0xFF8000, data written to  
memory is forced to the maximum negative  
1.15 value, 0x8000.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 47  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 48  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
4.1  
Program Address Space  
4.0  
MEMORY ORGANIZATION  
The program address memory space of the  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices is 4M instructions. The space  
is addressable by a 24-bit value derived either from the  
23-bit Program Counter (PC) during program execution,  
or from table operation or data space remapping as  
described in Section 4.6 “Interfacing Program and  
Data Memory Spaces”.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 family  
devices. However, it is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 3. “Data Memory”  
(DS70202) and Section 4. “Program  
Memory” (DS70203) in the “dsPIC33F/  
PIC24H Family Reference Manual”, which  
are available from the Microchip web site  
(www.microchip.com).  
User application access to the program memory space  
is restricted to the lower half of the address range  
(0x000000 to 0x7FFFFF). The exception is the use of  
TBLRD/TBLWT operations, which use TBLPAG<7> to  
permit access to the Configuration bits and Device ID  
sections of the configuration memory space.  
The device architecture features separate program and  
data memory spaces and buses. This architecture also  
allows the direct access of program memory from the  
data space during code execution.  
The memory maps for the dsPIC33FJ16(GP/MC)101/  
102 and dsPIC33FJ32(GP/MC)101/102/104 family of  
devices re shown in Figure 4-1 and Figure 4-2.  
FIGURE 4-1:  
PROGRAM MEMORY MAP FOR dsPIC33FJ16(GP/MC)101/102 DEVICES  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Reserved  
Alternate Vector Table  
User Program  
Flash Memory  
(5.6K instructions)  
0x002BFA  
0x002BFC  
Flash Configuration  
(1)  
Words  
0x002BFE  
0x002COO  
Unimplemented  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
Device Configuration  
Shadow Registers  
Reserved  
DEVID (2)  
0xFEFFFE  
0xFF0000  
0xFFFFFE  
Note 1: On Reset, these bits are automatically copied into the device Configuration Shadow registers.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 49  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 4-2:  
PROGRAM MEMORY MAP FOR dsPIC33FJ32(GP/MC)101/102/104 DEVICES  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Reserved  
Alternate Vector Table  
User Program  
Flash Memory  
(11.2K instructions)  
0x0057FA  
0x0057FC  
Flash Configuration  
(1)  
Words  
0x0057FE  
0x005800  
Unimplemented  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
0xF7FFFE  
0xF80000  
0xF80020  
0xF80022  
Device Configuration  
Shadow Registers  
Reserved  
DEVID (2)  
0xFEFFFE  
0xFF0000  
0xFFFFFE  
Note 1: On Reset, these bits are automatically copied into the device Configuration Shadow registers.  
DS70652E-page 50  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.2  
All  
INTERRUPT AND TRAP VECTORS  
dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 devices reserve  
the addresses between 0x00000 and 0x000200 for  
hard-coded program execution vectors. A hardware  
Reset vector is provided to redirect code execution  
from the default value of the PC on device Reset to the  
actual start of code. A GOTOinstruction is programmed  
by the user application at 0x000000, with the actual  
address for the start of code at 0x000002.  
The program memory space is organized in word-  
addressable blocks. Although it is treated as 24 bits  
wide, it is more appropriate to think of each address of  
the program memory as a lower and upper word, with  
the upper byte of the upper word being unimplemented.  
The lower word always has an even address, while the  
upper word has an odd address (Figure 4-3).  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement provides compatibility with data memory  
space addressing and makes data in the program  
memory space accessible.  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices also have two Interrupt Vec-  
tor Tables (IVTs), located from 0x000004 to 0x0000FF  
and 0x000100 to 0x0001FF. These vector tables allow  
each of the device interrupt sources to be handled by  
separate Interrupt Service Routines (ISRs). A more  
detailed discussion of the Interrupt Vector Tables is  
provided in Section 7.1 “Interrupt Vector Table”.  
FIGURE 4-3:  
PROGRAM MEMORY ORGANIZATION  
least significant word (lsw)  
PC Address  
most significant word (msw)  
msw  
Address  
(lsw Address)  
23  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
2011-2012 Microchip Technology Inc.  
DS70652E-page 51  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
All word accesses must be aligned to an even address.  
4.2  
Data Address Space  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction in progress is completed. If the error  
occurred on a write, the instruction is executed but the  
write does not occur. In either case, a trap is then exe-  
cuted, allowing the system and/or user application to  
examine the machine state prior to execution of the  
address Fault.  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
a
dsPIC33FJ32(GP/MC)101/102/104 CPU has  
separate 16-bit-wide data memory space. The data  
space is accessed using separate Address Generation  
Units (AGUs) for read and write operations. The data  
memory maps is shown in Figure 4-4.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 4.6.3 “Reading Data from  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
LSB. The MSB is not modified.  
A sign-extend instruction (SE) is provided to allow user  
applications to translate 8-bit signed data to 16-bit  
signed values. Alternately, for 16-bit unsigned data,  
user applications can clear the MSB of any W register  
by executing a Zero-Extend (ZE) instruction on the  
appropriate address.  
Microchip  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 devices imple-  
ment up to 2 Kbytes of data memory. Should an EA  
point to a location outside of this area, an all-zero word  
or byte will be returned.  
4.2.3  
SFR SPACE  
The first 2 Kbytes of the Near Data Space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 core and peripheral modules for  
controlling the operation of the device.  
4.2.1  
DATA SPACE WIDTH  
The data memory space is organized in byte-  
addressable, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
SFRs are distributed among the modules that they  
control, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Refer to  
the corresponding device tables and  
pinout diagrams for device-specific  
information.  
To maintain backward compatibility with PIC® MCU  
devices and improve data space memory usage  
efficiency, the dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 instruction set  
supports both word and byte operations. As a  
consequence of byte accessibility, all Effective Address  
calculations are internally scaled to step through word-  
aligned memory. For example, the core recognizes that  
Post-Modified Register Indirect Addressing mode  
[Ws++] will result in a value of Ws + 1 for byte  
operations and Ws + 2 for word operations.  
4.2.4  
NEAR DATA SPACE  
The 8-Kbyte area between 0x0000 and 0x1FFF is  
referred to as the near data space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOVclass of instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode with a working register  
as an Address Pointer.  
Data byte reads will read the complete word that  
contains the byte, using the LSB of any EA to  
determine which byte to select. The selected byte is  
placed onto the LSB of the data path. That is, data  
memory and registers are organized as two parallel  
byte-wide entities with shared (word) address decoding  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register that  
matches the byte address.  
DS70652E-page 52  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 4-4:  
DATA MEMORY MAP FOR dsPIC33FJ16(GP/MC)101/102 DEVICES WITH  
1-KBYTE RAM  
MSB  
Address  
LSB  
Address  
16 Bits  
MSb  
LSb  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
X Data RAM (X)  
Y Data RAM (Y)  
8-Kbyte  
Near Data  
Space  
0x09FF  
0x0A01  
0x09FE  
0x0A00  
1-Kbyte  
SRAM Space  
0x0BFF  
0x0C01  
0x0BFE  
0x0C00  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
2011-2012 Microchip Technology Inc.  
DS70652E-page 53  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 4-5:  
DATA MEMORY MAP FOR dsPIC33FJ32(GP/MC)101/102/104 DEVICES WITH  
2-KBYTE RAM  
MSB  
Address  
LSB  
Address  
16 Bits  
MSb  
LSb  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
X Data RAM (X)  
Y Data RAM (Y)  
8 Kbyte  
Near Data  
Space  
0x0BFF  
0x0C01  
0x0BFE  
0x0C00  
2 Kbyte  
SRAM Space  
0x0FFF  
0x1001  
0x0FFE  
0x1000  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70652E-page 54  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.N, and MSC) to provide  
two concurrent data read paths.  
4.2.5  
X AND Y DATA SPACES  
The core has two data spaces, X and Y. These data  
spaces can be considered either separate (for some  
DSP instructions), or as one unified linear address  
range (for MCU instructions). The data spaces are  
accessed using two Address Generation Units (AGUs)  
and separate data paths. This feature allows certain  
instructions to concurrently fetch two words from RAM,  
thereby enabling efficient execution of DSP algorithms  
such as Finite Impulse Response (FIR) filtering and  
Fast Fourier transform (FFT).  
Both the X and Y data spaces support Modulo  
Addressing mode for all instructions, subject to  
addressing mode restrictions. Bit-Reversed Addressing  
mode is only supported for writes to X data space.  
All data memory writes, including in DSP instructions,  
view data space as combined X and Y address space.  
The boundary between the X and Y data spaces is  
device-dependent and is not user-programmable.  
The X data space is used by all instructions and  
supports all addressing modes. X data space has  
separate read and write data buses. The X read data  
bus is the read data path for all instructions that view  
data space as combined X and Y address space. It is  
also the X data prefetch path for the dual operand DSP  
instructions (MACclass).  
All Effective Addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes, or 32K words, although the  
implemented memory locations vary by device.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 55  
TABLE 4-1:  
CPU CORE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
0026  
0028  
002A  
002C  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
003C  
003E  
0040  
0042  
0044  
0046  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0800  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
00xx  
xxxx  
00xx  
0000  
0020  
0000  
Stack Pointer Limit Register  
ACCAL  
Accumulator A Low Word Register  
Accumulator A High Word Register  
Accumulator A Upper Word Register  
Accumulator B Low Word Register  
Accumulator B High Word Register  
Accumulator B Upper Word Register  
Program Counter Low Word Register  
ACCAH  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
PCH  
Program Counter High Byte Register  
Table Page Address Pointer Register  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
DOSTARTH  
DOENDL  
DOENDH  
SR  
Program Memory Visibility Page Address Pointer Register  
Repeat Loop Counter Register  
DCOUNT<15:0>  
DOSTARTL<15:1>  
0
0
DOSTARTH<5:0>  
DOENDH  
DOENDL<15:1>  
OA  
OB  
SA  
SB  
US  
OAB  
EDT  
SAB  
DA  
DC  
IPL2  
SATA  
IPL1  
SATB  
IPL0  
RA  
N
OV  
Z
C
CORCON  
MODCON  
DL<2:0>  
BWM<3:0>  
SATDW ACCSAT  
IPL3  
PSV  
RND  
IF  
XMODEN YMODEN  
YWM<3:0>  
XWM<3:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-1:  
CPU CORE REGISTER MAP (CONTINUED)  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
0048  
004A  
004C  
004E  
0050  
0052  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
0
1
0
1
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
BREN  
XB<14:0>  
DISICNT  
Disable Interrupts Counter Register  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-2:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXGP101 DEVICES  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
0068  
006A  
CN30IE  
CN29IE  
CN12IE  
CN11IE  
CN23IE  
CN22IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
0000  
0000  
CN21IE  
CN12PUE CN11PUE  
CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
CN30PUE CN29PUE  
CN23PUE CN22PUE CN21PUE  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-3:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXMC101 DEVICES  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
0068  
006A  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN11IE  
CN23IE  
CN22IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
0000  
0000  
CN21IE  
CN14PUE CN13PUE CN12PUE CN11PUE  
CN30PUE CN29PUE  
CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
CN23PUE CN22PUE CN21PUE  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-4:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
CN15IE  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN11IE  
CN27IE  
CN24IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
0000  
CN23IE  
CN22IE  
CN21IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE  
006A CN30PUE CN29PUE CN27PUE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
CN24PUE CN23PUE CN22PUE CN21PUE  
CN16PUE 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-5:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32(GP/MC)104 DEVICES  
SFR  
Name  
SFR  
Addr  
All  
Bit 0  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Resets  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
CN15IE  
CN13IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN28IE  
CN11IE  
CN27IE  
CN10IE  
CN26IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CN25IE  
CN24IE  
CN23IE  
CN22IE  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN13PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000  
006A CN30PUE CN29PUE CN28PUE CN27PUE CN26PUE CN25PUE CN24PUE CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-6:  
INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE  
OVBTE  
COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
4444  
4440  
4444  
0044  
4444  
0004  
4000  
0044  
0040  
0040  
4400  
0040  
0040  
0000  
INTCON2 0082  
ALTIVT  
DISI  
AD1IF  
INT2IF  
SPI1IF  
T3IF  
T2IF  
OC2IF  
INT2EP INT1EP  
INT0EP  
INT0IF  
IFS0  
IFS1  
IFS2  
IFS3  
IFS4  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC9  
IPC14  
IPC15  
IPC16  
IPC19  
0084  
0086  
0088  
U1TXIF  
U1RXIF  
SPI1EIF  
IC2IF  
T1IF  
OC1IF  
CMIF  
IC1IF  
(2)  
(2)  
T5IF  
T4IF  
INT1IF  
CNIF  
MI2C1IF SI2C1IF  
IC3IF  
(1)  
(1)  
008A FLTA1IF  
RTCIF  
PWM1IF  
(3)  
008C  
0094  
0096  
0098  
CTMUIF  
AD1IE  
INT2IE  
SPI1EIE  
U1EIF FLTB1IF  
IC1IE INT0IE  
U1TXIE  
U1RXIE  
SPI1IE  
T3IE  
T2IE  
OC2IE  
IC2IE  
T1IE  
OC1IE  
(2)  
(2)  
T5IE  
T4IE  
INT1IE  
CNIE  
CMIE MI2C1IE SI2C1IE  
IC3IE  
(1)  
(1)  
009A FLTA1IE  
RTCIE  
PWM1IE  
(3)  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B6  
00C0  
00C2  
00C4  
00CA  
CTMUIE  
T1IP<2:0>  
T2IP<2:0>  
U1RXIP<2:0>  
U1EIE FLTB1IE  
INT0IP<2:0>  
OC1IP<2:0>  
IC1IP<2:0>  
IC2IP<2:0>  
SPI1EIP<2:0>  
AD1IP<2:0>  
MI2C1IP<2:0>  
OC2IP<2:0>  
SPI1IP<2:0>  
T3IP<2:0>  
U1TXIP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
CNIP<2:0>  
CMIP<2:0>  
(2)  
T4IP<2:0>  
(2)  
INT2IP<2:0>  
IC3IP<2:0>  
T5IP<2:0>  
(1)  
PWM1IP<2:0>  
(1)  
FLTA1IP<2:0>  
RTCIP<2:0>  
(3)  
U1EIP<2:0>  
CTMUIP<2:0>  
FLTB1IP<2:0>  
INTTREG 00E0  
ILR<3:0>  
VECNUM<6:0>  
Legend:  
Note 1:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This bit is available in dsPIC33FJXXMC10X devices only.  
2:  
3:  
This bit is available in dsPIC33FJ32(GP/MC)10X devices only.  
This bit is available in dsPIC33FJ(16/32)MC102/104 devices only.  
TABLE 4-7:  
TIMERS REGISTER MAP FOR dsPIC33FJ16(GP/MC)10X DEVICES  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
0100  
0102  
0104  
0106  
Timer1 Register  
Period Register 1  
0000  
FFFF  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
PR1  
T1CON  
TMR2  
TON  
TSIDL  
TGATE  
TCKPS<1:0>  
TSYNC  
TCS  
Timer2 Register  
TMR3HLD 0108  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
TIMERS REGISTER MAP FOR DSPIC33FJ32(GP/MC)10X DEVICES  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
0100  
0102  
0104  
0106  
Timer1 Register  
Period Register 1  
0000  
FFFF  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
PR1  
T1CON  
TMR2  
TON  
TSIDL  
TGATE  
TCKPS<1:0>  
TSYNC  
TCS  
Timer2 Register  
TMR3HLD 0108  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
0114  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TMR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer4 Register  
TMR5HLD 0116  
Timer5 Holding Register (for 32-bit operations only)  
Timer5 Register  
TMR5  
PR4  
0118  
011A  
011C  
011E  
0120  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
INPUT CAPTURE REGISTER MAP  
SFR  
Addr  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
Legend:  
0140  
0142  
0144  
0146  
0148  
014A  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
ICI<1:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-10: OUTPUT COMPARE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-11: 6-OUTPUT PWM1 REGISTER MAP FOR dsPIC33FJXXMC10X DEVICES  
SFR Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0111  
0000 0000 0000 0111  
0011 1111 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
P1TCON  
01C0  
01C2  
01C4  
PTEN  
PTDIR  
PTSIDL  
PTOPS<3:0>  
PTCKPS<1:0>  
PTMOD<1:0>  
P1TMR  
PWM Timer Count Value Register  
PWM Time Base Period Register  
PWM Special Event Compare Register  
P1TPER  
P1SECMP  
PWM1CON1  
PWM1CON2  
P1DTCON1  
P1DTCON2  
P1FLTACON  
P1FLTBCON  
P1OVDCON  
P1DC1  
01C6 SEVTDIR  
01C8  
01CA  
01CC  
01CE  
01D0  
01D2  
01D4  
01D6  
01D8  
01DA  
01DE  
PMOD3 PMOD2 PMOD1  
SEVOPS<3:0>  
PEN3H PEN2H PEN1H  
PEN3L  
IUE  
PEN2L  
PEN1L  
OSYNC  
UDIS  
DTBPS<1:0>  
DTB<5:0>  
DTAPS<1:0>  
DTA<5:0>  
DTS3A  
DTS3I  
DTS2A  
DTS2I  
FAEN3  
FBEN3  
DTS1A  
FAEN2  
FBEN2  
DTS1I  
FAEN1  
FBEN1  
FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L FLTAM  
FBOV3H FBOV3L FBOV2H FBOV2L FBOV1H FBOV1L FLTBM  
POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L  
POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L  
PWM Duty Cycle 1 Register  
PWM Duty Cycle 2 Register  
PWM Duty Cycle 3 Register  
PWMKEY <15:0>  
P1DC2  
P1DC3  
PWM1KEY  
Legend:  
— = unimplemented, read as ‘0’  
TABLE 4-12: I2C1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
Legend:  
0200  
0202  
0204  
0206  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
0208 ACKSTAT TRSTAT  
ADD10  
IWCOL  
020A  
020C  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-13: UART1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD URXINV  
ADDEN RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN UTXBF  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-14: SPI1 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
0240  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
SPI1CON1 0242  
SPI1CON2 0244  
DISSCK DISSDO MODE16  
PPRE<1:0>  
FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI1BUF  
0248  
SPI1 Transmit and Receive Buffer Register  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-15: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)101 DEVICES  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
ADC1BUF5  
ADC1BUF6  
ADC1BUF7  
ADC1BUF8  
ADC1BUF9  
ADC1BUFA  
ADC1BUFB  
ADC1BUFC  
ADC1BUFD  
ADC1BUFE  
ADC1BUFF  
AD1CON1  
AD1CON2  
AD1CON3  
0300  
0302  
0304  
0306  
0308  
030A  
030C  
030E  
0310  
0312  
0314  
0316  
0318  
031A  
031C  
031E  
0320  
0322  
0324  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
ADON  
ADSIDL  
FORM<1:0>  
CHPS<1:0>  
SSRC<2:0>  
SIMSAM ASAM SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
CSCNA  
BUFS  
SMPI<3:0>  
ADRC  
SAMC<4:0>  
ADCS<7:0>  
AD1CHS123 0326  
CH123NB<1:0>  
CH123SB  
CH0NA  
CH123NA<1:0> CH123SA 0000  
AD1CHS0  
AD1PCFGL  
AD1CSSL  
0328 CH0NB  
CH0SB<4:0>  
CH0SA<4:0>  
PCFG3 PCFG2 PCFG1  
CSS3 CSS2 CSS1  
0000  
0000  
0000  
(1)  
(1)  
032C  
0330  
PCFG10  
PCFG9  
PCFG0  
CSS0  
(1)  
(1)  
CSS10  
CSS9  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This bit is available in dsPIC33FJ32(GP/MC)101/102 devices only.  
TABLE 4-16: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
ADC1BUF5  
ADC1BUF6  
ADC1BUF7  
ADC1BUF8  
ADC1BUF9  
ADC1BUFA  
ADC1BUFB  
ADC1BUFC  
ADC1BUFD  
ADC1BUFE  
ADC1BUFF  
AD1CON1  
AD1CON2  
AD1CON3  
0300  
0302  
0304  
0306  
0308  
030A  
030C  
030E  
0310  
0312  
0314  
0316  
0318  
031A  
031C  
031E  
0320  
0322  
0324  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
ADON  
ADSIDL  
FORM<1:0>  
CHPS<1:0>  
SSRC<2:0>  
SIMSAM ASAM SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
CSCNA  
BUFS  
SMPI<3:0>  
ADRC  
SAMC<4:0>  
ADCS<7:0>  
AD1CHS123 0326  
CH123NB<1:0>  
CH123SB  
CH0NA  
CH123NA<1:0> CH123SA 0000  
AD1CHS0  
AD1PCFGL  
AD1CSSL  
0328 CH0NB  
CH0SB<4:0>  
CH0SA<4:0>  
PCFG3 PCFG2 PCFG1  
CSS3 CSS2 CSS1  
0000  
0000  
0000  
(1)  
(1)  
032C  
0330  
PCFG10  
PCFG9  
PCFG5  
CSS5  
PCFG4  
CSS4  
PCFG0  
CSS0  
(1)  
(1)  
CSS10  
CSS9  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This bit is available in dsPIC33FJ32(GP/MC)101/102 devices only.  
TABLE 4-17: ADC1 REGISTER MAP FOR dsPIC33FJ32(GP/MC)104 DEVICES  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
ADC1BUF5  
ADC1BUF6  
ADC1BUF7  
ADC1BUF8  
ADC1BUF9  
ADC1BUFA  
ADC1BUFB  
ADC1BUFC  
ADC1BUFD  
ADC1BUFE  
ADC1BUFF  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS123  
AD1CHS0  
0300  
0302  
0304  
0306  
0308  
030A  
030C  
030E  
0310  
0312  
0314  
0316  
0318  
031A  
031C  
031E  
0320  
0322  
0324  
0326  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
ADON  
ADSIDL  
FORM<1:0>  
CHPS<1:0>  
SSRC<2:0>  
SIMSAM ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
CSCNA  
BUFS  
SMPI<3:0>  
ADCS<7:0>  
ADRC  
SAMC<4:0>  
CH123NB<1:0>  
CH0SB<4:0>  
CH123SB  
CH123NA<1:0>  
CH123SA 0000  
0328 CH0NB  
032C PCFG15  
CH0NA  
CH0SA<4:0>  
PCFG3 PCFG2 PCFG1  
CSS3 CSS2 CSS1  
0000  
(1)  
(1)  
AD1PCFGL  
AD1CSSL  
PCFG12 PCFG11 PCFG10  
PCFG9  
PCFG8  
CSS8  
PCFG7 PCFG6  
CSS7 CSS6  
PCFG5  
CSS5  
PCFG4  
CSS4  
PCFG0  
CSS0  
0000  
0000  
(1)  
(1)  
0330  
CSS15  
CSS12  
CSS11  
CSS10  
CSS9  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This bit is available in dsPIC33FJ32(GP/MC)104 devices only.  
TABLE 4-18: CTMU REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CTMUCON1 033A  
CTMUEN  
CTMUSIDL TGEN EDGEN EDGSEQEN IDISSEN  
EDG1SEL<3:0>  
ITRIM<5:0>  
CTTRIG  
0000  
0000  
0000  
CTMUCON2 033C EDG1MOD EDG1POL  
CTMUICON 033E  
EDG2STAT EDG1STAT EDG2MOD EDG2POL  
IRNG<1:0>  
EDG2SEL<3:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-19: REAL-TIME CLOCK AND CALENDAR REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALRMVAL  
0620  
Alarm Value Register Window based on APTR<1:0>  
ALRMPTR<1:0>  
xxxx  
0000  
xxxx  
0000  
ALCFGRPT 0622 ALRMEN CHIME  
AMASK<3:0>  
ARPT<7:0>  
CAL<7:0>  
RTCVAL  
RCFGCAL  
Legend:  
0624  
0626  
RTCC Value Register Window based on RTCPTR<1:0>  
RTCWREN RTCSYNC HALFSEC RTCOE RTCPTR<1:0>  
RTCEN  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-20: PAD CONFIGURATION REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
RTSECSEL  
Bit 0  
PADCFG1  
02FC  
0000  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-21: COMPARATOR REGISTER MAP  
All  
Resets  
File Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMSTAT  
0650 CMSIDL  
C3EVT  
VREFSEL  
C2EVT  
C1EVT  
CVRR  
C3OUT C2OUT C1OUT 0000  
CVRCON  
0652  
0654  
0656  
CON  
BGSEL<1:0>  
CVREN CVROE  
EVPOL<1:0>  
CVR<3:0>  
— CCH<1:0>  
0000  
0000  
CM1CON  
COE  
CPOL  
CEVT  
COUT  
CREF  
CM1MSKSRC  
SELSRCC<3:0>  
SELSRCB<3:0>  
SELSRCA<3:0>  
0000  
CM1MSKCON 0658  
HLMS  
OCEN  
OCNEN  
OBEN  
OBNEN  
OAEN  
OANEN  
NAGS  
PAGS  
ACEN  
CFSEL<2:0>  
ACNEN  
CREF  
ABEN  
CFLTREN  
ABNEN  
AAEN  
AANEN 0000  
0000  
CM1FLTR  
CM2CON  
065A  
065C  
CFDIV<2:0>  
CON  
COE  
CPOL  
CEVT  
COUT  
EVPOL<1:0>  
CCH<1:0>  
0000  
0000  
CM2MSKSRC 065E  
CM2MSKCON 0660  
SELSRCC<3:0>  
SELSRCB<3:0>  
SELSRCA<3:0>  
HLMS  
OCEN  
OCNEN  
OBEN  
OBNEN  
OAEN  
OANEN  
NAGS  
PAGS  
ACEN  
CFSEL<2:0>  
ACNEN  
CREF  
ABEN  
CFLTREN  
ABNEN  
AAEN  
AANEN 0000  
0000  
CM2FLTR  
0662  
0664  
0666  
CFDIV<2:0>  
CM3CON  
CON  
COE  
CPOL  
CEVT  
COUT  
EVPOL<1:0>  
CCH<1:0>  
0000  
0000  
CM3MSKSRC  
SELSRCC<3:0>  
SELSRCB<3:0>  
SELSRCA<3:0>  
CM3MSKCON 0668  
HLMS  
OCEN  
OCNEN  
OBEN  
OBNEN  
OAEN  
OANEN  
NAGS  
PAGS  
ACEN  
ACNEN  
ABEN  
ABNEN  
AAEN  
AANEN 0000  
0000  
CM3FLTR  
066A  
CFSEL<2:0>  
CFLTREN  
CFDIV<2:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPINR0  
RPINR1  
RPINR3  
RPINR4  
RPINR7  
RPINR8  
0680  
0682  
0686  
0688  
068E  
0690  
INT1R<4:0>  
1F00  
001F  
1F1F  
1F1F  
1F1F  
001F  
001F  
1F1F  
1F1F  
001F  
INT2R<4:0>  
T2CKR<4:0>  
T3CKR<4:0>  
(1)  
(1)  
T5CKR<4:0>  
IC2R<4:0>  
T4CKR<4:0>  
IC1R<4:0>  
IC3R<4:0>  
RPINR11 0696  
RPINR18 06A4  
RPINR20 06A8  
RPINR21 06AA  
OCFAR<4:0>  
U1RXR<4:0>  
U1CTSR<4:0>  
(1)  
(1)  
SCK1R<4:0>  
SDI1R<4:0>  
SS1R<4:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
These bits are available in dsPIC33FJ32(GP/MC)10X devices only.  
TABLE 4-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJXXGP101 DEVICES  
File  
Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
RPOR0  
RPOR2  
RPOR3  
RPOR4  
RPOR7  
Legend:  
06C0  
06C4  
06C6  
06C8  
06CE  
RP1R<4:0>  
RP0R<4:0>  
RP4R<4:0>  
0000  
0000  
0000  
0000  
0000  
RP7R<4:0>  
RP9R<4:0>  
RP15R<4:0>  
RP8R<4:0>  
RP14R<4:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-24: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJXXMC101 DEVICES  
File  
Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
RPOR0  
RPOR2  
RPOR3  
RPOR4  
RPOR6  
RPOR7  
Legend:  
06C0  
06C4  
06C6  
06C8  
06CC  
06CE  
RP1R<4:0>  
RP0R<4:0>  
RP4R<4:0>  
0000  
0000  
0000  
0000  
0000  
0000  
RP7R<4:0>  
RP9R<4:0>  
RP13R<4:0>  
RP15R<4:0>  
RP8R<4:0>  
RP12R<4:0>  
RP14R<4:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
RPOR7  
Legend:  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
RP1R<4:0>  
RP3R<4:0>  
RP5R<4:0>  
RP7R<4:0>  
RP9R<4:0>  
RP11R<4:0>  
RP13R<4:0>  
RP15R<4:0>  
RP0R<4:0>  
RP2R<4:0>  
RP4R<4:0>  
RP6R<4:0>  
RP8R<4:0>  
RP10R<4:0>  
RP12R<4:0>  
RP14R<4:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ32(GP/MC)104 DEVICES  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
RPOR7  
RPOR8  
RPOR9  
RPOR10  
RPOR11  
RPOR12  
Legend:  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
06D0  
06D2  
06D4  
06D6  
06D8  
RP1R<4:0>  
RP3R<4:0>  
RP5R<4:0>  
RP7R<4:0>  
RP9R<4:0>  
RP11R<4:0>  
RP13R<4:0>  
RP15R<4:0>  
RP17R<4:0>  
RP19R<4:0>  
RP21R<4:0>  
RP23R<4:0>  
RP25R<4:0>  
RP0R<4:0>  
RP2R<4:0>  
RP4R<4:0>  
RP6R<4:0>  
RP8R<4:0>  
RP10R<4:0>  
RP12R<4:0>  
RP14R<4:0>  
RP16R<4:0>  
RP18R<4:0>  
RP20R<4:0>  
RP22R<4:0>  
RP24R<4:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-27: PORTA REGISTER MAP FOR dsPIC33FJ16(GP/MC)101/102 DEVICES  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
02C0  
02C2  
02C4  
02C6  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
001F  
xxxx  
xxxx  
0000  
PORTA  
LATA  
LATA4  
ODCA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
LATA0  
ODCA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-28: PORTA REGISTER MAP FOR dsPIC33FJ32(GP/MC)101/102 DEVICES  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
02C0  
02C2  
02C4  
02C6  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
001F  
xxxx  
xxxx  
0000  
PORTA  
LATA  
LATA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
LATA0  
ODCA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-29: PORTA REGISTER MAP FOR dsPIC33FJ32(GP/MC)104 DEVICES  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
02C0  
02C2  
02C4  
02C6  
TRISA10  
RA10  
TRISA9 TRISA8 TRISA7  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
001F  
xxxx  
xxxx  
0000  
PORTA  
LATA  
RA9  
RA8  
RA7  
LATA10  
ODCA10  
LATA9  
LATA8  
LATA7  
LATA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
LATA0  
ODCA  
Legend:  
ODCA9 ODCBA ODCA7  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-30: PORTB REGISTER MAP FOR dsPIC33FJ16GP101 DEVICES  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8 TRISB15 TRISB14  
TRISB9 TRISB8 TRISB7  
TRISB4  
RB4  
TRISB1 TRISB0  
C393  
xxxx  
xxxx  
0000  
02CA  
02CC  
RB15  
RB14  
RB9  
RB8  
RB7  
RB1  
LATB1  
RB0  
LATB0  
LATB15  
LATB14  
LATB9  
LATB8  
LATB7  
LATB4  
ODCB4  
ODCB  
Legend:  
02CE ODCB15 ODCB14  
ODCB9 ODCB8 ODCB7  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal  
TABLE 4-31: PORTB REGISTER MAP FOR dsPIC33FJ16MC101 DEVICES  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8 TRISB15 TRISB14 TRISB13 TRISB12  
TRISB9 TRISB8 TRISB7  
TRISB4  
RB4  
TRISB1 TRISB0  
F393  
xxxx  
xxxx  
0000  
02CA  
02CC  
RB15  
RB14  
RB13  
RB12  
RB9  
RB8  
RB7  
RB1  
LATB1  
RB0  
LATB0  
LATB15  
LATB14  
LATB13  
LATB12  
LATB9  
LATB8  
LATB7  
LATB4  
ODCB4  
ODCB  
Legend:  
02CE ODCB15 ODCB14 ODCB13 ODCB12  
ODCB9 ODCB8 ODCB7  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal  
TABLE 4-32: PORTB REGISTER MAP FOR dsPIC33FJ16(GP/MC)102 DEVICES  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
02C8 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7  
TRISB6 TRISB5 TRISB4  
TRISB3 TRISB2 TRISB1 TRISB0  
FFFF  
xxxx  
xxxx  
0000  
PORTB  
LATB  
02CA  
02CC  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
RB3  
LATB3  
RB2  
LATB2  
RB1  
LATB1  
RB0  
LATB0  
LATB15  
LATB14  
LATB13  
LATB12  
LATB11  
LATB10  
LATB9  
LATB8  
LATB7  
ODCB7  
LATB6  
LATB5  
LATB4  
ODCB  
Legend:  
02CE ODCB15 ODCB14 ODCB13 ODCB12 ODCB11 ODCB10 ODCB9 ODCB8  
ODCB6 ODCB5 ODCB4  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-33: PORTB REGISTER MAP FOR dsPIC33FJ32GP101 DEVICES  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8 TRISB15 TRISB14  
TRISB9 TRISB8 TRISB7  
TRISB4  
RB4  
TRISB1 TRISB0  
C393  
xxxx  
xxxx  
0000  
02CA  
02CC  
RB15  
RB14  
RB9  
RB8  
RB7  
RB1  
LATB1  
RB0  
LATB0  
LATB15  
LATB14  
LATB9  
LATB8  
LATB7  
LATB4  
ODCB  
Legend:  
02CE ODCB15 ODCB14  
ODCB9 ODCB8 ODCB7  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal  
TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33FJ32MC101 DEVICES  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8 TRISB15 TRISB14 TRISB13 TRISB12  
TRISB9 TRISB8 TRISB7  
TRISB4  
RB4  
TRISB1 TRISB0  
F393  
xxxx  
xxxx  
0000  
02CA  
02CC  
RB15  
RB14  
RB13  
RB12  
RB9  
RB8  
RB7  
RB1  
LATB1  
RB0  
LATB0  
LATB15  
LATB14  
LATB13  
LATB12  
LATB9  
LATB8  
LATB7  
LATB4  
ODCB  
Legend:  
02CE ODCB15 ODCB14 ODCB13 ODCB12  
ODCB9 ODCB8 ODCB7  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal  
TABLE 4-35: PORTB REGISTER MAP FOR dsPIC33FJ32(GP/MC)102 AND dsPIC33FJ32(GP/MC)104 DEVICES  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
02C8 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7  
TRISB6 TRISB5 TRISB4  
TRISB3 TRISB2 TRISB1 TRISB0  
FFFF  
xxxx  
xxxx  
0000  
PORTB  
LATB  
02CA  
02CC  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
LATB4  
RB3  
LATB3  
RB2  
LATB2  
RB1  
LATB1  
RB0  
LATB0  
LATB15  
LATB14  
LATB13  
LATB12  
LATB11  
LATB10  
LATB9  
LATB8  
LATB7  
ODCB7  
LATB6  
LATB5  
ODCB  
Legend:  
02CE ODCB15 ODCB14 ODCB13 ODCB12 ODCB11 ODCB10 ODCB9 ODCB8  
ODCB6 ODCB5  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-36: PORTC REGISTER MAP FOR dsPIC33FJ32(GP/MC)104 DEVICES  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
PORTC  
LATC  
02D8  
02DA  
02DC  
02DE  
TRISC9 TRISC8 TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
FFFF  
xxxx  
xxxx  
0000  
RC9  
RC8  
RC7  
RC6  
RC5  
LATC5  
RC4  
LATC4  
RC3  
LATC3  
RC2  
LATC2  
RC1  
LATC1  
RC0  
LATC0  
LATC9  
LATC8  
LATC7  
LATC6  
ODCC6  
ODCC  
Legend:  
ODCC9 ODCC8 ODCC7  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-37: SYSTEM CONTROL REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
RCON  
0740  
0742  
0744  
0748  
TRAPR IOPUWR  
CM  
NOSC<2:0>  
FRCDIV<2:0>  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx  
(2)  
OSCCON  
CLKDIV  
OSCTUN  
COSC<2:0>  
DOZE<2:0>  
CLKLOCK IOLOCK  
LOCK  
LPOSCEN OSWEN  
0300  
ROI  
DOZEN  
3040  
0000  
TUN<5:0>  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
RCON register Reset values are dependent on the type of Reset.  
OSCCON register Reset values are dependent on the FOSC Configuration bits and by type of Reset.  
TABLE 4-38: NVM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
ERASE  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
NVMOP<3:0>  
0000  
0000  
NVMKEY<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-39: PMD REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(2)  
(2)  
(1)  
PMD1  
PMD2  
PMD3  
PMD4  
0770  
0772  
0774  
0776  
T5MD  
T4MD  
T3MD  
T2MD  
T1MD  
PWM1MD  
IC2MD  
IC1MD  
I2C1MD  
U1MD  
SPI1MD  
AD1MD  
0000  
0000  
0000  
0000  
IC3MD  
OC2MD OC1MD  
CMPMD RTCCMD  
CTMUMD  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This bit is available in dsPIC33FJXXMC10X devices only.  
This bit is available in dsPIC33FJ32(GP/MC)10X devices only.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
4.2.6  
SOFTWARE STACK  
4.2.7  
DATA RAM PROTECTION FEATURE  
The dsPIC33F product family supports Data RAM  
protection features that enable segments of RAM to be  
protected when used in conjunction with Boot and  
Secure Code Segment Security. BSRAM (Secure RAM  
Segment for BS) is accessible only from the Boot  
Segment Flash code when enabled. SSRAM (Secure  
RAM Segment for RAM) is accessible only from the  
Secure Segment Flash code when enabled. See  
Table 4-1 for an overview of the BSRAM and SSRAM  
SFRs.  
In addition to its use as a working register, the W15  
register in the dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 devices is also  
used as a software Stack Pointer. The Stack Pointer  
always points to the first available free word and grows  
from lower to higher addresses. It pre-decrements for  
stack pops and post-increments for stack pushes, as  
shown in Figure 4-6. For a PC push during any CALL  
instruction, the MSb of the PC is zero-extended before  
the push, ensuring that the MSb is always clear.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSb  
of the PC prior to the push.  
4.3  
Instruction Addressing Modes  
The addressing modes shown in Table 4-40 form the  
basis of the addressing modes that are optimized to  
support the specific features of individual instructions.  
The addressing modes provided in the MAC class of  
instructions differ from those provided in other  
instruction types.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is  
compared with the value in SPLIM. If the contents of  
the Stack Pointer (W15) and the SPLIM register are  
equal and a push operation is performed, a stack error  
trap will not occur. However, the stack error trap will  
occur on a subsequent push operation. For example, to  
cause a stack error trap when the stack grows beyond  
address 0x0C00 in RAM, initialize the SPLIM with the  
value 0x0BFE.  
4.3.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first  
8192 bytes of data memory (near data space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the SFR space.  
4.3.2  
MCU INSTRUCTIONS  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
where Operand 1 is always a working register (that is,  
the addressing mode can only be register direct), which  
is referred to as Wb. Operand 2 can be a W register,  
fetched from data memory, or a 5-bit literal. The result  
location can be either a W register or a data memory  
location. The following addressing modes are  
supported by MCU instructions:  
FIGURE 4-6:  
CALL STACK FRAME  
0x0000  
15  
0
• Register Direct  
• Register Indirect  
PC<15:0>  
000000000  
W15 (before CALL)  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-Bit or 10-Bit Literal  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
Note:  
Not all instructions support all of the  
addressing modes given above.  
Individual instructions can support  
different subsets of these addressing  
modes.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 73  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 4-40: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode  
File Register Direct  
Description  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the Effective Address (EA).  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
(Register Indexed)  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
4.3.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
4.3.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSAC, and MSC), also  
referred to as MACinstructions, use a simplified set of  
addressing modes to allow the user application to  
effectively manipulate the Data Pointers through  
register indirect tables.  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
The two-source operand prefetch registers must be  
members of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 are always directed to the X RAGU,  
and W10 and W11 are always directed to the Y AGU.  
The Effective Addresses generated (before and after  
modification) must, therefore, be valid addresses within  
X data space for W8 and W9 and Y data space for W10  
and W11.  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA. How-  
ever, the 4-bit Wb (Register Offset) field is  
shared by both source and destination  
(but typically only used by one).  
Note:  
Register Indirect with Register Offset  
Addressing mode is available only for W9  
(in X space) and W11 (in Y space).  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
In summary, the following addressing modes are  
• Register Direct  
supported by the MACclass of instructions:  
• Register Indirect  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-Bit Literal  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
• 16-Bit Literal  
4.3.5  
OTHER INSTRUCTIONS  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
In addition to the addressing modes outlined previously,  
some instructions use literal constants of various sizes.  
For example, BRA(branch) instructions use 16-bit signed  
literals to specify the branch destination directly, whereas  
the DISIinstruction uses a 14-bit unsigned literal field. In  
some instructions, such as ADD Acc, the source of an  
operand or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
DS70652E-page 74  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the  
4.4  
Modulo Addressing  
Modulo Addressing mode is a method of providing an  
automated means to support circular data buffers using  
hardware. The objective is to remove the need for  
software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
corresponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
4.4.2  
W ADDRESS REGISTER  
SELECTION  
Modulo Addressing can operate in either data or program  
space (since the Data Pointer mechanism is essentially  
the same for both). One circular buffer can be supported  
in each of the X (which also provides the pointers into  
program space) and Y data spaces. Modulo Addressing  
can operate on any W Register Pointer. However, it is not  
advisable to use W14 or W15 for Modulo Addressing  
since these two registers are used as the Stack Frame  
Pointer and Stack Pointer, respectively.  
• The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags  
as well as a W register field to specify the W  
Address registers. The XWM and YWM fields  
select which registers will operate with Modulo  
Addressing.  
• If XWM = 15, X RAGU and X WAGU Modulo  
Addressing is disabled.  
• If YWM = 15, Y AGU Modulo Addressing is  
disabled.  
In general, any particular circular buffer can be config-  
ured to operate in only one direction as there are  
certain restrictions on the buffer start address (for incre-  
menting buffers), or end address (for decrementing  
buffers), based upon the direction of the circular buffer.  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 4-1). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The only exception to the usage restrictions is for  
buffers that have a power-of-two length. As these  
buffers satisfy the start and end address criteria, they  
can operate in a bidirectional mode (that is, address  
boundary checks are performed on both the lower and  
upper address boundaries).  
The Y Address Space Pointer W register (YWM) to  
which Modulo Addressing is to be applied is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
‘15’ and the YMODEN bit is set at MODCON<14>.  
4.4.1  
START AND END ADDRESS  
The Modulo Addressing scheme requires that a  
starting and ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT, and YMODEND  
(see Table 4-1).  
Note:  
Y space Modulo Addressing EA calcula-  
tions assume word-sized data (LSb of  
every EA is always clear).  
2011-2012 Microchip Technology Inc.  
DS70652E-page 75  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 4-7:  
MODULO ADDRESSING OPERATION EXAMPLE  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100, W0  
W0, XMODSRT  
#0x1163, W0  
W0, MODEND  
#0x8001, W0  
W0, MODCON  
Byte  
Address  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
0x1163  
MOV  
MOV  
#0x0000, W0  
#0x1110, W1  
DO  
MOV  
AGAIN, #0x31  
W0, [W1++]  
;fill the 50 buffer locations  
;fill the next location  
AGAIN: INC W0, W0  
;increment the fill value  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 Words  
DS70652E-page 76  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
4.4.3  
MODULO ADDRESSING  
APPLICABILITY  
4.5.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. Address boundaries check for addresses  
equal to:  
Bit-Reversed Addressing mode is enabled in any of  
these situations:  
• BWM bits (W register selection) in the MODCON  
register are any value other than ‘15’ (the stack  
cannot be accessed using Bit-Reversed  
Addressing)  
• The upper boundary addresses for incrementing  
buffers  
• The lower boundary addresses for decrementing  
buffers  
• The BREN bit is set in the XBREV register  
• The addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment  
If the length of a bit-reversed buffer is M = 2N bytes,  
the last ‘N’ bits of the data buffer start address must  
be zeros.  
It is important to realize that the address boundaries  
check for addresses less than or greater than the upper  
(for incrementing buffers) and lower (for decrementing  
buffers) boundary addresses (not just equal to).  
Address changes can, therefore, jump beyond  
boundaries and still be adjusted correctly.  
XB<14:0> is the Bit-Reversed Address modifier, or  
‘pivot point,’ which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
Note:  
The modulo corrected Effective Address  
is written back to the register only when  
Pre-Modify or Post-Modify Addressing  
mode is used to compute the Effective  
Address. When an address offset (such  
as [W7 + W2]) is used, Modulo Address  
correction is performed, but the contents  
of the register remain unchanged.  
Note:  
All bit-reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
When enabled, Bit-Reversed Addressing is executed  
only for Register Indirect with Pre-Increment or Post-  
Increment Addressing and word-sized data writes. It  
will not function for any other addressing mode or for  
byte-sized data and normal addresses are generated  
instead. When Bit-Reversed Addressing is active, the  
W Address Pointer is always added to the address  
modifier (XB) and the offset associated with the  
Register Indirect Addressing mode is ignored. In  
addition, as word-sized data is a requirement, the LSb  
of the EA is ignored (and always clear).  
4.5  
Bit-Reversed Addressing  
Bit-Reversed Addressing mode is intended to simplify  
data reordering for radix-2 FFT algorithms. It is  
supported by the X AGU for data writes only.  
The modifier, which can be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. If an application attempts to do  
so, Bit-Reversed Addressing will assume  
priority, when active, for the X WAGU, and  
X WAGU, Modulo Addressing will be  
disabled. However, Modulo Addressing will  
continue to function in the X RAGU.  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, a write to the  
XBREV register should not be immediately followed by  
an indirect read operation using the W register that has  
been designated as the Bit-Reversed Pointer.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 77  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 4-8:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4  
0
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-Word, Bit-Reversed Buffer  
TABLE 4-41: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
DS70652E-page 78  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
4.6.1  
ADDRESSING PROGRAM SPACE  
4.6  
Interfacing Program and Data  
Memory Spaces  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 architecture uses  
a 24-bit-wide program space and a 16-bit-wide data  
space. The architecture is also a modified Harvard  
scheme, meaning that data can also be present in the  
program space. To use this data successfully, it must  
be accessed in a way that preserves the alignment of  
information in both spaces.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the MSb of TBLPAG is used to determine if  
the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
Aside from normal execution, the dsPIC33FJ16(GP/  
MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104  
architecture provides two methods by which program  
space can be accessed during operation:  
For remapping operations, the 8-bit Program Space  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the MSb  
of the EA is ‘1’, PSVPAG is concatenated with the lower  
15 bits of the EA to form a 23-bit program space  
address. Unlike table operations, this limits remapping  
operations strictly to the user memory area.  
• Using table instructions to access individual  
bytes, or words, anywhere in the program space  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated periodically. It also allows access  
to all bytes of the program word. The remapping  
method allows an application to access a large block of  
data on a read-only basis, which is ideal for lookups  
from a large table of static data. The application can  
only access the lsw of the program word.  
Table 4-42 and Figure 4-9 show how the program EA is  
created for table operations and remapping accesses  
from the data EA.  
TABLE 4-42: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
0
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 79  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 4-9:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
0
0
Program Counter  
23 Bits  
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 Bits  
16 Bits  
24 Bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 Bits  
15 Bits  
23 Bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The Least Significant bit of program space addresses is always fixed as ‘0’ to maintain word  
alignment of data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted  
in the configuration memory space.  
DS70652E-page 80  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TBLRDH (Table Read High):  
4.6.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
- In Word mode, this instruction maps the entire  
upper word of a program address (P<23:16>)  
to a data address. Note that D<15:8>, the  
‘phantom byte’, will always be ‘0’.  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDH and TBLWTH  
instructions are the only method to read or write the  
upper 8 bits of a program space word as data.  
- In Byte mode, this instruction maps the upper  
or lower byte of the program word to D<7:0>  
of the data address, in the TBLRDL instruc-  
tion. The data is always ‘0’ when the upper  
‘phantom’ byte is selected (Byte Select = 1).  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses. Pro-  
gram memory can thus be regarded as two 16-bit-wide  
word address spaces, residing side by side, each with  
the same address range. TBLRDLand TBLWTLaccess  
the space that contains the least significant data word.  
TBLRDHand TBLWTHaccess the space that contains the  
upper data byte.  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 5.0 “Flash  
Program Memory”.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and  
configuration spaces. When TBLPAG<7> = 0, the table  
page is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
TBLRDL(Table Read Low):  
- In Word mode, this instruction maps the  
lower word of the program space location  
(P<15:0>) to a data address (D<15:0>).  
- In Byte mode, either the upper or lower byte  
of the lower program word is mapped to the  
lower byte of a data address. The upper byte  
is selected when Byte Select is ‘1’; the lower  
byte is selected when it is ‘0’.  
FIGURE 4-10:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B (Wn<0> = 0)  
TBLRDL.B (Wn<0> = 1)  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
2011-2012 Microchip Technology Inc.  
DS70652E-page 81  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.6.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access to stored  
constant data from the data space without the need to  
use special instructions (such as TBLRDL and  
TBLRDH).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
For operations that use PSV and are executed outside  
a REPEAT loop, the MOV and MOV.D instructions  
require one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
Program space access through the data space occurs  
if the MSb of the data space EA is ‘1’ and program  
space visibility is enabled by setting the PSV bit in the  
Core Control register (CORCON<2>). The location of  
the program memory space to be mapped into the data  
space is determined by the Program Space Visibility  
Page register (PSVPAG). This 8-bit register defines  
any one of 256 possible pages of 16K words in  
program space. In effect, PSVPAG functions as the  
upper 8 bits of the program memory address, with the  
15 bits of the EA functioning as the lower bits. By  
incrementing the PC by 2 for each program memory  
word, the lower 15 bits of data space addresses directly  
map to the lower 15 bits in the corresponding program  
space addresses.  
For operations that use PSV, and are executed inside  
a REPEATloop, these instances require two instruction  
cycles in addition to the specified execution time of the  
instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Data reads to this area add a cycle to the instruction  
being executed, since two program memory fetches  
are required.  
Any other iteration of the REPEAT loop will allow the  
instruction using PSV to access data, to execute in a  
single cycle.  
Although each data space address, 0x8000 and higher,  
maps directly into a corresponding program memory  
address (see Figure 4-11), only the lower 16 bits of the  
FIGURE 4-11:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space...  
0x8000  
PSV Area  
...whilethelower15bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
DS70652E-page 82  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
ICSP allows a device to be serially programmed while  
in the end application circuit. This is done with two lines  
5.0  
FLASH PROGRAM MEMORY  
Note 1: This data sheet summarizes the features  
for programming clock and programming data (one of  
the alternate programming pin pairs: PGECx/PGEDx),  
and three other lines for power (VDD), ground (VSS) and  
Master Clear (MCLR). This allows users to manufac-  
ture boards with unprogrammed devices, and then  
program the Digital Signal Controller just before  
shipping the product. This also allows the most recent  
firmware or a custom firmware to be programmed.  
of the dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 family  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 5. “Flash  
Programming” (DS70191) in the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
application can write program memory data in a single  
program memory word, and erase program memory in  
blocks or ‘pages’ of 512 instructions (1536 bytes).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
5.1  
Table Instructions and Flash  
Programming  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space, from the data  
memory, while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits <7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 5-1.  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 devices contain  
internal Flash program memory for storing and  
executing application code. The memory is readable,  
writable, and erasable during normal operation over the  
entire VDD range.  
Flash memory can be programmed in two ways:  
• In-Circuit Serial Programming™ (ICSP™)  
programming capability  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
• Run-Time Self-Programming (RTSP)  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits <23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 Bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 Bits  
16 Bits  
User/Configuration  
Space Select  
Byte  
Select  
24-Bit EA  
2011-2012 Microchip Technology Inc.  
DS70652E-page 83  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
5.3.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5.2  
RTSP Operation  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
Programmers can program one word (24 bits) of  
program Flash memory at a time. To do this, it is  
necessary to erase the 8-row erase page that contains  
the desired address of the location the user wants to  
change.  
dsPIC33FJ32(GP/MC)101/102/104 Flash program  
memory array is organized into rows of 64 instructions or  
192 bytes. RTSP allows the user application to erase a  
page of memory, which consists of eight rows  
(512 instructions); and to program one word. Table 26-12  
shows typical erase and programming times. The 8-row  
erase pages are edge-aligned from the beginning of  
program memory, on boundaries of 1536 bytes.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
application must wait for the programming time until  
programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs.  
5.3  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. The processor stalls (waits) until the operation is  
finished.  
Note:  
Performing a page erase operation on the  
last page of program memory will clear the  
Flash Configuration Words, thereby  
enabling code protection as a result.  
Therefore, users should avoid performing  
page erase operations on the last page of  
program memory.  
The programming time depends on the FRC accuracy  
(see Table 26-18) and the value of the FRC Oscillator  
Tuning register (see Register 8-3). Use the following  
formula to calculate the minimum and maximum values  
for the Word Write Time and Page Erase Time (see  
Table 26-12).  
Refer to Section 5. “Flash Programming” (DS70191)  
in the “dsPIC33F/PIC24H Family Reference Manual”  
for details and codes examples on programming using  
RTSP.  
EQUATION 5-1:  
PROGRAMMING TIME  
T
-------------------------------------------------------------------------------------------------------------------------  
7.37 MHz  FRC Accuracy%  FRC Tuning%  
5.4  
Control Registers  
For example, if the device is operating at +125°C, the  
FRC accuracy will be ±2%. If the TUN<5:0> bits (see  
Register 8-3) are set to ‘b000000, the minimum row  
write time is equal to Equation 5-2.  
Two SFRs are used to read and write the program  
Flash memory: NVMCON and NVMKEY.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed, and the start of the programming cycle.  
EQUATION 5-2:  
MINIMUM ROW WRITE  
TIME  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user application must consecutively write 0x55 and  
0xAA to the NVMKEY register. Refer to Section 5.3  
“Programming Operations” for further details.  
355 Cycles  
7.37 MHz  1 + 0.02  1 0.00375  
----------------------------------------------------------------------------------------------  
= 47.4s  
TRW  
=
The maximum row write time is equal to Equation 5-3.  
EQUATION 5-3:  
MAXIMUM ROW WRITE  
TIME  
355 Cycles  
7.37 MHz  1 0.02  1 0.00375  
---------------------------------------------------------------------------------------------  
= 49.3s  
TRW  
=
Setting the WR bit (NVMCON<15>) starts the opera-  
tion, and the WR bit is automatically cleared when the  
operation is finished.  
DS70652E-page 84  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0(1)  
bit 0  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP<3:0>(2)  
bit 7  
Legend:  
SO = Settable Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit(1)  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit(1)  
1= Enables Flash program/erase operations  
0= Inhibits Flash program/erase operations  
WRERR: Write Sequence Error Flag bit(1)  
1= An improper program or erase sequence attempt or termination has occurred (bit is set automatically  
on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit(1)  
1= Performs the erase operation specified by NVMOP<3:0> on the next WR command  
0= Performs the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(1,2)  
If ERASE = 1:  
1111= No operation  
1101= Erase General Segment  
1100= No operation  
0011= No operation  
0010= Memory page erase operation  
0001= No operation  
0000= No operation  
If ERASE = 0:  
1111= No operation  
1101= No operation  
1100= No operation  
0011= Memory word program operation  
0010= No operation  
0001= No operation  
0000= No operation  
Note 1: These bits can only be reset on a POR.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 85  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 5-2:  
NVMKEY: NONVOLATILE MEMORY KEY REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
W-0  
bit 7  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
NVMKEY<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
NVMKEY<7:0>: Key Register bits (write-only)  
DS70652E-page 86  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
6.0  
RESETS  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 8. “Reset”  
(DS70192) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
Any active source of Reset will make the SYSRST sig-  
nal active. On system Reset, some of the registers  
associated with the CPU and peripherals are forced to  
a known Reset state, and some are unaffected.  
Note:  
Refer to the specific peripheral section or  
Section 3.0 “CPU” of this data sheet for  
register Reset states.  
All types of device Reset set a corresponding status bit  
in the RCON register to indicate the type of Reset (see  
Register 6-1).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
All bits that are set, with the exception of the POR bit  
(RCON<0>), are cleared during a POR event. The user  
application can set or clear any bit at any time during  
code execution. The RCON bits only serve as status  
bits. Setting a particular Reset status bit in software  
does not cause a device Reset to occur.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this data sheet.  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset is meaningful.  
• MCLR: Master Clear Pin Reset  
• SWR: RESETInstruction  
• WDTO: Watchdog Timer Reset  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Condition Device Reset  
- Illegal Opcode Reset  
- Uninitialized W Register Reset  
- Security Reset  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
POR  
Internal  
Regulator  
SYSRST  
VDD  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
Configuration Mismatch  
2011-2012 Microchip Technology Inc.  
DS70652E-page 87  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
6.1  
Reset Control Register  
(1)  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CM  
R/W-0  
IOPUWR  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An Illegal Opcode or Uninitialized W Reset has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1= A Configuration Mismatch Reset has occurred  
0= A Configuration Mismatch Reset has not occurred  
bit 8  
VREGS: Voltage Regulator Stand-by During Sleep bit  
1= Voltage regulator is active during Sleep  
0= Voltage regulator goes into Stand-by mode during Sleep  
EXTR: External Reset (MCLR) Pin bit  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS70652E-page 88  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER (CONTINUED)  
bit 2  
IDLE: Wake-up from Idle Flag bit  
1= Device has been in Idle mode  
0= Device has not been in Idle mode  
bit 1  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
bit 0  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 89  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
A Warm Reset is the result of all other Reset sources,  
6.2  
System Reset  
including the RESET instruction. On Warm Reset, the  
device will continue to operate from the current clock  
source as indicated by the Current Oscillator Selec-  
tion (COSC<2:0>) bits in the Oscillator Control  
(OSCCON<14:12>) register.  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 family of devices  
have two types of Reset:  
• Cold Reset  
• Warm Reset  
The device is kept in a Reset state until the system  
power supplies have stabilized at appropriate levels  
and the oscillator clock is ready. The sequence in  
which this occurs is shown in Figure 6-2.  
A Cold Reset is the result of a POR or a BOR. On a  
Cold Reset, the FNOSC Configuration bits in the FOSC  
Configuration register selects the device clock source.  
TABLE 6-1:  
OSCILLATOR DELAY  
Oscillator  
Start-up Delay  
Oscillator Start-up  
Timer  
Oscillator Mode  
PLL Lock Time  
Total Delay  
(1)  
FRC, FRCDIV16,  
FRCDIVN  
TOSCD  
TOSCD  
(1)  
(3)  
(3)  
FRCPLL  
MS  
TOSCD  
TLOCK  
TOSCD(1) + TLOCK  
(1)  
(2)  
(2)  
TOSCD  
TOST  
TOSCD(1) + TOST  
TOSCD(1) + TOST  
(1)  
(2)  
(2)  
HS  
TOSCD  
TOST  
EC  
(1)  
(2)  
(3)  
(3)  
MSPLL  
ECPLL  
SOSC  
LPRC  
TOSCD  
TOST  
TLOCK  
TOSCD(1) + TOST(2) + TLOCK  
(3)  
(3)  
TLOCK  
TLOCK  
(1)  
(2)  
(2)  
TOSCD  
TOST  
TOSCD(1) + TOST  
(1)  
(1)  
TOSCD  
TOSCD  
Note 1: TOSCD = Oscillator Start-up Delay (1.1 s max. for FRC, 70 s max. for LPRC). Crystal oscillator start-up  
times vary with crystal characteristics, load capacitance, etc.  
2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 s for a  
10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.  
3: TLOCK = PLL Lock time (1.5 ms nominal) if PLL is enabled.  
DS70652E-page 90  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 6-2:  
SYSTEM RESET TIMING  
VBOR  
VPOR  
VDD  
TPOR  
1
POR  
BOR  
TBOR  
2
3
TPWRT  
SYSRST  
4
Oscillator Clock  
TOSCD  
TOST  
TLOCK  
6
TFSCM  
FSCM  
5
Reset  
Device Status  
Run  
Time  
1.  
2.  
3.  
POR: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the  
VPOR threshold and the delay, TPOR, has elapsed.  
BOR: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the  
delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.  
PWRT Timer: The Power-up Timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The  
delay, TPWRT, ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay,  
TPWRT, has elapsed, the SYSRST becomes inactive, which in turn, enables the selected oscillator to start generating clock cycles.  
Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to  
Section 8.0 “Oscillator Configuration” for more information.  
When the oscillator clock is ready, the processor begins execution from location, 0x000000. The user application programs a GOTO  
instruction at the Reset address, which redirects program execution to the appropriate start-up routine.  
The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay,  
TFSCM, has elapsed.  
4.  
5.  
6.  
TABLE 6-2:  
Symbol  
OSCILLATOR PARAMETERS  
Note:  
When the device exits the Reset condition  
(begins normal operation), the device  
operating parameters (voltage, frequency,  
temperature, etc.) must be within their  
operating ranges; otherwise, the device  
may not function correctly. The user appli-  
cation must ensure that the delay between  
the time power is first applied, and the time  
SYSRST becomes inactive, is long  
enough to get all operating parameters  
within specification.  
Parameter  
Value  
VPOR  
POR Threshold  
1.8V nominal  
TPOR  
VBOR  
TBOR  
TPWRT  
POR Extension Time 30 s maximum  
BOR Threshold 2.5V nominal  
BOR Extension Time 100 s maximum  
Power-up Time  
Delay  
64 ms nominal  
TFSCM  
Fail-Safe Clock  
Monitor Delay  
900 s maximum  
2011-2012 Microchip Technology Inc.  
DS70652E-page 91  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
6.3  
POR  
6.4  
BOR and PWRT  
A POR circuit ensures the device is reset from power-  
on. The POR circuit is active until VDD crosses the  
VPOR threshold and the delay, TPOR, has elapsed. The  
delay, TPOR, ensures that the internal device bias  
circuits become stable.  
The on-chip regulator has a BOR circuit that resets the  
device when the VDD is too low (VDD < VBOR) for proper  
device operation. The BOR circuit keeps the device in  
Reset until VDD crosses the VBOR threshold and the  
delay, TBOR, has elapsed. The delay, TBOR, ensures  
the voltage regulator output becomes stable.  
The device supply voltage characteristics must meet  
the specified starting voltage and rise rate require-  
ments to generate the POR. Refer to Section 26.0  
“Electrical Characteristics” for details.  
The BOR status (BOR) bit in the Reset Control  
(RCON<1>) register is set to indicate the Brown-out  
Reset.  
The POR status (POR) bit in the Reset Control  
(RCON<0>) register is set to indicate the Power-on  
Reset.  
The device will not run at full speed after a BOR as the  
VDD should rise to acceptable levels for full-speed  
operation. The Power-up Timer (PWRT) provides  
power-up time delay (TPWRT) to ensure that the system  
power supplies have stabilized at the appropriate levels  
for full-speed operation before the SYSRST is  
released.  
Refer to Section 23.0 “Special Features” for further  
details.  
Figure 6-3 shows the typical brown-out scenarios. The  
Reset delay (TBOR + TPWRT) is initiated each time VDD  
rises above the VBOR trip point.  
FIGURE 6-3:  
BROWN-OUT RESET SITUATIONS  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD Dips Before PWRT Expires  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
DS70652E-page 92  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
6.5  
External Reset (EXTR)  
6.8  
Trap Conflict Reset  
The External Reset is generated by driving the MCLR  
pin low. The MCLR pin is a Schmitt trigger input with an  
additional glitch filter. Reset pulses that are longer than  
the minimum pulse width will generate a Reset. Refer  
to Section 26.0 “Electrical Characteristics” for  
minimum pulse-width specifications. The External  
Reset (MCLR) Pin (EXTR) bit in the Reset Control  
(RCON) register is set to indicate the MCLR Reset.  
If a lower priority hard trap occurs while a higher priority  
trap is being processed, a hard Trap Conflict Reset  
occurs. The hard traps include exceptions of Priority  
Level 13 through Level 15, inclusive. The address error  
(Level 13) and oscillator error (Level 14) traps fall into  
this category.  
The Trap Reset Flag (TRAPR) bit in the Reset Control  
(RCON<15>) register is set to indicate the Trap Conflict  
Reset. Refer to Section 7.0 “Interrupt Controller” for  
more information on Trap Conflict Resets.  
6.5.1  
EXTERNAL SUPERVISORY  
CIRCUIT  
Many systems have external supervisory circuits that  
generate Reset signals to reset multiple devices in the  
system. This External Reset signal can be directly con-  
nected to the MCLR pin to reset the device when the  
rest of the system is reset.  
6.9  
Configuration Mismatch Reset  
To maintain the integrity of the Peripheral Pin Select  
Control registers, they are constantly monitored with  
shadow registers in hardware. If an unexpected  
change in any of the registers occurs (such as cell  
disturbances caused by ESD or other external events),  
a Configuration Mismatch Reset occurs.  
6.5.2  
INTERNAL SUPERVISORY CIRCUIT  
When using the internal power supervisory circuit to  
reset the device, the External Reset pin (MCLR) should  
be tied directly or resistively to VDD. In this case, the  
MCLR pin will not be used to generate a Reset. The  
External Reset pin (MCLR) does not have an internal  
pull-up and must not be left unconnected.  
The Configuration Mismatch Flag (CM) bit in the Reset  
Control (RCON<9>) register is set to indicate the  
Configuration Mismatch Reset. Refer to Section 10.0  
“I/O Ports” for more information on the Configuration  
Mismatch Reset.  
Note:  
The Configuration Mismatch feature and  
associated Reset flag is not available on  
all devices.  
6.6  
Software RESET Instruction (SWR)  
Whenever the RESETinstruction is executed, the device  
will assert SYSRST, placing the device in a special  
Reset state. This Reset state will not re-initialize the  
clock. The clock source in effect prior to the RESET  
instruction will remain as the source. SYSRST is  
released at the next instruction cycle and the Reset  
vector fetch will commence.  
6.10 Illegal Condition Device Reset  
An Illegal Condition Device Reset occurs due to the  
following sources:  
• Illegal Opcode Reset  
• Uninitialized W Register Reset  
• Security Reset  
The Software Reset (Instruction) Flag (SWR) bit in the  
Reset Control (RCON<6>) register is set to indicate the  
Software Reset.  
The Illegal Opcode or Uninitialized W Access Reset  
Flag (IOPUWR) bit in the Reset Control (RCON<14>)  
register is set to indicate the Illegal Condition Device  
Reset.  
6.7  
Watchdog Timer Time-out Reset  
(WDTO)  
Whenever a Watchdog Timer Time-out Reset occurs,  
the device will asynchronously assert SYSRST. The  
clock source will remain unchanged. A WDT time-out  
during Sleep or Idle mode will wake-up the processor,  
but will not reset the processor.  
6.10.1  
ILLEGAL OPCODE RESET  
A device Reset is generated if the device attempts to  
execute an illegal opcode value that is fetched from  
program memory.  
The Illegal Opcode Reset function can prevent the  
device from executing program memory sections that  
are used to store constant data. To take advantage of  
the Illegal Opcode Reset, use only the lower 16 bits of  
each program memory section to store the data values.  
The upper 8 bits should be programmed with 0x3F,  
which is an illegal opcode value.  
The Watchdog Timer Time-out Flag (WDTO) bit in the  
Reset Control (RCON<4>) register is set to indicate the  
Watchdog Reset. Refer to Section 23.4 “Watchdog  
Timer (WDT)” for more information on Watchdog  
Reset.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 93  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
6.10.2  
UNINITIALIZED W REGISTER  
RESET  
6.11 Using the RCON Status Bits  
The user application can read the Reset Control  
(RCON) register after any device Reset to determine  
the cause of the Reset.  
Any attempts to use the uninitialized W register as an  
Address Pointer will reset the device. The W register  
array (with the exception of W15) is cleared during all  
Resets and is considered uninitialized until written to.  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
6.10.3  
SECURITY RESET  
If a Program Flow Change (PFC) or Vector Flow  
Change (VFC) targets a restricted location in a  
protected segment (Boot and Secure Segment), that  
operation will cause a Security Reset.  
Table 6-3 provides a summary of Reset flag bit  
operation.  
The PFC occurs when the Program Counter is  
reloaded as a result of a Call, Jump, Computed Jump,  
Return, Return from Subroutine or other form of branch  
instruction.  
The VFC occurs when the Program Counter is  
reloaded with an interrupt or trap vector.  
TABLE 6-3:  
RESET FLAG BIT OPERATION  
Flag Bit  
Set by:  
Cleared by:  
TRAPR (RCON<15>)  
IOPWR (RCON<14>)  
Trap conflict event  
POR, BOR  
Illegal opcode or uninitialized  
POR, BOR  
W register access or Security Reset  
CM (RCON<9>)  
Configuration Mismatch  
MCLR Reset  
POR, BOR  
POR  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
RESETinstruction  
WDT Time-out  
POR, BOR  
PWRSAVinstruction,  
CLRWDTinstruction, POR, BOR  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
POR, BOR  
POR, BOR  
POR, BOR  
POR  
Note: All Reset flag bits can be set or cleared by user software.  
DS70652E-page 94  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Interrupt vectors are prioritized in terms of their natural  
priority. This priority is linked to their position in the  
7.0  
INTERRUPT CONTROLLER  
Note 1: This data sheet summarizes the features  
vector table. Lower addresses generally have a higher  
natural priority. For example, the interrupt associated  
with Vector 0 will take priority over interrupts at any  
other vector address.  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 41. “Interrupts  
(Part IV)” (DS70300) in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available on the Microchip web  
site (www.microchip.com).  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices implement up to 26 unique  
interrupts and 4 nonmaskable traps. These are  
summarized in Table 7-1 and Table 7-2.  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
The interrupt controller reduces the numerous periph-  
eral interrupt request signals to a single interrupt  
request signal to the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104 CPU. It has  
the following features:  
The AIVT supports debugging by providing a way to  
switch between an application and a support environ-  
ment without requiring the interrupt vectors to be  
reprogrammed. This feature also enables switching  
between applications to facilitate evaluation of different  
software algorithms at run time. If the AIVT is not  
needed, the AIVT should be programmed with the  
same addresses used in the IVT.  
• Up to eight processor exceptions and software traps  
• Seven user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
7.2  
Reset Sequence  
• Fixed priority within a specified user priority level  
A device Reset is not a true exception because the inter-  
rupt controller is not involved in the Reset process. The  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices clear their registers in  
response to a Reset, forcing the PC to zero. The Digital  
Signal Controller then begins program execution at  
location, 0x000000. A GOTO instruction at the Reset  
address can redirect program execution to the  
appropriate start-up routine.  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 7-1.  
The IVT resides in program memory, starting at location,  
000004h. The IVT contains 126 vectors consisting of  
eight non-maskable trap vectors, plus up to 118 sources  
of interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit-wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 95  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 7-1:  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
Interrupt Vector Table (IVT)(1)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
Alternate Interrupt Vector Table (AIVT)(1)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 7-1 for the list of implemented interrupt vectors.  
DS70652E-page 96  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 7-1:  
INTERRUPT VECTORS  
Interrupt  
Vector  
Request (IRQ)  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
Number  
8
9
0
1
0x000014  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000114  
0x000116  
0x000118  
0x00011A  
0x00011C  
0x00011E  
0x000120  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer1  
10  
2
11  
3
12  
4
Reserved  
13  
5
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
14  
6
15  
7
16  
8
T3 – Timer3  
17  
9
SPI1E – SPI1 Error  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC1 – ADC1  
18  
10  
19  
11  
20  
12  
21  
13  
22-23  
24  
14-15  
16  
0x000030-0x000032 0x000130-0x000132 Reserved  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
SI2C1 – I2C1 Slave Events  
MI2C1 – I2C1 Master Events  
CMP – Comparator Interrupt  
Change Notification Interrupt  
INT1 – External Interrupt 1  
25  
17  
26  
18  
27  
19  
28  
20  
29-34  
35  
21-26  
27  
0x00003E-0x000038 0x00013E-0x000138 Reserved  
0x00004A  
0x00004C  
0x00004E  
0x00014A  
0x00014C  
0x00014E  
T4 – Timer4(2)  
T5 – Timer4(2)  
36  
28  
37  
29  
INT2 – External Interrupt 2  
38-44  
45  
30-36  
37  
0x000050-0x00005C 0x000150-0x00015C Reserved  
0x00005E 0x00015E IC3 – Input Capture 3  
0x000060-0x000084 0x000160-0x000184 Reserved  
0x000086 0x000186  
PWM1 – PWM1 Period Match(1)  
0x000088-0x00008E 0x000188-0x00018E Reserved  
46-64  
65  
38-56  
57  
66-69  
70  
58-61  
62  
0x000090  
0x000092  
0x000094  
0x000096  
0x000190  
0x000192  
0x000194  
0x000196  
RTCC – Real-Time Clock and Calendar  
FLTA1 – PWM1 Fault A(1)  
FLTB1 – PWM1 Fault B(3)  
U1E – UART1 Error  
71  
63  
72  
64  
73  
65  
74-84  
85  
66-76  
77  
0x000098-0x0000AC 0x000198-0x0001AC Reserved  
0x0000AE 0x0001AE CTMU – Charge Time Measurement Unit  
0x0000B0-0x0000FE 0x0001B0-0x0001FE Reserved  
86-125  
78-117  
Note 1: This interrupt vector is available in dsPIC33FJ(16/32)MC10X devices only.  
2: This interrupt vector is available in dsPIC33FJ32(GP/MC)10X devices only.  
3: This interrupt vector is available in dsPIC33FJ(16/32)MC102/104 devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 97  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 7-2:  
TRAP VECTORS  
Vector Number  
IVT Address  
AIVT Address  
Trap Source  
Reserved  
0
1
2
3
4
5
6
7
0x000004  
0x000006  
0x000008  
0x00000A  
0x00000C  
0x00000E  
0x000010  
0x000012  
0x000104  
0x000106  
0x000108  
0x00010A  
0x00010C  
0x00010E  
0x000110  
0x000112  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
Reserved  
Reserved  
Reserved  
7.3.4  
IPCx Registers  
7.3  
Interrupt Control and Status  
Registers  
The IPCx registers are used to set the Interrupt Priority  
Level (IPL) for each source of interrupt. Each user  
interrupt source can be assigned to one of eight priority  
levels.  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 devices implement  
a total of 22 registers for the interrupt controller:  
• INTCON1  
• INTCON2  
• IFSx  
7.3.5  
INTTREG  
The INTTREG register contains the associated  
interrupt vector number and the new CPU Interrupt  
Priority Level, which are latched into Vector Number  
(VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit  
fields in the INTTREG register. The new Interrupt  
Priority Level is the priority of the pending interrupt.  
• IECx  
• IPCx  
• INTTREG  
7.3.1  
INTCON1 AND INTCON2  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-1. For example, the INT0 (External  
Interrupt 0) is shown as having Vector Number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IPx  
bits in the first positions of IPC0 (IPC0<2:0>).  
Global interrupt functions are controlled from INTCON1  
and INTCON2. INTCON1 contains the Interrupt Nest-  
ing Disable (NSTDIS) bit as well as the control and  
status flags for the processor trap sources. The  
INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
7.3.6  
STATUS/CONTROL REGISTERS  
7.3.2  
IFSx Registers  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers  
contain bits that control interrupt functionality.  
The IFSx registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
• The CPU STATUS Register, SR, contains the  
IPL<2:0> bits (SR<7:5>). These bits indicate the  
current CPU Interrupt Priority Level. The user  
application can change the current CPU Interrupt  
Priority Level by writing to the IPLx bits.  
7.3.3  
IECx Registers  
The IECx registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
• The CORCON register contains the IPL3 bit  
which, together with IPL<2:0>, also indicates the  
current CPU Interrupt Priority Level. IPL3 is a  
read-only bit so that trap events cannot be  
masked by the user software.  
All Interrupt registers are described in Register 7-1  
through Register 7-28 in the following pages.  
DS70652E-page 98  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
REGISTER 7-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA  
R/C-0  
SB  
R-0  
R/C-0  
SAB  
R-0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
bit 7  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU Interrupt Priority Level is 7 (15); user interrupts are disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 3-1.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
(1)  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
Note 1: For complete register details, see Register 3-2.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 99  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OVAERR  
OVBERR  
COVAERR COVBERR  
OVATE  
OVBTE  
COVTE  
bit 8  
R/W-0  
SFTACERR  
bit 7  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
DIV0ERR  
MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator A  
0= Trap was not caused by overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator B  
0= Trap was not caused by overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator A  
0= Trap was not caused by catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator B  
0= Trap was not caused by catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap is disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on catastrophic overflow of Accumulator A or B enabled  
0= Trap is disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Arithmetic Error Status bit  
1= Math error trap was caused by a divide-by-zero  
0= Math error trap was not caused by a divide-by-zero  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Arithmetic Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
DS70652E-page 100  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
2011-2012 Microchip Technology Inc.  
DS70652E-page 101  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
ALTIVT  
bit 15  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DISI  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Uses Alternate Interrupt Vector Table  
0= Uses standard Interrupt Vector Table (default)  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 1  
bit 0  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
DS70652E-page 102  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
U1TXIF  
U1RXIF  
SPI1EIF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
U-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2011-2012 Microchip Technology Inc.  
DS70652E-page 103  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70652E-page 104  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
U-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
T5IF(1)  
R/W-0  
T4IF(1)  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
CMIF  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
T5IF: Timer5 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 10-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
CMIF: Comparator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is available in dsPIC33FJ32(GP/MC)10X devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 105  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R/W-0  
IC3IF  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-0  
Unimplemented: Read as ‘0’  
REGISTER 7-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
R/W-0  
FLTA1IF(1)  
bit 15  
R/W-0  
RTCIF  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PWM1IF(1)  
U-0  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
FLTA1IF: PWM1 Fault A Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
RTCIF: RTCC Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
PWM1IF: PWM1 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is available in dsPIC(16/32)MC10X devices only.  
DS70652E-page 106  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
CTMUIF  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIF  
R/W-0  
FLTB1IF(1)  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUIF: CTMU Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
FLTB1IF: PWM1 Fault B Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is available in dsPIC(16/32)MC102/104 devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 107  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPI1EIE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1EIE: SPI1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
DS70652E-page 108  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
T5IE(1)  
R/W-0  
T4IE(1)  
U-0  
U-0  
U-0  
INT2IE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CMIE  
R/W-0  
R/W-0  
INT1IE  
CNIE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12  
bit 11  
T5IE: Timer5 Interrupt Enable bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IE: Timer4 Interrupt Enable bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 10-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3  
bit 2  
bit 1  
bit 0  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
CMIE: Comparator Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: This bit is available in dsPIC33FJ32(GP/MC)10X devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 109  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R/W-0  
IC3IE  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4-0  
Unimplemented: Read as ‘0’  
REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
R/W-0  
FLTA1IE(1)  
R/W-0  
RTCIE  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PWM1IE(1)  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
FLTA1IE: PWM1 Fault A Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
RTCIE: RTCC Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
PWM1IE: PWM1 Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is available in dsPIC(16/32)MC10X devices only.  
DS70652E-page 110  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
CTMUIE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIE  
R/W-0  
FLTB1IE(1)  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUIE: CTMU Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIE: UART1 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
FLTB1IE: PWM1 Fault B Interrupt Enable bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is available in dsPIC(16/32)MC102/104 devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 111  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
T1IP<2:0>  
OC1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC1IP<2:0>  
INT0IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS70652E-page 112  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
T2IP<2:0>  
OC2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
IC2IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2011-2012 Microchip Technology Inc.  
DS70652E-page 113  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
U1RXIP<2:0>  
SPI1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
SPI1EIP<2:0>  
T3IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS70652E-page 114  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AD1IP<2:0>  
U1TXIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2011-2012 Microchip Technology Inc.  
DS70652E-page 115  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
CNIP<2:0>  
CMIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
CMIP<2:0>: Comparator Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS70652E-page 116  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
INT1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
R/W-0  
T4IP<2:0>(1)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T4IP<2:0>: Timer4 Interrupt Priority bits(1)  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 117  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
T5IP<2:0>(1)  
INT2IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP<2:0>: Timer5 Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.  
DS70652E-page 118  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-23: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
IC3IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
IC3IP<2:0>: External Interrupt 3 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 7-24: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
PWM1IP<2:0>(1)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
PWM1IP<2:0>: PWM1 Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are available in dsPIC(16/32)MC10X devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 119  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-25: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
R/W-1  
R/W-0  
FLTA1IP<2:0>(1)  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
RTCIP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
FLTA1IP<2:0>: PWM1 Fault A Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
RTCIP<2:0>: RTCC Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are available in dsPIC(16/32)MC10X devices only.  
DS70652E-page 120  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-26: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
FLTB1IP<2:0>(1)  
U1EIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
U1EIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
FLTB1IP<2:0>: PWM1 Fault B Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
Note 1: These bits are available in dsPIC(16/32)MC102/104 devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 121  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-27: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
CTMUIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
CTMUIP<2:0>: CTMU Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70652E-page 122  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 7-28: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
0111111= Interrupt Vector pending is Number 135  
0000001= Interrupt Vector pending is Number 9  
0000000= Interrupt Vector pending is Number 8  
2011-2012 Microchip Technology Inc.  
DS70652E-page 123  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
7.4.3  
TRAP SERVICE ROUTINE  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
To configure an interrupt source at initialization:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits into  
the appropriate IPCx register. The priority level  
will depend on the specific application and type  
of interrupt source. If multiple priority levels are  
not desired, the IPCx register control bits for all  
enabled interrupt sources can be programmed  
to the same non-zero value.  
All user interrupts can be disabled using this  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to Priority Level 7 by inclusive  
ORing the value OEh with SRL.  
To enable user interrupts, the POP instruction can be  
used to restore the previous SR value.  
Note: At a device Reset, the IPCx registers  
are initialized such that all user  
interrupt sources are assigned to  
Priority Level 4.  
Note:  
Only user interrupts with a priority level of  
7 or lower can be disabled. Trap sources  
(Level 8-Level 15) cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of Priority Levels 1-6 for a fixed  
period of time. Level 7 interrupt sources are not  
disabled by the DISI instruction.  
4. Enable the interrupt source by setting the inter-  
rupt enable control bit associated with the  
source in the appropriate IECx register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
The method used to declare an ISR and initialize the  
IVT with the correct vector address depends on the  
programming language (C or assembler) and the  
language development toolsuite used to develop the  
application.  
In general, the user application must clear the interrupt  
flag in the appropriate IFSx register for the source of  
interrupt that the ISR handles. Otherwise, program will  
re-enter the ISR immediately after exiting the routine. If  
the ISR is coded in assembly language, it must be  
terminated using a RETFIEinstruction to unstack the  
saved PC value, SRL value and old CPU priority level.  
DS70652E-page 124  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The oscillator system for dsPIC33FJ16(GP/MC)101/  
102 and dsPIC33FJ32(GP/MC)101/102/104 devices  
provides:  
8.0  
OSCILLATOR  
CONFIGURATION  
• External and internal oscillator options as clock  
sources  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 52. “Oscillator  
(Part VI)” (DS70644) in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com).  
• An on-chip, 4x Phase Lock Loop (PLL) to scale the  
internal operating frequency to the required system  
clock frequency  
• An internal FRC oscillator that can also be used with  
the PLL, thereby allowing full-speed operation  
without any external clock generation hardware  
• Clock switching between various clock sources  
• Programmable clock postscaler for system power  
savings  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• A Fail-Safe Clock Monitor (FSCM) that detects clock  
failure and takes fail-safe measures  
• A Clock Control register (OSCCON)  
• Nonvolatile Configuration bits for main oscillator  
selection  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
FIGURE 8-1:  
OSCILLATOR SYSTEM DIAGRAM  
Primary Oscillator (POSC)  
OSC1  
MS, HS, EC  
S2  
DOZE<2:0>  
(1)  
R
MSPLL, ECPLL,  
S3  
S1  
FRCPLL  
S1/S3  
4x PLL  
OSC2  
(2)  
FCY  
POSCMD<1:0>  
(2)  
FP  
(To Peripherals)  
FRCDIVN  
FRC  
Oscillator  
S7  
÷ 2  
FOSC  
FRCDIV<2:0>  
TUN<5:0>  
FRCDIV16  
FRC  
S6  
S0  
÷ 16  
LPRC  
LPRC  
Oscillator  
S5  
Secondary Oscillator (SOSC)  
LPOSCEN  
SOSC  
SOSCO  
SOSCI  
S4  
Clock Fail Clock Switch  
Reset  
S7  
NOSC<2:0> FNOSC<2:0>  
WDT, PWRT,  
FSCM  
Timer 1  
Note 1: If the oscillator is used with MS or HS modes, an extended parallel resistor with the value of 1 Mmust be connected.  
2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this docu-  
ment, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is  
used with a Doze ratio of 1:2 or lower.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 125  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
8.1.1.4  
Low-Power RC  
8.1  
CPU Clocking System  
The Low-Power RC (LPRC) internal oscIllator runs at a  
nominal frequency of 32.768 kHz. It is also used as a  
reference clock by the Watchdog Timer (WDT) and  
Fail-Safe Clock Monitor (FSCM).  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 devices provide  
seven system clock options:  
• Fast RC (FRC) Oscillator  
• FRC Oscillator with 4x PLL  
• Primary (MS, HS or EC) Oscillator  
• Primary Oscillator with 4x PLL  
• Secondary (LP) Oscillator  
8.1.1.5  
PLL  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip, 4x  
Phase Lock Loop (PLL) to provide faster output  
frequencies for device operation. PLL configuration is  
described in Section 8.1.3 “PLL Configuration”.  
• Low-Power RC (LPRC) Oscillator  
• FRC Oscillator with postscaler  
8.1.2  
SYSTEM CLOCK SELECTION  
8.1.1  
SYSTEM CLOCK SOURCES  
Fast RC  
The oscillator source used at a device Power-on  
Reset event is selected using Configuration bit  
settings. The Oscillator Configuration bit settings are  
located in the Configuration registers in the program  
memory. (Refer to Section 23.1 “Configuration  
Bits” for further details.) The initial Oscillator  
Selection  
(FOSCSEL<2:0>), and the Primary Oscillator Mode  
Select Configuration bits, POSCMD<1:0>  
8.1.1.1  
The Fast RC (FRC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. User software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> (CLKDIV<10:8>) bits.  
Configuration  
bits,  
FNOSC<2:0>  
The FRC frequency depends on the FRC accuracy  
(see Table 26-18) and the value of the FRC Oscillator  
Tuning register (see Register 8-3).  
(FOSC<1:0>), select the oscillator source that is used  
at a Power-on Reset. The FRC primary oscillator is  
the default (unprogrammed) selection.  
The Configuration bits allow users to choose among  
12 different clock modes, shown in Table 8-1.  
8.1.1.2  
Primary  
The primary oscillator can use one of the following as  
its clock source:  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected) FOSC is divided by 2 to  
generate the device instruction clock (FCY) and the  
peripheral clock time base (FP). FCY defines the  
operating speed of the device, and speeds up to  
16 MHz are supported by the dsPIC33FJ16(GP/  
MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104  
architecture.  
• MS (Crystal): Crystals and ceramic resonators in  
the range of 4 MHz to 10 MHz. The crystal is  
connected to the OSC1 and OSC2 pins.  
• HS (High-Speed Crystal): Crystals in the range of  
10 MHz to 32 MHz. The crystal is connected to  
the OSC1 and OSC2 pins.  
• EC (External Clock): The external clock signal is  
directly applied to the OSC1 pin.  
Instruction execution speed or device operating  
frequency, FCY, is given by:  
8.1.1.3  
Secondary  
EQUATION 8-1:  
DEVICE OPERATING  
FREQUENCY  
The secondary (LP) oscillator is designed for low power  
and uses a 32.768 kHz crystal or ceramic resonator.  
The LP oscillator uses the SOSCI and SOSCO pins.  
FOSC  
FCY = -------------  
2
DS70652E-page 126  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
8.1.3  
PLL CONFIGURATION  
EQUATION 8-2:  
MS WITH PLL MODE  
EXAMPLE  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip, 4x PLL to obtain higher  
speeds of operation.  
1
FOSC  
--  
FCY = ------------- = 8000000 4 = 16 MIPS  
2
2
For example, suppose an 8 MHz crystal is being used  
with the selected oscillator mode of MS with PLL. This  
provides a FOSC of 8 MHz * 4 = 32 MHz. The resultant  
device operating speed is 32/2 = 16 MIPS.  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator  
See  
Note  
Oscillator Mode  
POSCMD<1:0>  
FNOSC<2:0>  
Source  
Fast RC Oscillator with Divide-by-n (FRCDIVN)  
Fast RC Oscillator with Divide-by-16 (FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Secondary (Timer1) Oscillator (SOSC)  
Primary Oscillator (MS) with PLL (MSPLL)  
Primary Oscillator (EC) with PLL (ECPLL)  
Primary Oscillator (HS)  
Internal  
Internal  
Internal  
Secondary  
Primary  
Primary  
Primary  
Primary  
Primary  
Internal  
xx  
xx  
xx  
xx  
01  
00  
10  
01  
00  
xx  
111  
110  
101  
100  
011  
011  
010  
010  
010  
001  
1, 2  
1
1
1
1
Primary Oscillator (MS)  
Primary Oscillator (EC)  
1
1
Fast RC Oscillator (FRC) with Divide-by-n and  
PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
Internal  
xx  
000  
1
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 127  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
8.2  
Oscillator Control Registers  
(1)  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
R/W-y  
NOSC<2:0>(2)  
R/W-y  
bit 8  
COSC<2:0>  
bit 15  
R/W-0  
CLKLOCK  
bit 7  
R/W-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
R/W-0  
R/W-0  
IOLOCK  
LOCK  
LPOSCEN  
OSWEN  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
y = Value set from Configuration bits on POR  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
111= Fast RC Oscillator (FRC) with Divide-by-n  
110= Fast RC Oscillator (FRC) with Divide-by-16  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator (MS, EC) with PLL  
010= Primary Oscillator (MS, HS, EC)  
001= Fast RC Oscillator (FRC) with Divide-by-n and PLL (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(2)  
111= Fast RC Oscillator (FRC) with Divide-by-n  
110= Fast RC Oscillator (FRC) with Divide-by-16  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator (MS, EC) with PLL  
010= Primary Oscillator (MS, HS, EC)  
001= Fast RC Oscillator (FRC) with Divide-by-n and PLL (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7  
CLKLOCK: Clock Lock Enable bit  
If Clock Switching is Enabled and FSCM is Disabled (FCKSM<1:0> (FOSC<7:6>) = 0b01):  
1= Clock switching is disabled, system clock source is locked  
0= Clock switching is enabled, system clock source can be modified by clock switching  
bit 6  
bit 5  
bit 4  
IOLOCK: Peripheral Pin Select Lock bit  
1= Peripherial Pin Select is locked, write to Peripheral Pin Select registers is not allowed  
0= Peripherial Pin Select is not locked, write to Peripheral Pin Select registers is allowed  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
Unimplemented: Read as ‘0’  
Note 1: Writes to this register require an unlock sequence. Refer to Section 52. “Oscillator (Part VI)” (DS70644)  
in the “dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
DS70652E-page 128  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 3  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
LPOSCEN: Secondary (LP) Oscillator Enable bit  
1= Enables secondary oscillator  
0= Disables secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Requests oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Writes to this register require an unlock sequence. Refer to Section 52. “Oscillator (Part VI)” (DS70644)  
in the “dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 129  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 8-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-1  
DOZE<2:0>(2,3)  
R/W-1  
R/W-0  
DOZEN(1,2,3)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
FRCDIV<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits(2,3)  
111= FCY/128  
110= FCY/64  
101= FCY/32  
100= FCY/16  
011= FCY/8 (default)  
010= FCY/4  
001= FCY/2  
000= FCY/1  
bit 11  
DOZEN: DOZE Mode Enable bit(1,2,3)  
1= DOZE<2:0> bits field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio is forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
111= FRC divide-by-256  
110= FRC divide-by-64  
101= FRC divide-by-32  
100= FRC divide-by-16  
011= FRC divide-by-8  
010= FRC divide-by-4  
001= FRC divide-by-2  
000= FRC divide-by-1 (default)  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
2: If DOZEN = 1, writes to DOZE<2:0> are ignored.  
3: If DOZE<2:0> = 000, the DOZEN bit cannot be set by the user; writes are ignored.  
DS70652E-page 130  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 8-3:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TUN<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
011111= Center frequency +11.625% (8.23 MHz)  
011110= Center frequency +11.25% (8.20 MHz)  
000001= Center frequency +0.375% (7.40 MHz)  
000000= Center frequency (7.37 MHz nominal)  
111111= Center frequency -0.375% (7.345 MHz)  
100001= Center frequency -11.625% (6.52 MHz)  
100000= Center frequency -12% (6.49 MHz)  
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the  
FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither  
characterized nor tested.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 131  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
2. If a valid clock switch has been initiated, the LOCK  
8.3  
Clock Switching Operation  
and CF (OSCCON<5,3>) status bits are cleared.  
Applications are free to switch among any of the four  
clock sources (Primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects of this flexibility, dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104 devices have  
a safeguard lock built into the switch process.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the  
new source is using the PLL, the hardware waits  
until a PLL lock is detected (LOCK = 1).  
Note:  
Primary Oscillator mode has three different  
submodes (MS, HS, and EC), which are  
determined by the POSCMD<1:0> Config-  
uration bits. While an application can  
switch to and from Primary Oscillator  
mode in software, it cannot switch among  
the different primary submodes without  
reprogramming the device.  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the  
NOSCx bit values are transferred to the COSCx  
status bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM is  
enabled) or LP (if LPOSCEN remains set).  
8.3.1  
ENABLING CLOCK SWITCHING  
To enable clock switching, the FCKSM1 Configuration bit  
in the FOSC Configuration register must be programmed  
to ‘0’. (Refer to Section 23.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is unpro-  
grammed (‘1’), the clock switching function and Fail-Safe  
Clock Monitor function are disabled. This is the default  
setting.  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing-sensitive code should not be  
executed during this time.  
2: Direct clock switches between any Pri-  
mary Oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL modes.  
The NOSCx control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is dis-  
abled. However, the COSCx bits (OSCCON<14:12>)  
reflect the clock source selected by the FNOSCx  
Configuration bits.  
3: Refer to Section 52. “Oscillator (Part  
VI)” (DS70644) in the “dsPIC33F/PIC24H  
Family Reference Manual” for details.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled; it is held at ‘0’ at all  
times.  
8.4  
Fail-Safe Clock Monitor (FSCM)  
8.3.2  
OSCILLATOR SWITCHING SEQUENCE  
clock switch requires this basic  
Performing  
sequence:  
a
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
1. If  
desired,  
read  
the  
COSC  
bits  
(OSCCON<14:12>) to determine the current  
oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
In the event of an oscillator failure, the FSCM  
generates a clock failure trap event and switches the  
system clock over to the FRC oscillator. Then, the  
application program can either attempt to restart the  
oscillator or execute a controlled shutdown. The trap  
can be treated as a Warm Reset by simply loading the  
Reset address into the oscillator fail trap vector.  
3. Write the appropriate value to the NOSCx con-  
trol bits (OSCCON<10:8>) for the new oscillator  
source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit (OSCCON<0>) to initiate  
the oscillator switch.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
1. The clock switching hardware compares the  
COSCx status bits with the new value of the  
NOSCx control bits. If they are the same, the  
clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
DS70652E-page 132  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
9.2  
Instruction-Based Power-Saving  
Modes  
9.0  
POWER-SAVING FEATURES  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 9. “Watchdog  
Timer and Power-Saving Modes”  
(DS70196) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices have two special power-  
saving modes that are entered through the execution of  
a special PWRSAVinstruction. Sleep mode stops clock  
operation and halts all code execution. Idle mode halts  
the CPU and code execution, but allows peripheral  
modules to continue operation. The assembler syntax  
of the PWRSAVinstruction is shown in Example 9-1.  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to wake-up.  
9.2.1  
SLEEP MODE  
The following occur in Sleep mode:  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
dsPIC33FJ32(GP/MC)101/102/104 devices provide  
the ability to manage power consumption by selectively  
managing clocking to the CPU and the peripherals. In  
general, a lower clock frequency and a reduction in the  
number of circuits being clocked constitutes lower  
consumed power. Devices can manage power  
consumption in four different ways:  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current  
• The Fail-Safe Clock Monitor does not operate,  
since the system clock source is disabled  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled  
• Clock Frequency  
• Instruction-Based Sleep and Idle modes  
• Software-Controlled Doze mode  
• Selective Peripheral Control in Software  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode  
• Some device features or peripherals may continue  
to operate. This includes items such as the Input  
Change Notification (ICN) on the I/O ports, or  
peripherals that use an external clock input.  
Combinations of these methods can be used to selec-  
tively tailor an application’s power consumption while  
still maintaining critical application features, such as  
timing-sensitive communications.  
• Any peripheral that requires the system clock  
source for its operation is disabled  
9.1  
Clock Frequency and Clock  
Switching  
The device will wake-up from Sleep mode on any of the  
these events:  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices allow a wide range of clock  
frequencies to be selected under application control. If  
the system clock configuration is not locked, users can  
choose low-power or high-precision oscillators by  
simply changing the NOSCx bits (OSCCON<10:8>).  
The process of changing a system clock during  
operation, as well as limitations to the process, are  
discussed in more detail in Section 8.0 “Oscillator  
Configuration”.  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
• A WDT time-out  
On wake-up from Sleep mode, the processor restarts  
with the same clock source that was active when Sleep  
mode was entered.  
EXAMPLE 9-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
2011-2012 Microchip Technology Inc.  
DS70652E-page 133  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default setting.  
9.2.2  
IDLE MODE  
The following occur in Idle mode:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Peripheral Module Disable”).  
Programs can use Doze mode to selectively reduce  
power consumption in event-driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU Idles, waiting for something to invoke an  
interrupt routine. An automatic return to full-speed CPU  
operation on interrupts can be enabled by setting the  
ROI bit (CLKDIV<15>). By default, interrupt events  
have no effect on Doze mode operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device will wake from Idle mode on any of these  
events:  
• Any interrupt that is individually enabled  
• Any device Reset  
For example, suppose the device is operating at  
20 MIPS and the UART module has been configured  
for 500 kbps based on this device operating speed. If  
the device is placed in Doze mode with a clock  
frequency ratio of 1:4, the UART module continues to  
communicate at the required bit rate of 500 kbps, but  
the CPU now starts executing instructions at a  
frequency of 5 MIPS.  
• A WDT time-out  
On wake-up from Idle mode, the clock is reapplied to  
the CPU and instruction execution will begin (2-4 clock  
cycles later), starting with the instruction following the  
PWRSAVinstruction, or the first instruction in the ISR.  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
9.4  
Peripheral Module Disable  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled using the appropriate  
PMD control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers will have no effect and read  
values will be invalid.  
9.3  
Doze Mode  
The preferred strategies for reducing power  
consumption are changing clock speed and invoking  
one of the power-saving modes. In some  
circumstances, this may not be practical. For example,  
it may be necessary for an application to maintain  
uninterrupted synchronous communication, even while  
it is doing nothing else. Reducing system clock speed  
can introduce communication errors, while using a  
power-saving mode can stop communications  
completely.  
A peripheral module is enabled only if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC® DSC  
variant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
Note:  
If a PMD bit is set, the corresponding  
module is disabled after a delay of one  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of one instruction  
cycle (assuming the module control regis-  
ters are already configured to enable  
module operation).  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed, while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
DS70652E-page 134  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
9.5  
PMD Control Registers  
REGISTER 9-1:  
PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1  
R/W-0  
T5MD(1)  
R/W-0  
T4MD(1)  
R/W-0  
T3MD  
R/W-0  
T2MD  
R/W-0  
T1MD  
U-0  
R/W-0  
U-0  
PWM1MD  
bit 15  
bit 8  
R/W-0  
U-0  
R/W-0  
U1MD  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
AD1MD(2)  
I2C1MD  
SPI1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
T5MD: Timer5 Module Disable bit(1)  
1= Timer5 module is disabled  
0= Timer5 module is enabled  
T4MD: Timer4 Module Disable bit(1)  
1= Timer4 module is disabled  
0= Timer4 module is enabled  
T3MD: Timer3 Module Disable bit  
1= Timer3 module is disabled  
0= Timer3 module is enabled  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled  
0= Timer2 module is enabled  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled  
0= Timer1 module is enabled  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
PWM1MD: PWM1 Module Disable bit  
1= PWM1 module is disabled  
0= PWM1 module is enabled  
bit 18  
bit 7  
Unimplemented: Read as ‘0’  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled  
0= I2C1 module is enabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
U1MD: UART1 Module Disable bit  
1= UART1 module is disabled  
0= UART1 module is enabled  
bit 4  
Unimplemented: Read as ‘0’  
Note 1: This bit is available in dsPIC33FJ32(GP/MC)10X devices only.  
2: PCFGx bits have no effect if the ADC module is disabled by setting this bit. When the bit is set, all port  
pins that have been multiplexed with ANx will be in Digital mode.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 135  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 9-1:  
PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)  
bit 3  
SPI1MD: SPI1 Module Disable bit  
1= SPI1 module is disabled  
0= SPI1 module is enabled  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
AD1MD: ADC1 Module Disable bit(2)  
1= ADC1 module is disabled  
0= ADC1 module is enabled  
Note 1: This bit is available in dsPIC33FJ32(GP/MC)10X devices only.  
2: PCFGx bits have no effect if the ADC module is disabled by setting this bit. When the bit is set, all port  
pins that have been multiplexed with ANx will be in Digital mode.  
REGISTER 9-2:  
PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
IC3MD  
IC2MD  
IC1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
OC2MD  
OC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
IC3MD: Input Capture 3 Module Disable bit  
1= Input Capture 3 module is disabled  
0= Input Capture 3 module is enabled  
bit 9  
bit 8  
IC2MD: Input Capture 2 Module Disable bit  
1= Input Capture 2 module is disabled  
0= Input Capture 2 module is enabled  
IC1MD: Input Capture 1 Module Disable bit  
1= Input Capture 1 module is disabled  
0= Input Capture 1 module is enabled  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
OC2MD: Output Compare 2 Module Disable bit  
1= Output Compare 2 module is disabled  
0= Output Compare 2 module is enabled  
bit 0  
OC1MD: Output Compare 1 Module Disable bit  
1= Output Compare 1 module is disabled  
0= Output Compare 1 module is enabled  
DS70652E-page 136  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 9-3:  
PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
CMPMD  
RTCCMD  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
CMPMD: Comparator Module Disable bit  
1= Comparator module is disabled  
0= Comparator module is enabled  
bit 9  
RTCCMD: RTCC Module Disable bit  
1= RTCC module is disabled  
0= RTCC module is enabled  
bit 8-0  
Unimplemented: Read as ‘0’  
REGISTER 9-4:  
PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
CTMUMD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2  
Unimplemented: Read as ‘0’  
CTMUMD: CTMU Module Disable bit  
1= CTMU module is disabled  
0= CTMU module is enabled  
bit 1-0  
Unimplemented: Read as ‘0’  
2011-2012 Microchip Technology Inc.  
DS70652E-page 137  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 138  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
10.0 I/O PORTS  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 10. “I/O Ports”  
(DS70193) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
a general purpose output pin is disabled. The I/O pin  
can be read, but the output driver for the parallel port bit  
is disabled. If a peripheral is enabled, but the peripheral  
is not actively driving a pin, that pin can be driven by a  
port.  
All port pins have three registers directly associated  
with their operation as digital I/O. The Data Direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, the pin is  
an input. All port pins are defined as inputs after a  
Reset. Reads from the Output Latch (LATx) register  
read the latch. Writes to the Output Latch register write  
the latch. Reads from the port (PORTx) read the port  
pins, while writes to the port pins write the latch.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Any bit and its associated data and control registers  
that is not valid for a particular device will be disabled.  
This means the corresponding LATx and TRISx  
registers and the port pin will read as zeros.  
All of the device pins (except VDD, VSS, MCLR, and  
OSC1/CLKI) are shared among the peripherals and the  
parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs.  
10.1 Parallel I/O (PIO) Ports  
Generally a parallel I/O port that shares a pin with a  
peripheral is subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through,” in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 139  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Peripheral Input Data  
Output Multiplexers  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
Output Enable  
0
PIO Module  
1
0
Output Data  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
DS70652E-page 140  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
10.1.1  
OPEN-DRAIN CONFIGURATION  
10.3 Input Change Notification (ICN)  
In addition to the PORT, LAT and TRIS registers for  
data control, some port pins can also be individually  
configured for either digital or open-drain output. This  
is controlled by the Open-Drain Control register,  
ODCx, associated with each port. Setting any of the  
bits configures the corresponding pin to act as an  
open-drain output.  
The Input Change Notification function of the I/O  
ports allows the dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 devices to gener-  
ate interrupt requests to the processor in response to a  
Change-of-State (COS) on selected input pins. This  
feature can detect input Change-of-States even in  
Sleep mode when the clocks are disabled. Depending  
on the device pin count, up to 21 external signals (CNx  
pin) can be selected (enabled) for generating an  
interrupt request on a Change-of-State.  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired 5V  
tolerant pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
Four control registers are associated with the CN mod-  
ule. The CNEN1 and CNEN2 registers contain the  
interrupt enable control bits for each of the CN input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
See Pin Diagramsfor the available pins and their  
functionality.  
10.2 Configuring Analog Port Pins  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source connected to the  
pin, and eliminate the need for external resistors when  
push-button or keypad devices are connected. The  
pull-ups are enabled separately using the CNPU1 and  
CNPU2 registers, which contain the control bits for  
each of the CN pins. Setting any of the control bits  
enables the weak pull-ups for the corresponding pins.  
The AD1PCFGL and TRIS registers control the opera-  
tion of the Analog-to-Digital port pins. The port pins that  
are to function as analog inputs must have their corre-  
sponding TRIS bit set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) will be  
converted.  
The AD1PCFGL register has a default value of 0x0000;  
therefore, all pins that share ANx functions are analog  
(not digital) by default.  
Note:  
Pull-ups on Input Change Notification pins  
should always be disabled when the port  
pin is configured as a digital output.  
When the PORT register is read, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin defined as a  
digital input (including the ANx pins) can cause the  
input buffer to consume current that exceeds the  
device specifications.  
10.2.1  
I/O PORT WRITE/READ TIMING  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically this instruction  
would be an NOP. An demonstration is shown in  
Example 10-1.  
EXAMPLE 10-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
btss PORTB, #13  
; Next Instruction  
2011-2012 Microchip Technology Inc.  
DS70652E-page 141  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
10.4.2.1  
Input Mapping  
10.4 Peripheral Pin Select (PPS)  
The inputs of the Peripheral Pin Select options are  
mapped on the basis of the peripheral. A control  
register associated with a peripheral dictates the pin it  
will be mapped to. The RPINRx registers are used to  
configure peripheral input mapping (see Register 10-1  
through Register 10-10). Each register contains sets  
of 5-bit fields, with each set associated with one of the  
Peripheral Pin Select configuration enables peripheral  
set selection and placement on a wide range of I/O  
pins. By increasing the pinout options available on a  
particular device, programmers can better tailor the  
microcontroller to their entire application, rather than  
trimming the application to fit the device.  
The Peripheral Pin Select configuration feature oper-  
ates over a fixed subset of digital I/O pins. Program-  
mers can independently map the input and/or output  
of most digital peripherals to any one of these I/O  
pins. Peripheral Pin Select is performed in software,  
and generally does not require the device to be  
reprogrammed. Hardware safeguards are included  
that prevent accidental or spurious changes to the  
peripheral mapping, once it has been established.  
remappable peripherals. Programming  
a
given  
peripheral’s bit field with an appropriate 5-bit value  
maps the RPn pin with that value to that peripheral.  
For any given device, the valid range of values for any  
bit field corresponds to the maximum number of  
Peripheral Pin Selections supported by the device.  
Figure 10-2 Illustrates remappable pin selection for  
U1RX input.  
Note:  
For input mapping only, the Peripheral Pin  
Select (PPS) functionality does not have  
priority over the TRISx settings. There-  
fore, when configuring the RPx pin for  
input, the corresponding bit in the TRISx  
register must also be configured for input  
(i.e., set to ‘1’).  
10.4.1  
AVAILABLE PINS  
The Peripheral Pin Select feature is used with a range  
of up to 16 pins. The number of available pins depends  
on the particular device and its pin count. Pins that  
support the Peripheral Pin Select feature include the  
designation “RPn” in their full pin designation, where  
“RP” designates a remappable peripheral and “n” is the  
remappable pin number.  
FIGURE 10-2:  
REMAPPABLE MUX  
INPUT FOR U1RX  
10.4.2  
CONTROLLING PERIPHERAL PIN  
SELECT  
U1RXR<4:0>  
Peripheral Pin Select features are controlled through  
two sets of Special Function Registers: one to map  
peripheral inputs and one to map outputs. Because  
they are separately controlled, a particular peripheral’s  
input and output (if the peripheral has both) can be  
placed on any selectable function pin without  
constraint.  
0
RP0  
RP1  
RP2  
1
U1RX Input  
to Peripheral  
The association of a peripheral to a peripheral select-  
able pin is handled in two different ways, depending on  
whether an input or output is being mapped.  
2
25  
RP25  
DS70652E-page 142  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)  
Configuration  
Input Name  
Function Name  
Register  
Bits  
External Interrupt 1  
INT1  
INT2  
T2CK  
T3CK  
T4CK  
T5CK  
IC1  
RPINR0  
RPINR1  
RPINR3  
RPINR3  
RPINR4  
RPINR4  
RPINR7  
RPINR7  
RPINR8  
RPINR11  
RPINR18  
RPINR18  
RPINR20  
RPINR20  
RPINR21  
INT1R<4:0>  
INT2R<4:0>  
T2CKR<4:0>  
T3CKR<4:0>  
T4CKR<4:0>(2)  
T5CKR<4:0>(2)  
IC1R<4:0>  
External Interrupt 2  
Timer2 External Clock  
Timer3 External Clock  
Timer4 External Clock  
Timer5 External Clock  
Input Capture 1  
Input Capture 2  
IC2  
IC2R<4:0>  
Input Capture 3  
IC3  
IC3R<4:0>  
Output Compare Fault A  
UART1 Receive  
OCFA  
U1RX  
U1CTS  
SDI1  
SCK1  
SS1  
OCFAR<4:0>  
U1RXR<4:0>  
U1CTSR<4:0>  
SDI1R<4:0>(2)  
SCK1R<4:0>(2)  
SS1R<4:0>(2)  
UART1 Clear-to-Send  
SDI1 SPI Data Input 1  
SCK1 SPI Clock Input 1  
SPI1 Slave Select Input  
Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.  
2: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.  
10.4.2.2  
Output Mapping  
FIGURE 10-3:  
MULTIPLEXING OF  
REMAPPABLE OUTPUT  
FOR RPn  
In contrast to the inputs, the outputs of the Peripheral  
Pin Select options are mapped on the basis of the pin.  
In this case, a control register associated with a  
particular pin dictates the peripheral output to be  
mapped. The RPORx registers are used to control out-  
put mapping. Like the RPINRx registers, each register  
contains sets of 5-bit fields, with each set associated  
with one RPn pin (see Register 10-11 through  
Register 10-18). The value of the bit field corresponds  
to one of the peripherals, and that peripheral’s output is  
mapped to the pin (see Table 10-2 and Figure 10-3).  
RPnR<4:0>  
Default  
0
3
4
U1TX Output Enable  
U1RTS Output Enable  
OC2 Output Enable  
Output Enable  
The list of peripherals for output mapping also includes  
a null value of ‘00000’ because of the mapping  
technique. This permits any given pin to remain  
unconnected from the output of any of the pin  
selectable peripherals.  
19  
Default  
U1TX Output  
U1RTS Output  
0
3
4
Output Data  
RPn  
OC2 Output  
19  
2011-2012 Microchip Technology Inc.  
DS70652E-page 143  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)  
Function  
RPnR<4:0>  
Output Name  
RPn tied to Default Port Pin  
NULL  
00000  
00001  
00010  
00011  
00100  
01000  
00111  
01001  
10010  
10011  
11101  
11110  
C1OUT  
C2OUT  
U1TX  
U1RTS  
SCK1  
SDO1  
SS1  
RPn tied to Comparator 1 Output  
RPn tied to Comparator 2 Output  
RPn tied to UART1 Transmit  
RPn tied to UART1 Ready-to-Send  
RPn tied to SPI Clock(1)  
RPn tied to SPI Data Output(1)  
RPn tied to SPI1 Slave Select Output(1)  
RPn tied to Output Compare 1  
RPn tied to Output Compare 2  
RPn tied to CTMU Pulse Output  
RPn tied to Comparator 3 Output  
OC1  
OC2  
CTPLS  
C3OUT  
Note 1: This function is available in dsPIC33FJ32(GP/MC)10X devices only.  
Unlike the similar sequence with the oscillator’s LOCK  
bit, IOLOCK remains in one state until changed. This  
allows all of the Peripheral Pin Selects to be configured  
with a single unlock sequence followed by an update to  
all control registers, then locked with a second lock  
sequence.  
10.4.3  
CONTROLLING CONFIGURATION  
CHANGES  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes.  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 devices include  
three features to prevent alterations to the peripheral  
map:  
10.4.3.2  
Continuous State Monitoring  
In addition to being protected from direct writes, the  
contents of the RPINRx and RPORx registers are  
constantly monitored in hardware by shadow registers.  
If an unexpected change in any of the registers occurs  
(such as cell disturbances caused by ESD or other  
external events), a Configuration Mismatch Reset will  
be triggered.  
• Control register lock sequence  
• Continuous state monitoring  
• Configuration bit pin select lock  
10.4.3.1  
Control Register Lock  
Under normal operation, writes to the RPINRx and  
RPORx registers are not allowed. Attempted writes  
appear to execute normally, but the contents of the  
registers remain unchanged. To change these regis-  
ters, they must be unlocked in hardware. The register  
lock is controlled by the IOLOCK bit (OSCCON<6>).  
Setting IOLOCK prevents writes to the control  
registers; clearing IOLOCK allows writes.  
10.4.3.3  
Configuration Bit Pin Select Lock  
As an additional level of safety, the device can be  
configured to prevent more than one write session to  
the RPINRx and RPORx registers. The IOL1WAY  
(FOSC<5>) Configuration bit blocks the IOLOCK bit  
from being cleared after it has been set once. If  
IOLOCK remains set, the register unlock procedure will  
not execute, and the Peripheral Pin Select Control  
registers cannot be written to. The only way to clear the  
bit and re-enable peripheral remapping is to perform a  
device Reset.  
To set or clear IOLOCK, a specific command sequence  
must be executed:  
1. Write 0x46 to OSCCON<7:0>.  
2. Write 0x57 to OSCCON<7:0>.  
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session. Programming  
IOL1WAY allows user applications unlimited access  
(with the proper use of the unlock sequence) to the  
Peripheral Pin Select registers.  
3. Clear (or set) IOLOCK as a single operation.  
Note:  
MPLAB® C30 provides built-in C language  
functions for unlocking the OSCCON  
register:  
__builtin_write_OSCCONL(value)  
__builtin_write_OSCCONH(value)  
See MPLAB IDE Help for more  
information.  
DS70652E-page 144  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
4. Each CN pin has a configurable internal weak  
10.5 I/O Helpful Tips  
pull-up resistor. The pull-ups act as a current  
source connected to the pin, and eliminates the  
need for external resistors in certain applica-  
1. In some cases, certain pins, as defined in  
Section 26.0 “Electrical Characteristics”,  
Table 26-11 under “Injection Current”, have  
tions. The internal pull-up is to ~(VDD-0.8), not  
internal protection diodes to VDD and VSS. The  
VDD. This is still above the minimum VIH of  
term, “Injection Current”, is also referred to as  
CMOS and TTL devices.  
“Clamp Current”. On designated pins, with suffi-  
5. When driving LEDs directly, the I/O pin can  
cient external current limiting precautions by the  
source or sink more current than what is specified  
user, I/O pin input voltages are allowed to be  
in the VOH/IOH and VOL/IOL DC characteristic  
greater or less than the data sheet absolute  
specification. The respective IOH and IOL current  
maximum ratings with nominal VDD, with respect  
rating only applies to maintaining the correspond-  
to the VSS and VDD supplies. Note that when the  
ing output at or above the VOH and at or below the  
user application forward biases either of the high  
VOL levels. However, for LEDs unlike digital  
or low side internal input clamp diodes, that the  
inputs of an externally connected device, they are  
resulting current being injected into the device,  
not governed by the same minimum VIH/VIL  
that is clamped internally by the VDD and VSS  
levels. An I/O pin output can safely sink or source  
power rails, may affect the ADC accuracy by  
any current less than that listed in the absolute  
four to six counts.  
maximum rating section of the data sheet. For  
2. I/O pins that are shared with any analog input pin,  
example:  
(i.e., ANx), are always analog pins by default after  
any Reset. Consequently, any pin(s) configured  
VOH = 2.4v @ IOH = -6 mA and VDD = 3.3V  
as an analog input pin, automatically disables the  
digital input pin buffer. As such, any attempt to  
read a digital input pin will always return a ‘0’  
regardless of the digital logic level on the pin if the  
analog pin is configured. To use a pin as a digital  
I/O pin on a shared ANx pin, the user application  
needs to configure the Analog Pin Configuration  
register in the ADC module (AD1PCFGL), by  
setting the appropriate bit that corresponds to that  
I/O port pin, to a ‘1’. On devices with more than  
one ADC, both analog pin configurations for both  
ADC modules must be configured as a digital I/O  
pin for that pin to function as a digital I/O pin.  
The maximum output current sourced by any 6 mA  
I/O pin = 15 mA.  
LED source current < 15 mA is technically  
permitted. Refer to the VOH/IOH specifications in  
Section 26.0 “Electrical Characteristics” for  
additional information.  
10.6 I/O Resources  
Many useful resources are provided on the main  
product page of the Microchip web site for the devices  
listed in this data sheet. This product page, which can  
be accessed using this link, contains the latest updates  
and additional information.  
Note:  
Although it is not possible to use a digital  
input pin when its analog function is  
enabled, it is possible to use the digital I/O  
output function, TRISx = 0x0, while the  
analog function is also enabled. However,  
this is not recommended, particularly if the  
analog input is connected to an external  
analog voltage source, which would  
create signal contention between the  
analog signal and the output pin driver.  
Note:  
In the event you are not able to access the  
product page using the link above, enter  
this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en554109  
10.6.1  
KEY RESOURCES  
“dsPIC33F/PIC24H Family Reference Manual”,  
Section 10. “I/O Ports” (DS70193)  
3. Most I/O pins have multiple functions. Referring to  
the device pin diagrams in the data sheet, the pri-  
orities of the functions allocated to any pins are  
indicated by reading the pin name from left-to-  
right. The left most function name takes prece-  
dence over any function to its right in the naming  
convention. Forexample:AN16/T2CK/T7CK/RC1.  
This indicates that AN16 is the highest priority in  
this example and will supersede all other functions  
to its right in the list. Those other functions to its  
right, even if enabled, would not work as long as  
any other function to its left was enabled. This rule  
applies to all of the functions listed for a given pin.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related “dsPIC33F/PIC24H Family Reference  
Manual” Sections  
• Development Tools  
2011-2012 Microchip Technology Inc.  
DS70652E-page 145  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
10.7 Peripheral Pin Select Registers  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 family of devices  
implements up to 23 registers for remappable  
peripheral configuration.  
Note:  
Input and Output Register values can only  
be changed if IOLOCK (OSCCON<6>) = 0.  
See Section 10.4.3.1 “Control Register  
Lock” for a specific command sequence.  
REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
INT1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-0  
Unimplemented: Read as ‘0’  
DS70652E-page 146  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT2R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
INT2R<4:0>: Assign External Interrupt 2 (INTR2) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
2011-2012 Microchip Technology Inc.  
DS70652E-page 147  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
T3CKR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
T2CKR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70652E-page 148  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
T5CKR<4:0>(1)  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
T4CKR<4:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
T5CKR<4:0>: Assign Timer5 External Clock (T5CK) to the Corresponding RPn Pin bits(1)  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to the Corresponding RPn Pin bits(1)  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 149  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
IC2R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
IC1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
IC2R<4:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
IC1R<4:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70652E-page 150  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-6: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
IC3R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
IC3R<4:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
2011-2012 Microchip Technology Inc.  
DS70652E-page 151  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFAR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
OCFAR<4:0>: Assign Output Capture A (OCFA) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70652E-page 152  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-8: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
U1CTSR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
U1RXR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
U1CTSR<4:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
U1RXR<4:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
2011-2012 Microchip Technology Inc.  
DS70652E-page 153  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-9: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
SCK1R<4:0>(1)  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
SDI1R<4:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits(1)  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits(1)  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.  
DS70652E-page 154  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-10: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to the Corresponding RPn Pin bits  
11111= Input tied to VSS  
11110= Reserved  
.
.
.
11010= Reserved  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
2011-2012 Microchip Technology Inc.  
DS70652E-page 155  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-11: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP0R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
REGISTER 10-12: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP3R<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP2R<4:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP3R<4:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP2R<4:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are not available in dsPIC33FJXX(GP/MC)101 devices.  
DS70652E-page 156  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-13: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP5R<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
RP4R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP4R<4:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are not available in dsPIC33FJ(16/32)(GP/MC)101 devices.  
REGISTER 10-14: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP7R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP6R<4:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP7R<4:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP6R<4:0>: Peripheral Output Function is Assigned to RP6 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are not available in dsPIC33FJ(16/32)(GP/MC)101 devices.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 157  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-15: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP9R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
RP8R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP9R<4:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP8R<4:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
REGISTER 10-16: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP11R<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP10R<4:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP11R<4:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP10R<4:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are not available in dsPIC33FJXX(GP/MC)101 devices.  
DS70652E-page 158  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-17: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP13R<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP12R<4:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are not available in dsPIC33FJXXGP101 devices.  
REGISTER 10-18: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP15R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP14R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP15R<4:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP14R<4:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
2011-2012 Microchip Technology Inc.  
DS70652E-page 159  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-19: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP17R<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP16R<4:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP17R<4:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP16R<4:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.  
REGISTER 10-20: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP19R<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP18R<4:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP19R<4:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.  
DS70652E-page 160  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 10-21: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP21R<4:0>(1)  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP20R<4:0>(1)  
R/W-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.  
REGISTER 10-22: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP23R<4:0>(1)  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP22R<4:0>(1)  
R/W-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP23R<4:0>: Peripheral Output Function is Assigned to RP23 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP22R<4:0>: Peripheral Output Function is Assigned to RP22 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 161  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
\
REGISTER 10-23: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP25R<4:0>(1)  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP24R<4:0>(1)  
R/W-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.  
DS70652E-page 162  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Timer1 also supports these features:  
11.0 TIMER1  
• Timer gate operation  
Note 1: This data sheet summarizes the features  
• Selectable prescaler settings  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
• Timer operation during CPU Idle and Sleep modes  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 11. “Timers”  
(DS70205) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
Figure 11-1 presents a block diagram of the 16-bit timer  
module.  
To configure Timer1 for operation:  
1. Load the timer value into the TMR1 register.  
2. Load the timer period value into the PR1  
register.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
3. Select the timer prescaler ratio using the  
TCKPS<1:0> bits in the T1CON register.  
4. Set the Clock and Gating modes using the TCS  
and TGATE bits in the T1CON register.  
5. Set or clear the TSYNC bit in T1CON to select  
synchronous or asynchronous operation.  
The Timer1 module is a 16-bit timer, which can serve  
as the time counter for the Real-Time Clock (RTC) or  
operate as a free-running interval timer/counter. Timer1  
can operate in three modes:  
6. If interrupts are required, set the Timer1 Inter-  
rupt Enable bit, T1IE. Use the Timer1 Interrupt  
Priority bits, T1IP<2:0>, to set the interrupt  
priority.  
• 16-bit Timer  
7. Set the TON bit (= 1) in the T1CON register.  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
1
Sync  
TSYNC  
Comparator  
PR1  
2011-2012 Microchip Technology Inc.  
DS70652E-page 163  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
11.1 Timer1 Control Register  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS(1)  
U-0  
TGATE  
TCKPS<1:0>  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit(1)  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timer1 Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0> Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronizes external clock input  
0= Does not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit(1)  
1= External clock from pin, T1CK (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
Note 1: When TCS = 1and TON = 1, writes to the TMR1 register are inhibited from the CPU.  
DS70652E-page 164  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
For 32-bit timer/counter operation, Timer2/4 is the least  
significant word (lsw) and Timer3/5 is the most  
12.0 TIMER2/3 AND TIMER4/5  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 11. “Timers”  
(DS70205) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
significant word (msw) of the 32-bit timers.  
Note: For 32-bit operation, T3CON and T5CON  
control bits are ignored. Only T2CON and  
T4CON control bits are used for setup and  
control. Timer2 and Timer4 clock and gate  
inputs are used for the 32-bit timer  
modules, but an interrupt is generated  
with the Timer3 and Timer5 interrupt flags.  
12.1 32-Bit Operation  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
To configure Timer2/3 and Timer4/5 for 32-bit  
operation:  
1. Set the T32 control bit.  
2. Select the prescaler ratio for Timer2 or Timer4  
using the TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the  
corresponding TCS and TGATE bits.  
Timer2/3 and Timer4/5 have three 2-bit timers that can  
also be configured as two independent 16-bit timers  
with selectable operating modes.  
4. Load the timer period value. PR3/PR5 contains  
the msw of the value, while PR2/PR4 contains  
the least significant word (lsw).  
Note 1: Timer4 and Timer5 are available in  
dsPIC33FJ32(GP/MC10X) devices only.  
5. If interrupts are required, set the interrupt enable  
bit, T3IE or T5IE. Use the priority bits,  
T3IP<2:0> or T5IP<2:0>, to set the interrupt pri-  
ority. While Timer2/Timer4 controls the timer, the  
interrupt appears as a Timer3/Timer5 interrupt.  
As a 32-bit timer, Timer2/3 and Timer4/5 permit  
operation in three modes:  
• Two independent 16-bit timers (e.g., Timer2 and  
Timer3 or Timer4 and Timer5) with all 16-bit  
operating modes (except Asynchronous Counter  
mode)  
6. Set the corresponding TON bit.  
The timer value at any point is stored in the register  
pair, TMR3:TMR2 or TMR5:TMR4, which always  
contains the msw of the count, while TMR2 or TMR4  
contains the lsw.  
• Single 32-bit timer (Timer2/3 and Timer4/5)  
• Single 32-bit synchronous counter (Timer2/3 and  
Timer4/5)  
Timer2/3 and Timer4/5 also support:  
12.2 16-Bit Operation  
• Timer gate operation  
To configure any of the timers for individual 16-bit  
operation:  
• Selectable prescaler settings  
• Timer operation during Idle and Sleep modes  
• Interrupt on a 32-bit Period register match  
1. Clear the T32 bit corresponding to that timer.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
• Time base for input capture and output compare  
modules (Timer2 and Timer3 only)  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
• ADC1 event trigger (Timer2/3 only)  
Individually, all eight of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the event trigger. The  
operating modes and enabled features are determined  
by setting the appropriate bit(s) in the T2CON, T3CON,  
T4CON and T5CON registers (see Register 12-1  
through Register 12-2).  
4. Load the timer period value into the PRx  
register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
6. Set the TON bit.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 165  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1,3,4)  
FIGURE 12-1:  
TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
1x  
TxCK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
D
Set TxIF  
Q
CK  
PRy  
PRx  
ADC Event Trigger(2)  
Equal  
Reset  
Comparator  
MSb  
LSb  
TMRx  
TMRy  
Sync  
16  
To CTMU Filter  
Read TMRx/TMRy  
Write TMRx/TMRy  
16  
16  
TMRxHLD  
16  
Data Bus<15:0>  
Note 1: The 32-bit timer control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective  
to the TxCON register.  
2: The ADC event trigger is available only on Timer2/3.  
3: Timer4/5 is available in dsPIC33FJ32(GP/MC)10X devices only.  
4: Where ‘x’ or ‘y’ are present, x = 2 or 4; y = 3 or 5.  
DS70652E-page 166  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
FIGURE 12-2:  
TIMER2 AND TIMER4 (16-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
TxCK  
1x  
Gate  
Sync  
Prescaler  
1, 8, 64, 256  
01  
00  
TGATE  
TCS  
TCY  
TGATE  
1
0
Q
D
Set TxIF  
Q
CK  
Reset  
Equal  
Sync  
TMRx  
Comparator  
PRx  
To CTMU Filter  
Note 1: Timer4 is available in dsPIC33FJ32(GP/MC)10X devices only.  
(1)  
FIGURE 12-3:  
TIMER3 AND TIMER5 (16-BIT) BLOCK DIAGRAM  
Gate  
Sync  
Falling Edge  
Detect  
1
Set TxIF Flag  
10  
Prescaler  
(/n)  
0
FCY  
Reset  
Equal  
TMRx  
00  
x1  
TGATE  
TCKPS<1:0>  
Prescaler  
(/n)  
Sync  
ADC SOC Trigger  
Comparator  
TxCK  
TCKPS<1:0>  
TGATE  
TCS  
PRx  
To CTMU Filter  
Note 1: Timer5 is available in dsPIC33FJ32(GP/MC)10X devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 167  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
12.3 Timer2/3 and Timer4/5 Control  
Registers  
REGISTER 12-1: T2CON CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer2 On bit  
When T32 = 1:  
1= Starts 32-bit Timer2/3  
0= Stops 32-bit Timer2/3  
When T32 = 0:  
1= Starts 16-bit Timer2  
0= Stops 16-bit Timer2  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timer2 Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer2 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timer2 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-Bit Timer Mode Select bit  
1= Timer2 and Timer3 form a single 32-bit timer  
0= Timer2 and Timer3 act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer2 Clock Source Select bit  
1= External clock from pin, T2CK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
DS70652E-page 168  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 12-2: T3CON CONTROL REGISTER  
R/W-0  
TON(2)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(2)  
R/W-0  
TCKPS<1:0>(2)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer3 On bit(2)  
1= Starts 16-bit Timer3  
0= Stops 16-bit Timer3  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timer3 Stop in Idle Mode bit(1)  
1= Discontinues timer operation when device enters Idle mode  
0= Continues timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer3 Gated Time Accumulation Enable bit(2)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timer3 Input Clock Prescale Select bits(2)  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer3 Clock Source Select bit(2)  
1= External clock from T3CK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer2 Control register (T2CON<3>), the TSIDL  
bit must be cleared to operate the 32-bit timer in Idle mode.  
2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer2 Control register (T2CON<3>), these  
bits have no effect.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 169  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
REGISTER 12-3: T4CON CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer4 On bit  
When T32 = 1:  
1= Starts 32-bit Timer4/5  
0= Stops 32-bit Timer4/5  
When T32 = 0:  
1= Starts 16-bit Timer4  
0= Stops 16-bit Timer4  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timer4 Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer4 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timer4 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-Bit Timer Mode Select bit  
1= Timer4 and Timer5 form a single 32-bit timer  
0= Timer4 and Timer5 act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer4 Clock Source Select bit  
1= External clock from pin, T4CK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: This register is available in dsPIC33FJ32(GP/MC)10X devices only.  
DS70652E-page 170  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
REGISTER 12-4: T5CON CONTROL REGISTER  
R/W-0  
TON(3)  
U-0  
R/W-0  
TSIDL(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(3)  
R/W-0  
TCKPS<1:0>(3)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(3)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer5 On bit(3)  
1= Starts 16-bit Timer3  
0= Stops 16-bit Timer3  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timer5 Stop in Idle Mode bit(2)  
1= Discontinues timer operation when device enters Idle mode  
0= Continues timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer5 Gated Time Accumulation Enable bit(3)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timer5 Input Clock Prescale Select bits(3)  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer5 Clock Source Select bit(3)  
1= External clock from T5CK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: This register is available in dsPIC33FJ32(GP/MC)10X devices only.  
2: When 32-bit timer operation is enabled (T32 = 1) in the Timer4 Control register (T4CON<3>), the TSIDL  
bit must be cleared to operate the 32-bit timer in Idle mode.  
3: When the 32-bit timer operation is enabled (T32 = 1) in the Timer4 Control register (T4CON<3>), these  
bits have no effect.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 171  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 172  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
13.0 INPUT CAPTURE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 12. “Input  
Capture” (DS70198) in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com).  
at the ICx pin. The events that cause a capture event  
are listed below in three categories:  
1. Simple Capture Event modes:  
• Capture timer value on every falling edge of  
input at ICx pin  
• Capture timer value on every rising edge of  
input at ICx pin  
2. Capture timer value on every edge (rising and  
falling)  
3. Prescaler Capture Event modes:  
• Capture timer value on every 4th rising edge  
of input at ICx pin  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Capture timer value on every 16th rising  
edge of input at ICx pin  
Each input capture channel can select one of two  
16-bit timers (Timer2 or Timer3) for the time base.  
The selected timer can use either an internal or  
external clock.  
The input capture module is useful in applications  
requiring  
frequency  
(period)  
and  
pulse  
Other operational features include:  
measurement. The dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104 devices  
support up to three input capture channels.  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
• Interrupt on input capture event  
• 4-word FIFO buffer for capture values:  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
• Use of input capture to provide additional sources  
of external interrupts  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-Bit Timers  
TMR2 TMR3  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Edge Detection Logic  
and  
Clock Synchronizer  
Prescaler  
Counter  
(1, 4, 16)  
FIFO  
R/W Logic  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
Mode Select  
3
ICOV, ICBNE (ICxCON<4:3>)  
ICI<1:0>  
ICxBUF  
Interrupt  
Logic  
ICxCON  
Set Flag ICxIF  
(in IFSn Register)  
System Bus  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 173  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
13.1 Input Capture Register  
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
R/W-0  
ICTMR  
ICI<1:0>  
ICM<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture Stop in Idle Control bit  
1= Input capture module will halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture Timer Select bits  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode  
(Rising edge detect only, all other control bits are not applicable.)  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling)  
(ICI<1:0> bits do not control interrupt generation for this mode.)  
000= Input capture module turned off  
DS70652E-page 174  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The output compare module can select either Timer2 or  
Timer3 for its time base. The module compares the  
14.0 OUTPUT COMPARE  
value of the timer with the value of one or two compare  
registers depending on the operating mode selected.  
The state of the output pin changes when the timer  
value matches the Compare register value. The output  
compare module generates either a single output  
pulse, or a sequence of output pulses, by changing the  
state of the output pin on the compare match events.  
The output compare module can also generate  
interrupts on compare match events.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 13. “Output  
Compare” (DS70209) of the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com).  
The output compare module has multiple operating  
modes:  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Active-Low One-Shot mode  
• Active-High One-Shot mode  
Toggle mode  
• Delayed One-Shot mode  
• Continuous Pulse mode  
• PWM mode without Fault protection  
• PWM mode with Fault protection  
FIGURE 14-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit,  
OCxIF  
OCxRS  
OCxR  
S
R
Q
Output  
Logic  
OCx  
3
Output  
Enable  
Logic  
Output  
Enable  
OCM<2:0>  
Mode Select  
Comparator  
OCFA  
OCTSEL  
0
1
0
1
16  
16  
TMR2  
Rollover Rollover  
TMR3  
TMR2 TMR3  
2011-2012 Microchip Technology Inc.  
DS70652E-page 175  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
application must disable the associated timer when  
writing to the Output Compare Control registers to  
Configure the Output Compare modes by setting the  
avoid malfunctions.  
14.1 Output Compare Modes  
appropriate Output Compare Mode (OCM<2:0>) bits in  
Note:  
See Section 13. “Output Compare” in  
the “dsPIC33F/PIC24H Family Reference  
Manual” (DS70209) for OCxR and  
OCxRS register restrictions.  
the Output Compare x Control (OCxCON<2:0>)  
register. Table 14-1 lists the different bit settings for the  
Output Compare modes. Figure 14-2 illustrates the  
output compare operation for various modes. The user  
TABLE 14-1: OUTPUT COMPARE MODES  
OCM<2:0>  
Mode  
Module Disabled  
OCx Pin Initial State  
OCx Interrupt Generation  
000  
001  
010  
011  
100  
101  
110  
Controlled by GPIO register  
OCx Rising Edge  
OCx Falling Edge  
Active-Low One-Shot  
Active-High One-Shot  
Toggle Mode  
0
1
Current output is maintained OCx Rising and Falling Edge  
Delayed One-Shot  
Continuous Pulse  
0
0
OCx Falling Edge  
OCx Falling Edge  
No Interrupt  
PWM Mode without Fault  
Protection  
0, if OCxR is zero  
1, if OCxR is non-zero  
111  
PWM Mode with Fault  
Protection  
0, if OCxR is zero  
1, if OCxR is non-zero  
OCFA Falling Edge for OC1 to OC4  
FIGURE 14-2:  
OUTPUT COMPARE OPERATION  
Output Compare  
Mode Enabled  
Timer is Reset on  
Period Match  
OCxRS  
OCxR  
TMRy  
Active-Low One-Shot  
(OCM<2:0> = 001)  
Active-High One-Shot  
(OCM<2:0> = 010)  
Toggle Mode  
(OCM<2:0> = 011)  
Delayed One-Shot  
(OCM<2:0> = 100)  
Continuous Pulse Mode  
(OCM<2:0> = 101)  
PWM Mode  
(OCM<2:0> = 110or 111  
)
DS70652E-page 176  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
14.2 Output Compare Control Register  
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R-0, HC  
OCFLT  
R/W-0  
R/W-0  
R/W-0  
OCTSEL  
OCM<2:0>  
bit 7  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare in Idle Mode Control bit  
1= Output Compare x will halt in CPU Idle mode  
0= Output Compare x will continue to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in hardware only)  
0= No PWM Fault condition has occurred  
(This bit is only used when OCM<2:0> = 111.)  
bit 3  
OCTSEL: Output Compare Timer Selection bit  
1= Timer3 is the clock source for Output Compare x  
0= Timer2 is the clock source for Output Compare x  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OCx, Fault pin is enabled  
110= PWM mode on OCx, Fault pin is disabled  
101= Initializes OCx pin low, generates continuous output pulses on OCx pin  
100= Initializes OCx pin low, generates single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initializes OCx pin high, compare event forces OCx pin low  
001= Initializes OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
2011-2012 Microchip Technology Inc.  
DS70652E-page 177  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 178  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
15.1 PWM1: 6-Channel PWM Module  
15.0 MOTOR CONTROL PWM  
MODULE  
This module simplifies the task of generating multiple  
synchronized PWM outputs. The following power and  
motion control applications are supported by the PWM  
module:  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 14. “Motor Con-  
trol PWM” (DS70187), in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available on the Microchip web  
site (www.microchip.com).  
• 3-Phase AC Induction Motor  
• Switched Reluctance (SR) Motor  
• Brushless DC (BLDC) Motor  
• Uninterruptible Power Supply (UPS)  
This module contains three duty cycle generators,  
numbered 1 through 3. The module has six PWM  
output pins, numbered PWM1H1/PWM1L1 through  
PWM1H3/PWM1L3. The six I/O pins are grouped into  
high/low numbered pairs, denoted by the suffix H or L,  
respectively. For complementary loads, the low PWM  
pins are always the complement of the corresponding  
high I/O pin.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The dsPIC33FJ16MC10X devices have a 6-channel  
Pulse-Width Modulation (PWM) module.  
The PWM module has the following features:  
• Up to 16-bit resolution  
• On-the-fly PWM frequency changes  
• Edge-Aligned and Center-Aligned Output modes  
• Single Pulse Generation mode  
• Interrupt support for asymmetrical updates in  
Center-Aligned mode  
• Output override control for Electrically  
Commutative Motor (ECM) operation or BLDC  
• Special Event comparator for scheduling other  
peripheral events  
• Fault pins to optionally drive each of the PWM  
output pins to a defined state  
• Duty cycle updates configurable to be immediate  
or synchronized to the PWM time base  
2011-2012 Microchip Technology Inc.  
DS70652E-page 179  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 15-1:  
6-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM1)  
PWM1CON1  
PWM Enable and Mode SFRs  
Dead-Time Control SFRs  
PWM1CON2  
P1DTCON1  
P1DTCON2  
P1FLTACON  
P1FLTBCON  
Fault A Pin Control SFRs  
Fault B Pin Control SFRs  
P1OVDCON  
PWM Manual Control SFR  
PWM Generator 3  
P1DC3 Buffer  
P1DC3  
Comparator  
PWM1H3  
PWM1L3  
Channel 3 Dead-Time  
Generator and  
Override Logic  
PWM  
Generator 2  
PWM1H2  
PWM1L2  
P1TMR  
Comparator  
P1TPER  
(1)  
Channel 2 Dead-Time  
Generator and  
Output  
Driver  
Block  
Override Logic  
PWM  
Generator 1  
PWM1H1  
PWM1L1  
(1)  
Channel 1 Dead-Time  
Generator and  
Override Logic  
P1TPER Buffer  
P1TCON  
(2,3)  
FLTA1  
(3)  
FLTB1  
Special Event  
Postscaler  
Comparator  
Special Event Trigger  
SEVTDIR  
PTDIR  
P1SECMP  
PWM Time Base  
Note 1: The details of PWM Generator 1 and 2 are not shown for clarity.  
2: On dsPIC33FJ16MC101 (20-pin) devices, the FLTA1 pin is supported, but requires an external pull-down resistor for  
correct functionality.  
3: On dsPIC33FJ16MC102 (28-pin) devices, the FLTA1 and FLTB1 pins are supported and do not require an external  
pull-down resistor.  
DS70652E-page 180  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Refer to Section 14. “Motor Control PWM”  
(DS70187), in the “dsPIC33F/PIC24H Family  
Reference Manual” for more information on the PWM  
Faults.  
15.2 PWM Faults  
The Motor Control PWM module incorporates up to two  
Fault inputs, FLTA1 and FLTB1. These Fault inputs are  
implemented with Class B safety features. These  
features ensure that the PWM outputs enter a safe  
state when either of the Fault inputs is asserted.  
Note:  
The number of PWM Faults mapped to  
the device pins depend on the specific  
variant. Regardless of the variant, both  
Faults will be enabled during any Reset  
event. The application must clear both  
FLTA1 and FLTB1 before enabling the  
Motor Control PWM module. Refer to the  
specific device pin diagrams to see which  
Fault pins are mapped to the device pins.  
The FLTA1 and FLTB1 pins, when enabled and having  
ownership of a pin, also enable a soft internal pull-down  
resistor. The soft pull-down provides a safety feature by  
automatically asserting the Fault should a break occur  
in the Fault signal connection.  
The implementation of internal pull-down resistors is  
dependent on the device variant. Table 15-1 describes  
which devices and pins implement the internal pull-down  
resistors.  
15.3 Write-Protected Registers  
On dsPIC33FJ(16/32)MC10X devices, write protection  
is implemented for the PWMxCON1, PxFLTACON and  
PxFLTBCON registers. The write protection feature  
prevents any inadvertent writes to these registers. The  
write protection feature can be controlled by the  
PWMLOCK Configuration bit in the FOSCSEL Config-  
uration register. The default state of the write protection  
feature is enabled (PWMLOCK = 1). The write protec-  
tion feature can be disabled by configuring PWMLOCK  
(FOSCSEL<6>) = 0.  
TABLE 15-1: INTERNAL PULL-DOWN  
RESISTORS ON PWM FAULT  
PINS  
Internal  
Device  
Fault Pin  
Pull-Down  
Implemented?  
dsPIC33FJXXMC101  
dsPIC33FJXXMC102  
FLTA1  
FLTA1  
FLTB1  
FLTA1  
FLTB1  
No  
Yes  
Yes  
Yes  
Yes  
The user application can gain access to these locked  
registers either by configuring the PWMLOCK bit  
(FOSCSEL<6>) = 0 or by performing the unlock  
sequence. To perform the unlock sequence, the user  
application must write two consecutive values  
(0xABCD and 0x4321) to the PWMxKEY register to  
perform the unlock operation. The write access to the  
PWMxCON1, PxFLTACON or PxFLTBCON registers  
must be the next SFR access following the unlock  
process. There can be no other SFR accesses during  
the unlock process and subsequent write access.  
dsPIC33FJ32MC104  
On devices without internal pull-downs on the Fault pin,  
it is recommended to connect an external pull-down  
resistor for Class B safety features.  
15.2.1  
PWM FAULTS AT RESET  
During any Reset event, the PWM module maintains  
ownership of both PWM Fault pins. At Reset, both  
Faults are enabled in latched mode to guarantee the  
fail-safe power-up of the application. The application  
software must clear both of the PWM Faults before  
enabling the Motor Control PWM module.  
To write to all registers, the PWMxCON1, PxFLTACON  
and PxFLTBCON registers require three unlock  
operations.  
The correct unlocking sequence is described in  
Example 15-1 and Example 15-2.  
The Fault condition must be cleared by the external cir-  
cuitry driving the Fault input pin high and clearing the  
Fault interrupt flag. After the Fault pin condition has been  
cleared, the PWM module restores the PWM output  
signals on the next PWM period or half-period boundary.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 181  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
EXAMPLE 15-1:  
ASSEMBLY CODE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT  
CLEARING SEQUENCE  
; FLTA1 pin must be pulled high externally in order to clear and disable the Fault  
; Writing to P1FLTBCON register requires unlock sequence  
mov #0xabcd,w10  
mov #0x4321,w11  
mov #0x0000,w0  
mov w10, PWM1KEY  
mov w11, PWM1KEY  
mov w0,P1FLTACON  
; Load first unlock key to w10 register  
; Load second unlock key to w11 register  
; Load desired value of P1FLTACON register in w0  
; Write first unlock key to PWM1KEY register  
; Write second unlock key to PWM1KEY register  
; Write desired value to P1FLTACON register  
; FLTB1 pin must be pulled high externally in order to clear and disable the Fault  
; Writing to P1FLTBCON register requires unlock sequence  
mov #0xabcd,w10  
mov #0x4321,w11  
mov #0x0000,w0  
mov w10, PWM1KEY  
mov w11, PWM1KEY  
mov w0,P1FLTBCON  
; Load first unlock key to w10 register  
; Load second unlock key to w11 register  
; Load desired value of P1FLTBCON register in w0  
; Write first unlock key to PWM1KEY register  
; Write second unlock key to PWM1KEY register  
; Write desired value to P1FLTBCON register  
; Enable all PWMs using PWM1CON1 register  
; Writing to PWM1CON1 register requires unlock sequence  
mov #0xabcd,w10  
mov #0x4321,w11  
mov #0x0077,w0  
mov w10, PWM1KEY  
mov w11, PWM1KEY  
mov w0,PWM1CON1  
; Load first unlock key to w10 register  
; Load second unlock key to w11 register  
; Load desired value of PWM1CON1 register in w0  
; Write first unlock key to PWM1KEY register  
; Write second unlock key to PWM1KEY register  
; Write desired value to PWM1CON1 register  
EXAMPLE 15-2:  
C CODE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT CLEARING  
SEQUENCE  
// FLTA1 pin must be pulled high externally in order to clear and disable the Fault  
// Writing to P1FLTACON register requires unlock sequence  
// Use builtin function to write 0x0000 to P1FLTACON register  
__builtin_write_PWMSFR(&P1FLTACON, 0x0000, &PWM1KEY);  
// FLTB1 pin must be pulled high externally in order to clear and disable the Fault  
// Writing to P1FLTBCON register requires unlock sequence  
// Use builtin function to write 0x0000 to P1FLTBCON register  
__builtin_write_PWMSFR(&P1FLTBCON, 0x0000, &PWM1KEY);  
// Enable all PWMs using PWM1CON1 register  
// Writing to PWM1CON1 register requires unlock sequence  
// Use builtin function to write 0x0077 to PWM1CON1 register  
__builtin_write_PWMSFR(&PWM1CON1, 0x0077, &PWM1KEY);  
DS70652E-page 182  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
15.4 PWM Control Registers  
REGISTER 15-1: PxTCON: PWMx TIME BASE CONTROL REGISTER  
R/W-0  
PTEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PTSIDL  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTOPS<3:0>  
PTCKPS<1:0>  
PTMOD<1:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PTEN: PWM Time Base Timer Enable bit  
1= PWM time base is on  
0= PWM time base is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PTSIDL: PWM Time Base Stop in Idle Mode bit  
1= PWM time base halts in CPU Idle mode  
0= PWM time base runs in CPU Idle mode  
bit 12-8  
bit 7-4  
Unimplemented: Read as ‘0’  
PTOPS<3:0>: PWM Time Base Output Postscale Select bits  
1111= 1:16 postscale  
0001= 1:2 postscale  
0000= 1:1 postscale  
bit 3-2  
bit 1-0  
PTCKPS<1:0>: PWM Time Base Input Clock Prescale Select bits  
11= PWM time base input clock period is 64 TCY (1:64 prescale)  
10= PWM time base input clock period is 16 TCY (1:16 prescale)  
01= PWM time base input clock period is 4 TCY (1:4 prescale)  
00= PWM time base input clock period is TCY (1:1 prescale)  
PTMOD<1:0>: PWM Time Base Mode Select bits  
11= PWM time base operates in a Continuous Up/Down Count mode with interrupts for double  
PWM updates  
10= PWM time base operates in a Continuous Up/Down Count mode  
01= PWM time base operates in Single Pulse mode  
00= PWM time base operates in a Free-Running mode  
2011-2012 Microchip Technology Inc.  
DS70652E-page 183  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 15-2: PxTMR: PWMx TIMER COUNT VALUE REGISTER  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PTDIR  
PTMR<14:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTMR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PTDIR: PWM Time Base Count Direction Status bit (read-only)  
1= PWM time base is counting down  
0= PWM time base is counting up  
bit 14-0  
PTMR <14:0>: PWM Time Base Register Count Value bits  
REGISTER 15-3: PxTPER: PWMx TIME BASE PERIOD REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PTPER<14:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTPER<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
PTPER<14:0>: PWM Time Base Period Value bits  
bit 14-0  
DS70652E-page 184  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 15-4: PxSECMP: PWMx SPECIAL EVENT COMPARE REGISTER  
R/W-0  
SEVTDIR(1)  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEVTCMP<14:8>(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
SEVTCMP<7:0>(2)  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SEVTDIR: Special Event Trigger Time Base Direction bit(1)  
1= A Special Event Trigger will occur when the PWM time base is counting down  
0= A Special Event Trigger will occur when the PWM time base is counting up  
bit 14-0  
SEVTCMP<14:0>: Special Event Compare Value bits(2)  
Note 1: SEVTDIR is compared with PTDIR (PxTMR<15>) to generate the Special Event Trigger.  
2: PxSECMP<14:0> is compared with PxTMR<14:0> to generate the Special Event Trigger.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 185  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
REGISTER 15-5: PWMxCON1: PWMx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PMOD3  
PMOD2  
PMOD1  
bit 15  
bit 8  
U-0  
R/W-0  
PEN3H(2)  
R/W-0  
PEN2H(2)  
R/W-0  
PEN1H(2)  
U-0  
R/W-0  
PEN3L(2)  
R/W-0  
PEN2L(2)  
R/W-0  
PEN1L(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
PMOD<3:1>: PWM I/O Pair Mode bits  
1= PWM I/O pin pair is in the Independent PWM Output mode  
0= PWM I/O pin pair is in the Complementary Output mode  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PEN3H:PEN1H: PWMxH I/O Enable bits(2)  
1= PWMxH pin is enabled for PWM output  
0= PWMxH pin is disabled, I/O pin becomes a general purpose I/O  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
PEN3L:PEN1L: PWMxL I/O Enable bits(2)  
1= PWMxL pin is enabled for PWM output  
0= PWMxL pin is disabled, I/O pin becomes a general purpose I/O  
Note 1: The PWMxCON1 register is a write-protected register. Refer to Section 15.3 “Write-Protected  
Registers” for more information on the unlock sequence.  
2: The Reset status for this bit depends on the setting of the PWMPIN Configuration bit (FPOR<7>):  
• If PWMPIN = 1(default), the PWM pins are controlled by the PORT register at Reset, meaning they  
are initially programmed as inputs (i.e., tri-stated).  
• If PWMPIN = 0, the PWM pins are controlled by the PWM module at Reset and are therefore, initially  
programmed as output pins.  
DS70652E-page 186  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 15-6: PWMxCON2: PWMx CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
SEVOPS<3:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IUE  
R/W-0  
R/W-0  
UDIS  
OSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
SEVOPS<3:0>: PWM Special Event Trigger Output Postscale Select bits  
1111= 1:16 postscale  
0001= 1:2 postscale  
0000= 1:1 postscale  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
IUE: Immediate Update Enable bit  
1= Updates to the active PxDC registers are immediate  
0= Updates to the active PxDC registers are synchronized to the PWM time base  
bit 1  
bit 0  
OSYNC: Output Override Synchronization bit  
1= Output overrides via the PxOVDCON register are synchronized to the PWM time base  
0= Output overrides via the PxOVDCON register occur on the next TCY boundary  
UDIS: PWM Update Disable bit  
1= Updates from Duty Cycle and Period Buffer registers are disabled  
0= Updates from Duty Cycle and Period Buffer registers are enabled  
2011-2012 Microchip Technology Inc.  
DS70652E-page 187  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 15-7: PxDTCON1: PWMx DEAD-TIME CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DTB<5:0>  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
DTBPS<1:0>  
bit 15  
R/W-0  
DTAPS<1:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
DTA<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
DTBPS<1:0>: Dead-Time Unit B Prescale Select bits  
11= Clock period for Dead-Time Unit B is 8 TCY  
10= Clock period for Dead-Time Unit B is 4 TCY  
01= Clock period for Dead-Time Unit B is 2 TCY  
00= Clock period for Dead-Time Unit B is TCY  
bit 13-8  
bit 7-6  
DTB<5:0>: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit B bits  
DTAPS<1:0>: Dead-Time Unit A Prescale Select bits  
11= Clock period for Dead-Time Unit A is 8 TCY  
10= Clock period for Dead-Time Unit A is 4 TCY  
01= Clock period for Dead-Time Unit A is 2 TCY  
00= Clock period for Dead-Time Unit A is TCY  
bit 5-0  
DTA<5:0>: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit A bits  
DS70652E-page 188  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 15-8: PxDTCON2: PWMx DEAD-TIME CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
DTS3I  
R/W-0  
R/W-0  
DTS2I  
R/W-0  
R/W-0  
DTS1I  
DTS3A  
DTS2A  
DTS1A  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
DTS3A: Dead-Time Select for PWM3 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DTS3I: Dead-Time Select for PWM3 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS2A: Dead-Time Select for PWM2 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS2I: Dead-Time Select for PWM2 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS1A: Dead-Time Select for PWM1 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS1I: Dead-Time Select for PWM1 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
2011-2012 Microchip Technology Inc.  
DS70652E-page 189  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1,2,3,4)  
REGISTER 15-9: PxFLTACON: PWMx FAULT A CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FAOV3H  
FAOV3L  
FAOV2H  
FAOV2L  
FAOV1H  
FAOV1L  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
FLTAM  
FAEN3  
FAEN2  
FAEN1  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FAOVxH<3:1>:FAOVxL<3:1>: Fault Input A PWM Override Value bits  
1= The PWM output pin is driven active on an external Fault input event  
0= The PWM output pin is driven inactive on an external Fault input event  
bit 7  
FLTAM: Fault A Mode bit  
1= The Fault A input pin functions in the Cycle-by-Cycle mode  
0= The Fault A input pin latches all control pins to the programmed states in PxFLTACON<13:8>  
bit 6-3  
bit 2  
Unimplemented: Read as ‘0’  
FAEN3: Fault Input A Enable bit  
1= PWMxH3/PWMxL3 pin pair is controlled by Fault Input A  
0= PWMxH3/PWMxL3 pin pair is not controlled by Fault Input A  
bit 1  
bit 0  
FAEN2: Fault Input A Enable bit  
1= PWMxH2/PWMxL2 pin pair is controlled by Fault Input A  
0= PWMxH2/PWMxL2 pin pair is not controlled by Fault Input A  
FAEN1: Fault Input A Enable bit  
1= PWMxH1/PWMxL1 pin pair is controlled by Fault Input A  
0= PWMxH1/PWMxL1 pin pair is not controlled by Fault Input A  
Note 1: Comparator outputs are not internally connected to the PWM Fault control logic. If using the comparator  
modules for Fault generation, the user must externally connect the desired comparator output pin to the  
dedicated FLTA1 or FLTB1 input pin.  
2: Refer to Table 15-1 for FLTA1 implementation details.  
3: The PxFLTACON register is a write-protected register. Refer to Section 15.3 “Write-Protected Registers”  
for more information on the unlock sequence.  
4: During any Reset event, FLTA1 is enabled by default and must be cleared as described in Section 15.2  
“PWM Faults”.  
DS70652E-page 190  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1,2,3,4)  
REGISTER 15-10: PxFLTBCON: PWMx FAULT B CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FBOV3H  
FBOV3L  
FBOV2H  
FBOV2L  
FBOV1H  
FBOV1L  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
FLTBM  
FBEN3  
FBEN2  
FBEN1  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FBOVxH<3:1>:FBOVxL<3:1>: Fault Input B PWM Override Value bits  
1= The PWM output pin is driven active on an external Fault input event  
0= The PWM output pin is driven inactive on an external Fault input event  
bit 7  
FLTBM: Fault B Mode bit  
1= The Fault B input pin functions in the Cycle-by-Cycle mode  
0= The Fault B input pin latches all control pins to the programmed states in PxFLTBCON<13:8>  
bit 6-3  
bit 2  
Unimplemented: Read as ‘0’  
FBEN3: Fault Input B Enable bit  
1= PWMxH3/PWMxL3 pin pair is controlled by Fault Input B  
0= PWMxH3/PWMxL3 pin pair is not controlled by Fault Input B  
bit 1  
bit 0  
FBEN2: Fault Input B Enable bit  
1= PWMxH2/PWMxL2 pin pair is controlled by Fault Input B  
0= PWMxH2/PWMxL2 pin pair is not controlled by Fault Input B  
FBEN1: Fault Input B Enable bit  
1= PWMxH1/PWMxL1 pin pair is controlled by Fault Input B  
0= PWMxH1/PWMxL1 pin pair is not controlled by Fault Input B  
Note 1: Comparator outputs are not internally connected to the PWM Fault control logic. If using the Comparator  
modules for Fault generation, the user must externally connect the desired comparator output pin to the  
dedicated FLTA1 or FLTB1 input pin.  
2: Refer to Table 15-1 for FLTB1 implementation details.  
3: The PxFLTACON register is a write-protected register. Refer to Section 15.3 “Write-Protected Registers”  
for more information on the unlock sequence.  
4: During any Reset event, FLTB1 is enabled by default and must be cleared as described in Section 15.2  
“PWM Faults”.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 191  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 15-11: PxOVDCON: PWMx OVERRIDE CONTROL REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
POVD3H  
POVD3L  
POVD2H  
POVD2L  
POVD1H  
POVD1L  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
POUT3H  
POUT3L  
POUT2H  
POUT2L  
POUT1H  
POUT1L  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
POVDxH<3:1>:POVDxL<3:1>: PWM Output Override bits  
1= Output on PWMx I/O pin is controlled by the PWM generator  
0= Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bits  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
POUTxH<3:1>:POUTxL<3:1>: PWM Manual Output bits  
1= PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bits are cleared  
0= PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bits are cleared  
DS70652E-page 192  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 15-12: PxDC1: PWMx DUTY CYCLE REGISTER 1  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PDC1<15:8>  
R/W-0  
R/W-0  
R/W-0  
PDC1<7:0>  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC1<15:0>: PWM Duty Cycle 1 Value bits  
REGISTER 15-13: PxDC2: PWMx DUTY CYCLE REGISTER 2  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PDC2<15:8>  
R/W-0  
PDC2<7:0>  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC2<15:0>: PWM Duty Cycle 2 Value bits  
REGISTER 15-14: PxDC3: PWMx DUTY CYCLE REGISTER 3  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PDC3<15:8>  
R/W-0  
R/W-0  
R/W-0  
PDC3<7:0>  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC3<15:0>: PWM Duty Cycle 3 Value bits  
2011-2012 Microchip Technology Inc.  
DS70652E-page 193  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 15-15: PWMxKEY: PWMx UNLOCK REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PWMKEY<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWMKEY<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0 PWMKEY<15:0>: PWMx Unlock bits  
If the PWMLOCK Configuration bit is asserted (PWMLOCK = 1), the PWMxCON1, PxFLTACON and  
PxFLTBCON registers are writable only after the proper sequence is written to the PWMxKEY register. If the  
PWMLOCK Configuration bit is deasserted (PWMLOCK = 0), the PWMxCON1, PxFLTACON and  
PxFLTBCON registers are writable at all times. Refer to Section 14. “Motor Control PWM” (DS70187) in  
the “dsPIC33F/PIC24H Family Reference Manual” for details on the unlock sequence.  
DS70652E-page 194  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The Serial Peripheral Interface (SPI) module is a  
16.0 SERIAL PERIPHERAL  
synchronous serial interface useful for communicating  
INTERFACE (SPI)  
with other peripheral or microcontroller devices. These  
peripheral devices can be serial EEPROMs, shift regis-  
Note 1: This data sheet summarizes the features  
ters, display drivers, Analog-to-Digital Converters, etc.  
of the dsPIC33FJ16(GP/MC)101/102  
The SPI module is compatible with SPI and SIOP from  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
Motorola®.  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 18. “Serial  
Peripheral Interface (SPI)” (DS70206)  
in the “dsPIC33F/PIC24H Family  
Reference Manual”, which is available  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates status conditions.  
The serial interface consists of four pins:  
from  
the  
Microchip  
web  
site  
• SDIx (serial data input)  
(www.microchip.com).  
• SDOx (serial data output)  
• SCKx (shift clock input or output)  
• SSx (active-low slave select).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
In Master mode operation, SCKx is a clock output. In  
Slave mode, it is a clock input.  
FIGURE 16-1:  
SPIx MODULE BLOCK DIAGRAM  
SCKx  
SSx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB SPIxTXB  
SPIxBUF  
Read SPIxBUF  
Write SPIxBUF  
16  
Internal Data Bus  
2011-2012 Microchip Technology Inc.  
DS70652E-page 195  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
16.1 SPI Helpful Tips  
16.2 SPI Resources  
1. In Frame mode, if there is a possibility that the  
master may not be initialized before the slave:  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
a) If FRMPOL (SPIxCON2<13>) = 1, use a  
pull-down resistor on SSx.  
b) If FRMPOL = 0, use a pull-up resistor on SSx.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
Note:  
This insures that the first frame transmission  
after initialization is not shifted or corrupted.  
2. In Non-Framed 3-Wire mode, (i.e., not using  
SSx from a master):  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en554109  
a) If CKP (SPIxCON1<6>) = 1, always place a  
16.2.1  
KEY RESOURCES  
pull-up resistor on SSx.  
b) If CKP = 0, always place a pull-down  
Section 18. “Serial Peripheral Interface (SPI)”  
(DS70206) in the “dsPIC33F/PIC24H Family  
Reference Manual”.  
resistor on SSx.  
Note:  
This will insure that during power-up and  
initialization, the master/slave will not lose  
sync due to an errant SCK transition that  
would cause the slave to accumulate data  
shift errors for both transmit and receive,  
appearing as corrupted data.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related “dsPIC33F/PIC24H Family Reference  
Manual” sections  
3. FRMEN (SPIxCON2<15>) = 1 and SSEN  
(SPIxCON1<7>) = 1 are exclusive and invalid.  
In Frame mode, SCKx is continuous and the  
Frame Sync pulse is active on the SSx pin,  
which indicates the start of a data frame.  
• Development Tools  
Note:  
Not all third-party devices support Frame  
mode timing. Refer to the SPI electrical  
characteristics for details.  
4. In Master mode only, set the SMP bit  
(SPIxCON1<9>) to a ‘1’ for the fastest SPI data  
rate possible. The SMP bit can only be set at the  
same time or after the MSTEN bit (SPIxCON1<5>)  
is set.  
5. To avoid invalid slave read data to the master,  
the user’s master software must ensure enough  
time for slave software to fill its write buffer  
before the user application initiates a master  
write/read cycle. It is always advisable to pre-  
load the SPIxBUF Transmit register in advance  
of the next master transaction cycle. SPIxBUF is  
transferred to the SPIx Shift register and is  
empty once the data transmission begins.  
6. The SPI related pins (SDI1, SDO1, SCK1) are  
located at fixed positions in the dsPIC33FJ16(GP/  
MC)10X devices. The same pins are remappable  
in the dsPIC33FJ32(GP/MC)10X devices.  
DS70652E-page 196  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
16.3 SPI Control Registers  
REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: SPIx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: SPIx Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded; the user software has not read the  
previous data in the SPIxBUF register  
0= No overflow has occurred.  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit has not yet started, SPIxTXB is full  
0= Transmit has started, SPIxTXB is empty  
Automatically set in hardware when the CPU writes the SPIxBUF location, loading SPIxTXB. Automatically  
cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared  
in hardware when the core reads the SPIxBUF location, reading SPIxRXB.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 197  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(2)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
SPRE<2:0>(3)  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
PPRE<1:0>(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled, pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: SPIx Slave Select Enable bit (Slave mode)(2)  
1= SSx pin is used for Slave mode  
0= SSx pin is not used by module, pin is controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: This bit must be cleared when FRMEN = 1.  
3: Do not set both primary and secondary prescalers to a value of 1:1.  
DS70652E-page 198  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2  
SPRE<2:0>: Secondary Prescale bits (Master mode)(3)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
.
.
.
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)(3)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: This bit must be cleared when FRMEN = 1.  
3: Do not set both primary and secondary prescalers to a value of 1:1.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 199  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support is enabled (SSx pin used as Frame Sync pulse input/output)  
0= Framed SPIx support is disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame Sync pulse input (slave)  
0= Frame Sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame Sync pulse is active-high  
0= Frame Sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame Sync pulse coincides with first bit clock  
0= Frame Sync pulse precedes first bit clock  
bit 0  
Unimplemented: This bit must not be set to ‘1’ by the user application  
DS70652E-page 200  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
17.1 Operating Modes  
17.0 INTER-INTEGRATED CIRCUIT™  
2
(I C™)  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7-bit and 10-bit addressing.  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 family  
devices. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data sheet,  
refer to Section 19. “Inter-Integrated  
Circuit™ (I2C™)” (DS70195) in the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
The following types of I2C operation are supported:  
• I2C slave operation with 7-bit address  
• I2C slave operation with 10-bit address  
• I2C master operation with 7-bit or 10-bit address  
For details about the communication sequence in each  
of these modes, refer to the Microchip web site  
(www.microchip.com) for the latest “dsPIC33F/PIC24H  
Family Reference Manual” sections.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
17.2 I2C Registers  
I2CxCON and I2CxSTAT are control and status  
registers, respectively. The I2CxCON register is  
readable and writable. The lower six bits of I2CxSTAT  
are read-only. The remaining bits of the I2CxSTAT are  
read/write:  
The Inter-Integrated Circuit™ (I2C™) module provides  
complete hardware support for both Slave and Multi-  
Master modes of the I2C serial communication  
standard, with a 16-bit interface.  
• I2CxRSR is the shift register used for shifting data  
The I2C module has a 2-pin interface:  
• I2CxRCV is the receive buffer and the register to  
which data bytes are written or from which data  
bytes are read  
• The SCLx pin is clock  
• The SDAx pin is data  
• I2CxTRN is the transmit register to which bytes  
are written during a transmit operation  
The I2C module offers the following key features:  
• I2C interface supporting both Master and Slave  
modes of operation.  
• I2C Slave mode supports 7-bit and 10-bit addresses  
• I2C Master mode supports 7-bit and 10-bit addresses  
• I2C port allows bidirectional transfers between  
master and slaves  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control)  
• I2C supports multi-master operation, detects bus  
collision and arbitrates accordingly  
• I2CxADD register holds the slave address  
• ADD10 status bit indicates 10-Bit Addressing  
mode  
• I2CxBRG acts as the Baud Rate Generator (BRG)  
reload value  
In receive operations, I2CxRSR and I2CxRCV together  
form a double-buffered receiver. When I2CxRSR  
receives a complete byte, it is transferred to I2CxRCV  
and an interrupt pulse is generated.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 201  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
2
FIGURE 17-1:  
I C™ BLOCK DIAGRAM (X = 1)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSb  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSb  
Shift Clock  
Reload  
Control  
Write  
Read  
I2CxBRG  
BRG Down Counter  
TCY/2  
DS70652E-page 202  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
17.3 I2C Control Registers  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1, HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0, HC R/W-0, HC  
ACKEN RCEN  
R/W-0, HC  
PEN  
R/W-0, HC  
RSEN  
R/W-0, HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module; all I2C pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: I2Cx Stop in Idle Mode bit  
1= Discontinues module operation when device enters an Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Releases SCLx clock  
0= Holds SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clears at  
beginning of every slave data byte transmission. Hardware clears at end of every slave address byte  
reception. Hardware clears at every slave data byte reception.  
If STREN = 0:  
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware clears at beginning of every slave  
data byte transmission. Hardware clears at end of every slave address byte reception.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses Acknowledged  
0= IPMI mode is disabled  
A10M: I2Cx 10-Bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control is disabled  
0= Slew rate control is enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enables I/O pin thresholds compliant with SMBus specification  
0= Disables SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for  
reception)  
0= General call address is disabled  
2011-2012 Microchip Technology Inc.  
DS70652E-page 203  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 6  
bit 5  
bit 4  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with the SCLREL bit.  
1= Enables software or receives clock stretching  
0= Disables software or receives clock stretching  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Sends NACK during Acknowledge  
0= Sends ACK during Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (when operating as I2C master, applicable during master receive)  
1= Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware  
clears at end of master Acknowledge sequence  
0= Acknowledge sequence is not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C; hardware clears at end of eighth bit of the master receive data byte.  
0= Receive sequence is not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiates Stop condition on SDAx and SCLx pins; hardware clears at end of the master Stop sequence  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiates Repeated Start condition on SDAx and SCLx pins; hardware clears at end of the master  
Repeated Start sequence  
0= Repeated Start condition is not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiates Start condition on SDAx and SCLx pins; hardware clears at end of master Start sequence  
0= Start condition is not in progress  
DS70652E-page 204  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0, HSC  
ACKSTAT  
bit 15  
R-0, HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0, HS  
BCL  
R-0, HSC  
GCSTAT  
R-0, HSC  
ADD10  
bit 8  
R/C-0, HS  
IWCOL  
bit 7  
R/C-0, HS R-0, HSC R/C-0, HSC R/C-0, HSC  
R-0, HSC  
R_W  
R-0, HSC  
RBF  
R-0, HSC  
TBF  
I2COV  
D_A  
P
S
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(when operating as I2C master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware sets or clears at end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware sets at beginning of master transmission. Hardware clears at end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware sets at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware sets when address matches general call address. Hardware clears at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware sets at match of 2nd byte of matched 10-bit address. Hardware clears at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write to the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware sets at occurrence of a write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware sets at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clears at device address match. Hardware sets by reception of a slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware sets or clears when Start, Repeated Start or Stop is detected.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 205  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware sets or clears when Start, Repeated Start or Stop is detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware sets or clears after reception of an I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive is complete, I2CxRCV is full  
0= Receive is not complete, I2CxRCV is empty  
Hardware sets when I2CxRCV is written with received byte. Hardware clears when software reads  
I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware sets when software writes to I2CxTRN. Hardware clears at completion of data transmission.  
DS70652E-page 206  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSKx: Mask for Address Bit x Select bits  
1= Enables masking for Bit x of incoming message address; bit match not required in this position  
0= Disables masking for Bit x; bit match required in this position  
2011-2012 Microchip Technology Inc.  
DS70652E-page 207  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 208  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The primary features of the UART module are:  
18.0 UNIVERSAL ASYNCHRONOUS  
• Full-Duplex, 8-Bit or 9-Bit Data Transmission  
through the UxTX and UxRX Pins  
RECEIVER TRANSMITTER  
(UART)  
• Even, Odd or No Parity options (for 8-bit data)  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
family devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 17. “UART”  
(DS70188) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
• One or Two Stop bits  
• Hardware Flow Control Option with UxCTS and  
UxRTS Pins  
• Fully Integrated Baud Rate Generator with  
16-Bit Prescaler  
• Baud Rates Ranging from 1 Mbps to 6 bps at  
16x mode at 16 MIPS  
• Baud Rates Ranging from 4 Mbps to 24.4 bps at  
4x mode at 16 MIPS  
• 4-Deep First-In First-Out (FIFO) Transmit Data  
Buffer  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
• A Separate Interrupt for all UART Error Conditions  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Support for Automatic Baud Rate Detection  
• IrDA® Encoder and Decoder Logic  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules  
available in the dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 device family. The  
UART is a full-duplex asynchronous system that can  
communicate with peripheral devices, such as  
personal computers, LIN/J2602, RS-232 and RS-485  
interfaces. The module also supports a hardware flow  
control option with the UxCTS and UxRTS pins, and  
also includes an IrDA® encoder and decoder.  
• 16x Baud Clock Output for IrDA® Support  
A simplified block diagram of the UART module is  
shown in Figure 18-1. The UART module consists of  
these key hardware elements:  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
FIGURE 18-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
Hardware Flow Control  
UART Receiver  
UxRTS/BCLK  
UxCTS  
UxRX  
UxTX  
UART Transmitter  
2011-2012 Microchip Technology Inc.  
DS70652E-page 209  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
18.1 UART Helpful Tips  
18.2 UART Resources  
1. In multi-node direct connect UART networks,  
UART receive inputs react to the complementary  
logic level, defined by the URXINV bit  
(UxMODE<4>) which defines the Idle state, the  
default of which is logic high (i.e., URXINV = 0).  
Because remote devices do not initialize at the  
same time, it is likely that one of the devices,  
because the RX line is floating, will trigger a Start  
bit detection and will cause the first byte received  
after the device has been initialized to be invalid.  
To avoid this situation, the user should use a  
pull-up or pull-down resistor on the RX pin  
depending on the value of the URXINV bit.  
Many useful resources are provided on the main  
product page of the Microchip web site for the devices  
listed in this data sheet. This product page, which can  
be accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en554109  
18.2.1  
KEY RESOURCES  
Section 17. “UART” (DS70188) in the  
“dsPIC33F/PIC24H Family Reference Manual”  
a) If URXINV = 0, use a pull-up resistor on the  
RX pin.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
b) If URXINV = 1, use a pull-down resistor on  
the RX pin.  
2. The first character received on a wake-up from  
Sleep mode, caused by activity on the UxRX pin  
of the UART module, will be invalid. In Sleep  
mode, peripheral clocks are disabled. By the  
time the oscillator system has restarted and  
stabilized from Sleep mode, the baud rate bit  
sampling clock, relative to the incoming UxRX  
bit timing, is no longer synchronized, resulting in  
the first character being invalid. This is to be  
expected.  
• All related “dsPIC33F/PIC24H Family Reference  
Manual” sections  
• Development Tools  
DS70652E-page 210  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
18.3 UART Control Registers  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
R/W-0  
RTSMD  
UEN<1:0>  
bit 15  
bit 8  
R/W-0, HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL<1:0>  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by the UEN<1:0> bits  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is  
minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: UARTx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA encoder and decoder are enabled  
0= IrDA encoder and decoder are disabled  
RTSMD: UARTx Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
UEN<1:0>: UARTx Pin Enable bits  
11= UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin is controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins are controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt is generated on falling edge; bit is cleared  
in hardware on following rising edge  
0= No wake-up is enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enables Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enables baud rate measurement on the next character – requires reception of a Sync field (55h)  
before other data; cleared in hardware upon completion  
0= Baud rate measurement is disabled or completed  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is available for 16x BRG mode (BRGH = 0) only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 211  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 4  
URXINV: UARTx Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is available for 16x BRG mode (BRGH = 0) only.  
DS70652E-page 212  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0, HC  
UTXBRK  
R/W-0  
UTXEN(1)  
R-0  
R-1  
UTXISEL1  
UTXINV  
UTXISEL0  
UTXBF  
TRMT  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15,13  
UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations  
are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least  
one character open in the transmit buffer)  
bit 14  
UTXINV: UARTx Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle state is ‘0’  
0= UxTX Idle state is ‘1’  
If IREN = 1:  
1= IrDA encoded, UxTX Idle state is ‘1’  
0= IrDA encoded, UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: UARTx Transmit Break bit  
1= Sends Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission is disabled or completed  
bit 10  
UTXEN: UARTx Transmit Enable bit(1)  
1= Transmit is enabled, UxTX pin is controlled by UARTx  
0= Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is  
controlled by port  
bit 9  
UTXBF: UARTx Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits  
11= Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer; receive buffer has one or more characters  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 213  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
ADDEN: Address Character Detect bit (Bit 8 of received data = 1)  
1= Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect  
0= Address Detect mode is disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive FIFO)  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit (read-only/clear only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed; clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the UxRSR to the empty state  
bit 0  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
DS70652E-page 214  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Depending on the particular device pinout, the ADC  
can have up to 14 analog input pins.  
19.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
Block diagrams of the ADC module are shown in  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 family  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer  
to Section 16. “Analog-to-Digital  
Converter (ADC)” (DS70183) in the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
Figure 19-1 through Figure 19-3.  
19.2 ADC Initialization  
To configure the ADC module:  
1. Select  
port  
pins  
as  
analog  
inputs  
(AD1PCFGL<15:0>).  
2. Select the analog conversion clock to match the  
desired data rate with the processor clock  
(ADxCON3<7:0>).  
3. Determine how many Sample-and-Hold  
channels will be used (ADxCON2<9:8>).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
4. Select the appropriate sample/conversion  
sequence  
(ADxCON1<7:5>  
and  
ADxCON3<12:8>).  
5. Select the way conversion results are presented  
in the buffer (ADxCON1<9:8>).  
The  
dsPIC33FJ16(GP/MC)101/102  
and  
6. Turn on the ADC module (ADxCON1<15>).  
7. Configure ADC interrupt (if required):  
a) Clear the ADxIF bit.  
dsPIC33FJ32(GP/MC)101/102/104 devices have up  
to 14 ADC module input channels.  
b) Select the ADC interrupt priority.  
19.1 Key Features  
The 10-bit ADC configuration has the following key  
features:  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 1.1 Msps  
• Up to 14 analog input pins  
• Four Sample-and-Hold (S&H) circuits for  
simultaneous sampling of up to four analog input  
pins  
• Automatic Channel Scan mode  
• Selectable conversion trigger source  
• Selectable Buffer Fill modes  
• Four result alignment options (signed/unsigned,  
fractional/integer)  
• Operation during CPU Sleep and Idle modes  
• 16-word conversion result buffer  
2011-2012 Microchip Technology Inc.  
DS70652E-page 215  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 19-1:  
ADC1 BLOCK DIAGRAM FOR dsPIC33FJXX(GP/MC)101 DEVICES  
(1)  
(1)  
(2)  
CTMUI  
CTMU TEMP  
Open  
AN0-AN3  
(3)  
AN9  
AN10  
(3)  
S&H0  
Channel  
Scan  
+
CH0SB<4:0>  
-
CH0SA<4:0>  
CH0  
CSCNA  
AN1  
VREFL  
CH0NA CH0NB  
AN0  
AN3  
AVSS  
AVDD  
S&H1  
+
-
CH123SA CH123SB  
CH1  
(3)  
AN9  
VCFG<2:0>  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
VREFL  
VREFH  
VREFL  
CH123NA CH123NB  
SAR ADC  
AN1  
S&H2  
ADC1BUFE  
ADC1BUFF  
+
-
CH123SA CH123SB  
CH2  
(3)  
AN10  
VREFL  
CH123NA CH123NB  
AN2  
S&H3  
+
-
CH123SA CH123SB  
CH3  
VREFL  
CH123NA CH123NB  
Alternate Input Selection  
Internally connected to the CTMU module.  
Note 1:  
2:  
3:  
This selection is only used with CTMU capacitive and time measurement.  
This pin is available in dsPIC33FJ32(GP/MC)101 devices only.  
DS70652E-page 216  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 19-2:  
ADC1 BLOCK DIAGRAM FOR dsPIC33FJXX(GP/MC)102 DEVICES  
(1)  
(1)  
(2)  
CTMUI  
CTMU TEMP  
Open  
AN0-AN5  
(3)  
AN9  
AN10  
(3)  
S&H0  
Channel  
Scan  
+
CH0SB<4:0>  
CH0SA<4:0>  
-
CH0  
CSCNA  
AN1  
VREFL  
CH0NA CH0NB  
AN0  
AN3  
AVSS  
AVDD  
S&H1  
+
-
CH123SA CH123SB  
CH1  
AN9(3)  
VCFG<2:0>  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
VREFL  
VREFH  
VREFL  
CH123NA CH123NB  
SAR ADC  
AN1  
AN4  
S&H2  
ADC1BUFE  
ADC1BUFF  
+
-
CH123SA CH123SB  
CH2  
AN10(3)  
VREFL  
CH123NA CH123NB  
AN2  
AN5  
S&H3  
+
-
CH123SA CH123SB  
CH3  
VREFL  
CH123NA CH123NB  
Alternate Input Selection  
Internally connected to the CTMU module.  
Note 1:  
2:  
3:  
This selection is only used with CTMU capacitive and time measurement.  
This pin is available in dsPIC33FJ32(GP/MC)102 devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 217  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 19-3:  
ADC1 BLOCK DIAGRAM FOR dsPIC33FJ32(GP/MC)104 DEVICES  
(1)  
(1)  
(2)  
CTMUI  
CTMU TEMP  
Open  
AN0-AN12  
AN15  
S&H0  
Channel  
Scan  
+
CH0SB<4:0>  
CH0SA<4:0>  
-
CH0  
CSCNA  
AN1  
VREFL  
CH0NB  
CH0NA  
AN0  
AN3  
AVSS  
AVDD  
S&H1  
+
-
CH123SA CH123SB  
AN6  
CH1  
VCFG<2:0>  
AN9  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
VREFL  
VREFH  
VREFL  
CH123NA CH123NB  
SAR ADC  
AN1  
AN4  
S&H2  
ADC1BUFE  
ADC1BUFF  
+
-
CH123SA CH123SB  
CH2  
AN7  
AN10  
VREFL  
CH123NA CH123NB  
AN2  
AN5  
S&H3  
+
-
CH123SA CH123SB  
CH3  
AN8  
AN11  
VREFL  
CH123NA CH123NB  
Alternate Input Selection  
Note 1:  
2:  
Internally connected to the CTMU module.  
This selection is only used with CTMU capacitive and time measurement.  
DS70652E-page 218  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 19-4:  
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM  
ADxCON3<15>  
ADC Internal  
RC Clock(1)  
1
0
TAD  
ADxCON3<5:0>  
6
ADC Conversion  
Clock Multiplier  
TCY  
(1)  
TOSC  
X2  
1, 2, 3, 4, 5,..., 64  
Note 1: See the ADC specifications in Section 26.0 “Electrical Characteristics” for the exact RC clock value.  
19.3 ADC Helpful Tips  
19.4 ADC Resources  
1. The SMPI<3:0> (AD1CON2<5:2>) control bits:  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
a) Determine when the ADC interrupt flag is  
set and an interrupt is generated if enabled.  
b) When the CSCNA bit (AD1CON2<10>) is  
set to ‘1’, determine when the ADC analog  
scan channel list, defined in the AD1CSSL  
register, starts over from the beginning.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser: http://  
www.microchip.com/wwwproducts/  
2. The ADC has 16 result buffers. ADC conversion  
results are stored sequentially in ADC1BUF0-  
ADC1BUFF regardless of which analog inputs  
are being used, subject to the SMPI<3:0> bits  
(AD1CON2<5:2>). There is no relationship  
between the ANx input being measured and  
which ADC buffer (ADC1BUF0-ADC1BUFF)  
that the conversion results will be placed in.  
Devices.aspx?dDocName=en554109  
19.4.1  
KEY RESOURCES  
Section 16. “Analog-to-Digital Converter  
(ADC)” (DS70183) in the “dsPIC33F/PIC24H  
Family Reference Manual”  
3. The DONE bit (AD1CON1<0>) is only cleared at  
the start of each conversion and is set at the  
completion of the conversion, but remains set  
indefinitely, even through the next sample phase  
until the next conversion begins. If application  
code is monitoring the DONE bit in any kind of  
software loop, the user must consider this  
behavior because the CPU code execution is  
faster than the ADC. As a result, in Manual  
Sample mode, particularly where the user’s  
code is setting the SAMP bit (AD1CON1<1>),  
the DONE bit should also be cleared by the user  
application just before setting the SAMP bit.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related “dsPIC33F/PIC24H Family Reference  
Manual” sections  
• Development Tools  
2011-2012 Microchip Technology Inc.  
DS70652E-page 219  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
19.5 ADC Control Registers  
REGISTER 19-1: AD1CON1: ADC1 CONTROL REGISTER 1  
R/W-0  
ADON  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
ADSIDL  
FORM<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
ASAM  
R/W-0,  
HC, HS  
R/C-0,  
HC, HS  
SSRC<2:0>  
SIMSAM  
SAMP  
DONE  
bit 7  
Legend:  
bit 0  
HC = Hardware Clearable bit HS = Hardware Settable bit  
C = Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADON: ADC Operating Mode bit  
1= ADC module is operating  
0= ADC is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: ADC Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-10  
bit 9-8  
Unimplemented: Read as ‘0’  
FORM<1:0>: Data Output Format bits  
11= Signed fractional (DOUT = sddd dddd dd00 0000, where s= .NOT.d<9>)  
10= Fractional (DOUT = dddd dddd dd00 0000)  
01= Signed integer (DOUT = ssss sssd dddd dddd, where s= .NOT.d<9>)  
00= Integer (DOUT = 0000 00dd dddd dddd)  
bit 7-5  
SSRC<2:0>: Sample Clock Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= CTMU  
101= Reserved  
100= Reserved  
011= Motor control PWM interval ends sampling and starts conversion(1)  
010= GP Timer3 compare ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing SAMP bit ends sampling and starts conversion  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SIMSAM: Simultaneous Sample Select bit (applicable only when CHPS<1:0> = 01or 1x)  
1= Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and  
CH1 simultaneously (when CHPS<1:0> = 01)  
0= Samples multiple channels individually in sequence  
bit 2  
ASAM: ADC Sample Auto-Start bit  
1= Sampling begins immediately after last conversion; SAMP bit is auto-set  
0= Sampling begins when the SAMP bit is set  
Note 1: This feature is available in dsPIC33FJ(16/32)MC10X devices only.  
DS70652E-page 220  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 19-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)  
bit 1  
SAMP: ADC Sample Enable bit  
1= ADC Sample-and-Hold amplifiers are sampling  
0= ADC Sample-and-Hold amplifiers are holding  
If ASAM = 0, software can write ‘1’ to begin sampling; automatically set by hardware if ASAM = 1.  
If SSRC<2:0> = 000, software can write ‘0’ to end sampling and start conversion. If SSRC<2:0> 000,  
automatically cleared by hardware to end sampling and start conversion.  
bit 0  
DONE: ADC Conversion Status bit  
1= ADC conversion cycle is completed  
0= ADC conversion has not started or is in progress  
Automatically set by hardware when ADC conversion is complete. Software can write ‘0’ to clear the  
DONE bit status (software not allowed to write ‘1’). Clearing this bit will NOT affect any operation in  
progress. Automatically cleared by hardware at start of a new conversion.  
Note 1: This feature is available in dsPIC33FJ(16/32)MC10X devices only.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 221  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 19-2: AD1CON2: ADC1 CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VCFG<2:0>  
CSCNA  
CHPS<1:0>  
bit 15  
bit 8  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
SMPI<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
VCFG<2:0>: Converter Voltage Reference Configuration bits  
ADREF+  
ADREF-  
xxx  
AVDD  
AVSS  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ During Sample A bit  
1= Scans inputs  
0= Does not scan inputs  
bit 9-8  
bit 7  
CHPS<1:0>: Select Channels Utilized bits  
1x= Converts CH0, CH1, CH2 and CH3  
01= Converts CH0 and CH1  
00= Converts CH0  
BUFS: Buffer Fill Status bit (valid only when BUFM = 1)  
1= ADC is currently filling second half of buffer, user should access data in the first half  
0= ADC is currently filling first half of buffer, user application should access data in the second half  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits  
1111= Interrupts at the completion of conversion for each 16th sample/convert sequence  
1110= Interrupts at the completion of conversion for each 15th sample/convert sequence  
0001= Interrupts at the completion of conversion for each 2nd sample/convert sequence  
0000= Interrupts at the completion of conversion for each sample/convert sequence  
bit 1  
bit 0  
BUFM: Buffer Fill Mode Select bit  
1= Starts filling first half of buffer on first interrupt and the second half of buffer on next interrupt  
0= Always starts filling buffer from the beginning  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses channel input selects for Sample A on first sample and Sample B on next sample  
0= Always uses channel input selects for Sample A  
DS70652E-page 222  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 19-3: AD1CON3: ADC1 CONTROL REGISTER 3  
R/W-0  
ADRC  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
SAMC<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
ADCS<7:0>(2)  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADRC: ADC Conversion Clock Source bit  
1= ADC internal RC clock  
0= Clock derived from system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC<4:0>: Auto-Sample Time bits(1)  
11111= 31 TAD  
00001= 1 TAD  
00000= 0 TAD  
bit 7-0  
ADCS<7:0>: ADC Conversion Clock Select bits(2)  
11111111= Reserved  
01000000= Reserved  
00111111= TCY (ADCS<7:0> + 1) = 64 TCY = TAD  
00000010= TCY (ADCS<7:0> + 1) = 3 TCY = TAD  
00000001= TCY (ADCS<7:0> + 1) = 2 TCY = TAD  
00000000= TCY (ADCS<7:0> + 1) = 1 TCY = TAD  
Note 1: This bit is only used if SSRC<2:0> (AD1CON1<7:5>) = 1.  
2: This bit is not used if ADRC (AD1CON3<15>) = 1.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 223  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 19-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NB<1:0>  
CH123SB  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NA<1:0>  
CH123SA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits  
dsPIC33FJ16(GP/MC)101/102 Devices Only:  
11= Reserved  
10= Reserved  
0x= CH1, CH2, CH3 negative input is AVSS  
dsPIC33FJ32(GP/MC)101/102 Devices Only:  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is not connected  
10= Reserved  
0x= CH1, CH2, CH3 negative input is AVSS  
dsPIC33FJ32(GP/MC)104 Devices Only:  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
0x= CH1, CH2, CH3 negative input is AVSS  
bit 8  
CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit  
dsPIC33FJXX(GP/MC)101 Devices Only:  
1= CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
All Other Devices:  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
bit 7-3  
bit 2-1  
Unimplemented: Read as ‘0’  
CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits  
Refer to bits<10-9> for the available settings.  
bit 0  
CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit  
Refer to bit 8 for the available settings.  
DS70652E-page 224  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 19-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
CH0NB  
CH0SB<4:0>  
bit 15  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH0NA  
CH0SA<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for Sample B bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is AVSS  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits  
11111-10000= Reserved; do not use  
01111= Channel 0 positive input is AN15(2)  
01110= No channels connected, all inputs floating (used for CTMU)  
01101= Channel 0 positive input is connected to CTMU temperature sensor  
01100= Channel 0 positive input is AN12(2)  
01011= Channel 0 positive input is AN11(2)  
01010= Channel 0 positive input is AN10(3)  
01001= Channel 0 positive input is AN9(3)  
01000= Channel 0 positive input is AN8(2)  
00111= Channel 0 positive input is AN7(2)  
00110= Channel 0 positive input is AN6(2)  
00101= Channel 0 positive input is AN5(1)  
00100= Channel 0 positive input is AN4(1)  
00011= Channel 0 positive input is AN3  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
bit 7  
CH0NA: Channel 0 Negative Input Select for Sample A bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is AVSS  
bit 6-5  
bit 4-0  
Unimplemented: Read as ‘0’  
CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits  
Refer to bits<12-8> for the available settings.  
Note 1: This setting is available on all devices, excluding the dsPIC33FJXX(GP/MC)101, where it is reserved.  
2: This setting is available in the dsPIC33FJ32(GP/MC)104 devices only and is reserved in all other devices.  
3: This setting is available on all devices, excluding the dsPIC33FJ16(GP/MC)101/102, where it is reserved.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 225  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
,2  
(1,2,3)  
REGISTER 19-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW  
R/W-0  
CSS15(4)  
U-0  
U-0  
R/W-0  
CSS12(4)  
R/W-0  
CSS11(4)  
R/W-0  
CSS10(6)  
R/W-0  
CSS9(6)  
R/W-0  
CSS8(4)  
bit 15  
bit 8  
R/W-0  
CSS7(4)  
R/W-0  
CSS6(4)  
R/W-0  
CSS5(5)  
R/W-0  
CSS4(5)  
R/W-0  
CSS3  
R/W-0  
CSS2  
R/W-0  
CSS1  
R/W-0  
CSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CSS15: ADC Input Scan Selection bit(4)  
1= Selects ANx for input scan  
0= Skips ANx for input scan  
bit 14-13  
bit 12-0  
Unimplemented: Read as ‘0’  
CSS<12:0>: ADC Input Scan Selection bits(4,5,6)  
1= Selects ANx for input scan  
0= Skips ANx for input scan  
Note 1: On devices without 14 analog inputs, all AD1CSSL bits can be selected by the user application. However,  
inputs selected for scan without a corresponding input on the device converts VREFL.  
2: CSSx = ANx, where x = 0 through 12 and 15.  
3: CTMU temperature sensor input cannot be scanned.  
4: The CSS<15,12:11,8:6> bits are available in the dsPIC33FJ32(GP/MC)104 devices only and are reserved  
in all other devices.  
5: The CSS<5:4> bits are available on all devices, excluding the dsPIC33FJXX(GP/MC)101 devices, where  
they are reserved.  
6: The CSS<10:9> bits are available on all devices, excluding the dsPIC33FJ16(GP/MC)101/102 devices,  
where they are reserved.  
DS70652E-page 226  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1,2,3)  
REGISTER 19-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW  
R/W-0  
PCFG15(4,5)  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG12(4,5) PCFG11(4,5) PCFG10(4,7) PCFG9(4,7) PCFG8(4,5)  
bit 8  
R/W-0  
PCFG7(4,5)  
bit 7  
R/W-0  
PCFG6(4,5)  
R/W-0  
PCFG5(4,6)  
R/W-0  
PCFG4(4,6)  
R/W-0  
PCFG3(4)  
R/W-0  
PCFG2(4)  
R/W-0  
PCFG1(4)  
R/W-0  
PCFG0(4)  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
PCFG15: ADC Port Configuration Control bit(4,5)  
1= Port pin is in Digital mode, port read input is enabled, ADC input multiplexer is connected to AVSS  
0= Port pin is in Analog mode, port read input is disabled, ADC samples pin voltage  
bit 14-13  
bit 12-0  
Unimplemented: Read as ‘0’  
PCFG<12:0>: ADC Port Configuration Control bits(4,5,6,7)  
1= Port pin is in Digital mode, port read input is enabled, ADC input multiplexer is connected to AVSS  
0= Port pin is in Analog mode, port read input is disabled, ADC samples pin voltage  
Note 1: On devices without 14 analog inputs, all PCFG bits are R/W by user. However, PCFGx bits are ignored on  
ports without a corresponding input on the device.  
2: PCFGx = ANx, where x = 0 through 12, and 15.  
3: The PCFGx bits have no effect if the ADC module is disabled by setting the AD1MD bit in the PMD1 register.  
When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.  
4: Pins shared with analog functions (i.e., ANx) are analog by default and therefore, must be set by the user  
to enable any digital function on that pin. Reading any port pin with the analog function enabled will return  
a ‘0’, regardless of the signal input level.  
5: The PCFG<15,12:11,8:6> bits are available in the dsPIC33FJ32(GP/MC)104 devices only and are  
reserved in all other devices.  
6: The PCFG<5:4> bits are available on all devices, excluding the dsPIC33FJXX(GP/MC)101 devices, where  
they are reserved.  
7: The PCFG<10:9> bits are available on all devices, excluding the dsPIC33FJ16(GP/MC)101/102 devices,  
where they are reserved.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 227  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 228  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
The comparator module provides three comparators  
that can be configured in different ways. As shown in  
20.0 COMPARATOR MODULE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
device families. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data sheet,  
refer to Section 54. “Comparator with  
Blanking” (DS70647) of the “dsPIC33F/  
PIC24H Family Reference Manual”, which  
is available from the Microchip web site  
(www.microchip.com).  
Figure 20-1, individual comparator options are  
specified by the comparator module’s Special Function  
Register (SFR) control bits.  
These options allow users to:  
• Select the edge for trigger and interrupt generation  
• Select low-power control  
• Configure the comparator voltage reference and  
band gap  
• Configure output blanking and masking  
The comparator operating mode is determined by the  
input selections (i.e., whether the input voltage is  
compared to a second input voltage) to an internal  
voltage reference.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
FIGURE 20-1:  
COMPARATOR I/O OPERATING MODES  
EVPOL<1:0>  
Interrupt  
INTREF  
C1INB  
C1INC  
C1IND  
Logic  
MUX  
MUX  
COE  
CPOL  
Digital  
VIN-  
Blanking  
Function  
(Figure 20-3)  
+
C1  
Filter  
(Figure 20-4)  
VIN+  
C1OUT  
CVREFIN  
C1INA  
COUT  
EVPOL<1:0>  
INTREF  
Interrupt  
Logic  
C2INB  
C2INC  
C2IND  
MUX  
MUX  
COE  
CPOL  
VIN-  
+
Digital  
Filter  
(Figure 20-4)  
Blanking  
Function  
(Figure 20-3)  
C2  
VIN+  
C2OUT  
CVREFIN  
C2INA  
COUT  
EVPOL<1:0>  
INTREF  
Interrupt  
Logic  
C3INB  
C3INC  
C3IND  
MUX  
MUX  
COE  
CPOL  
VIN-  
Digital  
Filter  
(Figure 20-4)  
Blanking  
Function  
(Figure 20-3)  
C3  
VIN+  
+
C3OUT  
CVREFIN  
C3INA  
COUT  
Comparator Voltage  
Reference  
(Figure 20-2)  
CVREF  
BGSEL<1:0>  
AVDD  
AVSS  
(1)  
IVREF  
Note 1: This reference voltage is generated internally on the device. Refer to Section 26.0 “Electrical  
Characteristics” for the specified voltage range.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 229  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 20-2:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRCON<3:0>  
VREFSEL  
CVRSRC  
(1)  
AVDD  
8R  
R
CVREFIN  
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRCON<CVROE>  
CVRR  
8R  
(1)  
AVSS  
Note 1: This pin is VDD and VSS on devices that have no AVDD or AVSS pins.  
FIGURE 20-3:  
USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM  
SELSRCA<3:0>  
(CMxMSKSRC<3:0>)  
To Digital  
Filter  
Comparator Output  
“AND-OR” Function  
Blanking  
Logic  
MAI  
Blanking  
Signals  
MAI  
MBI  
MCI  
ANDI  
AND  
SELSRCB<3:0>  
(CMxMSKSRC<7:4)  
HLMS  
MAI  
(CMxMSKCON<15)  
Blanking  
Signals  
MASK  
MBI  
MBI  
MCI  
OR  
SELSRCC<3:0>  
(CMxMSKSRC<11:8)  
CMxMSKCON  
Blanking  
Signals  
MCI  
DS70652E-page 230  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 20-4:  
DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM  
Timer2  
Timer3  
PWM Special Event Trigger  
FOSC  
FCY  
CFDIV  
CFLTREN  
CFSEL<2:0>  
Digital Filter  
From Blanking Logic  
CXOUT  
2011-2012 Microchip Technology Inc.  
DS70652E-page 231  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
20.1 Comparator Control Registers  
REGISTER 20-1: CMSTAT: COMPARATOR STATUS REGISTER  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
CMSIDL  
C3EVT  
C2EVT  
C1EVT  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
C3OUT  
C2OUT  
C1OUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CMSIDL: Comparator Stop in Idle Mode bit  
1= Discontinues operation of all comparators when device enters Idle mode  
0= Continues operation of all comparators in Idle mode  
bit 14-11  
bit 10  
Unimplemented: Read as ‘0’  
C3EVT: Comparator 3 Event Status bit  
1= Comparator event occurred  
0= Comparator event did not occur  
bit 9  
bit 8  
C2EVT: Comparator 2 Event Status bit  
1= Comparator event occurred  
0= Comparator event did not occur  
C1EVT: Comparator 1 Event Status bit  
1= Comparator event occurred  
0= Comparator event did not occur  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
C3OUT: Comparator 3 Output Status bit  
When CPOL = 0:  
1= VIN+ > VIN-  
0= VIN+ < VIN-  
When CPOL = 1:  
1= VIN+ < VIN-  
0= VIN+ > VIN-  
bit 1  
C2OUT: Comparator 2 Output Status bit  
When CPOL = 0:  
1= VIN+ > VIN-  
0= VIN+ < VIN-  
When CPOL = 1:  
1= VIN+ < VIN-  
0= VIN+ > VIN-  
bit 0  
C1OUT: Comparator 1 Output Status bit  
When CPOL = 0:  
1= VIN+ > VIN-  
0= VIN+ < VIN-  
When CPOL = 1:  
1= VIN+ < VIN-  
0= VIN+ > VIN-  
DS70652E-page 232  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 20-2: CMxCON: COMPARATOR x CONTROL REGISTER  
R/W-0  
CON  
R/W-0  
COE  
R/W-0  
CPOL  
U-0  
U-0  
U-0  
R/W-0  
CEVT  
R/W-0  
COUT  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
R/W-0  
CREF  
U-0  
U-0  
R/W-0  
R/W-0  
EVPOL<1:0>  
CCH<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
CON: Comparator Enable bit  
1= Comparator is enabled  
0= Comparator is disabled  
COE: Comparator Output Enable bit  
1= Comparator output is present on the CxOUT pin  
0= Comparator output is internal only  
CPOL: Comparator Output Polarity Select bit  
1= Comparator output is inverted  
0= Comparator output is not inverted  
bit 12-10  
bit 9  
Unimplemented: Read as ‘0’  
CEVT: Comparator Event bit  
1= Comparator event according to EVPOL<1:0> settings occurred; disables future triggers and  
interrupts until the bit is cleared  
0= Comparator event did not occur  
bit 8  
COUT: Comparator Output bit  
When CPOL = 0(non-inverted polarity):  
1= VIN+ > VIN-  
0= VIN+ < VIN-  
When CPOL = 1(inverted polarity):  
1= VIN+ < VIN-  
0= VIN+ > VIN-  
bit 7-6  
EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits  
11= Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)  
10= Trigger/event/interrupt is generated only on high-to-low transition of the polarity selected  
comparator output (while CEVT = 0)  
If CPOL = 1(inverted polarity):  
Low-to-high transition of the comparator output.  
If CPOL = 0(non-inverted polarity):  
High-to-low transition of the comparator output.  
01= Trigger/event/interrupt is generated only on low-to-high transition of the polarity-selected  
comparator output (while CEVT = 0)  
If CPOL = 1(inverted polarity):  
High-to-low transition of the comparator output.  
If CPOL = 0(non-inverted polarity):  
Low-to-high transition of the comparator output.  
00= Trigger/event/interrupt generation is disabled  
Unimplemented: Read as ‘0’  
bit 5  
2011-2012 Microchip Technology Inc.  
DS70652E-page 233  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 20-2: CMxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)  
bit 4  
CREF: Comparator Reference Select bit (VIN+ input)  
1= VIN+ input connects to internal CVREFIN voltage  
0= VIN+ input connects to CxINA pin  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
CCH<1:0>: Comparator Channel Select bits  
11= VIN- input of comparator connects to INTREF  
10= VIN- input of comparator connects to CXIND pin  
01= VIN- input of comparator connects to CXINC pin  
00= VIN- input of comparator connects to CXINB pin  
DS70652E-page 234  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 20-3: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RW-0  
bit 8  
SELSRCC<3:0>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
SELSRCB<3:0>  
SELSRCA<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
SELSRCC<3:0>: Mask C Input Select bits  
1111= Reserved  
1110= Reserved  
1101= Reserved  
1100= Reserved  
1011= Reserved  
1010= Reserved  
1001= Reserved  
1000= Reserved  
0111= Reserved  
0110= Reserved  
0101= PWM1H3  
0100= PWM1L3  
0011= PWM1H2  
0010= PWM1L2  
0001= PWM1H1  
0000= PWM1L1  
bit 7-4  
SELSRCB<3:0>: Mask B Input Select bits  
1111= Reserved  
1110= Reserved  
1101= Reserved  
1100= Reserved  
1011= Reserved  
1010= Reserved  
1001= Reserved  
1000= Reserved  
0111= Reserved  
0110= Reserved  
0101= PWM1H3  
0100= PWM1L3  
0011= PWM1H2  
0010= PWM1L2  
0001= PWM1H1  
0000= PWM1L1  
2011-2012 Microchip Technology Inc.  
DS70652E-page 235  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 20-3: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT REGISTER (CONTINUED)  
bit 3-0  
SELSRCA<3:0>: Mask A Input Select bits  
1111= Reserved  
1110= Reserved  
1101= Reserved  
1100= Reserved  
1011= Reserved  
1010= Reserved  
1001= Reserved  
1000= Reserved  
0111= Reserved  
0110= Reserved  
0101= PWM1H3  
0100= PWM1L3  
0011= PWM1H2  
0010= PWM1L2  
0001= PWM1H1  
0000= PWM1L1  
DS70652E-page 236  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 20-4: CMxMSKCON: COMPARATOR x MASK GATING CONTROL  
REGISTER  
R/W-0  
HLMS  
bit 15  
U-0  
R/W-0  
OCEN  
R/W-0  
R/W-0  
OBEN  
R/W-0  
R/W-0  
OAEN  
R/W-0  
OANEN  
bit 8  
OCNEN  
OBNEN  
R/W-0  
NAGS  
bit 7  
R/W-0  
PAGS  
R/W-0  
ACEN  
R/W-0  
R/W-0  
ABEN  
R/W-0  
R/W-0  
AAEN  
R/W-0  
AANEN  
bit 0  
ACNEN  
ABNEN  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
HLMS: High or Low Level Masking Select bits  
1= The masking (blanking) function will prevent any asserted (‘0’) comparator signal from propagating  
0= The masking (blanking) function will prevent any asserted (‘1’) comparator signal from propagating  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
OCEN: OR Gate C Input Inverted Enable bit  
1= MCI is connected to OR gate  
0= MCI is not connected to OR gate  
bit 12  
bit 11  
bit 10  
bit 9  
OCNEN: OR Gate C Input Inverted Enable bit  
1= Inverted MCI is connected to OR gate  
0= Inverted MCI is not connected to OR gate  
OBEN: OR Gate B Input Inverted Enable bit  
1= MBI is connected to OR gate  
0= MBI is not connected to OR gate  
OBNEN: OR Gate B Input Inverted Enable bit  
1= Inverted MBI is connected to OR gate  
0= Inverted MBI is not connected to OR gate  
OAEN: OR Gate A Input Enable bit  
1= MAI is connected to OR gate  
0= MAI is not connected to OR gate  
bit 8  
OANEN: OR Gate A Input Inverted Enable bit  
1= Inverted MAI is connected to OR gate  
0= Inverted MAI is not connected to OR gate  
bit 7  
bit 6  
bit 5  
NAGS: Negative AND Gate Output Select  
1= Inverted ANDI is connected to OR gate  
0= Inverted ANDI is not connected to OR gate  
PAGS: Positive AND Gate Output Select  
1= ANDI is connected to OR gate  
0= ANDI is not connected to OR gate  
ACEN: AND Gate A1 C Input Inverted Enable bit  
1= MCI is connected to AND gate  
0= MCI is not connected to AND gate  
bit 4  
ACNEN: AND Gate A1 C Input Inverted Enable bit  
1= Inverted MCI is connected to AND gate  
0= Inverted MCI is not connected to AND gate  
2011-2012 Microchip Technology Inc.  
DS70652E-page 237  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 20-4: CMxMSKCON: COMPARATOR x MASK GATING CONTROL  
REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
ABEN: AND Gate A1 B Input Inverted Enable bit  
1= MBI is connected to AND gate  
0= MBI is not connected to AND gate  
ABNEN: AND Gate A1 B Input Inverted Enable bit  
1= Inverted MBI is connected to AND gate  
0= Inverted MBI is not connected to AND gate  
AAEN: AND Gate A1 A Input Enable bit  
1= MAI is connected to AND gate  
0= MAI is not connected to AND gate  
AANEN: AND Gate A1 A Input Inverted Enable bit  
1= Inverted MAI is connected to AND gate  
0= Inverted MAI is not connected to AND gate  
DS70652E-page 238  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 20-5: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
CFSEL<2:0>  
CFLTREN  
CFDIV<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
CFSEL<2:0>: Comparator Filter Input Clock Select bits  
111= Reserved  
110= Reserved  
101= Timer3  
100= Timer2  
011= Reserved  
010= PWM Special Event Trigger  
001= FOSC  
000= FCY  
bit 3  
CFLTREN: Comparator Filter Enable bit  
1= Digital filter is enabled  
0= Digital filter is disabled  
bit 2-0  
CFDIV<2:0>: Comparator Filter Clock Divide Select bits  
111= Clock Divide 1:128  
110= Clock Divide 1:64  
101= Clock Divide 1:32  
100= Clock Divide 1:16  
011= Clock Divide 1:8  
010= Clock Divide 1:4  
001= Clock Divide 1:2  
000= Clock Divide 1:1  
2011-2012 Microchip Technology Inc.  
DS70652E-page 239  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 20-6: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VREFSEL  
BGSEL<1:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
CVROE(1)  
R/W-0  
CVRR  
U-0  
R/W-0  
R/W-0  
R/W-0  
CVREN  
CVR<3:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
VREFSEL: Voltage Reference Select bit  
1= CVREFIN = CVREF pin  
0= CVREFIN is generated by the resistor network  
bit 9-8  
BGSEL<1:0>: Band Gap Reference Source Select bits  
11= INTREF = CVREF pin  
10= INTREF = 1.2V (nominal)(2)  
0x= Reserved  
bit 7  
bit 6  
bit 5  
CVREN: Comparator Voltage Reference Enable bit  
1= Comparator voltage reference circuit is powered on  
0= Comparator voltage reference circuit is powered down  
CVROE: Comparator Voltage Reference Output Enable bit(1)  
1= Voltage level is output on CVREF pin  
0= Voltage level is disconnected from CVREF pin  
CVRR: Comparator Voltage Reference Range Selection bit  
1= CVRSRC/24 step-size  
0= CVRSRC/32 step-size  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
CVR<3:0>: Comparator Voltage Reference Value Selection 0 CVR<3:0> 15 bits  
When CVRR = 1:  
CVREFIN = (CVR<3:0>/24) • (CVRSRC)  
When CVRR = 0:  
CVREFIN = 1/4 • (CVRSRC) + (CVR<3:0>/32) • (CVRSRC)  
Note 1: CVROE overrides the TRIS bit setting.  
2: This reference voltage is generated internally on the device. Refer to Section 26.0 “Electrical Characteristics”  
for the specified voltage range.  
DS70652E-page 240  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Some of the key features of the RTCC module are:  
21.0 REAL-TIME CLOCK AND  
• Time: hours, minutes and seconds  
CALENDAR (RTCC)  
• 24-hour format (military time)  
Note 1: This data sheet summarizes the features  
• Calendar: weekday, date, month and year  
of the dsPIC33FJ16(GP/MC)101/102  
• Alarm configurable  
and dsPIC33FJ32(GP/MC)101/102/104  
Year range: 2000 to 2099  
device families of devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to Section 37.  
“Real-Time Clock and Calendar  
• Leap year correction  
• BCD format for compact firmware  
• Optimized for low-power operation  
• User calibration with auto-adjust  
(RTCC)”  
(DS70310)  
in  
the  
• Calibration range: ±2.64 seconds error per month  
• Requirements: external 32.768 kHz clock crystal  
• Alarm pulse or seconds clock output on RTCC pin  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available on the  
Microchip web site (www.microchip.com).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The RTCC module is intended for applications where  
accurate time must be maintained for extended periods  
of time with minimum to no intervention from the CPU.  
The RTCC module is optimized for low-power usage to  
provide extended battery lifetime while keeping track of  
time.  
The RTCC module is a 100-year clock and calendar  
with automatic leap year detection. The range of the  
clock is from 00:00:00 (midnight) on January 1, 2000 to  
23:59:59 on December 31, 2099.  
This chapter discusses the Real-Time Clock and  
Calendar  
(RTCC)  
module,  
available  
and  
on dsPIC33FJ16(GP/MC)101/102  
dsPIC33FJ32(GP/MC)101/102/104 devices, and  
its operation.  
The hours are available in 24-hour (military time)  
format. The clock provides a granularity of one second  
with half-second visibility to the user.  
FIGURE 21-1:  
RTCC BLOCK DIAGRAM  
RTCC Clock Domain  
CPU Clock Domain  
32.768 kHz Input  
from SOSC Oscillator  
RCFGCAL  
RTCC Prescalers  
0.5s  
ALCFGRPT  
RTCC Timer  
RTCVAL  
Alarm  
Event  
Comparator  
Compare Registers  
with Masks  
ALRMVAL  
Repeat Counter  
RTCC Interrupt  
RTCC Interrupt Logic  
Alarm Pulse  
RTCC Pin  
RTCOE  
2011-2012 Microchip Technology Inc.  
DS70652E-page 241  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
By writing the ALRMVALH byte, the Alarm Pointer  
value (ALRMPTR<1:0> bits) decrements by one until it  
reaches ‘00’. Once it reaches ‘00’, the ALRMMIN and  
ALRMSEC value will be accessible through  
21.1 RTCC Module Registers  
The RTCC module registers are organized into three  
categories:  
ALRMVALH and ALRMVALL until the pointer value is  
manually changed.  
• RTCC Control Registers  
• RTCC Value Registers  
• Alarm Value Registers  
TABLE 21-2: ALRMVAL REGISTER  
MAPPING  
21.1.1  
REGISTER MAPPING  
To limit the register interface, the RTCC Timer and  
Alarm Time registers are accessed through  
corresponding register pointers. The RTCC Value  
register window (RTCVALH and RTCVALL) uses the  
RTCPTR bits (RCFGCAL<9:8>) to select the desired  
Timer register pair (see Table 21-1).  
Alarm Value Register Window  
ALRMPTR  
<1:0>  
ALRMVAL<15:8> ALRMVAL<7:0>  
00  
01  
10  
11  
ALRMMIN  
ALRMWD  
ALRMMNTH  
ALRMSEC  
ALRMHR  
ALRMDAY  
By writing the RTCVALH byte, the RTCC Pointer value  
(RTCPTR<1:0> bits) decrements by one until it  
reaches ‘00’. Once it reaches ‘00’, the MINUTES and  
SECONDS value will be accessible through RTCVALH  
and RTCVALL until the pointer value is manually  
changed.  
Considering that the 16-bit core does not distinguish  
between 8-bit and 16-bit read operations, the user must  
be aware that when reading either the ALRMVALH or  
ALRMVALL, bytes will decrement the ALRMPTR<1:0>  
value. The same applies to the RTCVALH or RTCVALL  
bytes with the RTCPTR<1:0> being decremented.  
TABLE 21-1: RTCVAL REGISTER MAPPING  
RTCC Value Register Window  
RTCPTR  
Note:  
This only applies to read operations and  
not write operations.  
<1:0>  
RTCVAL<15:8> RTCVAL<7:0>  
21.1.2  
WRITE LOCK  
00  
01  
10  
11  
MINUTES  
WEEKDAY  
MONTH  
SECONDS  
HOURS  
DAY  
In order to perform a write to any of the RTCC Timer  
registers, the RTCWREN bit (RCFGCAL<13>) must be  
set (refer to Example 21-1).  
YEAR  
Note:  
To avoid accidental writes to the timer, it is  
recommended that the RTCWREN bit  
(RCFGCAL<13>) is kept clear at any  
other time. For the RTCWREN bit to be  
set, there is only 1 instruction cycle time  
window allowed between the 55h/AA  
sequence and the setting of RTCWREN;  
therefore, it is recommended that code  
follow the procedure in Example 21-1.  
The Alarm Value register window (ALRMVALH and  
ALRMVALL) uses the ALRMPTR bits  
(ALCFGRPT<9:8>) to select the desired Alarm register  
pair (see Table 21-2).  
EXAMPLE 21-1:  
SETTING THE RTCWREN BIT  
MOV  
MOV  
MOV  
MOV  
MOV  
BSET  
#NVMKEY, W1  
;move the address of NVMKEY into W1  
#0x55, W2  
#0xAA, W3  
W2, [W1]  
W3, [W1]  
RCFGCAL, #13  
;start 55/AA sequence  
;set the RTCWREN bit  
DS70652E-page 242  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
21.2 RTCC Control Registers  
(1)  
REGISTER 21-1:  
RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER  
R/W-0  
RTCEN(2)  
bit 15  
U-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
RTCWREN RTCSYNC HALFSEC(3)  
RTCOE  
RTCPTR<1:0>  
bit 8  
R/W-0  
bit 0  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CAL<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
RTCEN: RTCC Enable bit(2)  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
RTCWREN: RTCC Value Registers Write Enable bit  
1= RTCVALH and RTCVALL registers can be written to by the user  
0= RTCVALH and RTCVALL registers are locked out from being written to by the user  
bit 12  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTCVALH, RTCVALL and ALCFGRPT registers can change while reading, due to a rollover ripple,  
resulting in an invalid data read. If the register is read twice and the results are the same data, the  
data can be assumed to be valid.  
0= RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple  
bit 11  
bit 10  
bit 9-8  
HALFSEC: Half-Second Status bit(3)  
1= Second half period of a second  
0= First half period of a second  
RTCOE: RTCC Output Enable bit  
1= RTCC output is enabled  
0= RTCC output is disabled  
RTCPTR<1:0>: RTCC Value Register Window Pointer bits  
Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL registers;  
the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches ‘00’.  
RTCVAL<15:8>:  
00= MINUTES  
01= WEEKDAY  
10= MONTH  
11= Reserved  
RTCVAL<7:0>:  
00= SECONDS  
01= HOURS  
10= DAY  
11= YEAR  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 243  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
REGISTER 21-1:  
bit 7-0  
RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER (CONTINUED)  
CAL<7:0>: RTC Drift Calibration bits  
01111111= Maximum positive adjustment; adds 508 RTC clock pulses every one minute  
00000001= Minimum positive adjustment; adds 4 RTC clock pulses every one minute  
00000000= No adjustment  
11111111= Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute  
10000000= Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
DS70652E-page 244  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 21-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
RTSECSEL(1)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
RTSECSEL: RTCC Seconds Clock Output Select bit(1)  
1= RTCC seconds clock is selected for the RTCC pin  
0= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 245  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 21-3: ALCFGRPT: ALARM CONFIGURATION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALRMEN  
CHIME  
AMASK<3:0>  
ALRMPTR<1:0>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
ARPT<7:0>  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ALRMEN: Alarm Enable bit  
1= Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x00and  
CHIME = 0)  
0= Alarm is disabled  
bit 14  
CHIME: Chime Enable bit  
1= Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF  
0= Chime is disabled; ARPT<7:0> bits stop once they reach 0x00  
bit 13-10  
AMASK<3:0>: Alarm Mask Configuration bits  
0000= Every half second  
0001= Every second  
0010= Every 10 seconds  
0011= Every minute  
0100= Every 10 minutes  
0101= Every hour  
0110= Once a day  
0111= Once a week  
1000= Once a month  
1001= Once a year (except when configured for February 29th, once every 4 years)  
101x= Reserved – do not use  
11xx= Reserved – do not use  
bit 9-8  
ALRMPTR<1:0>: Alarm Value Register Window Pointer bits  
Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers;  
the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches ‘00’.  
ALRMVAL<15:8>:  
00= ALRMMIN  
01= ALRMWD  
10= ALRMMNTH  
11= Unimplemented  
ALRMVAL<7:0>:  
00= ALRMSEC  
01= ALRMHR  
10= ALRMDAY  
11= Unimplemented  
bit 7-0  
ARPT<7:0>: Alarm Repeat Counter Value bits  
11111111= Alarm will repeat 255 more times  
00000000= Alarm will not repeat  
The counter decrements on any alarm event. The counter is prevented from rolling over from 0x00 to  
0xFF unless CHIME = 1.  
DS70652E-page 246  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
REGISTER 21-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
R/W-x  
bit 7  
bit 8  
R/W-x  
bit 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
YRTEN<3:0>  
YRONE<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-4  
Unimplemented: Read as ‘0’  
YRTEN<3:0>: Binary Coded Decimal Value of Year’s Tens Digit bits  
Contains a value from 0 to 9.  
bit 3-0  
YRONE<3:0>: Binary Coded Decimal Value of Year’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
(1)  
REGISTER 21-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER  
U-0  
U-0  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
MTHTEN0  
MTHONE<3:0>  
bit 15  
bit 8  
R/W-x  
bit 0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN<1:0>  
DAYONE<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of 0 or 1.  
bit 11-8  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 247  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
(1)  
REGISTER 21-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WEEKDAY AND HOURS VALUE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
WDAY<2:0>  
bit 15  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN<1:0>  
HRONE<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS70652E-page 248  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 21-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
bit 0  
MINTEN<2:0>  
MINONE<3:0>  
bit 15  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN<2:0>  
SECONE<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 11-8  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 249  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 21-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE  
(1)  
REGISTER  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
bit 0  
MTHTEN0  
MTHONE<3:0>  
bit 15  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN<1:0>  
DAYONE<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of 0 or 1.  
bit 11-8  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS70652E-page 250  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 21-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS  
(1)  
VALUE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
R/W-x  
bit 0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN<1:0>  
HRONE<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 251  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 21-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS  
VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
MINTEN<2:0>  
MINONE<3:0>  
bit 15  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
SECTEN<2:0>  
SECONE<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 11-8  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
DS70652E-page 252  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Together with other on-chip analog modules, the CTMU  
22.0 CHARGE TIME  
can be used to precisely measure time, measure  
MEASUREMENT UNIT (CTMU)  
capacitance, measure relative changes in capacitance  
or generate output pulses that are independent of the  
system clock.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ16(GP/MC)101/102  
and dsPIC33FJ32(GP/MC)101/102/104  
device families of devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to Section 55.  
“Charge Time Measurement Unit  
The CTMU module is ideal for interfacing with  
capacitive-based sensors. The CTMU is controlled  
through three registers: CTMUCON1, CTMUCON2  
and CTMUICON. CTMUCON1 enables the module,  
the edge delay generation, sequencing of edges, and  
controls the current source and the output trigger.  
CTMUCON2 controls the edge source selection, edge  
source polarity selection and edge sampling mode. The  
CTMUICON register controls the selection and trim of  
the current source.  
(CTMU)”  
(DS70635)  
in  
the  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available on the  
Microchip web site (www.microchip.com).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Figure 22-1 shows the CTMU block diagram.  
The Charge Time Measurement Unit (CTMU) is a flex-  
ible analog module that provides accurate differential  
time measurement between pulse sources, as well as  
asynchronous pulse generation. Its key features  
include:  
• Four edge input trigger sources  
• Polarity control for each edge source  
• Control of edge sequence  
• Control of response to edges  
• Precise time measurement resolution of 200 ps  
• Accurate current source suitable for capacitive  
measurement  
• On-chip temperature measurement using a  
built-in diode  
2011-2012 Microchip Technology Inc.  
DS70652E-page 253  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 22-1:  
CTMU BLOCK DIAGRAM  
CTMUCON1 or CTMUCON2  
CTMUICON  
ITRIM<5:0>  
IRNG<1:0>  
Current Source  
Edge  
Control  
Logic  
CTED1  
CTED2  
CTMU  
Control  
Logic  
EDG1STAT  
EDG2STAT  
Analog-to-Digital  
Trigger  
TGEN  
Current  
Control  
Timer1  
OC1  
IC1  
CMP2  
Pulse  
Generator  
CTMUP  
CTPLS  
CTMUI to ADC  
CTMU TEMP  
C2INA  
CTMU  
Temperature  
Sensor  
CDelay  
Comparator 2  
External Capacitor  
for Pulse Generation  
Current Control Selection  
CTMU TEMP  
TGEN  
EDG1STAT, EDG2STAT  
0
0
1
1
EDG1STAT = EDG2STAT  
EDG1STAT EDG2STAT  
EDG1STAT EDG2STAT  
EDG1STAT = EDG2STAT  
CTMUI  
CTMUP  
No Connect  
DS70652E-page 254  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
22.1 CTMU Control Registers  
REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1  
R/W-0  
U-0  
R/W-0  
R/W-0  
TGEN(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CTMUEN  
CTMUSIDL  
EDGEN  
EDGSEQEN IDISSEN(2)  
CTTRIG  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CTMUEN: CTMU Enable bit  
1= Module is enabled  
0= Module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUSIDL: CTMU Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
bit 11  
bit 10  
bit 9  
TGEN: Time Generation Enable bit(1)  
1= Enables edge delay generation  
0= Disables edge delay generation  
EDGEN: Edge Enable bit  
1= Edges are not blocked  
0= Edges are blocked  
EDGSEQEN: Edge Sequence Enable bit  
1= Edge 1 event must occur before Edge 2 event can occur  
0= No edge sequence is needed  
IDISSEN: Analog Current Source Control bit(2)  
1= Analog current source output is grounded  
0= Analog current source output is not grounded  
bit 8  
CTTRIG: Trigger Control bit  
1= Trigger output is enabled  
0= Trigger output is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. For more  
information, see Section 10.4 “Peripheral Pin Select (PPS)”.  
2: The ADC module S&H capacitor is not automatically discharged between sample/conversion cycles.  
Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before  
conducting the measurement. The IDISSEN bit, when set to ‘1’, performs this function. The ADC must be  
sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 255  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2  
R/W-0  
EDG1MOD  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EDG1POL  
EDG1SEL<3:0>  
EDG2STAT EDG1STAT  
bit 8  
R/W-0  
EDG2MOD  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
EDG2POL  
EDG2SEL<3:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
EDG1MOD: Edge 1 Edge Sampling Selection bit  
1= Edge 1 is edge-sensitive  
0= Edge 1 is level-sensitive  
bit 14  
EDG1POL: Edge 1 Polarity Select bit  
1= Edge 1 is programmed for a positive edge response  
0= Edge 1 is programmed for a negative edge response  
bit 13-10  
EDG1SEL<3:0>: Edge 1 Source Select bits  
1xxx= Reserved  
01xx= Reserved  
0011= CTED1 pin  
0010= CTED2 pin  
0001= OC1 module  
0000= Timer1 module  
bit 9  
bit 8  
EDG2STAT: Edge 2 Status bit  
Indicates the status of Edge 2 and can be written to control the edge source.  
1= Edge 2 has occurred  
0= Edge 2 has not occurred  
EDG1STAT: Edge 1 Status bit  
Indicates the status of Edge 1 and can be written to control the edge source.  
1= Edge 1 has occurred  
0= Edge 1 has not occurred  
bit 7  
EDG2MOD: Edge 2 Edge Sampling Selection bit  
1= Edge 2 is edge-sensitive  
0= Edge 2 is level-sensitive  
bit 6  
EDG2POL: Edge 2 Polarity Select bit  
1= Edge 2 is programmed for a positive edge response  
0= Edge 2 is programmed for a negative edge response  
bit 5-2  
EDG2SEL<3:0>: Edge 2 Source Select bits  
1xxx= Reserved  
01xx= Reserved  
0011= CTED2 pin  
0010= CTED1 pin  
0001= Comparator 2 module  
0000= IC1 module  
bit 1-0  
Unimplemented: Read as ‘0’  
DS70652E-page 256  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ITRIM<5:0>  
IRNG<1:0>  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
ITRIM<5:0>: Current Source Trim bits  
011111= Nominal current output specified by IRNG<1:0> + 62%  
011110= Nominal current output specified by IRNG<1:0> + 60%  
000001= Nominal current output specified by IRNG<1:0> + 2%  
000000= Nominal current output specified by IRNG<1:0>  
111111= Nominal current output specified by IRNG<1:0> – 2%  
100010= Nominal current output specified by IRNG<1:0> – 62%  
100001= Nominal current output specified by IRNG<1:0> – 64%  
bit 9-8  
bit 7-0  
IRNG<1:0>: Current Source Range Select bits  
11= 100 Base Current(1)  
10= 10 Base Current  
01= Base current level (0.55 A nominal)  
00= Reserved  
Unimplemented: Read as ‘0’  
Note 1: This setting must be used for the CTMU temperature sensor.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 257  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 258  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
In  
dsPIC33FJ16(GP/MC)101/102  
and  
23.0 SPECIAL FEATURES  
dsPIC33FJ32(GP/MC)101/102/104 devices, the  
configuration bytes are implemented as volatile memory.  
This means that configuration data must be  
programmed each time the device is powered up. Con-  
figuration data is stored in the two words at the top of the  
on-chip program memory space, known as the Flash  
Configuration Words. Their specific locations are shown  
in Table 23-2. These are packed representations of the  
actual device Configuration bits, whose actual locations  
are distributed among several locations in configuration  
space. The configuration data is automatically loaded  
from the Flash Configuration Words to the proper  
Configuration registers during device Resets.  
Note 1: This data sheet summarizes the  
features of the dsPIC33FJ16(GP/  
MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices. It is not  
intended to be a comprehensive reference  
source. To complement the information in  
this data sheet, refer to Section 24. “Pro-  
gramming and Diagnostics” (DS70207)  
and Section 25. “Device Configuration”  
(DS70194) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which are  
available from the Microchip web site  
(www.microchip.com).  
Note:  
Configuration data is reloaded on all types  
of device Resets.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Word for configuration data. This is  
to make certain that program code is not stored in this  
address when the code is compiled.  
dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices include several features  
intended to maximize application flexibility and  
reliability, and minimize cost through elimination of  
external components. These are:  
The upper byte of all Flash Configuration Words in pro-  
gram memory should always be ‘1111 1111’. This  
makes them appear to be NOP instructions in the  
remote event that their locations are ever executed by  
accident. Since Configuration bits are not implemented  
in the corresponding locations, writing ‘1’s to these  
locations has no effect on device operation.  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection  
Note:  
Performing a page erase operation on the  
last page of program memory clears the  
Flash Configuration Words, enabling code  
protection as a result. Therefore, users  
should avoid performing page erase  
operations on the last page of program  
memory.  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Emulation  
23.1 Configuration Bits  
The Configuration Shadow register bits can be config-  
ured (read as ‘0’) or left unprogrammed (read as ‘1’) to  
select various device configurations. These read-only  
bits are mapped starting at program memory location,  
0xF80000. A detailed explanation of the various bit  
functions is provided in Table 23-4.  
Note that address 0xF80000 is beyond the user pro-  
gram memory space and belongs to the configuration  
memory space (0x800000-0xFFFFFF), which can only  
be accessed using table reads.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 259  
The Configuration Shadow register map is shown in Table 23-1.  
TABLE 23-1: CONFIGURATION SHADOW REGISTER MAP  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
F80004  
F80006  
F80008  
F8000A  
F8000C  
F8000E  
FGS  
GCP  
GWRP  
(1)  
FOSCSEL  
FOSC  
IESO  
PWMLOCK  
WDTWIN<1:0>  
FNOSC<2:0>  
FCKSM<1:0>  
IOL1WAY  
OSCIOFNC  
POSCMD<1:0>  
FWDT  
FPOR  
FWDTEN  
WINDIS  
PLLKEN  
WDTPRE  
ALTI2C1  
WDTPOST<3:0>  
(1)  
(1)  
(1)  
PWMPIN  
Reserved  
HPOL  
LPOL  
(2)  
(3)  
(3)  
FICD  
Reserved  
Reserved  
ICS<1:0>  
Legend: — = unimplemented, read as ‘1’.  
Note 1: These bits are available in dsPIC33FJ(16/32)MC10X devices only.  
2: This bit is reserved for use by development tools.  
3: These bits are reserved, program as ‘0’.  
The Configuration Flash Word maps are shown in Table 23-2 and Table 23-3.  
(1)  
TABLE 23-2: CONFIGURATION FLASH WORDS FOR dsPIC33FJ16(GP/MC)10X DEVICES  
File  
Name  
Addr. Bits 23-16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9 Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(2)  
(2)  
(2)  
CONFIG2 002BFC  
CONFIG1 002BFE  
IESO  
PWMLOCK  
PWMPIN  
GCP  
WDTWIN<1:0>  
FNOSC<2:0>  
FCKSM<1:0>  
OSCIOFNC IOL1WAY LPOL  
ALTI2C1 POSCMD<1:0>  
WDTPOST<3:0>  
(3)  
(3)  
(4)  
(2)  
Reserved  
Reserved  
GWRP Reserved  
HPOL  
ICS<1:0> FWDTEN WINDIS  
PLLKEN  
WDTPRE  
Legend: — = unimplemented, read as ‘1’.  
Note 1: During a Power-on Reset (POR), the contents of these Flash locations are transferred to the Configuration Shadow registers.  
2: These bits are reserved on dsPIC33FJ16GP10X devices and read as ‘1’.  
3: These bits are reserved, program as ‘0’.  
4: This bit is reserved for use by development tools and must be programmed as ‘1’.  
(1)  
TABLE 23-3: CONFIGURATION FLASH WORDS FOR dsPIC33FJ32(GP/MC)10X DEVICES  
File  
Name  
Addr. Bits 23-16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9 Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(2)  
(2)  
(2)  
CONFIG2 0057FC  
CONFIG1 0057FE  
IESO  
PWMLOCK  
PWMPIN  
GCP  
WDTWIN<1:0>  
FNOSC<2:0>  
FCKSM<1:0>  
OSCIOFNC IOL1WAY LPOL  
ALTI2C1 POSCMD<1:0>  
WDTPOST<3:0>  
(3)  
(3)  
(4)  
(2)  
Reserved  
Reserved  
GWRP Reserved  
HPOL  
ICS<1:0> FWDTEN WINDIS PLLKEN WDTPRE  
Legend: — = unimplemented, read as ‘1’.  
Note 1: During a Power-on Reset (POR), the contents of these Flash locations are transferred to the Configuration Shadow registers.  
2: These bits are reserved in dsPIC33FJ32GP10X devices and read as ‘1’.  
3: These bits are reserved, program as ‘0’.  
4: This bit is reserved for use by development tools and must be programmed as ‘1’.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 23-4: dsPIC33F CONFIGURATION BITS DESCRIPTION  
Bit Field  
GCP  
Description  
General Segment Code-Protect bit  
1= User program memory is not code-protected  
0= Code protection is enabled for the entire program memory space  
GWRP  
IESO  
General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
Two-Speed Oscillator Start-up Enable bit  
1= Starts up device with FRC, then automatically switches to the user-selected oscillator source  
when ready  
0= Starts up device with user-selected oscillator source  
PWMLOCK  
PWM Lock Enable bit  
1= Certain PWM registers may only be written after key sequence  
0= PWM registers may be written without a key sequence  
WDTWIN<1:0> Watchdog Timer Window Select bits  
11= WDT window is 24% of WDT period  
10= WDT window is 37.5% of WDT period  
01= WDT window is 50% of WDT period  
00= WDT window is 75% of WDT period  
FNOSC<2:0>  
Oscillator Selection bits  
111= Fast RC Oscillator with Divide-by-N (FRCDIVN)  
110= Reserved; do not use  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (MS + PLL, EC + PLL)  
010= Primary Oscillator (MS, HS, EC)  
001= Fast RC Oscillator with Divide-by-N and PLL module (FRCDIVN + PLL)  
000= Fast RC Oscillator (FRC)  
FCKSM<1:0>  
Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
IOL1WAY  
Peripheral Pin Select Configuration bit  
1= Allow only one reconfiguration  
0= Allow multiple reconfigurations  
OSCIOFNC  
OSC2 Pin Function bit (except in MS and HS modes)  
1= OSC2 is clock output  
0= OSC2 is general purpose digital I/O pin  
POSCMD<1:0> Primary Oscillator Mode Select bits  
11= Primary Oscillator is disabled  
10= HS Crystal Oscillator mode (10 MHz-32 MHz)  
01= MS Crystal Oscillator mode (3 MHz-10 MHz)  
00= EC (External Clock) mode (DC-32 MHz)  
FWDTEN  
WINDIS  
Watchdog Timer Enable bit  
1= Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN  
bit in the RCON register will have no effect)  
0= Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the  
SWDTEN bit in the RCON register)  
Watchdog Timer Window Enable bit  
1= Watchdog Timer in Non-Window mode  
0= Watchdog Timer in Window mode  
2011-2012 Microchip Technology Inc.  
DS70652E-page 261  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 23-4: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
WDTPRE  
Description  
Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
WDTPOST<3:0> Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
0001= 1:2  
0000= 1:1  
PLLKEN  
ALTI2C  
PLL Lock Enable bit  
1= Clock switch to PLL will wait until the PLL lock signal is valid  
0= Clock switch will not wait for the PLL lock signal  
Alternate I2C™ Pins bit  
1= I2C is mapped to SDA1/SCL1 pins  
0= I2C is mapped to ASDA1/ASCL1 pins  
ICS<1:0>  
ICD Communication Channel Select bits  
11= Communicate on PGEC1 and PGED1  
10= Communicate on PGEC2 and PGED2  
01= Communicate on PGEC3 and PGED3  
00= Reserved, do not use  
PWMPIN  
HPOL  
Motor Control PWM Module Pin Mode bit  
1= PWM module pins controlled by PORT register at device Reset (tri-stated)  
0= PWM module pins controlled by PWM module at device Reset (configured as output pins)  
Motor Control PWM High Side Polarity bit  
1= PWM module high side output pins have active-high output polarity  
0= PWM module high side output pins have active-low output polarity  
LPOL  
Motor Control PWM Low Side Polarity bit  
1= PWM module low side output pins have active-high output polarity  
0= PWM module low side output pins have active-low output polarity  
DS70652E-page 262  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
REGISTER 23-1: DEVID: DEVICE ID REGISTER  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
DEVID<23:16>(1)  
bit 23  
bit 15  
bit 7  
bit 16  
bit 8  
bit 0  
R
R
DEVID<15:8>(1)  
R
R
DEVID<7:0>(1)  
Legend: R = Read-Only bit  
bit 23-0  
DEIDV<23:0>: Device Identifier bits(1)  
U = Unimplemented bit  
Note 1: Refer to the “dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits”  
(DS70659) for the list of device ID values.  
REGISTER 23-2: DEVREV: DEVICE REVISION REGISTER  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
DEVREV<23:16>(1)  
bit 23  
bit 15  
bit 7  
bit 16  
bit 8  
bit 0  
R
R
DEVREV<15:8>(1)  
R
R
DEVREV<7:0>(1)  
Legend: R = Read-only bit  
bit 23-0  
DEVREV<23:0>: Device Revision bits(1)  
U = Unimplemented bit  
Note 1: Refer to the “dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits”  
(DS70659) for the list of device revision values.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 263  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
23.2 On-Chip Voltage Regulator  
23.3 BOR: Brown-out Reset  
All of the dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 devices power  
their core digital logic at a nominal 2.5V. This can  
create a conflict for designs that are required to operate  
at a higher typical voltage, such as 3.3V. To simplify  
system design, all devices in the dsPIC33FJ16(GP/  
MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104  
family incorporate an on-chip regulator that allows the  
device to run its core logic from VDD.  
The Brown-out Reset (BOR) module is based on an  
internal voltage reference circuit that monitors the  
regulated supply voltage, VCAP. The main purpose of  
the BOR module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (for  
example, missing portions of the AC cycle waveform  
due to bad power transmission lines or voltage sags  
due to excessive current draw when a large inductive  
load is turned on).  
The regulator provides power to the core from the other  
VDD pins. When the regulator is enabled, a low-ESR  
(less than 5 ohms) capacitor (such as tantalum or  
ceramic) must be connected to the VCAP pin  
(Figure 23-1). This helps to maintain the stability of the  
regulator. The recommended value for the filter capac-  
itor is provided in Table 26-14 located in Section 26.1  
“DC Characteristics”.  
A BOR generates a Reset pulse, which resets the  
device. The BOR selects the clock source, based on  
the device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>).  
If an Oscillator mode is selected, the BOR activates the  
Oscillator Start-up Timer (OST). The system clock is  
held until OST expires. If the PLL is used, the clock is  
held until the LOCK bit (OSCCON<5>) is ‘1’.  
Note:  
It is important for low-ESR capacitors to  
be placed as close as possible to the VCAP  
pin.  
Concurrently, the PWRT Time-out (TPWRT) is applied  
before the internal Reset is released. If TPWRT = 0and  
a crystal oscillator is being used, then a nominal delay  
of TFSCM = 100is applied. The total delay in this case  
is TFSCM.  
On a POR, it takes approximately 20 s for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
The BOR Status bit (RCON<1>) is set to indicate that a  
BOR has occurred. The BOR circuit continues to oper-  
ate while in Sleep or Idle modes and resets the device  
should VDD fall below the BOR threshold voltage.  
FIGURE 23-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
REGULATOR  
(1,2,3)  
3.3V  
dsPIC33F  
VDD  
VCAP  
VSS  
CEFC  
10 µF  
Tantalum  
Note 1: These are typical operating voltages. Refer to  
Table 26-14 located in Section 26.1 “DC  
Characteristics” for the full operating ranges  
of VDD and VCAP.  
2: It is important for low-ESR capacitors to be  
placed as close as possible to the VCAP pin.  
3: Typical VCAP pin voltage = 2.5V when  
VDD VDDMIN.  
DS70652E-page 264  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
23.4.2  
SLEEP AND IDLE MODES  
23.4 Watchdog Timer (WDT)  
If the WDT is enabled, it will continue to run during Sleep  
or Idle modes. When the WDT time-out occurs, the  
device will wake the device and code execution will  
continue from where the PWRSAV instruction was  
executed. The corresponding SLEEP or IDLE bits  
(RCON<3:2>) will need to be cleared in software after the  
device wakes up.  
For  
dsPIC33FJ16(GP/MC)101/102  
and  
dsPIC33FJ32(GP/MC)101/102/104 devices, the  
WDT is driven by the LPRC oscillator. When the WDT  
is enabled, the clock source is also enabled.  
23.4.1  
PRESCALER/POSTSCALER  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler than can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT Time-out (TWDT) period of 1 ms in 5-bit mode or  
4 ms in 7-bit mode.  
23.4.3  
ENABLING WDT  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register.  
When the FWDTEN Configuration bit is set, the WDT is  
always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed to  
0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN control  
bit is cleared on any device Reset. The software WDT  
option allows the user application to enable the WDT for  
critical code segments and disables the WDT during  
non-critical segments for maximum power savings.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>), which allow the  
selection of 16 settings, from 1:1 to 1:32,768. Using the  
prescaler and postscaler, time-out periods, ranging  
from 1 ms to 131 seconds, can be achieved.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
Note:  
If the WINDIS bit (FWDT<6>) is cleared,  
the CLRWDTinstruction should be executed  
by the application software only during the  
last 1/4 of the WDT period. This CLRWDT  
window can be determined by using a timer.  
If a CLRWDTinstruction is executed before  
this window, a WDT Reset occurs.  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSCx bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
FIGURE 23-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
Sleep/Idle  
WDTPOST<3:0>  
WDTPRE  
SWDTEN  
FWDTEN  
WDT  
Wake-up  
1
RS  
RS  
Prescaler  
(divide-by-N1)  
Postscaler  
WDT  
Reset  
LPRC Clock  
(divide-by-N2)  
0
WDT Window Select  
WINDIS  
CLRWDTInstruction  
2011-2012 Microchip Technology Inc.  
DS70652E-page 265  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
23.5 In-Circuit Serial Programming™  
(ICSP™)  
23.6 In-Circuit Debugger  
When MPLAB® ICD 3 is selected as a debugger, the in-  
circuit debugging functionality is enabled. This function  
allows simple debugging functions when used with  
MPLAB IDE. Debugging functionality is controlled  
through the PGECx (Emulation/Debug Clock) and  
PGEDx (Emulation/Debug Data) pin functions.  
Devices can be serially programmed while in the end  
application circuit. This is done with two lines for clock  
and data and three other lines for power, ground and  
the programming sequence. Serial programming  
allows customers to manufacture boards with  
unprogrammed devices and then program the Digital  
Signal Controller just before shipping the product.  
Serial programming also allows the most recent  
firmware or a custom firmware to be programmed.  
Refer to the “dsPIC33F Flash Programming  
Specification for Devices with Volatile Configuration  
Bits” (DS70659) for details about In-Circuit Serial  
Programming (ICSP).  
Any of the three pairs of debugging clock/data pins can  
be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS and the PGECx/PGEDx pin pair. In  
addition, when the feature is enabled, some of the  
resources are not available for general use. These  
resources include the first 80 bytes of data RAM and  
two I/O pins.  
Any of the three pairs of programming clock/data pins  
can be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
DS70652E-page 266  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Most bit-oriented instructions (including simple rotate/  
shift instructions) have two operands:  
24.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the  
features of the dsPIC33FJ16(GP/  
MC)101/102 and dsPIC33FJ32(GP/  
MC)101/102/104 devices. However, it is  
not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
latest family reference sections of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which are available from the  
Microchip web site (www.microchip.com).  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register (specified  
by a literal value or indirectly by the contents of  
register ‘Wb’)  
The literal instructions that involve data movement can  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The dsPIC33F instruction set is identical to that of the  
dsPIC30F.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The second source operand, which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions can use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The accumulator (A or B) to be used (required  
operand)  
• DSP operations  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write-back destination  
• Control operations  
Table 24-1 shows the general symbols used in  
describing the instructions.  
The dsPIC33F instruction set summary in Table 24-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
The other DSP instructions do not involve any  
multiplication and can include:  
• The accumulator to be used (required)  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
• The amount of shift specified by a W register ‘Wn’  
or a literal value  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
The control instructions can use some of the following  
operands:  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
• A program memory address  
• The mode of the table read and table write  
instructions  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value ‘f’  
• The destination, which could be either the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
2011-2012 Microchip Technology Inc.  
DS70652E-page 267  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Most instructions are a single word. Certain double-  
word instructions are designed to provide all the  
required information in these 48 bits. In the second  
word, the 8 MSbs are ‘0’s. If this second word is  
executed as an instruction (by itself), it will execute as  
a NOP.  
as a NOP. Notable exceptions are the BRA (uncondi-  
tional/computed branch), indirect CALL/GOTO, all table  
reads and writes and RETURN/RETFIE instructions,  
which are single-word instructions but take two or three  
cycles. Certain instructions that involve skipping over the  
subsequent instruction require either two or three cycles  
if the skip is performed, depending on whether the  
instruction being skipped is a single-word or two-word  
instruction. Moreover, double-word moves require two  
cycles.  
The double-word instructions execute in two instruction  
cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
Program Counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
Note:  
For more details on the instruction set, refer  
to the “16-Bit MCU and DSC Programmer’s  
Reference Manual” (DS70157).  
TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator write-back destination address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSb must be ‘0’  
Field does not require an entry, can be blank  
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor working register pair (direct addressing)  
DS70652E-page 268  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wm*Wm  
Wm*Wn  
Multiplicand and Multiplier working register pair for Square instructions   
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Multiplicand and Multiplier working register pair for DSP instructions   
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register   
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X data space prefetch address register for DSP instructions  
{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,  
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,  
[W9 + W12], none}  
Wxd  
Wy  
X data space prefetch destination register for DSP instructions {W4..W7}  
Y data space prefetch address register for DSP instructions  
{[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,  
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,  
[W11 + W12], none}  
Wyd  
Y data space prefetch destination register for DSP instructions {W4..W7}  
2011-2012 Microchip Technology Inc.  
DS70652E-page 269  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 24-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
AND  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
Wd = Wb + lit5 + (C)  
1
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
Wd = Wb .AND. Ws  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
None  
None  
None  
None  
None  
None  
Branch if unsigned less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A overflow  
Branch if Accumulator B overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A saturated  
Branch if Accumulator B saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
1
None  
Ws,Wb  
1
None  
DS70652E-page 270  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
9
BTG  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
Bit Toggle f  
1
1
1
1
1
None  
None  
None  
BTG  
Bit Toggle Ws  
10  
11  
12  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
BTSC  
BTSS  
BTSS  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
1
1
1
1
None  
None  
None  
(2 or 3)  
BTSS  
BTST  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
C
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call subroutine  
C
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
CLR  
CLR  
CLR  
CLRWDT  
COM  
COM  
COM  
CP  
lit23  
None  
Wn  
Call indirect subroutine  
f = 0x0000  
None  
f
None  
WREG  
WREG = 0x0000  
None  
Ws  
Ws = 0x0000  
None  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
f
f,WREG  
Ws,Wd  
f
WREG = f  
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if   
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = decimal adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f – 1  
DEC  
Wd = Ws – 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f – 2  
Wd = Ws – 2  
Disable Interrupts for k instruction cycles  
2011-2012 Microchip Technology Inc.  
DS70652E-page 271  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-bit Integer Divide  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Signed 32/16-bit Integer Divide  
Wm,Wn  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC + Expr, lit14 + 1 times  
Do code to PC + Expr, (Wn) + 1 times  
Euclidean Distance (no accumulate)  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, Multiply and Accumulate  
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
None  
None  
None  
None  
None  
None  
None  
None  
None  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
Move Wn to f  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Prefetch and store accumulator  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70652E-page 272  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns + 1) to Top-of-Stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
2
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
#lit10,Wn  
Return with literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
2011-2012 Microchip Technology Inc.  
DS70652E-page 273  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
RRNC  
SAC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = sign-extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
f
f = f – WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
Wn = Wn – lit10  
SUB  
SUB  
Wd = Wb – Ws  
SUB  
Wd = Wb – lit5  
73  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
f = f – WREG – (C)  
WREG = f – WREG – (C)  
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
74  
75  
SUBR  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG – f  
Wd = Ws – Wb  
Wd = lit5 – Wb  
SUBBR  
f = WREG – f – (C)  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
Wd = lit5 – Wb – (C)  
Wn = nibble swap Wn  
Wn = byte swap Wn  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
76  
SWAP  
Wn  
None  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
None  
XOR  
f
N,Z  
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
Wd = Wb .XOR. lit5  
Wnd = Zero-extend Ws  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
N,Z  
83  
ZE  
ZE  
C,Z,N  
DS70652E-page 274  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
25.1 MPLAB Integrated Development  
Environment Software  
25.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® Digital Signal  
Controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 275  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
25.2 MPLAB C Compilers for Various  
Device Families  
25.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of Digital Signal Con-  
trollers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
25.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of  
Digital Signal Controllers. These compilers provide  
powerful integration capabilities, omniscient code  
generation and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
25.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
25.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS70652E-page 276  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
25.7 MPLAB SIM Software Simulator  
25.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Microchip’s  
most cost effective high-speed hardware debugger/pro-  
grammer for Microchip Flash Digital Signal Controller  
(DSC) and microcontroller (MCU) devices. It debugs  
and programs PIC® Flash microcontrollers and dsPIC®  
DSCs with the powerful, yet easy-to-use graphical user  
interface of MPLAB Integrated Development  
Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer’s PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB REAL ICE systems  
(RJ-11).  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
25.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
PICkit 3 Debug Express  
25.8 MPLAB REAL ICE In-Circuit  
Emulator System  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer’s PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the Reset line to  
implement in-circuit debugging and In-Circuit Serial  
Programming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 277  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
25.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
25.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
25.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70652E-page 278  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
26.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 electrical  
characteristics. Additional information will be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family are  
listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional  
operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this  
specification, is not implied.  
Absolute Maximum Ratings(1)  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(3) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(3) .................................................. -0.3V to +5.6V  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(3) ....................................... -0.3V to (VDD + 0.3V)  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum output current sourced and sunk by any I/O pin excluding OSCO.........................................................15 mA  
Maximum output current sourced and sunk by OSCO............................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of the device maximum power dissipation (see Table 26-2).  
3: See the “Pin Diagrams” section for 5V tolerant pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 279  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
26.1 DC Characteristics  
TABLE 26-1: OPERATING MIPS vs. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
Characteristic  
dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104  
DC5  
VBOR-3.6V(1)  
VBOR-3.6V(1)  
-40°C to +85°C  
-40°C to +125°C  
16  
16  
Note 1: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.  
TABLE 26-2: THERMAL OPERATING CONDITIONS  
Rating  
Industrial Temperature Devices  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Extended Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+140  
+125  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD IOH)  
PD  
PINT + PIO  
W
W
I/O Pin Power Dissipation:  
I/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 18-pin PDIP  
Package Thermal Resistance, 20-pin PDIP  
Package Thermal Resistance, 28-pin SPDIP  
Package Thermal Resistance, 18-pin SOIC  
Package Thermal Resistance, 20-pin SOIC  
Package Thermal Resistance, 28-pin SOIC  
Package Thermal Resistance, 20-pin SSOP  
Package Thermal Resistance, 28-pin SSOP  
Package Thermal Resistance, 28-pin QFN (6x6 mm)  
Package Thermal Resistance, 36-pin VTLA (5x5 mm)  
Package Thermal Resistance, 44-pin TQFP  
Package Thermal Resistance, 44-pin QFN  
Package Thermal Resistance, 44-pin VTLA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
50  
50  
50  
63  
63  
55  
90  
71  
37  
31.1  
45  
32  
30  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
1
1
1
1
1
1, 2  
1, 2  
1, 2  
Note 1: Junction to ambient thermal resistance; Theta-JA (JA) numbers are achieved by package simulations.  
2: This package is available in dsPIC33FJ32(GP/MC)104 devices only.  
DS70652E-page 280  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage(3)  
VDD  
VBOR  
1.8  
3.6  
V
V
V
Industrial and Extended  
DC12  
DC16  
VDR  
RAM Data Retention Voltage(2)  
VPOR  
VDD Start Voltage  
to Ensure Internal  
1.75  
VSS  
Power-on Reset Signal  
DC17  
SVDD  
VDD Rise Rate  
0.024  
V/ms 0-2.4V in 0.1s  
to Ensure Internal  
Power-on Reset Signal  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: This is the limit to which VDD may be lowered without losing RAM data.  
3: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.  
TABLE 26-5: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min(1) Typ  
2.40 2.48  
Max  
Units  
Conditions  
See Note 2  
BO10  
VBOR  
BOR Event on VDD Transition  
High-to-Low  
2.55  
V
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
2: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 281  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(2) – dsPIC33FJ16(GP/MC)10X Devices  
DC20d  
DC20a  
DC20b  
DC20c  
DC21d  
DC21a  
DC21b  
DC21c  
DC22d  
DC22a  
DC22b  
DC22c  
DC23d  
DC23a  
DC23b  
DC23c  
DC24d  
DC24a  
DC24b  
DC24c  
0.7  
0.7  
1.0  
1.3  
1.9  
1.9  
1.9  
2.0  
6.5  
6.5  
6.5  
6.5  
12.2  
12.2  
12.2  
12.2  
16  
1.7  
1.7  
1.7  
1.7  
2.6  
2.6  
2.6  
2.6  
8.5  
8.5  
8.5  
8.5  
16  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
LPRC  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
(32.768 kHz)(3)  
+25°C  
+85°C  
+125°C  
-40°C  
1 MIPS(3)  
4 MIPS(3)  
10 MIPS(3)  
16 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
16  
+25°C  
+85°C  
+125°C  
-40°C  
16  
16  
21  
16  
21  
+25°C  
+85°C  
+125°C  
16  
21  
16  
21  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDD measurements are as follows:  
• Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all  
zeroed)  
• CPU executing while(1)statement  
3: These parameters are characterized, but not tested in manufacturing.  
DS70652E-page 282  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(2) – dsPIC33FJ32(GP/MC)10X Devices  
DC20d  
DC20a  
DC20b  
DC20c  
DC21d  
DC21a  
DC21b  
DC21c  
DC22d  
DC22a  
DC22b  
DC22c  
DC23d  
DC23a  
DC23b  
DC23c  
DC24d  
DC24a  
DC24b  
DC24c  
1
1
2
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
LPRC  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
(32.768 kHz)(3)  
1.1  
1.3  
1.7  
2.3  
2.3  
2.4  
7
2
2
3
3
+25°C  
+85°C  
+125°C  
-40°C  
1 MIPS(3)  
4 MIPS(3)  
10 MIPS(3)  
16 MIPS  
3
3
8.5  
8.5  
8.5  
8.5  
17  
17  
17  
17  
22  
22  
22  
22  
7
+25°C  
+85°C  
+125°C  
-40°C  
7
7
13.2  
13.2  
13.2  
13.2  
17  
+25°C  
+85°C  
+125°C  
-40°C  
17  
+25°C  
+85°C  
+125°C  
17  
17  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDD measurements are as follows:  
• Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all  
zeroed)  
• CPU executing while(1)statement  
3: These parameters are characterized, but not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 283  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Idle Current (IIDLE): Core OFF, Clock ON Base Current(2) dsPIC33FJ16(GP/MC)10X Devices  
DC40d  
DC40a  
DC40b  
DC40c  
DC41d  
DC41a  
DC41b  
DC41c  
DC42d  
DC42a  
DC42b  
DC42c  
DC43a  
DC43d  
DC43b  
DC43c  
DC44d  
DC44a  
DC44b  
DC44c  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.8  
0.9  
0.9  
1.0  
1.2  
1.6  
1.6  
1.7  
2
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.1  
1.1  
1.6  
1.6  
1.6  
1.6  
2.6  
2.6  
2.6  
2.6  
3.8  
3.8  
3.8  
3.8  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
LPRC  
3.3V  
3.3V  
(32.768 kHz)(3)  
+25°C  
+85°C  
+125°C  
-40°C  
1 MIPS(3)  
4 MIPS(3)  
10 MIPS(3)  
16 MIPS(3)  
+25°C  
+85°C  
+125°C  
+25°C  
-40°C  
3.3V  
3.3V  
3.3V  
+85°C  
+125°C  
-40°C  
2.4  
2.4  
2.6  
2.9  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: Base Idle current is measured as follows:  
• CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from  
rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as  
digital I/O inputs)  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all  
zeroed)  
3: These parameters are characterized, but not tested in manufacturing.  
DS70652E-page 284  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Idle Current (IIDLE): Core OFF, Clock ON Base Current(2) – dsPIC33FJ32(GP/MC)10X Devices  
DC40d  
DC40a  
DC40b  
DC40c  
DC41d  
DC41a  
DC41b  
DC41c  
DC42d  
DC42a  
DC42b  
DC42c  
DC43a  
DC43d  
DC43b  
DC43c  
DC44d  
DC44a  
DC44b  
DC44c  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.8  
0.9  
0.9  
1.0  
1.2  
1.6  
1.6  
1.7  
2.0  
2.4  
2.4  
2.6  
2.9  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.1  
1.1  
1.6  
1.6  
1.6  
1.6  
2.6  
2.6  
2.6  
2.6  
3.8  
3.8  
3.8  
3.8  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
LPRC  
3.3V  
3.3V  
(32.768 kHz)(3)  
+25°C  
+85°C  
+125°C  
-40°C  
1 MIPS(3)  
4 MIPS(3)  
10 MIPS(3)  
16 MIPS(3)  
+25°C  
+85°C  
+125°C  
+25°C  
-40°C  
3.3V  
3.3V  
3.3V  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: Base Idle current is measured as follows:  
• CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from  
rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as  
digital I/O inputs)  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all  
zeroed)  
3: These parameters are characterized, but not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 285  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Power-Down Current (IPD)(2) – dsPIC33FJ16(GP/MC)10X Devices  
DC60d  
DC60a  
DC60b  
DC60c  
DC61d  
DC61a  
DC61b  
DC61c  
27  
32  
250  
250  
250  
500  
600  
600  
750  
900  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
Base Power-Down Current(3,4)  
43  
150  
420  
420  
530  
620  
+25°C  
+85°C  
+125°C  
(3,5)  
Watchdog Timer Current: IWDT  
Power-Down Current (IPD)(2) – dsPIC33FJ32(GP/MC)10X Devices  
DC60d  
DC60a  
DC60b  
DC60c  
DC61d  
DC61a  
DC61b  
DC61c  
27  
32  
250  
250  
250  
500  
600  
600  
750  
900  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
Base Power-Down Current(3,4)  
43  
150  
420  
420  
530  
620  
+25°C  
+85°C  
+125°C  
(3,5)  
Watchdog Timer Current: IWDT  
Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.  
2: IPD (Sleep) current is measured as follows:  
• CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from  
rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as  
digital I/O inputs)  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• All peripheral modules are disabled (PMDx bits are all ones)  
• VREGS bit (RCON<8>) = 1(i.e., core regulator is set to stand-by while the device is in Sleep mode)  
• On applicable devices, RTCC is disabled, plus the VREGS bit (RCON<8>) = 1  
3: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
5: These parameters are characterized, but not tested in manufacturing.  
DS70652E-page 286  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Doze  
Parameter No.  
Typical(1)  
Max  
Units  
Conditions  
Ratio(2)  
Doze Current (IDOZE)(2) – dsPIC33FJ16(GP/MC)10X Devices  
DC73a  
DC73f  
DC73g  
DC70a  
DC70f  
DC70g  
DC71a  
DC71f  
DC71g  
DC72a  
DC72f  
DC72g  
13.2  
4.7  
17.2  
6.2  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
3.3V  
16 MIPS  
16 MIPS  
16 MIPS  
16 MIPS  
4.7  
6.2  
13.2  
4.7  
17.2  
6.2  
1:64  
1:128  
1:2  
3.3V  
3.3V  
3.3V  
4.7  
6.2  
13.2  
4.7  
17.2  
6.2  
+85°C  
1:64  
1:128  
1:2  
4.7  
6.2  
13.2  
4.7  
17.2  
6.2  
+125°C  
1:64  
4.7  
6.2  
1:128  
Doze Current (IDOZE)(2) – dsPIC33FJ32(GP/MC)10X Devices  
DC73a  
DC73f  
DC73g  
DC70a  
DC70f  
DC70g  
DC71a  
DC71f  
DC71g  
DC72a  
DC72f  
DC72g  
13.2  
4.7  
17.2  
6.2  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
3.3V  
3.3V  
3.3V  
3.3V  
16 MIPS  
16 MIPS  
16 MIPS  
16 MIPS  
4.7  
6.2  
13.2  
4.7  
17.2  
6.2  
1:64  
1:128  
1:2  
4.7  
6.2  
13.2  
4.7  
17.2  
6.2  
+85°C  
1:64  
1:128  
1:2  
4.7  
6.2  
13.2  
4.7  
17.2  
6.2  
+125°C  
1:64  
1:128  
4.7  
6.2  
Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.  
2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDOZE measurements are as follows:  
• Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all  
zeroes)  
• CPU executing while(1)statement  
2011-2012 Microchip Technology Inc.  
DS70652E-page 287  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O Pins  
DI10  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
V
DI15  
DI18  
DI19  
MCLR  
I/O Pins with SDAx, SCLx  
I/O Pins with SDAx, SCLx  
Input High Voltage  
SMBus disabled  
SMBus enabled  
VIH  
DI20  
I/O Pins Not 5V Tolerant(4)  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
I/O Pins 5V Tolerant(4)  
DI28  
DI29  
SDAx, SCLx  
0.7 VDD  
2.1  
5.5  
5.5  
V
V
SMBus disabled  
SMBus enabled  
SDAx, SCLx  
ICNPU  
IIL  
CNx Pull-up Current  
DI30  
50  
250  
450  
A VDD = 3.3V, VPIN = VSS  
Input Leakage Current(2,3)  
DI50  
DI51  
I/O Pins 5V Tolerant(4)  
±2  
±1  
A VSS VPIN VDD,  
Pin at high-impedance  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
A VSS VPIN VDD,  
Pin at high-impedance,  
-40°C TA +85°C  
DI51a  
DI51b  
DI51c  
±2  
±3.5  
±8  
A Shared with external  
reference pins,  
-40°C TA +85°C  
A VSS VPIN VDD,  
Pin at high-impedance,  
-40°C TA +125°C  
A Analog pins shared with  
external  
reference pins,  
-40°C TA +125°C  
DI55  
DI56  
MCLR  
OSC1  
±2  
±2  
A VSS VPIN VDD  
A VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current can be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor the 5V tolerant I/O pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: Non-5V tolerant pins, VIH source > (VDD + 0.3), 5V tolerant pins, VIH source > 5.5V. Characterized but not  
tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
DS70652E-page 288  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
IICL  
Input Low Injection Current  
DI60a  
0
-5(5,8)  
mA All pins except VDD, VSS,  
AVDD, AVSS, MCLR,  
VCAP, SOSCI, SOSCO  
and RB14  
IICH  
Input High Injection Current  
DI60b  
DI60c  
0
+5(6,7,8)  
mA All pins except VDD,  
VSS, AVDD, AVSS,  
MCLR, VCAP, SOSCI,  
SOSCO, RB14 and  
digital 5V-tolerant  
designated pins  
IICT  
Total Input Injection Current  
(sum of all I/O and control  
pins)  
-20(9)  
+20(9)  
mA Absolute instantaneous  
sum of all ± input  
injection currents from  
all I/O pins,  
( | IICL + | IICH | )  IICT  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current can be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor the 5V tolerant I/O pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: Non-5V tolerant pins, VIH source > (VDD + 0.3), 5V tolerant pins, VIH source > 5.5V. Characterized but not  
tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 289  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Output Low Voltage  
I/O Pins:  
4x Sink Driver Pins – All pins  
excluding OSCO  
IOL 6 mA, VDD = 3.3V  
See Note 1  
0.4  
V
DO10  
VOL  
Output Low Voltage  
I/O Pins:  
8x Sink Driver Pins – OSCO  
IOL 10 mA, VDD = 3.3V  
See Note 1  
0.4  
V
V
V
Output High Voltage  
I/O Pins:  
4x Source Driver Pins – All  
pins excluding OSCO  
IOL -6 mA, VDD = 3.3V  
See Note 1  
2.4  
2.4  
DO20  
VOH  
Output High Voltage  
I/O Pins:  
8x Source Driver Pins – OSCO  
IOL -10 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
I/O Pins:  
4x Source Driver Pins – All  
pins excluding OSCO  
IOH -12 mA, VDD = 3.3V  
See Note 1  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
IOH -11 mA, VDD = 3.3V  
See Note 1  
V
V
IOH -3 mA, VDD = 3.3V  
See Note 1  
DO20A VOH1  
Output High Voltage  
I/O Pins:  
8x Source Driver Pins – OSCO  
IOH -16 mA, VDD = 3.3V  
See Note 1  
IOH -12 mA, VDD = 3.3V  
See Note 1  
IOH -4 mA, VDD = 3.3V  
See Note 1  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
DS70652E-page 290  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(3)  
Min  
Typ(1) Max Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130a EP  
10,000  
VMIN  
E/W -40C to +125C  
D131  
VPR  
VDD for Read  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
VMIN  
20  
10  
3.6  
V
VMIN = Minimum operating  
voltage  
D134  
D135  
TRETD  
IDDP  
Year Provided no other specifications  
are violated  
Supply Current during  
Programming  
mA  
D137a TPE  
D137b TPE  
D138a TWW  
D138b TWW  
Page Erase Time  
20.1  
19.5  
47.4  
47.4  
26.5  
27.3  
49.3  
49.3  
ms TPE = 168517 FRC cycles,  
TA = +85°C, See Note 2  
Page Erase Time  
ms TPE = 168517 FRC cycles,  
TA = +125°C, See Note 2  
Word Write Cycle Time  
Word Write Cycle Time  
µs  
µs  
TWW = 355 FRC cycles,  
TA = +85°C, See Note 2  
TWW = 355 FRC cycles,  
TA = +125°C, See Note 2  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111(for Min), TUN<5:0> = b'100000(for Max).  
This parameter depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator  
Tuning register (see Register 8-3). For complete details on calculating the Minimum and Maximum time,  
see Section 5.3 “Programming Operations”.  
3: These parameters are ensured by design, but are not characterized or tested in manufacturing.  
TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value(1)  
4.7  
10  
µF  
Capacitor must be low  
series resistance  
(< 5 ohms)  
Note 1: Typical VCAP voltage = 2.5V when VDD VDDMIN.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 291  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
26.2 AC Characteristics and Timing  
Parameters  
This section defines dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104 AC characteristics  
and timing parameters.  
TABLE 26-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Section 26.1 “DC  
Characteristics”.  
FIGURE 26-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 26-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
No.  
DO50 COSC2  
OSC2/SOSC2 Pin  
15  
pF In MS and HS modes when external  
clock is used to drive OSC1  
DO56 CIO  
DO58 CB  
All I/O Pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
DS70652E-page 292  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS31 OS31  
OS25  
OS41  
OS40  
TABLE 26-16: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symb  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
32  
MHz EC  
Oscillator Crystal Frequency  
3.0  
10  
31  
10  
32  
33  
MHz MS  
MHz HS  
kHz SOSC  
OS20  
OS25  
OS30  
TOSC  
TCY  
TOSC = 1/FOSC  
Instruction Cycle Time(2,4)  
31.25  
62.5  
DC  
DC  
ns  
ns  
TosL, External Clock in (OSC1)(5)  
TosH High or Low Time  
TosR, External Clock in (OSC1)(5)  
TosF Rise or Fall Time  
0.45 x TOSC  
ns  
EC  
EC  
OS31  
20  
ns  
OS40  
OS41  
OS42  
TckR CLKO Rise Time(3,5)  
14  
6
6
10  
10  
18  
ns  
ns  
TckF  
GM  
CLKO Fall Time(3,5)  
External Oscillator  
16  
mA/V VDD = 3.3V,  
TA = +25ºC  
Transconductance(4)  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type, under standard operating conditions,  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
4: These parameters are characterized by similarity, but are tested in manufacturing at FIN = 32 MHz only.  
5: These parameters are characterized by similarity, but are not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 293  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-17: PLL CLOCK TIMING SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS50 FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range(2)  
3.0  
8
MHz ECPLL and MSPLL  
modes  
OS51 FSYS  
On-Chip VCO System  
Frequency(3)  
12  
32  
MHz  
OS52 TLOCK  
OS53 DCLK  
PLL Start-up Time (Lock Time)(3)  
CLKO Stability (Jitter)(3)  
-2  
1
2
mS  
%
+2  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: These parameters are characterized by similarity, but are tested in manufacturing at 7.7 MHz input only.  
3: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is  
based on clock cycle by clock cycle measurements. The effective jitter for individual time bases, or communi-  
cation clocks used by the user application, are derived from dividing the CLKO stability specification by the  
square root of “N” (where “N” is equal to FOSC, divided by the peripheral data rate clock). For example, if  
FOSC = 32 MHz and the SPI bit rate is 5 MHz, the effective jitter of the SPI clock is equal to:  
DCLK  
2%  
2.53  
------------- = --------- = 0 . 7 9 %  
32  
-----  
5
TABLE 26-18: AC CHARACTERISTICS: INTERNAL FAST RC (FRC) ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ 7.3728 MHz(1)  
F20a  
F20b  
F20c  
FRC  
FRC  
FRC  
-1.5  
-1  
±0.25  
±0.25  
±0.25  
+1.5  
+1  
%
%
%
-40°C TA -10°C  
-10°C TA +85°C  
+125°C  
-2  
+2  
Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits may be used to compensate for temperature drift.  
TABLE 26-19: INTERNAL LOW-POWER RC (LPRC) ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Characteristic  
No.  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1,2)  
F21a LPRC  
-20  
-30  
±10  
±10  
+20  
+30  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
F21b LPRC  
Note 1: Change of LPRC frequency as VDD changes.  
2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 23.4 “Watchdog  
Timer (WDT)” for more information.  
DS70652E-page 294  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-3:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-20: I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(2)  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
25  
2
10  
10  
25  
25  
ns  
ns  
Port Output Fall Time  
INTx Pin High or Low Time (input)  
CNx High or Low Time (input)  
ns  
DI40  
TCY  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: These parameters are characterized, but are not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 295  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symb  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10 TMCL MCLR Pulse Width (low)  
SY11 TPWRT Power-up Timer Period  
SY12 TPOR Power-on Reset Delay  
2
3
64  
10  
s  
ms  
s  
s  
30  
1.2  
SY13 TIOZ  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
SY20 TWDT1 Watchdog Timer Time-out  
Period  
ms See Section 23.4 “Watchdog  
Timer (WDT)” and LPRC  
Parameter F21a (Table 26-19).  
SY30 TOST  
Oscillator Start-up Time  
1024 * TOSC  
500  
TOSC = OSC1 period  
SY35 TFSCM Fail-Safe Clock Monitor Delay  
900  
s  
Note 1: These parameters are characterized but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
DS70652E-page 296  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-5:  
TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 26-1 for load conditions.  
(1)  
TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(2)  
Min  
Typ  
Max  
Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
T1CK High Synchronous  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
Must also meet  
ParameterTA15,  
N = prescaler  
value (1, 8, 64,  
256)  
Time  
mode  
Asynchronous  
35  
ns  
ns  
T1CK Low  
Time  
Synchronous  
mode  
Greater of:  
20 ns or  
(TCY + 20)/N  
Must also meet  
ParameterTA15,  
N = prescaler  
value (1, 8, 64,  
256)  
Asynchronous  
10  
ns  
ns  
T1CK Input Synchronous  
Period mode  
Greater of:  
40 or  
N = prescale  
value  
(2 TCY + 40)/N  
(1, 8, 64, 256)  
OS60 Ft1  
SOSC1/T1CK Oscillator  
Input Frequency Range  
(oscillator enabled by setting  
bit, TCS (T1CON<1>))  
DC  
50  
kHz  
ns  
TA20  
TCKEXTMRL Delay from External T1CK  
Clock Edge to Timer  
0.75 TCY + 40  
1.75 TCY + 40  
Increment  
Note 1: Timer1 is a Type A.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 297  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-23: TIMER2/4 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TB10 TtxH  
TB11 TtxL  
TB15 TtxP  
TxCK High Synchronous  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
Must also meet  
Parameter TB15,  
N = prescale  
value  
Time  
mode  
(1, 8, 64, 256)  
TxCK Low Synchronous  
Time mode  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
Must also meet  
Parameter TB15,  
N = prescale  
value  
(1, 8, 64, 256)  
TxCKInput Synchronous  
Period mode  
Greater of:  
40 or  
(2 TCY + 40)/N  
ns  
ns  
N = prescale  
value  
(1, 8, 64, 256)  
TB20 TCKEXTMRL Delay from External TxCK 0.75 TCY + 40  
1.75 TCY + 40  
Clock Edge to Timer  
Increment  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
TABLE 26-24: TIMER3/5 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TC10  
TC11  
TC15  
TtxH  
TtxL  
TtxP  
TxCK High Synchronous  
Time  
TCY + 20  
ns  
Must also meet  
Parameter TC15  
TxCK Low Synchronous  
Time  
TCY + 20  
ns  
ns  
Must also meet  
Parameter TC15  
TxCK Input Synchronous,  
2 TCY + 40  
N = prescale  
value  
Period  
with prescaler  
(1, 8, 64, 256)  
TC20  
TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer  
0.75 TCY + 40  
1.75 TCY + 40  
ns  
Increment  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
DS70652E-page 298  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-6:  
INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-25: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 299  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-7:  
OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-26: OUTPUT COMPARE x (OCx) MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.  
FIGURE 26-8:  
OCx/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OCFA  
OCx  
OC15  
Active  
Tri-State  
TABLE 26-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
TCY + 20 ns  
ns  
OC20  
TFLT  
Fault Input Pulse Width TCY + 20 ns  
ns  
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.  
DS70652E-page 300  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-9:  
MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS  
MP30  
FLTA1  
PWMx  
MP20  
See Note 1  
Note 1: For the logic state after a Fault, refer to the FAOVxH:FAOVxL bits in the PxFLTACON register.  
FIGURE 26-10:  
MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS  
MP11 MP10  
PWMx  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-28: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
MP10  
MP11  
MP20  
TFPWM  
TRPWM  
TFD  
PWM Output Fall Time  
PWM Output Rise Time  
50  
ns  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Fault Input to PWM  
I/O Change  
MP30  
TFH  
Minimum Pulse Width  
50  
ns  
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 301  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-29: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY FOR dsPIC33FJ16(GP/MC)10X  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Master  
Transmit Only  
(Half-Duplex)  
Master  
Slave  
Maximum  
Data Rate  
Transmit/Receive Transmit/Receive  
(Full-Duplex)  
CKE  
CKP  
SMP  
(Full-Duplex)  
15 MHz  
10 MHz  
10 MHz  
15 MHz  
11 MHz  
15 MHz  
11 MHz  
Table 26-30  
0,1  
1
0,1  
0,1  
0,1  
0
0,1  
1
Table 26-31  
Table 26-32  
0
1
Table 26-33  
Table 26-34  
Table 26-35  
Table 26-36  
1
0
1
1
0
0
1
0
0
0
0
FIGURE 26-11:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SP30, SP31  
SP30, SP31  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 302  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-12:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING  
CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-30: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS  
FOR dsPIC33FJ16(GP/MC)10X  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP20  
Maximum SCKx Frequency  
SCKx Output Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SCKx Output Rise Time  
30  
6
20  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, SDOx Data Output Setup to  
TdiV2scL  
First SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 303  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-13:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING  
CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
SDIx  
SP40  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-31: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING  
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP20  
Maximum SCKx Frequency  
SCKx Output Fall Time  
10  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Output Rise Time  
30  
30  
30  
6
20  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70652E-page 304  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-14:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING  
CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30, SP31  
SP30, SP31  
LSb In  
MSb In  
Bit 14 - - - -1  
SP40  
SP41  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-32: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING  
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
Maximum SCKx Frequency  
10  
MHz -40ºC to +125ºC and  
see Note 3  
SP20  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Fall Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SCKx Output Rise Time  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO31  
and Note 4  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 305  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-15:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
MSb  
LSb  
Bit 14 - - - - - -1  
SDOx  
SDIx  
SP30,SP31  
SP51  
MSb In  
SP41  
Bit 14 - - - -1  
LSb In  
SP40  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 306  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-33: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 307  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-16:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
SP52  
Bit 14 - - - - - -1  
MSb  
LSb  
SDOx  
SDIx  
SP30,SP31  
SP51  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
SP40  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 308  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-34: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 309  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-17:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP35  
MSb  
LSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 310  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-35: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SCKx Input Rise Time  
6
20  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
120  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
TssH2doZ SSx to SDOx Output  
10  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 311  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-18:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
SP35  
MSb  
LSb  
SDOX  
SDIX  
Bit 14 - - - - - -1  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 312  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-36: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SCKx Input Rise Time  
6
20  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
120  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
TssH2doZ SSx to SDOx Output  
10  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 313  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-37: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY FOR dsPIC33FJ32(GP/MC)10X  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Master  
Transmit Only  
(Half-Duplex)  
Master  
Slave  
Maximum  
Data Rate  
Transmit/Receive Transmit/Receive  
(Full-Duplex)  
CKE  
CKP  
SMP  
(Full-Duplex)  
15 MHz  
9 MHz  
Table 26-30  
0,1  
1
0,1  
0,1  
0,1  
0
0,1  
1
Table 26-31  
9 MHz  
Table 26-32  
0
1
15 MHz  
11 Mhz  
15 MHz  
11 MHz  
Table 26-33  
Table 26-34  
Table 26-35  
Table 26-36  
1
0
1
1
0
0
1
0
0
0
0
FIGURE 26-19:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
MSb  
LSb  
SDOx  
SP30, SP31  
SP30, SP31  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 314  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-20:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING  
CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-38: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS  
FOR dsPIC33FJ32(GP/MC)10X  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP20  
Maximum SCKx Frequency  
SCKx Output Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SCKx Output Rise Time  
30  
6
20  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, SDOx Data Output Setup to  
TdiV2scL  
First SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 315  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-21:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING  
CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP35  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
Bit 14 - - - - - -1  
MSb  
LSb  
SDOx  
SDIx  
SP30, SP31  
SP40  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-39: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING  
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP20  
Maximum SCKx Frequency  
SCKx Output Fall Time  
9
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Output Rise Time  
30  
30  
30  
6
20  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70652E-page 316  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-22:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING  
CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
MSb  
LSb  
SDOx  
SDIx  
SP30, SP31  
MSb In  
SP30, SP31  
LSb In  
Bit 14 - - - -1  
SP40  
SP41  
Note: Refer to Figure 26-1 for load conditions.  
TABLE 26-40: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING  
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
Maximum SCKx Frequency  
9
MHz -40ºC to +125ºC and  
See Note 3  
SP20  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Fall Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SCKx Output Rise Time  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO31  
and Note 4  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 317  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-23:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
MSb  
Bit 14 - - - - - -1  
LSb  
SDOx  
SDIx  
SP30,SP31  
SP51  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
SP40  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 318  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-41: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 319  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-24:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
SP52  
Bit 14 - - - - - -1  
MSb  
LSb  
SDOx  
SDIx  
SP30,SP31  
SP51  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
SP40  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 320  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-42: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 321  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-25:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
SP35  
SDOX  
SDIX  
MSb  
LSb  
Bit 14 - - - - - -1  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 322  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-43: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SCKx Input Rise Time  
6
—w  
20  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
120  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
TssH2doZ SSx to SDOx Output  
10  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 323  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-26:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
SP35  
MSb  
LSb  
SDOX  
SDIX  
Bit 14 - - - - - -1  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 324  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-44: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SCKx Input Rise Time  
6
20  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
120  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
TssH2doZ SSx to SDOx Output  
10  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 325  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-27:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 26-1 for load conditions.  
FIGURE 26-28:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 26-1 for load conditions.  
DS70652E-page 326  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-45: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
TCY/2 (BRG + 1)  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
ns  
TCY/2 (BRG + 1)  
1 MHz mode(2)  
TCY/2 (BRG + 1)  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
THI:SCL Clock High Time 100 kHz mode  
400 kHz mode  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
1 MHz mode(2)  
TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
250  
100  
40  
THD:DAT Data Input  
Hold Time  
0
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode  
1 MHz mode(2)  
THD:STA Start Condition 100 kHz mode  
After this period the first  
clock pulse is generated  
Hold Time  
400 kHz mode  
1 MHz mode(2)  
TSU:STO Stop Condition 100 kHz mode  
Setup Time  
400 kHz mode  
1 MHz mode(2)  
THD:STO Stop Condition 100 kHz mode  
Hold Time  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
TAA:SCL Output Valid  
from Clock  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
400 kHz mode  
4.7  
Time the bus must be  
free before a new  
transmission can start  
1.3  
1 MHz mode(2)  
0.5  
IM50  
IM51  
CB  
Bus Capacitive Loading  
Pulse Gobbler Delay  
400  
390  
TPGD  
65  
See Note 3  
Note 1: BRG is the value of the I2C™ Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit (I2C™)”  
(DS70195) in the “dsPIC33F/PIC24H Family Reference Manual”. Please see the Microchip web site for the  
latest “dsPIC33F/PIC24H Family Reference Manual” sections.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
3: Typical value for this parameter is 130 ns.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 327  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-29:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 26-30:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
DS70652E-page 328  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-46: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
4.7  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
s  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
s  
s  
IS11  
THI:SCL Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1 MHz mode(1)  
0.6  
s  
Device must operate at a  
minimum of 10 MHz  
0.5  
300  
300  
100  
1000  
300  
300  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL Output Valid  
from Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
2011-2012 Microchip Technology Inc.  
DS70652E-page 329  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-47: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V(6)  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
Module VDD Supply(2,4) Greater of  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
VDD – 0.3  
or 2.9  
AD02 AVSS  
AD09 IAD  
Module VSS Supply(2,5)  
Operating Current  
VSS – 0.3  
VSS + 0.3  
9.0  
7.0  
mA See Note 1  
Analog Input  
AD12 VINH  
AD13 VINL  
AD17 RIN  
Input Voltage Range  
VINH  
VINL  
AVDD  
AVSS + 1V  
200  
V
V
This voltage reflects S&H  
Channels 0, 1, 2 and 3  
(CH0-CH3), positive input  
(2)  
Input Voltage Range  
AVSS  
This voltage reflects S&H  
Channels 0, 1, 2 and 3  
(CH0-CH3), negative input  
(2)  
VINL  
Recommended  
Impedance of Analog  
Voltage Source(3)  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: These parameters are characterized, but are not tested in manufacturing.  
3: These parameters are assured by design, but are not characterized or tested in manufacturing.  
4: This pin may not be available on all devices; in which case, this pin will be connected to VDD internally.  
See the “Pin Diagrams” section for availability.  
5: This pin may not be available on all devices; in which case, this pin will be connected to VSS internally. See  
the “Pin Diagrams” section for availability.  
6: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.  
DS70652E-page 330  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-48: 10-BIT ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V(4)  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
(3)  
10-Bit ADC Accuracy – Measurements with AVDD/AVSS  
AD20b Nr  
AD21b INL  
AD22b DNL  
Resolution  
10 Data Bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-1  
>-1  
3
7
+1  
<1  
15  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
Offset Error  
1.5  
3
Monotonicity  
Guaranteed(1)  
Dynamic Performance (10-Bit Mode)(2)  
AD30b THD  
Total Harmonic Distortion  
-64  
dB  
dB  
AD31b SINAD  
Signal to Noise and  
Distortion  
57  
58.5  
AD32b SFDR  
Spurious Free Dynamic  
Range  
72  
dB  
AD33b  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
550  
kHz  
bits  
AD34b ENOB  
9.16  
9.4  
Note 1: The Analog-to-Digital conversion result never decreases with an increase in the input voltage and has no  
missing codes.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: These parameters are characterized, but are tested at 20 ksps only.  
4: Overall functional device operation at VBOR < VDD < VDDMIN is guaranteed but not characterized. All  
device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN  
2011-2012 Microchip Technology Inc.  
DS70652E-page 331  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-31:  
ADC CONVERSION TIMING CHARACTERISTICS  
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Set SAMP  
AD61  
Clear SAMP  
AD60  
Execution  
SAMP  
TSAMP  
AD55  
AD55  
DONE  
ADxIF  
1
2
3
4
5
6
7
8
5
6
7
8
– Software sets ADxCON. SAMP to start sampling.  
1
2
– Sampling starts after discharge period. TSAMP is described in Section 16. “Analog-to-Digital Converter (ADC)”  
(DS70183) in the “dsPIC33F/PIC24H Family Reference Manual”.  
– Software clears ADxCON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 9.  
3
4
5
6
7
8
– Convert bit 8.  
– Convert bit 0.  
– One TAD for end of conversion.  
FIGURE 26-32:  
ADC CONVERSION TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0,  
ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)  
AD50  
ADCLK  
Instruction  
Execution  
Set ADON  
SAMP  
TSAMP  
AD55  
AD55  
TSAMP  
AD55  
ADxIF  
DONE  
1
2
3
4
5
6
7
3
4
5
6
8
– Convert bit 0.  
5
– Software sets ADxCON. ADON to start AD operation.  
1
2
– One TAD for end of conversion.  
– Begin conversion of next channel.  
– Sampling starts after discharge period. TSAMP is described in  
Section 16. “Analog-to-Digital Converter (ADC)” (DS70183)  
in the “dsPIC33F/PIC24H Family Reference Manual”.  
6
7
8
– Convert bit 9.  
3
4
– Sample for time specified by SAMC<4:0>.  
– Convert bit 8.  
DS70652E-page 332  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-49: 10-BIT ADC CONVERSION TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
Conditions  
Clock Parameters(2)  
AD50 TAD  
AD51 tRC  
ADC Clock Period  
ADC Internal RC Oscillator Period  
76  
ns  
ns  
250  
Conversion Rates  
AD55 tCONV  
AD56 FCNV  
Conversion Time  
Throughput Rate  
12 TAD  
1.1  
Msps  
AD57 TSAMP Sample Time  
2.0 TAD  
Timing Parameters  
AD60 tPCS  
Conversion Start from Sample  
2.0 TAD  
3.0 TAD  
Auto-Convert Trigger  
(SSRC<2:0> = 111) not  
selected  
Trigger(1)  
AD61 tPSS  
AD62 tCSS  
AD63 tDPU  
Sample Start from Setting  
Sample (SAMP) bit(1)  
2.0 TAD  
0.5 TAD  
3.0 TAD  
s  
Conversion Completion to  
Sample Start (ASAM = 1)(1)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(1)  
20  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity  
performance, especially at elevated temperatures.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 333  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-50: COMPARATOR TIMING SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
300  
TRESP  
Response Time(1,2)  
150  
400  
10  
ns  
301  
302  
TMC2OV  
Comparator Mode Change  
to Output Valid(1)  
s  
TON2OV  
Comparator Enabled to  
Output Valid(1)  
10  
µs  
Note 1: Parameters are characterized but not tested.  
2: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions  
from VSS to VDD.  
TABLE 26-51: COMPARATOR MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
D300  
D301  
D302  
D305  
VIOFF  
VICM  
Input Offset Voltage(1)  
-20  
0
±10  
20  
AVDD – 1.5V  
mV  
V
Input Common-Mode Voltage(1)  
Common-Mode Rejection Ratio(1)  
Internal Voltage Reference(1)  
CMRR  
IVREF  
-54  
dB  
V
1.116  
1.24  
1.364  
Note 1: Parameters are characterized but not tested.  
TABLE 26-52: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Settling Time(1)  
Min.  
Typ  
Max.  
Units  
Conditions  
VR310  
TSET  
10  
s  
Note 1: Setting time measured while CVRR = 1and the CVR<3:0> bits transition from ‘0000’ to ‘1111’.  
DS70652E-page 334  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE 26-53: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS  
Standard Operating Conditions:3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Resolution  
Min.  
Typ  
Max.  
Units  
Conditions  
VRD310 CVRES  
VRD311 CVRAA  
VRD312 CVRUR  
CVRSRC/24  
2k  
CVRSRC/32 LSb  
Absolute Accuracy  
0.5  
LSb  
Unit Resistor Value (R)  
TABLE 26-54: CTMU CURRENT SOURCE SPECIFICATIONS  
Standard Operating Conditions:3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
No.  
Symbol Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
CTMU Current Source  
CTMUI1  
CTMUI2  
CTMUI3  
IOUT1  
IOUT2  
IOUT3  
Base Range(1)  
10x Range(1)  
100x Range(1)  
320  
3.2  
32  
550  
5.5  
55  
980  
9.8  
98  
na  
IRNG<1:0> bits (CTMUICON<9:8>) = 0b01  
µA IRNG<1:0> bits (CTMUICON<9:8>) = 0b10  
µA IRNG<1:0> bits (CTMUICON<9:8>) = 0b11  
Internal Diode  
CTMUFV1 VF  
Forward Voltage(2)  
0.77  
V
IRNG<1:0> bits (CTMUICON<9:8>) = 0b11  
@ +25ºC  
CTMUFV2 VFVR  
Forward Voltage  
Rate(2)  
-1.38  
mV/ºC IRNG<1:0> bits (CTMUICON<9:8>) = 0b11  
Note 1: Nominal value at center point of current trim range (ITRIM<5:0> bits (CTMUICON<15:10>) = 0b000000).  
2: ADC module configured for conversion speed of 500 ksps. Parameters are characterized but not tested in  
manufacturing.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 335  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
FIGURE 26-33:  
FORWARD VOLTAGE VERSUS TEMPERATURE  
0.900  
0.850  
VF @ IOUT = 55 µA  
0.800  
0.750  
0.700  
0.650  
Forward Voltage @ +25ºC  
VF = 0.77  
Forward Voltage Rate  
VFVR = -1.38 mV/ºC  
0.600  
0.550  
0.500  
Temperature (ºC)  
Note:  
This graph is a statistical summary based on a limited number of samples and this data is characterized but not  
tested in manufacturing.  
DS70652E-page 336  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
27.0 PACKAGING INFORMATION  
27.1 Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
dsPIC33FJ16GP  
101-E/P  
e3  
1230235  
18-Lead SOIC  
Example  
dsPIC33FJ16  
GP101-E/SO  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
e
3
YYWWNNN  
1210017  
20-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
dsPIC33FJ16MC  
101-E/P  
1230235  
e
3
YYWWNNN  
20-Lead SSOP  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
dsPIC33FJ16  
3
e
MC101-I/SS  
YYWWNNN  
1230235  
20-Lead SOIC  
Example  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
dsPIC33FJ16  
MC101-I/SO  
e
3
1210017  
YYWWNNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 337  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
27.1 Package Marking Information (Continued)  
28-Lead SPDIP  
Example  
dsPIC33FJ16MC  
102-E/SP  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
e
3
1230235  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
dsPIC33FJ16MC  
102-E/SO  
e
3
1230235  
YYWWNNN  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
33FJ16MC  
102-E/SS  
1230235  
e
3
YYWWNNN  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33FJ16MC  
e
3
102-EML  
1230235  
36-Lead VTLA  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33FJ16MC  
e
3
102-ETL  
1230235  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
DS70652E-page 338  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
27.1 Package Marking Information (Continued)  
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJ  
32MC104  
e
3
-E/ML  
1230235  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJ  
32MC104  
-E/PT  
e
3
1230235  
44-Lead VTLA  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33FJ32MC  
e
3
104-ETL  
1230235  
2011-2012 Microchip Technology Inc.  
DS70652E-page 339  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
27.2 Package Details  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢕꢕꢇꢖꢌꢉꢇꢗꢘꢆꢙꢇꢚꢈꢎꢐꢈꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
N
NOTE 1  
E1  
2
3
1
D
E
A2  
A
L
c
A1  
b1  
e
b
eB  
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢁ<  
ꢂꢁꢕꢕꢀ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
M
ꢂꢎꢁꢕ  
ꢂꢁꢛꢘ  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
1ꢆ!ꢈꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢀ&ꢋꢀꢐꢍꢋ"ꢇ#ꢈꢉꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
ꢙꢄꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
6ꢓꢓꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
)ꢁ  
)
ꢈ1  
ꢂꢁꢁꢘ  
ꢂꢕꢁꢘ  
ꢂ-ꢕꢕ  
ꢂꢎꢖꢕ  
ꢂ<<ꢕ  
ꢂꢁꢁꢘ  
ꢂꢕꢕ<  
ꢂꢕꢖꢘ  
ꢂꢕꢁꢖ  
M
ꢂꢁ-ꢕ  
M
ꢂ-ꢁꢕ  
ꢂꢎꢘꢕ  
ꢂꢛꢕꢕ  
ꢂꢁ-ꢕ  
ꢂꢕꢁꢕ  
ꢂꢕ?ꢕ  
ꢂꢕꢁ<  
M
ꢂ-ꢎꢘ  
ꢂꢎ<ꢕ  
ꢂꢛꢎꢕ  
ꢂꢁꢘꢕ  
ꢂꢕꢁꢖ  
ꢂꢕꢜꢕ  
ꢂꢕꢎꢎ  
ꢂꢖ-ꢕ  
9ꢋ*ꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀꢝꢋ*ꢀꢐꢓꢆꢌꢄꢅꢑꢀꢀꢏ  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢂꢕꢁꢕ/ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢕꢜ1  
DS70652E-page 340  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS70652E-page 341  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70652E-page 342  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS70652E-page 343  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
!ꢕꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢕꢕꢇꢖꢌꢉꢇꢗꢘꢆꢙꢇꢚꢈꢎꢐꢈꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
N
E1  
NOTE 1  
1
2
3
D
E
A2  
A
L
c
A1  
b1  
eB  
e
b
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎꢕ  
ꢂꢁꢕꢕꢀ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
M
ꢂꢎꢁꢕ  
ꢂꢁꢛꢘ  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
1ꢆ!ꢈꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢀ&ꢋꢀꢐꢍꢋ"ꢇ#ꢈꢉꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
ꢙꢄꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
6ꢓꢓꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
)ꢁ  
)
ꢈ1  
ꢂꢁꢁꢘ  
ꢂꢕꢁꢘ  
ꢂ-ꢕꢕ  
ꢂꢎꢖꢕ  
ꢂꢛ<ꢕ  
ꢂꢁꢁꢘ  
ꢂꢕꢕ<  
ꢂꢕꢖꢘ  
ꢂꢕꢁꢖ  
M
ꢂꢁ-ꢕ  
M
ꢂ-ꢁꢕ  
ꢂꢎꢘꢕ  
ꢁꢂꢕ-ꢕ  
ꢂꢁ-ꢕ  
ꢂꢕꢁꢕ  
ꢂꢕ?ꢕ  
ꢂꢕꢁ<  
M
ꢂ-ꢎꢘ  
ꢂꢎ<ꢕ  
ꢁꢂꢕ?ꢕ  
ꢂꢁꢘꢕ  
ꢂꢕꢁꢘ  
ꢂꢕꢜꢕ  
ꢂꢕꢎꢎ  
ꢂꢖ-ꢕ  
9ꢋ*ꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀꢝꢋ*ꢀꢐꢓꢆꢌꢄꢅꢑꢀꢀꢏ  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢂꢕꢁꢕ/ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢁꢛ1  
DS70652E-page 344  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS70652E-page 345  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70652E-page 346  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS70652E-page 347  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
!ꢕꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ"#$ꢌꢑ%ꢇ"ꢖꢅꢉꢉꢇ&ꢏꢋꢉꢌꢑꢄꢇꢒ""ꢓꢇMꢇ'(ꢔꢕꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ""&ꢈꢛꢇ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
A2  
A
φ
A1  
L1  
L
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢎꢕ  
ꢕꢂ?ꢘꢀ1ꢐ,  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢄꢅ&  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈ  
M
M
ꢁꢂꢜꢘ  
M
ꢜꢂ<ꢕ  
ꢘꢂ-ꢕ  
ꢜꢂꢎꢕ  
ꢕꢂꢜꢘ  
ꢁꢂꢎꢘꢀꢝ.3  
M
ꢎꢂꢕꢕ  
ꢁꢂ<ꢘ  
M
<ꢂꢎꢕ  
ꢘꢂ?ꢕ  
ꢜꢂꢘꢕ  
ꢕꢂꢛꢘ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
9ꢁ  
ꢁꢂ?ꢘ  
ꢕꢂꢕꢘ  
ꢜꢂꢖꢕ  
ꢘꢂꢕꢕ  
?ꢂꢛꢕ  
ꢕꢂꢘꢘ  
ꢕꢂꢕꢛ  
ꢕꢟ  
ꢕꢂꢎꢘ  
<ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
)
ꢕꢂꢎꢎ  
M
ꢕꢂ-<  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢎꢕꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜꢎ1  
DS70652E-page 348  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS70652E-page 349  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
Units  
Dimension Limits  
INCHES  
NOM  
28  
.100 BSC  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
.200  
.150  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.120  
.015  
.290  
.240  
1.345  
.110  
.008  
.040  
.014  
.135  
.310  
.285  
1.365  
.130  
.010  
.050  
.018  
.335  
.295  
1.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing §  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-070B  
DS70652E-page 350  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
!ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ"#$ꢌꢑ%ꢇ"ꢖꢅꢉꢉꢇ&ꢏꢋꢉꢌꢑꢄꢇꢒ""ꢓꢇMꢇ'(ꢔꢕꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ""&ꢈꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢎ<  
ꢕꢂ?ꢘꢀ1ꢐ,  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢄꢅ&  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈ  
M
M
ꢁꢂꢜꢘ  
M
ꢜꢂ<ꢕ  
ꢘꢂ-ꢕ  
ꢁꢕꢂꢎꢕ  
ꢕꢂꢜꢘ  
ꢁꢂꢎꢘꢀꢝ.3  
M
ꢎꢂꢕꢕ  
ꢁꢂ<ꢘ  
M
<ꢂꢎꢕ  
ꢘꢂ?ꢕ  
ꢁꢕꢂꢘꢕ  
ꢕꢂꢛꢘ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
9ꢁ  
ꢁꢂ?ꢘ  
ꢕꢂꢕꢘ  
ꢜꢂꢖꢕ  
ꢘꢂꢕꢕ  
ꢛꢂꢛꢕ  
ꢕꢂꢘꢘ  
ꢕꢂꢕꢛ  
ꢕꢟ  
ꢕꢂꢎꢘ  
<ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
)
ꢕꢂꢎꢎ  
M
ꢕꢂ-<  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢎꢕꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜ-1  
2011-2012 Microchip Technology Inc.  
DS70652E-page 351  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70652E-page 352  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS70652E-page 353  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70652E-page 354  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS70652E-page 355  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
DS70652E-page 356  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
2011-2012 Microchip Technology Inc.  
DS70652E-page 357  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
!ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ)ꢏꢅꢆꢇ*ꢉꢅꢋ+ꢇꢜꢘꢇꢃꢄꢅꢆꢇꢈꢅꢍ%ꢅ,ꢄꢇꢒ-ꢃꢓꢇMꢇ./.ꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ)*ꢜꢛ  
0ꢌꢋ#ꢇꢕ(''ꢇꢖꢖꢇ1ꢘꢑꢋꢅꢍꢋꢇꢃꢄꢑ,ꢋ#  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
DS70652E-page 358  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
2011-2012 Microchip Technology Inc.  
DS70652E-page 359  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
DS70652E-page 360  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
22ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ)ꢏꢅꢆꢇ*ꢉꢅꢋ+ꢇꢜꢘꢇꢃꢄꢅꢆꢇꢈꢅꢍ%ꢅ,ꢄꢇꢒ-ꢃꢓꢇMꢇꢁ/ꢁꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ)*ꢜꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢂ?ꢘꢀ1ꢐ,  
ꢕꢂꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
,ꢋꢅ&ꢆꢌ&ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
7
ꢗꢁ  
ꢗ-  
.
.ꢎ  
ꢕꢂ<ꢕ  
ꢕꢂꢕꢕ  
ꢁꢂꢕꢕ  
ꢕꢂꢕꢘ  
ꢕꢂꢕꢎ  
ꢕꢂꢎꢕꢀꢝ.3  
<ꢂꢕꢕꢀ1ꢐ,  
?ꢂꢖꢘ  
<ꢂꢕꢕꢀ1ꢐ,  
?ꢂꢖꢘ  
ꢕꢂ-ꢕ  
ꢕꢂꢖꢕ  
M
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ>ꢄ#&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢀꢃꢆ#  
?ꢂ-ꢕ  
?ꢂ<ꢕ  
ꢒꢎ  
)
9
?ꢂ-ꢕ  
ꢕꢂꢎꢘ  
ꢕꢂ-ꢕ  
ꢕꢂꢎꢕ  
?ꢂ<ꢕ  
ꢕꢂ-<  
ꢕꢂꢘꢕ  
M
A
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢃꢆꢌ4ꢆꢑꢈꢀꢄ!ꢀ!ꢆ*ꢀ!ꢄꢅꢑ"ꢇꢆ&ꢈ#ꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢁꢕ-1  
2011-2012 Microchip Technology Inc.  
DS70652E-page 361  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
22ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ)ꢏꢅꢆꢇ*ꢉꢅꢋ+ꢇꢜꢘꢇꢃꢄꢅꢆꢇꢈꢅꢍ%ꢅ,ꢄꢇꢒ-ꢃꢓꢇMꢇꢁ/ꢁꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ)*ꢜꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
DS70652E-page 362  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
22ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ3#ꢌꢑꢇ)ꢏꢅꢆꢇ*ꢉꢅꢋ4ꢅꢍ%ꢇꢒꢈ3ꢓꢇMꢇꢀꢕ/ꢀꢕ/ꢀꢇꢖꢖꢇꢗꢘꢆꢙ+ꢇ!(ꢕꢕꢇꢖꢖꢇꢚ3)*ꢈꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢂ<ꢕꢀ1ꢐ,  
M
ꢁꢂꢕꢕ  
M
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀ9ꢈꢆ#!  
9ꢈꢆ#ꢀꢃꢄ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀꢀ  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢁ  
9
M
ꢁꢂꢎꢕ  
ꢁꢂꢕꢘ  
ꢕꢂꢁꢘ  
ꢕꢂꢜꢘ  
ꢕꢂꢛꢘ  
ꢕꢂꢕꢘ  
ꢕꢂꢖꢘ  
ꢕꢂ?ꢕ  
3ꢋꢋ&ꢓꢉꢄꢅ&  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈ  
9ꢁ  
ꢁꢂꢕꢕꢀꢝ.3  
-ꢂꢘꢟ  
ꢕꢟ  
ꢜꢟ  
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
.
.ꢁ  
ꢒꢁ  
ꢁꢎꢂꢕꢕꢀ1ꢐ,  
ꢁꢎꢂꢕꢕꢀ1ꢐ,  
ꢁꢕꢂꢕꢕꢀ1ꢐ,  
ꢁꢕꢂꢕꢕꢀ1ꢐ,  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ9ꢈꢅꢑ&ꢍ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢀꢒꢉꢆ%&ꢀꢗꢅꢑꢇꢈꢀ  
ꢔꢋꢇ#ꢀꢒꢉꢆ%&ꢀꢗꢅꢑꢇꢈꢀ1ꢋ&&ꢋ'  
ꢕꢂꢕꢛ  
ꢕꢂ-ꢕ  
ꢁꢁꢟ  
ꢕꢂꢎꢕ  
ꢕꢂꢖꢘ  
ꢁ-ꢟ  
)
ꢕꢂ-ꢜ  
ꢁꢎꢟ  
ꢁꢎꢟ  
ꢁꢁꢟ  
ꢁ-ꢟ  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ,ꢍꢆ'%ꢈꢉ!ꢀꢆ&ꢀꢌꢋꢉꢅꢈꢉ!ꢀꢆꢉꢈꢀꢋꢓ&ꢄꢋꢅꢆꢇBꢀ!ꢄCꢈꢀ'ꢆꢊꢀ ꢆꢉꢊꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢁꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢎꢘꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜ?1  
2011-2012 Microchip Technology Inc.  
DS70652E-page 363  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70652E-page 364  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
2011-2012 Microchip Technology Inc.  
DS70652E-page 365  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
DS70652E-page 366  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
APPENDIX A: REVISION HISTORY  
Revision A (January 2011)  
This is the initial released version of the document.  
Revision B (February 2011)  
All major changes are referenced by their respective  
section in Table A-1.  
In addition, minor text and formatting changes were  
incorporated throughout the document.  
TABLE A-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
High-Performance, Ultra Low Cost 16-bit  
Digital Signal Controllers  
Pin diagram updates (see “Pin Diagrams”):  
• 20-pin PDIP/SOIC/SSOP (dsPIC33FJ16MC101):  
Removed the FLTB1 pin from pin 10  
• 28-pin SPDIP/SOIC/SSOP (dsPIC33FJ16MC102):  
Relocated the FLTB1 pin from pin 12 to pin 14;  
relocated the FLTA1 pin from pin 16 to pin 15  
• 28-pin QFN (dsPIC33FJ16MC102):  
Relocated the FLTA1 pin from pin 13 to pin 12;  
relocated the FLTB1 pin from pin 9 to pin 11  
• 36-pin TLA (dsPIC33FJ16MC102):  
Relocated the FLTA1 pin from pin 17 to pin 16;  
relocated the FLTB1 pin from pin 10 to pin 15  
Section 1.0 “Device Overview”  
Section 4.0 “Memory Organization”  
Section 6.0 “Resets”  
Added Notes 1, 2, and 3 regarding the FLTA1 and FLTB1 pins to the  
Pinout I/O Descriptions (see Table 1-1).  
Added Section “”.  
Updated All Resets value for PxFLTACON and PxFLTABCON to the  
6-Output PWM1 Register Map (see Table 4-9).  
Added Note 1 to the PMD Register Map (see Table 4-29).  
Removed Reset timing sequence information from Section 6.2  
“System Reset”, as this information is provided in Figure 6-2.  
Section 15.0 “Motor Control PWM Module” Added Note 2 and Note 3 regarding the FLTA1 and FLTB1 pins to the  
6-channel PWM Module Block Diagram (see Figure 15-1).  
Added Section 15.2 “PWM Faults” and Section 15.3 “Write-  
protected Registers”.  
Added Note 2 and Note 3 regarding the FLTA1 and FLTB1 pins to the  
note boxes located below the PxFLTACON and PxFLTBCON  
registers (see Register 15-9 and Register 15-10).  
Section 17.0 “Inter-Integrated Circuit™  
(I2C™)”  
Updated the descriptions for the conditional If STREN = 1and If  
STREN = 0statements for the SCLREL bit in the I2Cx Control  
Register (see Register 17-1).  
Section 23.0 “Special Features”  
Added the RTSP Effect column to the dsPIC33F Configuration Bits  
Description (see Table 23-3).  
Section 26.0 “Electrical Characteristics”  
Section 27.0 “Packaging Information”  
Added Parameters 300 and D305 (see Table 26-42 and Table 26-43).  
Modified the pending TLA packaging page.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 367  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Revision C (June 2011)  
This revision includes the following global update:  
• All JTAG references have been removed  
All other major changes are referenced by their  
respective section in Table A-2.  
In addition, minor text and formatting changes were  
incorporated throughout the document.  
TABLE A-2:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
High-Performance, Ultra Low Cost  
16-bit Digital Signal Controllers  
The TMS, TDI, TDO, and TCK pin names were removed from these pin  
diagrams:  
• 28-pin SPDIP/SOIC/SSOP  
• 28-pin QFN  
• 36-pin TLA  
Section 1.0 “Device Overview”  
Updated the Buffer Type to Digital for the CTED1 and CTED2 pins (see  
Table 1-1).  
Section 4.0 “Memory Organization”  
Updated the SFR Address for IC2CON, IC3BUF, and IC3CON in the Input  
Capture Register Map (see Table 4-7).  
Added the VREGS bit to the RCON register in the System Control Register  
Map (see Table 4-27).  
Section 6.0 “Resets”  
Added the VREGS bit to the RCON register (see Register 6-1).  
Section 8.0 “Oscillator Configuration” Updated the definition for COSC<2:0> = 001and NOSC<2:0> = 001in  
the OSCCON register (see Register 8-1).  
Section 15.0 “Motor Control PWM  
Module”  
Updated the title for Example 15-1 to include a reference to the Assembly  
language.  
Added Example 15-2, which provides a C code version of the write-  
protected register unlock and Fault clearing sequence.  
Section 19.0 “10-bit Analog-to-Digital Updated the CH0 section and added Note 2 in both ADC block diagrams  
Converter (ADC)”  
(see Figure 19-1 and Figure 19-2).  
Updated the multiplexer values in the ADC Conversion Clock Period Block  
Diagram (see Figure 19-3.  
Added the 01110bit definitions and updated the 01101bit definitions for  
the CH0SB<4:0> and CH0SA<4:0> bits in the AD1CHS0 register (see  
Register 19-5).  
Section 22.0 “Charge Time  
Measurement Unit (CTMU)”  
Removed Section 22.1 “Measuring Capacitance”, Section 22.2 “Measuring  
Time”, and Section 22.3 “Pulse Generation and Delay”  
Updated the key features.  
Added the CTMU Block Diagram (see Figure 22-1).  
Updated the ITRIM<5:0> bit definitions and added Note 1 to the CTMU  
Current Control register (see Register 22-3).  
DS70652E-page 368  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE A-2:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 23.0 “Special Features”  
Updated bits 5 and 4 of FPOR, modified Note 2, and removed Note 3 from  
the Configuration Shadow Register Map (see Table 23-1).  
Updated bit 14 of CONFIG1 and removed Note 5 from the Configuration  
Flash Words (see Table 23-2).  
Updated the PLLKEN Configuration bit description (see Table 23-3).  
Added Note 3 to Connections for the On-Chip Voltage Regulator (see  
Figure 23-1).  
Section 26.0 “Electrical  
Characteristics”  
Updated the Standard Operating Conditions to: 3.0V to 3.6V in all tables.  
Removed the Voltage on VCAP with respect to VSS entry in Absolute  
Maximum Ratings(1)  
.
Updated the VDD Range (in Volts) in Operating MIPS vs. Voltage (see  
Table 26-1).  
Removed Parameter DC18 and updated the minimum value for  
Parameter DC 10 in the DC Temperature and Voltage Specifications (see  
Table 26-4).  
Updated the Characteristic definition and the Typical value for  
Parameter BO10 in Electrical Characteristics: BOR (see Table 26-5).  
Updated Note 2 in the DC Characteristics: Operating Current (IDD) (see  
Table 26-6).  
Updated Note 2 in the DC Characteristics: Idle Current (IIDLE) (see  
Table 26-7).  
Updated Note 2 and Parameters DC60C and DC61a-DC61d in the DC  
Characteristics: Power-Down Current (IPD) (see Table 26-8).  
Updated Note 2 in the DC Characteristics: Doze Current (IDOZE) (see  
Table 26-9).  
Added Note 1 to the Internal Voltage Regulator Specifications (see  
Table 26-13).  
Updated the Minimum and Maximum values for Parameter F20a and the  
Typical value for Parameter F20b in AC Characteristics: Internal Fast RC  
(FRC) Accuracy (see Table 26-18).  
Updated the Minimum, Typical, and Maximum values for Parameter F21a  
and F21b in Internal Low-Power RC (LPRC) Accuracy (see Table 26-19).  
Updated the Minimum, Typical, and Maximum values for Parameter D305  
in the Comparator Module Specifications (see Table 26-43).  
Added Parameters CTMUFV1 and CTMUFV2 and updated Note 1 and the  
Conditions for all parameters in the CTMU Current Source Specifications  
(see Table 26-46).  
Added Forward Voltage Versus Temperature (see Figure 26-25).  
2011-2012 Microchip Technology Inc.  
DS70652E-page 369  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Also, where applicable, new sections were added to  
peripheral chapters that provide information and links  
to the related resources, as well as helpful tips. For  
examples, see Section 18.1 “UART Helpful Tips”  
Revision D (April 2012)  
This revision includes updates in support of the  
following new devices:  
• dsPIC33FJ32GP101  
• dsPIC33FJ32GP102  
• dsPIC33FJ32GP104  
• dsPIC33FJ32MC101  
• dsPIC33FJ32MC102  
• dsPIC33FJ32MC104  
and Section 18.2 “UART Resources”.  
This revision includes text and formatting changes that  
were incorporated throughout the document.  
All other major changes are referenced by their  
respective section in Table A-3.  
TABLE A-3:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“16-Bit Digital Signal  
Controllers (up to 32-  
The content on the first page of this section was extensively reworked to provide the  
reader with the key features and functionality of this device family in an “at-a-glance”  
Kbyte Flash and 2-Kbyte format.  
SRAM)”  
TABLE 2: “dsPIC33FJ32(GP/MC)101/102/104 Device Features” was added, which  
provides a feature overview of the new devices.  
All pin diagrams were updated (see “Pin Diagrams”).  
Updated the notes in the device family block diagram (see Figure 1-1).  
Section 1.0 “Device  
Overview”  
Updated the following pinout I/O descriptions (Table 1-1):  
• ANx  
• CNx  
• RAx  
• RCx  
• CVREFIN (formerly CVREF)  
Relocated 1.1 “Referenced Sources” to the previous chapter (see “Referenced  
Sources”).  
Section 2.0 “Guidelines Updated the Recommended Minimum Connection diagram (see Figure 2-1).  
for Getting Started with  
16-bit Digital Signal  
Controllers”  
Section 4.0 “Memory  
Organization”  
Updated the existing Program Memory Map (see Figure 4-1) and added the Program  
Memory Map for dsPIC33FJ16(GP/MC)101/102 Devices (see Figure 4-1).  
Updated the existing Data Memory Map (see Figure 4-4) and added the Data Memory  
Map for dsPIC33FJ32(GP/MC)101/102/104 Devices with 2-Kbyte RAM (see Figure 4-5).  
The following Special Function Register maps were updated or added:  
TABLE 4-5: Change Notification Register Map for dsPIC33FJ32(GP/MC)104  
Devices  
TABLE 4-6: Interrupt Controller Register Map  
TABLE 4-8: Timers Register Map for dsPIC33FJ32(GP/MC)10X Devices  
TABLE 4-15: ADC1 Register Map for dsPIC33FJXX(GP/MC)101 Devices  
TABLE 4-17: ADC1 Register Map for dsPIC33FJ32(GP/MC)104 Devices  
TABLE 4-22: Peripheral Pin Select Input Register Map  
TABLE 4-26: Peripheral Pin Select Output Register Map for dsPIC33FJ32(GP/  
MC)104 Devices  
TABLE 4-28: PORTA Register Map for dsPIC33FJ32(GP/MC)101/102 Devices  
TABLE 4-29: PORTA Register Map for dsPIC33FJ32(GP/MC)104 Devices  
TABLE 4-36: PORTC Register Map for dsPIC33FJ32(GP/MC)104 Devices  
TABLE 4-39: PMD Register Map  
DS70652E-page 370  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE A-3:  
MAJOR SECTION UPDATES (CONTINUED)  
Update Description  
Section Name  
Section 7.0 “Interrupt  
Controller”  
Updated the Interrupt Vectors (see Table 7-1).  
The following registers were updated or added:  
Register 7-5: IFS0: Interrupt Flag Status Register 0  
Register 7-11: IEC1: Interrupt Enable Control Register 1  
Register 7-21: IPC6: Interrupt Priority Control Register 6  
Section 9.0 “Power-  
Saving Features”  
Updated 9.5 PMD Control Registers.  
Section 10.0 “I/O Ports” Updated TABLE 10-1: Selectable Input Sources (Maps Input to Function)(1)  
.
Updated TABLE 10-2: Output Selection for Remappable Pin (RPn)  
The following registers were updated or added:  
Register 10-4: RPINR4: Peripheral Pin Select Input Register 4  
Register 10-6: RPINR8: Peripheral Pin Select Input Register 8  
Register 10-19: RPOR8: Peripheral Pin Select Output Register 8  
Register 10-20: RPOR9: Peripheral Pin Select Output Register 9  
Register 10-21: RPOR10: Peripheral Pin Select Output Register 10  
Register 10-22: RPOR11: Peripheral Pin Select Output Register 11  
Register 10-23: RPOR12: Peripheral Pin Select Output Register 12  
Section 12.0 “Timer2/3  
and Timer4/5”  
The features and operation information was extensively updated in support of Timer4/5  
(see Section 12.1 “32-Bit Operation” and Section 12.2 “16-Bit Operation”).  
The block diagrams were updated in support of the new timers (see Figure 12-1,  
Figure 12-2, and Figure 12-3).  
The following registers were added:  
Register 12-3: T4CON Control Register(1)  
Register 12-4: T5CON Control Register(1)  
Section 15.0 “Motor  
Updated TABLE 15-1: Internal Pull-down resistors on PWM Fault pins.  
Control PWM Module”  
Note 2 was added to Register 15-5: PWMXCON1: PWMx Control Register 1(1)  
The number of available input pins and channels were updated from six to 14.  
.
Section 19.0 “10-Bit  
Analog-to-Digital  
Converter (ADC)”  
Updated FIGURE 19-1: ADC1 Block Diagram for dsPIC33FJXX(GP/MC)101 Devices.  
Updated FIGURE 19-2: ADC1 Block Diagram for dsPIC33FJXX(GP/MC)102 Devices.  
Added FIGURE 19-3: ADC1 Block Diagram for dsPIC33FJ32(GP/MC)104 Devices.  
The following registers were updated:  
Register 19-4: AD1CHS123: ADC1 Input Channel 1, 2, 3 Select Register  
Register 19-5: AD1CHS0: ADC1 INPUT Channel 0 select Register  
Register 19-6: AD1CSSL: ADC1 Input Scan Select Register Low(1,2,3)  
Register 19-7: AD1PCFGL: ADC1 Port Configuration Register Low(1,2,3)  
2011-2012 Microchip Technology Inc.  
DS70652E-page 371  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
TABLE A-3:  
MAJOR SECTION UPDATES (CONTINUED)  
Update Description  
Section Name  
Section 26.0 “Electrical Updated the Absolute Maximum Ratings.  
Characteristics”  
Updated TABLE 26-3: Thermal Packaging Characteristics.  
Updated TABLE 26-6: DC Characteristics: Operating Current (Idd).  
Updated TABLE 26-7: DC Characteristics: Idle Current (Iidle).  
Updated TABLE 26-8: DC Characteristics: Power-Down Current (Ipd).  
Updated TABLE 26-9: DC Characteristics: Doze Current (Idoze).  
Updated TABLE 26-10: DC Characteristics: I/O Pin Input Specifications.  
Replaced all SPI specifications and figures (see Table 26-29 through Table 26-44 and  
Figure 26-11 through Figure 26-26).  
Section 27.0 “Packaging Added the following Package Marking Information and Package Drawings:  
Information”  
• 44-Lead TQFP  
• 44-Lead QFN  
• 44-Lead VTLA (referred to as TLA in the package drawings)  
DS70652E-page 372  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Revision E (September 2012)  
This revision includes updates to the values in  
Section 26.0 “Electrical Characteristics” and  
updated packaging diagrams in Section 27.0  
“Packaging Information”. There are minor text edits  
throughout the document.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 373  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 374  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
INDEX  
A
C
Absolute Maximum Ratings .............................................. 279  
AC Characteristics ............................................................ 292  
10-Bit ADC Specifications......................................... 331  
ADC Specifications ................................................... 330  
Internal Fast RC (FRC) Accuracy ............................. 294  
Internal Low-Power RC (LPRC) Accuracy................ 294  
Load Conditions........................................................ 292  
Temperature and Voltage Specifications.................. 292  
ADC  
Control Registers ...................................................... 220  
Helpful Tips............................................................... 219  
Initialization ............................................................... 215  
Key Features............................................................. 215  
Resources................................................................. 219  
Alternate Interrupt Vector Table (AIVT) .............................. 95  
Analog-to-Digital Converter (ADC).................................... 215  
Arithmetic Logic Unit (ALU)................................................. 43  
Assembler  
C Compilers  
MPLAB C18.............................................................. 276  
Charge Time Measurement Unit. See CTMU.  
Clock Switching ................................................................ 132  
Enabling.................................................................... 132  
Sequence ................................................................. 132  
Code Examples  
Assembly Code for Write-Protected Register  
Unlock, Fault Clearing Sequence..................... 182  
C Code for Write-Protected Register Unlock,  
Fault Clearing Sequence.................................. 182  
Port Write/Read........................................................ 141  
PWRSAV Instruction Syntax .................................... 133  
Setting the RTCWREN Bit........................................ 242  
Comparator....................................................................... 229  
Control Registers...................................................... 232  
Configuration Bits ............................................................. 259  
CPU  
MPASM Assembler................................................... 276  
Barrel Shifter............................................................... 47  
Control Registers........................................................ 40  
CPU Clocking System ...................................................... 126  
Clock Selection......................................................... 126  
Clock Sources .......................................................... 126  
Configuration Bit Values for Clock Selection............ 127  
PLL Configuration..................................................... 127  
CTMU  
B
Bit-Reversed Addressing .................................................... 77  
Example...................................................................... 78  
Implementation ........................................................... 77  
Sequence Table (16-Entry)......................................... 78  
Block Diagrams  
16-Bit Timer1 Module................................................ 163  
6-Channel PWM Module (PWM1)............................. 180  
ADC Conversion Clock Period.................................. 219  
ADC1 for dsPIC33FJ32(GP/MC)104 Devices .......... 218  
ADC1 for dsPIC33FJXX(GP/MC)101 Devices.......... 216  
ADC1 for dsPIC33FJXX(GP/MC)102 Devices.......... 217  
Comparator I/O Operating Modes............................. 229  
Comparator Voltage Reference ................................ 230  
Connections for On-Chip Voltage Regulator............. 264  
CTMU Module........................................................... 254  
Digital Filter Interconnect .......................................... 231  
DSP Engine ................................................................ 44  
dsPIC33FJXX(GP/MC)10X......................................... 28  
dsPIC33FJXX(GP/MC)10X CPU Core ....................... 38  
I2C Module................................................................ 202  
Input Capture ............................................................ 173  
Multiplexing of Remappable Output for RPn............. 143  
Oscillator System...................................................... 125  
Output Compare Module........................................... 175  
Real-Time Clock and Calendar (RTCC) Module....... 241  
Remappable MUX Input for U1RX............................ 142  
Reset System.............................................................. 87  
Shared Port Structure ............................................... 140  
SPIx Module.............................................................. 195  
Timer2 and Timer4 (16-Bit)....................................... 167  
Timer2/3 and Timer4/5 (32-Bit)................................. 166  
Timer3 and Timer5 (16-Bit)....................................... 167  
UART Simplified........................................................ 209  
User-Programmable Blanking Function.................... 230  
Watchdog Timer (WDT)............................................ 265  
Brown-out Reset (BOR).................................................... 264  
Control Registers...................................................... 255  
Customer Change Notification Service............................. 380  
Customer Notification Service .......................................... 380  
Customer Support............................................................. 380  
D
Data Accumulators and Adder/Subtracter .......................... 45  
Data Space Write Saturation...................................... 47  
Overflow and Saturation............................................. 45  
Round Logic ............................................................... 46  
Write Back .................................................................. 46  
Data Address Space........................................................... 52  
Alignment.................................................................... 52  
Memory Map for dsPIC33FJ16(GP/MC)101/102  
Devices with 1-Kbyte RAM .................................... 53  
Memory Map for dsPIC33FJ32(GP/MC)101/102/104  
Devices with 1-Kbyte RAM .................................... 54  
Near Data Space........................................................ 52  
Software Stack ........................................................... 73  
Width .......................................................................... 52  
DC Characteristics............................................................ 280  
Brown-out Reset (BOR)............................................ 281  
Doze Current (IDOZE)................................................ 287  
I/O Pin Input Specifications ...................................... 288  
I/O Pin Output Specifications.................................... 290  
Idle Current (IIDLE).................................................... 284  
Operating Current (IDD) ............................................ 282  
Operating MIPS vs. Voltage ..................................... 280  
Power-Down Current (IPD)........................................ 286  
Program Memory...................................................... 291  
Temperature and Voltage Specifications.................. 281  
Thermal Operating Conditions.................................. 280  
Thermal Packaging................................................... 280  
2011-2012 Microchip Technology Inc.  
DS70652E-page 375  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Development Support .......................................................275  
Doze Mode........................................................................134  
DSP Engine.........................................................................43  
Multiplier......................................................................45  
dsPIC33FJ16(GP/MC)101/102  
Interrupt Setup Procedures............................................... 124  
Initialization............................................................... 124  
Interrupt Disable ....................................................... 124  
Interrupt Service Routine (ISR)................................. 124  
Trap Service Routine (TSR) ..................................... 124  
Interrupt Vector Table (IVT)................................................ 95  
Interrupts Coincident with Power Save Instructions ......... 134  
Device Features............................................................2  
dsPIC33FJ32(GP/MC)101/102/104  
Device Features............................................................3  
L
E
LPRC Oscillator  
Electrical Characteristics...................................................279  
AC.............................................................................292  
Equations  
Use with WDT........................................................... 265  
M
Memory Organization ......................................................... 49  
Microchip Internet Web Site.............................................. 380  
Modulo Addressing............................................................. 75  
Applicability................................................................. 77  
Operation Example..................................................... 76  
Start and End Address ............................................... 75  
W Address Register Selection.................................... 75  
Motor Control PWM .......................................................... 179  
Control Registers...................................................... 183  
Faults........................................................................ 181  
At Reset............................................................ 181  
Device Operating Frequency ....................................126  
MS with PLL Mode....................................................127  
Errata ..................................................................................24  
F
Flash Program Memory.......................................................83  
Control Registers ........................................................85  
Operations ..................................................................84  
Programming Algorithm ..............................................84  
RTSP Operation..........................................................84  
Table Instructions........................................................83  
PWM1 6-Channel Module......................................... 179  
Write-Protected Registers......................................... 181  
MPLAB ASM30 Assembler, Linker, Librarian................... 276  
MPLAB Integrated Development Environment  
Software ................................................................... 275  
MPLAB PM3 Device Programmer .................................... 278  
MPLAB REAL ICE In-Circuit Emulator System ................ 277  
MPLINK Object Linker/MPLIB Object Librarian................ 276  
I
I/O Ports............................................................................139  
Configuring Analog Port Pins....................................141  
Open-Drain Configuration.........................................141  
Parallel I/O (PIO).......................................................139  
Write/Read Timing ....................................................141  
I2C  
Control Registers ......................................................203  
Operating Modes ......................................................201  
Registers...................................................................201  
In-Circuit Debugger...........................................................266  
In-Circuit Serial Programming (ICSP) ...............................266  
Input Capture ....................................................................173  
Registers...................................................................174  
Input Change Notification (ICN) ........................................141  
Instruction Addressing Modes.............................................73  
File Register Instructions ............................................73  
Fundamental Modes Supported..................................74  
MAC Instructions.........................................................74  
MCU Instructions ........................................................73  
Move and Accumulator Instructions............................74  
Other Instructions........................................................74  
Instruction Set  
Summary...........................................................267  
Overview...................................................................270  
Symbols Used in Opcode Descriptions.....................268  
Instruction-Based Power-Saving Modes...........................133  
Idle ............................................................................134  
Sleep.........................................................................133  
Internet Address................................................................380  
Interrupt Controller  
O
Output Compare ............................................................... 175  
Modes....................................................................... 176  
Active-High One-Shot....................................... 176  
Active-Low One-Shot........................................ 176  
Continuous Pulse ............................................. 176  
Delayed One-Shot............................................ 176  
Module Disabled............................................... 176  
PWM with Fault Protection ............................... 176  
PWM without Fault Protection .......................... 176  
Toggle............................................................... 176  
P
Packaging......................................................................... 337  
Details....................................................................... 340  
Marking..................................................... 337, 338, 339  
Peripheral Module Disable (PMD) .................................... 134  
Peripheral Pin Select (PPS).............................................. 142  
Available Pins ........................................................... 142  
Controlling ................................................................ 142  
Controlling Configuration Changes........................... 144  
Helpful Tips............................................................... 145  
I/O Resources........................................................... 145  
Input Selection Sources for Remappable  
Interrupt Registers  
Pin (RPn).......................................................... 143  
Output Selection Sources for Remappable  
Pin (RPn).......................................................... 144  
Registers .................................................................. 146  
Pin Diagrams ........................................................................ 4  
Pinout I/O Descriptions (table)............................................ 29  
IECx ....................................................................98  
IFSx.....................................................................98  
INTCON1 ............................................................98  
INTCON2 ............................................................98  
INTTREG ............................................................98  
IPCx ....................................................................98  
Reset Sequence .........................................................95  
DS70652E-page 376  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
PORTA  
Real-Time Clock and Calendar .................................. 66  
SPI1............................................................................ 62  
System Control........................................................... 72  
Timers, dsPIC33FJ16(GP/MC)10X Devices .............. 60  
Timers, dsPIC33FJ32(GP/MC)10X Devices .............. 60  
UART1........................................................................ 62  
Register Map............................................................... 70  
Power-Saving Features .................................................... 133  
Clock Frequency and Switching................................ 133  
Program Address Space..................................................... 49  
Construction................................................................ 79  
Data Access from Program Memory Using  
Registers  
Program Space Visibility..................................... 82  
Data Access from Program Memory Using  
AD1CHS0 (ADC1 Input Channel 0 Select)............... 225  
AD1CHS123 (ADC1 Input Channel 1, 2, 3  
Table Instructions ............................................... 81  
Data Access from, Address Generation...................... 80  
Memory Map  
dsPIC33FJ16(GP/MC)101/102 Devices............. 49  
dsPIC33FJ32(GP/MC)101/102/104 Devices ...... 50  
Table Read Instructions  
Select) .............................................................. 224  
AD1CON1 (ADC1 Control 1).................................... 220  
AD1CON2 (ADC1 Control 2).................................... 222  
AD1CON3 (ADC1 Control 3).................................... 223  
AD1CSSL (ADC1 Input Scan Select Low) ............... 226  
AD1PCFGL (ADC1 Port Configuration Low)............ 227  
ALCFGRPT (Alarm Configuration) ........................... 246  
ALRMVAL (Alarm Minutes and Seconds Value,  
TBLRDH ............................................................. 81  
TBLRDL.............................................................. 81  
Visibility Operation ...................................................... 82  
Program Memory  
ALRMPTR Bits = 00)........................................ 252  
ALRMVAL (Alarm Month and Day Value,  
Interrupt Vector ........................................................... 51  
Organization................................................................ 51  
Reset Vector ............................................................... 51  
Programmer’s Model........................................................... 39  
ALRMPTR Bits = 10)................................ 250, 251  
ALRMVAL (Alarm Weekday and Hours Value,  
ALRMPTR Bits = 01)........................................ 251  
CLKDIV (Clock Divisor) ............................................ 130  
CMSTAT (Comparator Status) ................................. 232  
CMxCON (Comparator x Control) ............................ 233  
CMxFLTR (Comparator x Filter Control) .................. 239  
CMxMSKCON (Comparator x Mask  
R
Reader Response............................................................. 381  
Real-Time Clock and Calendar (RTCC)............................ 241  
Register Maps  
Gating Control) ................................................. 237  
CMxMSKSRC (Comparator x Mask  
6-Output PWM1, dsPIC33FJXXMC10X Devices........ 61  
ADC1, dsPIC33FJ32(GP/MC)104 Devices................. 65  
ADC1, dsPIC33FJXX(GP/MC)101 Devices................ 63  
ADC1, dsPIC33FJXX(GP/MC)102 Devices................ 64  
Change Notification, dsPIC33FJ32(GP/MC)104  
Devices............................................................... 58  
Change Notification, dsPIC33FJXX(GP/MC)102  
Devices............................................................... 58  
Change Notification, dsPIC33FJXXGP101  
Devices............................................................... 58  
Change Notification, dsPIC33FJXXMC101  
Devices............................................................... 58  
Comparator................................................................. 67  
Configuration Flash Words  
dsPIC33FJ16(GP/MC)10X Devices.................. 260  
dsPIC33FJ32(GP/MC)10X Devices.................. 260  
Configuration Shadow Registers .............................. 260  
CPU Core.................................................................... 56  
CTMU.......................................................................... 66  
I2C1 ............................................................................ 62  
Input Capture .............................................................. 61  
Interrupt Controller...................................................... 59  
NVM............................................................................ 72  
Output Compare ......................................................... 61  
PAD Configuration ...................................................... 66  
PMD............................................................................ 72  
PORTA, dsPIC33FJ32(GP/MC)104 Devices.............. 70  
PORTA, dsPIC33FJXX(GP/MC)101/102 Devices...... 69  
PORTB, dsPIC33FJXX(GP/MC)102 and  
dsPIC33FJ32(GP/MC)104 Devices .................... 70  
PORTB, dsPIC33FJXXGP101 Devices...................... 71  
PORTB, dsPIC33FJXXMC101 Devices................ 70, 71  
PORTC, dsPIC33FJ32(GP/MC)104 Devices.............. 71  
PPS Input.................................................................... 67  
PPS Output, dsPIC33FJ32(GP/MC)104 Devices ....... 69  
PPS Output, dsPIC33FJXX(GP/MC)102 Devices ...... 68  
PPS Output, dsPIC33FJXXGP101 Devices ............... 68  
PPS Output, dsPIC33FJXXMC101 Devices............... 68  
Source Select).................................................. 235  
CORCON (Core Control)...................................... 42, 99  
CTMUCON1 (CTMU Control 1)................................ 255  
CTMUCON2 (CTMU Control 2)................................ 256  
CTMUICON (CTMU Current Control)....................... 257  
CVRCON (Comparator Voltage Reference  
Control)............................................................. 240  
DEVID (Device ID).................................................... 263  
DEVREV (Device Revision)...................................... 263  
I2CxCON (I2Cx Control)........................................... 203  
I2CxMSK (I2Cx Slave Mode Address Mask)............ 207  
I2CxSTAT (I2Cx Status)........................................... 205  
ICxCON (Input Capture x Control)............................ 174  
IEC0 (Interrupt Enable Control 0)............................. 108  
IEC1 (Interrupt Enable Control 1)............................. 109  
IEC2 (Interrupt Enable Control 2)............................. 110  
IEC3 (Interrupt Enable Control 3)............................. 110  
IEC4 (Interrupt Enable Control 4)............................. 111  
IFS0 (Interrupt Flag Status 0)................................... 103  
IFS1 (Interrupt Flag Status 1)................................... 105  
IFS2 (Interrupt Flag Status 2)................................... 106  
IFS3 (Interrupt Flag Status 3)................................... 106  
IFS4 (Interrupt Flag Status 4)................................... 107  
INTCON1 (Interrupt Control 1) ................................. 100  
INTCON2 (Interrupt Control 2) ................................. 102  
INTTREG (Interrupt Control and Status) .................. 123  
IPC0 (Interrupt Priority Control 0)............................. 112  
IPC1 (Interrupt Priority Control 1)............................. 113  
IPC14 (Interrupt Priority Control 14)......................... 119  
IPC15 (Interrupt Priority Control 15)......................... 120  
IPC16 (Interrupt Priority Control 16)......................... 121  
IPC19 (Interrupt Priority Control 19)......................... 122  
IPC2 (Interrupt Priority Control 2)............................. 114  
IPC3 (Interrupt Priority Control 3)............................. 115  
IPC4 (Interrupt Priority Control 4)............................. 116  
IPC5 (Interrupt Priority Control 5)............................. 117  
2011-2012 Microchip Technology Inc.  
DS70652E-page 377  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
IPC6 (Interrupt Priority Control 6) .............................117  
IPC7 (Interrupt Priority Control 7) .............................118  
IPC9 (Interrupt Priority Control 9) .............................119  
NVMCON (Flash Memory Control) .............................85  
NVMKEY (Nonvolatile Memory Key) ..........................86  
OCxCON (Output Compare x Control) .....................177  
OSCCON (Oscillator Control) ...................................128  
OSCTUN (FRC Oscillator Tuning)............................131  
PADCFG1 (Pad Configuration Control) ....................245  
PMD1 (Peripheral Module Disable Control 1)...........135  
PMD2 (Peripheral Module Disable Control 2)...........136  
PMD3 (Peripheral Module Disable Control 3)...........137  
PMD4 (Peripheral Module Disable Control 4)...........137  
PWMxCON1 (PWMx Control 1)................................186  
PWMxCON2 (PWMx Control 2)................................187  
PWMxKEY (PWMx Unlock) ......................................194  
PxDC1 (PWMx Duty Cycle 1) ...................................193  
PxDC2 (PWMx Duty Cycle 2) ...................................193  
PxDC3 (PWMx Duty Cycle 3) ...................................193  
PxDTCON1 (PWMx Dead-Time Control 1)...............188  
PxDTCON2 (PWMx Dead-Time Control 2)...............189  
PxFLTACON (PWMx Fault A Control)......................190  
PxFLTBCON (PWMx Fault B Control)......................191  
PxOVDCON (PWMx Override Control).....................192  
PxSECMP (PWMx Special Event Compare) ............185  
PxTCON (PWMx Time Base Control).......................183  
PxTMR (PWMx Timer Count Value).........................184  
PxTPER (PWMx Time Base Period).........................184  
RCFGCAL (RTCC Calibration  
and Configuration) ............................................243  
RCON (Reset Control)................................................88  
RPINR0 (Peripheral Pin Select Input 0)....................146  
RPINR1 (Peripheral Pin Select Input 1)....................147  
RPINR11 (Peripheral Pin Select Input 11)................152  
RPINR18 (Peripheral Pin Select Input 18)................153  
RPINR20 (Peripheral Pin Select Input 20)................154  
RPINR21 (Peripheral Pin Select Input 21)................155  
RPINR3 (Peripheral Pin Select Input 3)....................148  
RPINR4 (Peripheral Pin Select Input 4)....................149  
RPINR7 (Peripheral Pin Select Input 7)....................150  
RPINR8 (Peripheral Pin Select Input 8)....................151  
RPOR0 (Peripheral Pin Select Output 0)..................156  
RPOR1 (Peripheral Pin Select Output 1)..................156  
RPOR10 (Peripheral Pin Select Output 10)..............161  
RPOR11 (Peripheral Pin Select Output 11)..............161  
RPOR12 (Peripheral Pin Select Output 12)..............162  
RPOR2 (Peripheral Pin Select Output 2)..................157  
RPOR3 (Peripheral Pin Select Output 3)..................157  
RPOR4 (Peripheral Pin Select Output 4)..................158  
RPOR5 (Peripheral Pin Select Output 5)..................158  
RPOR6 (Peripheral Pin Select Output 6)..................159  
RPOR7 (Peripheral Pin Select Output 7)..................159  
RPOR8 (Peripheral Pin Select Output 8)..................160  
RPOR9 (Peripheral Pin Select Output 9)..................160  
RTCVAL (Minutes and Seconds Value,  
T1CON (Timer1 Control) .......................................... 164  
T2CON Control......................................................... 168  
T3CON Control......................................................... 169  
T4CON Control......................................................... 170  
T5CON Control......................................................... 171  
UxMODE (UARTx Mode).......................................... 211  
UxSTA (UARTx Status and Control)......................... 213  
Resets................................................................................. 87  
BOR (Brown-out Reset).............................................. 87  
BOR and Power-up Timer (PWRT) ............................ 92  
CM (Configuration Mismatch Reset)........................... 87  
Configuration Mismatch (CM)..................................... 93  
External (EXTR).......................................................... 93  
Illegal Condition.......................................................... 93  
Illegal Opcode..................................................... 93  
Security......................................................... 93, 94  
Uninitialized W Register ............................... 93, 94  
IOPUWR (Illegal Condition Reset).............................. 87  
Illegal Opcode..................................................... 87  
Security............................................................... 87  
Uninitialized W Register ..................................... 87  
MCLR (Master Clear Pin) ........................................... 87  
Oscillator Delays......................................................... 90  
POR (Power-on Reset)............................................... 87  
Power-on Reset (POR)............................................... 92  
Software RESET Instruction (SWR) ........................... 93  
SWR (RESET Instruction) .......................................... 87  
System  
Cold Reset.......................................................... 90  
Warm Reset........................................................ 90  
Trap Conflict ............................................................... 93  
TRAPR (Trap Conflict Reset) ..................................... 87  
Watchdog Timer Time-out (WDTR)............................ 93  
WDTO (Watchdog Timer Reset)................................. 87  
Revision History................................................................ 367  
RTCC  
Control Registers...................................................... 243  
Module Registers...................................................... 242  
S
Serial Peripheral Interface (SPI)....................................... 195  
Control Registers...................................................... 197  
Helpful Tips............................................................... 196  
Resources ................................................................ 196  
Software Simulator (MPLAB SIM) .................................... 277  
Software Stack Pointer, Frame Pointer  
CALL Stack Frame ..................................................... 73  
Special Features............................................................... 259  
Code Protection........................................................ 259  
Flexible Configuration............................................... 259  
In-Circuit Emulation .................................................. 259  
In-Circuit Serial Programming (ICSP)....................... 259  
Watchdog Timer (WDT)............................................ 259  
T
Timer1............................................................................... 163  
Timer2/3 and Timer4/5 ..................................................... 165  
16-Bit Operation ....................................................... 165  
32-Bit Operation ....................................................... 165  
Control Registers...................................................... 168  
Timing Diagrams  
RTCPTR Bits = 00)...........................................249  
RTCVAL (Year Value, RTCPTR Bits = 11)...............247  
RTCVAL Month and Day Value,  
RTCPTR Bits = 10)...........................................247  
RTCVAL Weekdays and Hours Value,  
RTCPTR Bits = 01)...........................................248  
SPIxCON1 (SPIx Control 1)......................................198  
SPIxCON2 (SPIx Control 2)......................................200  
SPIxSTAT (SPIx Status and Control) .......................197  
SR (CPU STATUS)...............................................40, 99  
ADC Conversion Characteristics (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)... 332  
ADC Conversion Characteristics (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,  
SAMC<4:0> = 00001)....................................... 332  
DS70652E-page 378  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
Brown-out Reset Situations ........................................ 92  
CLKO and I/O ........................................................... 295  
External Clock........................................................... 293  
I2Cx Bus Data (Master Mode) .................................. 326  
I2Cx Bus Data (Slave Mode) .................................... 328  
I2Cx Bus Start/Stop Bits (Master Mode)................... 326  
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 328  
Input Capture x (ICx)................................................. 299  
Motor Control PWM .................................................. 301  
Motor Control PWM Fault ......................................... 301  
OCx/PWM................................................................. 300  
Output Compare x (OCx).......................................... 300  
Reset, Watchdog Timer, Oscillator Start-up Timer and  
Power-up Timer ................................................ 296  
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP  
= 1) for dsPIC33FJ16(GP/MC)10X................... 305  
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP  
= 1) for dsPIC33FJ32(GP/MC)10X................... 317  
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP  
= 1) for dsPIC33FJ16(GP/MC)10X................... 304  
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP  
= 1) for dsPIC33FJ32(GP/MC)10X................... 316  
SPIx Master Transmit Mode (Half-Duplex, CKE = 0) for  
dsPIC33FJ16(GP/MC)10X ............................... 302  
SPIx Master Transmit Mode (Half-Duplex, CKE = 0) for  
dsPIC33FJ32(GP/MC)10X ............................... 314  
SPIx Master Transmit Mode (Half-Duplex, CKE = 1) for  
dsPIC33FJ16(GP/MC)10X ............................... 303  
SPIx Master Transmit Mode (Half-Duplex, CKE = 1) for  
dsPIC33FJ32(GP/MC)10X ............................... 315  
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP  
= 0) for dsPIC33FJ16(GP/MC)10X................... 312  
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP  
= 0) for dsPIC33FJ32(GP/MC)10X................... 324  
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP  
= 0) for dsPIC33FJ16(GP/MC)10X................... 310  
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP  
= 0) for dsPIC33FJ32(GP/MC)10X................... 322  
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP  
= 0) for dsPIC33FJ16(GP/MC)10X................... 306  
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP  
= 0) for dsPIC33FJ32(GP/MC)10X................... 318  
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP  
= 0) for dsPIC33FJ16(GP/MC)10X................... 308  
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP  
= 0) for dsPIC33FJ32(GP/MC)10X................... 320  
System Reset.............................................................. 91  
Timer1, 2 and 3 External Clock................................. 297  
Timing Requirements  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out Reset................296  
Simple OCx/PWM Mode..............................................300  
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x,  
SMP = 1) for dsPIC33FJ16(GP/MC)10X.............305  
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x,  
SMP = 1) for dsPIC33FJ32(GP/MC)10X.............317  
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x,  
SMP = 1) for dsPIC33FJ16(GP/MC)10X.......... 304  
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x,  
SMP = 1) for dsPIC33FJ32(GP/MC)10X.......... 316  
SPIx Master Transmit Mode (Half-Duplex) for  
dsPIC33FJ16(GP/MC)10X ............................... 303  
SPIx Master Transmit Mode (Half-Duplex) for  
dsPIC33FJ32(GP/MC)10X ............................... 315  
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,  
SMP = 0) for dsPIC33FJ16(GP/MC)10X............. 313  
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,  
SMP = 0) for dsPIC33FJ32(GP/MC)10X............. 325  
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,  
SMP = 0) for dsPIC33FJ16(GP/MC)10X............. 311  
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,  
SMP = 0) for dsPIC33FJ32(GP/MC)10X............. 323  
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,  
SMP = 0) for dsPIC33FJ16(GP/MC)10X............. 307  
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,  
SMP = 0) for dsPIC33FJ32(GP/MC)10X............. 319  
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,  
SMP = 0) for dsPIC33FJ16(GP/MC)10X............. 309  
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,  
SMP = 0) for dsPIC33FJ32(GP/MC)10X............. 321  
Timer1 External Clock .............................................. 297  
Timer2/4 External Clock ........................................... 298  
Timer3/5 External Clock ........................................... 298  
Timing Specifications  
Comparator Module.................................................. 334  
Comparator Timing................................................... 334  
Comparator Voltage Reference................................ 335  
Comparator Voltage Reference Settling Time.......... 334  
CTMU Current Source.............................................. 335  
PLL Clock ................................................................. 294  
U
UART  
Control Registers...................................................... 211  
Helpful Tips............................................................... 210  
Resources ................................................................ 210  
Universal Asynchronous Receiver  
Transmitter (UART) .................................................. 209  
Using the RCON Status Bits............................................... 94  
10-Bit ADC Conversion............................................. 333  
Capacitive Loading on Output Pins........................... 292  
CLKO and I/O ........................................................... 295  
External Clock........................................................... 293  
I2Cx Bus Data (Master Mode) .................................. 327  
I2Cx Bus Data (Slave Mode) .................................... 329  
Input Capture x (ICx)................................................. 299  
Motor Control PWM .................................................. 301  
Output Compare x (OCx).......................................... 300  
V
Voltage Regulator (On-Chip) ............................................ 264  
W
Watchdog Timer (WDT).................................................... 265  
Programming Considerations................................... 265  
WWW Address ................................................................. 380  
WWW, On-Line Support ..................................................... 24  
2011-2012 Microchip Technology Inc.  
DS70652E-page 379  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 380  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQs), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2011-2012 Microchip Technology Inc.  
DS70652E-page 381  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
dsPIC33FJ16(GP/MC)101/102 and  
dsPIC33FJ32(GP/MC)101/102/104  
DS70652E  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70652E-page 382  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
dsPIC 33 FJ 16 MC1 02 T E / SP - XXX  
a)  
dsPIC33FJ16MC102-E/SP:  
Motor Control dsPIC33,  
16-Kbyte program memory,  
28-pin, Extended temperature,  
SPDIP package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (Kbyte)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
33  
=
=
16-bit Digital Signal Controller  
Flash program memory, 3.3V  
Flash Memory Family: FJ  
Product Group:  
Pin Count:  
GP1  
=
=
General Purpose family  
Motor Control family  
MC1  
01  
02  
=
=
18-pin and 20-pin  
28-pin and 32-pin  
Temperature Range:  
Package:  
I
=
=
-40C to+85C (Industrial)  
-40C to+125C (Extended)  
E
P
=
=
=
=
=
=
=
Plastic Dual In-Line - 300 mil body (PDIP)  
SS  
SP  
SO  
ML  
PT  
TL  
Plastic Shrink Small Outline -5.3 mm body (SSOP)  
Skinny Plastic Dual In-Line - 300 mil body (SPDIP)  
Plastic Small Outline - Wide, 7.50 mil body (SOIC)  
Plastic Quad, No Lead - (28-pin) 6x6 mm body (QFN)  
Plastic Thin Quad Flatpack - (44-pin) 10x10 mm body (TQFP)  
Very Thin Leadless Array - (36-pin) 5x5 mm body (VTLA)  
2011-2012 Microchip Technology Inc.  
DS70652E-page 383  
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104  
NOTES:  
DS70652E-page 384  
2011-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62076-602-6  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2011-2012 Microchip Technology Inc.  
DS70652E-page 385  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS70652E-page 386  
2011-2012 Microchip Technology Inc.  

相关型号:

DSPIC33FJ32GP104

16-Bit Digital Signal Controllers up to 32-Kbyte Flash and 2-Kbyte SRAM
MICROCHIP

DSPIC33FJ32GP202

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP202-E/ML

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP202-E/MM

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP202-E/PT

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP202-E/SO

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP202-E/SP

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP202-H/TPT

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, 2 MM HEIGHT, LEAD FREE, PLASTIC, QFP-44
MICROCHIP

DSPIC33FJ32GP202-I/ML

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP202-I/MM

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP202-I/PT

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP202-I/SO

High-Performance, 16-Bit Microcontrollers
MICROCHIP