DSPIC33FJ32GP202_11 [MICROCHIP]

High-Performance, 16-bit Digital Signal Controllers; 高性能16位数字信号控制器
DSPIC33FJ32GP202_11
型号: DSPIC33FJ32GP202_11
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance, 16-bit Digital Signal Controllers
高性能16位数字信号控制器

控制器
文件: 总284页 (文件大小:3780K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304  
Data Sheet  
High-Performance,  
16-bit Digital Signal Controllers  
© 2011 Microchip Technology Inc.  
DS70290G  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
PIC32 logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-826-9  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS70290G-page 2  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304  
High-Performance, 16-bit Digital Signal Controllers  
Operating Range:  
Digital I/O:  
• Up to 40 MIPS operation (@ 3.0-3.6V):  
- Industrial temperature range (-40°C to +85°C)  
- Extended temperature range (-40°C to +125°C)  
• Up to 20 MIPS operation (@ 3.0-3.6V):  
- High temperature range (-40°C to +150°C)  
• Peripheral Pin Select Functionality  
• Up to 35 programmable digital I/O pins  
• Wake-up/Interrupt-on-Change for up to 31 pins  
• Output pins can drive from 3.0V to 3.6V  
• Up to 5.5V output with open drain configuration on  
5V tolerant pins with external pull-up  
• 4 mA sink on all I/O pins  
High-Performance DSC CPU:  
• Modified Harvard architecture  
• C compiler optimized instruction set  
• 16-bit wide data path  
System Management:  
• Flexible clock options:  
- External, crystal, resonator, internal RC  
- Fully integrated Phase-Locked Loop (PLL)  
- Extremely low jitter PLL  
• 24-bit wide instructions  
• Linear program memory addressing up to 4M  
instruction words  
• Power-up Timer  
• Linear data memory addressing up to 64 Kbytes  
• 83 base instructions, mostly one word/one cycle  
• Sixteen 16-bit General Purpose Registers  
• Oscillator Start-up Timer/Stabilizer  
• Watchdog Timer with its own RC oscillator  
• Fail-Safe Clock Monitor  
• Two 40-bit accumulators with rounding and  
saturation options  
• Reset by multiple sources  
• Flexible and powerful addressing modes:  
- Indirect  
Power Management:  
- Modulo  
• On-chip 2.5V voltage regulator  
- Bit-Reversed  
• Switch between clock sources in real time  
• Idle, Sleep and Doze modes with fast wake-up  
• Software stack  
• 16 x 16 fractional/integer multiply operations  
• 32/16 and 16/16 divide operations  
• Single-cycle multiply and accumulate:  
- Accumulator write back for DSP operations  
- Dual data fetch  
Timers/Capture/Compare:  
• Timer/Counters, up to three 16-bit timers:  
- Can pair up to make one 32-bit timer  
- One timer runs as Real-Time Clock with  
external 32.768 kHz oscillator  
• Up to ±16-bit shifts for up to 40-bit data  
- Programmable prescaler  
Interrupt Controller:  
• Input Capture (up to four channels):  
- Capture on up, down or both edges  
- 16-bit capture input functions  
• 5-cycle latency  
• Up to 21 available interrupt sources  
• Up to three external interrupts  
• Seven programmable priority levels  
• Four processor exceptions  
- 4-deep FIFO on each capture  
• Output Compare (up to 2 channels):  
- Single or Dual 16-bit Compare mode  
- 16-bit Glitchless PWM Mode  
On-Chip Flash and SRAM:  
• Flash program memory (up to 32 Kbytes)  
• Data SRAM (2 Kbytes)  
• Boot and General Security for Program Flash  
© 2011 Microchip Technology Inc.  
DS70290G-page 3  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Communication Modules:  
Analog-to-Digital Converters (ADCs):  
• 4-wire SPI:  
• 10-bit, 1.1 Msps or 12-bit, 500 ksps conversion:  
- Two and four simultaneous samples (10-bit ADC)  
- Up to 13 input channels with auto-scanning  
- Framing supports I/O interface to simple  
codecs  
- Supports 8-bit and 16-bit data  
- Conversion start can be manual or  
- Supports all serial clock formats and  
sampling modes  
synchronized with one of four trigger sources  
- Conversion possible in Sleep mode  
- ±2 LSb max integral nonlinearity  
- ±1 LSb max differential nonlinearity  
• I2C™:  
- Full Multi-Master Slave mode support  
- 7-bit and 10-bit addressing  
- Bus collision detection and arbitration  
- Integrated signal conditioning  
- Slave address masking  
CMOS Flash Technology:  
• Low-power, high-speed Flash technology  
• Fully static design  
• UART:  
• 3.3V (±10%) operating voltage  
• Industrial and extended temperature  
• Low-power consumption  
- Interrupt on address bit detect  
- Interrupt on UART error  
- Wake-up on Start bit from Sleep mode  
- 4-character TX and RX FIFO buffers  
- LIN bus support  
Packaging:  
• 28-pin SPDIP/SOIC/SSOP/QFN-S  
• 44-pin QFN/TQFP  
- IrDA® encoding and decoding in hardware  
- High-Speed Baud mode  
- Hardware Flow Control with CTS and RTS  
Note:  
See Table 1 for the exact peripheral  
features per device.  
DS70290G-page 4  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 Product Families  
The device names, pin counts, memory sizes and  
peripheral availability of each family are listed below,  
followed by their pinout diagrams.  
TABLE 1:  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 CONTROLLER FAMILIES  
Remappable Peripherals  
Device  
16 3(1)  
4
2
1
1
1 ADC,  
10 ch  
1
21  
SDIP  
SOIC  
3
dsPIC33FJ32GP202 28  
32  
2
SSOP  
QFN-S  
dsPIC33FJ32GP204 44  
dsPIC33FJ16GP304 44  
32  
16  
2
2
3(1)  
26  
4
4
2
2
1
1
3
3
1
1
1 ADC,  
13 ch  
1
1
35  
35  
QFN  
TQFP  
3(1)  
26  
1 ADC,  
13 ch  
QFN  
TQFP  
Note 1: Only two out of three timers are remappable.  
2: Only two out of three interrupts are remappable.  
© 2011 Microchip Technology Inc.  
DS70290G-page 5  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Pin Diagrams  
28-Pin SDIP, SOIC, SSOP  
= Pins are up to 5V tolerant  
MCLR  
AN0/VREF+/CN2/RA0  
AN1/VREF-/CN3/RA1  
1
2
3
4
5
28  
27  
26  
25  
24  
AVDD  
AVSS  
(1)  
AN9/RP15 /CN11/RB15  
(1)  
(1)  
PGED1/AN2/C2IN-/RP0 /CN4/RB0  
AN10/RP14 /CN12/RB14  
AN11/RP13 /CN13/RB13  
AN12/RP12 /CN14/RB12  
(1)  
(1)  
PGEC1/AN3/C2IN+/RP1 /CN5/RB1  
(1)  
(1)  
AN4/RP2 /CN6/RB2  
6
7
8
23  
22  
21  
(1)  
(1)  
AN5/RP3 /CN7/RB3  
PGEC2/TMS/RP11 /CN15/RB11  
PGED2/TDI/RP10 /CN16/RB10  
(1)  
VSS  
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
VCAP  
VSS  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
(1)  
(1)  
SOSCI/RP4 /CN1/RB4  
TDO/SDA1/RP9 /CN21/RB9  
TCK/SCL1/RP8 /CN22/RB8  
(1)  
SOSCO/T1CK/CN0/RA4  
VDD  
INT0/RP7/CN23/RB7  
PGEC3/ASCL1/RP6 /CN24/RB6  
(1)  
(1)  
PGED3/ASDA1/RP5 /CN27/RB5  
(2)  
28-Pin QFN-S  
= Pins are up to 5V tolerant  
28 27 26 25 24 23 22  
(1)  
(1)  
PGED1/AN2/C2IN-/RP0 /CN4/RB0  
AN11/RP13 /CN13/RB13  
1
2
21  
20  
(1)  
(1)  
PGEC1/AN3/C2IN+/RP1 /CN5/RB1  
AN12/RP12 /CN14/RB12  
(1)  
(1)(1)  
AN4/RP2 /CN6/RB2  
PGEC2/TMS/RP11  
/CN15/RB11  
43 dsPIC33FJ32GP202 19  
(1)  
AN5/RP3 /CN7/RB3  
PGED2/TDI/RP10/CN16/RB10  
18  
VSS  
VCAP  
Vss  
5
6
7
17  
16  
15  
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
(1)  
TDO/SDA1/RP9 /CN21/RB9  
8
9 10 11 12 13 14  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
DS70290G-page 6  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Pin Diagrams (Continued)  
(2)  
44-Pin QFN  
= Pins are up to 5V tolerant  
(1)  
(1)  
11  
10  
9
AN11/RP13 /CN13/RB13  
AN4/RP2 /CN6/RB2  
23  
24  
25  
26  
27  
(1)  
(1)  
AN5/RP3 /CN7/RB3  
AN12/RP12 /CN14/RB12  
(1)  
(1)  
AN6/RP16 /CN8/RC0  
PGEC2/RP11 /CN15/RB11  
(1)  
(1)  
AN7/RP17 /CN9/RC1  
PGED2/RP10 /CN16/RB10  
8
(1)  
AN8/RP18 /CN10/RC2  
7
VCAP  
VSS  
dsPIC33FJ32GP204  
dsPIC33FJ16GP304  
VDD 28  
VSS  
OSC1/CLKI/CN30/RA2 30  
OSC2/CLKO/CN29/RA3  
TDO/RA8 32  
6
(1)  
29  
5
RP25 /CN19/RC9  
(1)  
4
RP24 /CN20/RC8  
(1)  
RP23 /CN17/RC7  
31  
33  
3
(1)  
RP22 /CN18/RC6  
2
(1)  
(1)  
SOSCI/RP4 /CN1/RB4  
SDA1/RP9 /CN21/RB9  
1
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected  
to Vss externally.  
© 2011 Microchip Technology Inc.  
DS70290G-page 7  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Pin Diagrams (Continued)  
44-Pin TQFP  
= Pins are up to 5V tolerant  
(1)  
(1)  
11  
10  
9
AN4/RP2 /CN6/RB2  
AN11/RP13 /CN13/RB13  
23  
24  
25  
(1)  
(1)  
AN12/RP12 /CN14/RB12  
AN5/RP3 /CN7/RB3  
(1)  
(1)  
PGEC2/RP11 /CN15/RB11  
AN6/RP16 /CN8/RC0  
(1)  
(1)  
8
26  
27  
PGED2/RP10 /CN16/RB10  
AN7/RP17 /CN9/RC1  
(1)  
7
6
VCAP  
VSS  
AN8/RP18 /CN10/RC2  
dsPIC33FJ32GP204  
dsPIC33FJ16GP304  
VDD  
VSS  
28  
29  
30  
31  
32  
33  
(1)  
5
4
3
2
1
RP25 /CN19/RC9  
(1)  
RP24 /CN20/RC8  
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
TDO/RA8  
(1)  
RP23 /CN17/RC7  
RP22/CN18/RC6  
(1)  
(1)  
(1)  
SDA1 /RP9 /CN21/RB9  
SOSCI/RP4 /CN1/RB4  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
DS70290G-page 8  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 11  
2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers .......................................................................................... 15  
3.0 CPU............................................................................................................................................................................................ 19  
4.0 Memory Organization................................................................................................................................................................. 31  
5.0 Flash Program Memory.............................................................................................................................................................. 57  
6.0 Resets ....................................................................................................................................................................................... 63  
7.0 Interrupt Controller ..................................................................................................................................................................... 71  
8.0 Oscillator Configuration.............................................................................................................................................................. 99  
9.0 Power-Saving Features............................................................................................................................................................ 109  
10.0 I/O Ports ................................................................................................................................................................................... 113  
11.0 Timer1 ...................................................................................................................................................................................... 135  
12.0 Timer2/3 Feature...................................................................................................................................................................... 137  
13.0 Input Capture............................................................................................................................................................................ 143  
14.0 Output Compare....................................................................................................................................................................... 145  
15.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 149  
16.0 Inter-Integrated Circuit™ (I2C).............................................................................................................................................. 155  
17.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 163  
18.0 10-bit/12-bit Analog-to-Digital Converter (ADC)....................................................................................................................... 169  
19.0 Special Features ...................................................................................................................................................................... 183  
20.0 Instruction Set Summary.......................................................................................................................................................... 191  
21.0 Development Support............................................................................................................................................................... 199  
22.0 Electrical Characteristics.......................................................................................................................................................... 203  
23.0 High Temperature Electrical Characteristics............................................................................................................................ 247  
24.0 Packaging Information.............................................................................................................................................................. 257  
Appendix A: Revision History............................................................................................................................................................. 269  
Index ................................................................................................................................................................................................. 277  
The Microchip Web Site..................................................................................................................................................................... 281  
Customer Change Notification Service.............................................................................................................................................. 281  
Customer Support.............................................................................................................................................................................. 281  
Reader Response.............................................................................................................................................................................. 282  
Product Identification System ............................................................................................................................................................ 283  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2011 Microchip Technology Inc.  
DS70290G-page 9  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 10  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
1.0  
DEVICE OVERVIEW  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
dsPIC33F/PIC24H Family Reference  
Manual sections.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
This document contains device-specific information for  
the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Digital Signal Controller (DSC) devices. The dsPIC33F  
devices contain extensive Digital Signal Processor  
(DSP) functionality with a high performance 16-bit  
microcontroller (MCU) architecture.  
Figure 1-1 shows a general block diagram of the core  
and  
peripheral  
modules  
in  
the  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
family of devices. Table 1-1 lists the functions of the  
various pins shown in the pinout diagrams.  
© 2011 Microchip Technology Inc.  
DS70290G-page 11  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 1-1:  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
PORTA  
PORTB  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
23  
PCH PCL  
Program Counter  
Y RAM  
PCU  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
16  
PORTC  
23  
16  
16  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
Remappable  
Pins  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
W Register Array  
Power-up  
Timer  
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
Divide Support  
16  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
Power-on  
Reset  
16-bit ALU  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VCAP  
VDD, VSS  
MCLR  
OC/  
PWM1-2  
Timers  
1-3  
UART1  
ADC1  
IC1,2,7,8  
CNx  
I2C1  
SPI1  
Note:  
Not all pins or features are implemented on all device pinout configurations. See Pin Diagramsfor the specific pins  
and features present on each device.  
DS70290G-page 12  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
AN0-AN12  
I
Analog  
No  
Analog input channels.  
CLKI  
CLKO  
I
O
ST/CMOS  
No  
No  
External clock source input. Always associated with OSC1 pin function.  
Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes.  
Always associated with OSC2 pin function.  
OSC1  
OSC2  
I
ST/CMOS  
No  
No  
Oscillator crystal input. ST buffer when configured in RC mode; CMOS  
otherwise.  
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscil-  
lator mode. Optionally functions as CLKO in RC and EC modes.  
I/O  
SOSCI  
SOSCO  
I
O
ST/CMOS  
No  
No  
32.768 kHz low-power oscillator crystal input; CMOS otherwise.  
32.768 kHz low-power oscillator crystal output.  
CN0-CN30  
I
I
ST  
No  
Change notification inputs.  
Can be software programmed for internal weak pull-ups on all inputs.  
IC1-IC2  
IC7-IC8  
ST  
Yes Capture inputs 1/2.  
Yes Capture inputs 7/8.  
OCFA  
OC1-OC2  
I
O
ST  
Yes Compare Fault A input (for Compare Channels 1 and 2).  
Yes Compare outputs 1 through 2.  
INT0  
INT1  
INT2  
I
I
I
ST  
ST  
ST  
No  
External interrupt 0.  
Yes External interrupt 1.  
Yes External interrupt 2.  
RA0-RA4  
RA7-RA10  
I/O  
ST  
No  
No  
PORTA is a bidirectional I/O port.  
RB0-RB15  
RC0-RC9  
I/O  
I/O  
ST  
ST  
No  
No  
No  
PORTB is a bidirectional I/O port.  
PORTC is a bidirectional I/O port.  
Timer1 external clock input.  
T1CK  
T2CK  
T3CK  
I
I
I
ST  
ST  
ST  
Yes Timer2 external clock input.  
Yes Timer3 external clock input.  
I
O
I
ST  
ST  
Yes UART1 clear to send.  
Yes UART1 ready to send.  
Yes UART1 receive.  
U1CTS  
U1RTS  
U1RX  
O
Yes UART1 transmit.  
U1TX  
SCK1  
SDI1  
SDO1  
SS1  
I/O  
I
O
ST  
ST  
Yes Synchronous serial clock input/output for SPI1.  
Yes SPI1 data in.  
Yes SPI1 data out.  
I/O  
ST  
Yes SPI1 slave synchronization or frame pulse I/O.  
SCL1  
SDA1  
ASCL1  
ASDA1  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
No  
No  
No  
No  
Synchronous serial clock input/output for I2C1.  
Synchronous serial data input/output for I2C1.  
Alternate synchronous serial clock input/output for I2C1.  
Alternate synchronous serial data input/output for I2C1.  
TMS  
TCK  
TDI  
I
I
I
ST  
ST  
ST  
No  
No  
No  
No  
JTAG Test mode select pin.  
JTAG test clock input pin.  
JTAG test data input pin.  
JTAG test data output pin.  
TDO  
O
Legend: CMOS = CMOS compatible input or output;  
ST = Schmitt Trigger input with CMOS levels;  
PPS = Peripheral Pin Select  
Analog = Analog input;  
O = Output;  
P = Power  
I = Input  
© 2011 Microchip Technology Inc.  
DS70290G-page 13  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
PGED1  
PGEC1  
PGED2  
PGEC2  
PGED3  
PGEC3  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
No  
No  
No  
No  
No  
No  
Data I/O pin for programming/debugging communication channel 1.  
Clock input pin for programming/debugging communication channel 1.  
Data I/O pin for programming/debugging communication channel 2.  
Clock input pin for programming/debugging communication channel 2.  
Data I/O pin for programming/debugging communication channel 3.  
Clock input pin for programming/debugging communication channel 3.  
I
I/O  
I
I/O  
I
VCAP  
VSS  
P
P
I
No  
No  
No  
No  
No  
CPU logic filter capacitor connection.  
Ground reference for logic and I/O pins.  
Analog voltage reference (high) input.  
Analog voltage reference (low) input.  
VREF+  
VREF-  
AVDD  
Analog  
Analog  
P
I
P
Positive supply for analog modules. This pin must be connected at all  
times.  
MCLR  
Avss  
VDD  
I/P  
P
ST  
P
No  
No  
No  
Master Clear (Reset) input. This pin is an active-low Reset to the device.  
Ground reference for analog modules.  
P
Positive supply for peripheral logic and I/O pins.  
Legend: CMOS = CMOS compatible input or output;  
ST = Schmitt Trigger input with CMOS levels;  
PPS = Peripheral Pin Select  
Analog = Analog input;  
O = Output;  
P = Power  
I = Input  
DS70290G-page 14  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
DIGITAL SIGNAL  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
CONTROLLERS  
Consider the following criteria when using decoupling  
capacitors:  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
dsPIC33F/PIC24H Family Reference  
Manual sections.  
Value and type of capacitor: Recommendation  
of 0.1 µF (100 nF), 10-20V. This capacitor should  
be a low-ESR and have resonance frequency in  
the range of 20 MHz and higher. It is  
recommended that ceramic capacitors be used.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within  
one-quarter inch (6 mm) in length.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Handling high frequency noise: If the board is  
experiencing high frequency noise, upward of  
tens of MHz, add a second ceramic-type capacitor  
in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 µF to 0.001 µF. Place this  
second capacitor next to the primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible.  
For example, 0.1 µF in parallel with 0.001 µF.  
2.1  
Basic Connection Requirements  
Getting started with the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of 16-bit Digital Signal  
Controllers (DSCs) requires attention to a minimal set  
of device pin connections before proceeding with  
development. The following is a list of pin names, which  
must always be connected:  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum thereby reducing PCB track inductance.  
• All AVDD and AVSS pins (even if ADC module is not  
used)  
(see Section 2.2 “Decoupling Capacitors”)  
• VCAP  
(see Section 2.3 “CPU Logic Filter Capacitor  
Connection (Vcap)”)  
• MCLR pin  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
• OSC1 and OSC2 pins when external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
Additionally, the following pins may be required:  
• VREF+/VREF- pins used when external voltage  
reference for ADC module is implemented  
Note:  
The AVDD and AVSS pins must be  
connected independent of the ADC  
voltage reference source.  
© 2011 Microchip Technology Inc.  
DS70290G-page 15  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
2.4  
Master Clear (MCLR) Pin  
The MCLR pin provides for two specific device  
functions:  
0.1 µF  
Ceramic  
• Device Reset  
10 µF  
Tantalulm  
VDD  
• Device programming and debugging  
During device programming and debugging, the  
resistance and capacitance that can be added to the  
pin must be considered. Device programmers and  
debuggers drive the MCLR pin. Consequently,  
specific voltage levels (VIH and VIL) and fast signal  
transitions must not be adversely affected. Therefore,  
specific values of R and C will need to be adjusted  
based on the application and PCB requirements.  
R
R1  
MCLR  
C
dsPIC33F  
VDD  
VSS  
VDD  
For example, as shown in Figure 2-2, it is  
recommended that capacitor C is isolated from the  
MCLR pin during programming and debugging  
operations.  
VSS  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
0.1 µF  
Ceramic  
Ceramic  
Place the components shown in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
10 Ω  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
2.2.1  
TANK CAPACITORS  
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including DSCs to supply a local  
power source. The value of the tank capacitor should  
be determined based on the trace resistance that con-  
nects the power supply source to the device, and the  
maximum current drawn by the device in the applica-  
tion. In other words, select the tank capacitor so that it  
meets the acceptable voltage sag at the device. Typical  
values range from 4.7 µF to 47 µF.  
VDD  
R
R1  
MCLR  
dsPIC33F  
JP  
C
2.3  
CPU Logic Filter Capacitor  
Connection (VCAP)  
Note 1: R 10 kΩ is recommended. A suggested  
starting value is 10 kΩ. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
A low-ESR (< 5 Ohms) capacitor is required on the  
VCAP pin, which is used to stabilize the voltage  
regulator output voltage. The VCAP pin must not be  
connected to VDD, and must have a capacitor between  
4.7 µF and 10 µF, 16V connected to ground. The type  
can be ceramic or tantalum. Refer to Section 22.0  
2: R1 470Ω will limit any current flowing into  
MCLR from the external capacitor C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
“Electrical  
Characteristics”  
for  
additional  
information.  
The placement of this capacitor should be close to the  
VCAP. It is recommended that the trace length not  
exceed one-quarter inch (6 mm). Refer to Section 19.2  
“On-Chip Voltage Regulator” for details.  
DS70290G-page 16  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
2.5  
ICSP Pins  
2.6  
External Oscillator Pins  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming (ICSP) and debugging purposes.  
It is recommended to keep the trace length between  
the ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is  
recommended, with the value in the range of a few tens  
of Ohms, not to exceed 100 Ohms.  
Many DSCs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 8.0 “Oscillator  
Configuration” for details).  
The oscillator circuit should be placed on the same  
side of the board as the device. Also, place the  
oscillator circuit close to the respective oscillator pins,  
not exceeding one-half inch (12 mm) distance  
between them. The load capacitors should be placed  
next to the oscillator itself, on the same side of the  
board. Use a grounded copper pour around the  
oscillator circuit to isolate them from surrounding  
circuits. The grounded copper pour should be routed  
directly to the MCU ground. Do not run any signal  
traces or power traces inside the ground pour. Also, if  
using a two-sided board, avoid any traces on the  
other side of the board where the crystal is placed. A  
suggested layout is shown in Figure 2-3.  
Pull-up resistors, series diodes and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
Ensure that the “Communication Channel Select” (i.e.,  
PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP to  
MPLAB® ICD 2, MPLAB ICD 3, or MPLAB REAL ICE™  
in-circuit emulator.  
Main Oscillator  
Guard Ring  
For more information on MPLAB ICD 2, MPLAB ICD 3,  
or MPLAB REAL ICE™ in-circuit emulator connection  
requirements, refer to the following documents that are  
available on the Microchip website.  
“MPLAB® ICD 2 In-Circuit Debugger User’s  
Guide” DS51331  
“Using MPLAB® ICD 2” (poster) DS51265  
“MPLAB® ICD 2 Design Advisory” DS51566  
“Using MPLAB® ICD 3” (poster) DS51765  
“MPLAB® ICD 3 Design Advisory” DS51764  
13  
14  
15  
16  
17  
18  
19  
20  
Guard Trace  
Secondary  
Oscillator  
“MPLAB® REAL ICE™ In-Circuit Emulator User’s  
Guide” DS51616  
“Using MPLAB® REAL ICE™” (poster) DS51749  
© 2011 Microchip Technology Inc.  
DS70290G-page 17  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
2.7  
Oscillator Value Conditions on  
Device Start-up  
If the PLL of the target device is enabled and  
configured for the device start-up oscillator, the  
maximum oscillator source frequency must be limited  
to 8 MHz for start-up with PLL enabled to comply with  
device PLL start-up conditions. This means that if the  
external oscillator frequency is outside this range, the  
application must start-up in FRC mode first. The default  
PLL settings after a POR with an oscillator frequency  
outside this range will violate the device operating  
speed.  
Once the device powers up, the application firmware  
can initialize the PLL SFRs, CLKDIV and PLLDBF to a  
suitable value, and then perform a clock switch to the  
Oscillator + PLL clock source. Note that clock switching  
must be enabled in the device Configuration word.  
2.8  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
If MPLAB ICD 2, MPLAB ICD 3, or MPLAB REAL ICE  
in-circuit emulator is selected as a debugger, it  
automatically initializes all of the A/D input pins (ANx)  
as “digital” pins, by setting all bits in the AD1PCFGL  
register.  
The bits in the registers that correspond to the A/D pins  
that are initialized by MPLAB ICD 2, MPLAB ICD 3, or  
MPLAB REAL ICE in-circuit emulator, must not be  
cleared by the user application firmware; otherwise,  
communication errors will result between the debugger  
and the device.  
If your application needs to use certain A/D pins as  
analog input pins during the debug session, the user  
application must clear the corresponding bits in the  
AD1PCFGL register during initialization of the ADC  
module.  
When MPLAB ICD 2, MPLAB ICD 3, or MPLAB REAL  
ICE in-circuit emulator is used as a programmer, the  
user application firmware must correctly configure the  
AD1PCFGL register. Automatic initialization of this  
register is only done during debugger operation.  
Failure to correctly configure the register(s) will result in  
all A/D pins being recognized as analog input pins,  
resulting in the port value being read as a logic ‘0’,  
which may affect user application functionality.  
2.9  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic-low state.  
Alternatively, connect a 1k to 10k resistor between VSS  
and the unused pins.  
DS70290G-page 18  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
3.1  
Data Addressing Overview  
3.0  
CPU  
The data space can be addressed as 32K words or  
64 Kbytes and is split into two blocks, referred to as X  
and Y data memory. Each memory block has its own  
independent Address Generation Unit (AGU). The  
MCU class of instructions operates solely through the  
X memory AGU, which accesses the entire memory  
map as one linear data space. Certain DSP instructions  
operate through the X and Y AGUs to support dual  
operand reads, which splits the data address space  
into two parts. The X and Y data space boundary is  
device-specific.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 2. “CPU” (DS70204) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Overhead-free circular buffers (Modulo Addressing  
mode) are supported in both X and Y address spaces.  
The Modulo Addressing removes the software  
boundary checking overhead for DSP algorithms.  
Furthermore, the X AGU circular addressing can be  
used with any of the MCU class of instructions. The X  
AGU also supports Bit-Reversed Addressing to greatly  
simplify input or output data reordering for radix-2 FFT  
algorithms.  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
CPU module has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set, including  
significant support for DSP. The CPU has a 24-bit  
instruction word with a variable length opcode field. The  
Program Counter (PC) is 23 bits wide and addresses up  
to 4M x 24 bits of user program memory space. The  
actual amount of program memory implemented varies  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K program word boundary defined by the 8-bit  
Program Space Visibility Page (PSVPAG) register. The  
program to data space mapping feature lets any  
instruction access program space as if it were data  
space.  
by device.  
A
single-cycle instruction prefetch  
mechanism is used to help maintain throughput and  
provides predictable execution. All instructions execute  
in a single cycle, with the exception of instructions that  
change the program flow, the double word move  
(MOV.D) instruction and the table instructions.  
Overhead-free program loop constructs are supported  
using the DOand REPEATinstructions, both of which are  
interruptible at any point.  
3.2  
DSP Engine Overview  
The DSP engine features a high-speed 17-bit by 17-bit  
multiplier, 40-bit ALU, two 40-bit saturating  
a
accumulators and a 40-bit bidirectional barrel shifter.  
The barrel shifter is capable of shifting a 40-bit value up  
to 16 bits right or left, in a single cycle. The DSP  
instructions operate seamlessly with all other  
instructions and have been designed for optimal  
real-time performance. The MAC instruction and other  
associated instructions can concurrently fetch two data  
operands from memory while multiplying two W  
registers and accumulating and optionally saturating  
the result in the same cycle. This instruction  
functionality requires that the RAM data space be split  
for these instructions and linear for all others. Data  
space partitioning is achieved in a transparent and  
flexible manner through dedicating certain working  
registers to each address space.  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices have sixteen, 16-bit working registers in the  
programmer’s model. Each of the working registers can  
serve as a data, address or address offset register. The  
16th working register (W15) operates as a software Stack  
Pointer (SP) for interrupts and calls.  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
instruction set has two classes of instructions: MCU and  
DSP. These two instruction classes are seamlessly  
integrated into a single CPU. The instruction set includes  
many addressing modes and is designed for optimum C  
compiler efficiency. For most instructions, the  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 is  
capable of executing a data (or program data) memory  
read, a working register (data) read, a data memory write  
and a program (instruction) memory read per instruction  
cycle. As a result, three parameter instructions can be  
supported, allowing A + B = C operations to be executed  
in a single cycle.  
A block diagram of the CPU is shown in Figure 3-1. The  
programmer’s model for the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 is shown in Figure 3-2.  
© 2011 Microchip Technology Inc.  
DS70290G-page 19  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
3.3  
Special MCU Features  
supports 16/16 and 32/16 divide operations, both frac-  
tional and integer. All divide instructions are iterative oper-  
ations. They must be executed within a REPEAT loop,  
resulting in a total execution time of 19 instruction cycles.  
The divide operation can be interrupted during any of  
those 19 cycles without loss of data.  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
features a 17-bit by 17-bit single-cycle multiplier that is  
shared by both the MCU ALU and DSP engine. The mul-  
tiplier can perform signed, unsigned and mixed-sign mul-  
tiplication. Using a 17-bit by 17-bit multiplier for 16-bit by  
16-bit multiplication not only allows you to perform  
mixed-sign multiplication, it also achieves accurate results  
for special operations, such as (-1.0) x (-1.0).  
A 40-bit barrel shifter is used to perform up to a 16-bit left  
or right shift in a single cycle. The barrel shifter can be  
used by both MCU and DSP instructions.  
FIGURE 3-1:  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 CPU CORE BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
Y RAM  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
16  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
16  
DSP Engine  
16 x 16  
W Register Array  
Divide Support  
16  
16-bit ALU  
16  
To Peripheral Modules  
DS70290G-page 20  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 3-2:  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD15  
AD39  
AccA  
AD31  
AD0  
DSP  
Accumulators  
AccB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB SA SB OAB SAB DA DC  
SRH  
RA  
N
Z
C
IPL2 IPL1 IPL0  
OV  
STATUS Register  
SRL  
© 2011 Microchip Technology Inc.  
DS70290G-page 21  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
3.4  
CPU Control Registers  
CPU control registers include:  
• Register 3-1: “SR: CPU Status Register”  
• Register 3-2: “CORCON: CORE Control Register”  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA(1)  
R/C-0  
SB(1)  
R-0  
R/C-0  
SAB  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(2)  
R/W-0(3)  
IPL<2:0>(2)  
R/W-0(3)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
OA: Accumulator A Overflow Status bit  
1= Accumulator A overflowed  
0= Accumulator A has not overflowed  
OB: Accumulator B Overflow Status bit  
1= Accumulator B overflowed  
0= Accumulator B has not overflowed  
SA: Accumulator A Saturation ‘Sticky’ Status bit(1)  
1= Accumulator A is saturated or has been saturated at some time  
0= Accumulator A is not saturated  
SB: Accumulator B Saturation ‘Sticky’ Status bit(1)  
1= Accumulator B is saturated or has been saturated at some time  
0= Accumulator B is not saturated  
OAB: OA || OB Combined Accumulator Overflow Status bit  
1= Accumulators A or B have overflowed  
0= Neither Accumulators A or B have overflowed  
SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit  
1= Accumulators A or B are saturated or have been saturated at some time in the past  
0= Neither Accumulator A or B are saturated  
Note: This bit can be read or cleared (not set). Clearing this bit will clear SA and SB.  
DA: DOLoop Active bit  
bit 9  
1= DOloop in progress  
0= DOloop not in progress  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read only when NSTDIS = 1(INTCON1<15>).  
DS70290G-page 22  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 3-1:  
SR: CPU STATUS REGISTER (CONTINUED)  
bit 8  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized  
data) of the result occurred  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of a magnitude that  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation that affects the Z bit has set it at some time in the past  
0= The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read only when NSTDIS = 1(INTCON1<15>).  
© 2011 Microchip Technology Inc.  
DS70290G-page 23  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT(1)  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
US: DSP Multiply Unsigned/Signed Control bit  
1= DSP engine multiplies are unsigned  
0= DSP engine multiplies are signed  
bit 11  
EDT: Early DOLoop Termination Control bit(1)  
1= Terminate executing DOloop at end of current loop iteration  
0= No effect  
bit 10-8  
DL<2:0>: DOLoop Nesting Level Status bits  
111= 7 DOloops active  
001= 1 DOloop active  
000= 0 DOloops active  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SATA: AccA Saturation Enable bit  
1= Accumulator A saturation enabled  
0= Accumulator A saturation disabled  
SATB: AccB Saturation Enable bit  
1= Accumulator B saturation enabled  
0= Accumulator B saturation disabled  
SATDW: Data Space Write from DSP Engine Saturation Enable bit  
1= Data space write saturation enabled  
0= Data space write saturation disabled  
ACCSAT: Accumulator Saturation Mode Select bit  
1= 9.31 saturation (super saturation)  
0= 1.31 saturation (normal saturation)  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space visible in data space  
0= Program space not visible in data space  
RND: Rounding Mode Select bit  
1= Biased (conventional) rounding enabled  
0= Unbiased (convergent) rounding enabled  
IF: Integer or Fractional Multiplier Mode Select bit  
1= Integer mode enabled for DSP multiply ops  
0= Fractional mode enabled for DSP multiply ops  
Note 1: This bit will always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.  
DS70290G-page 24  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
3.5  
Arithmetic Logic Unit (ALU)  
3.6  
DSP Engine  
The  
dsPIC33FJ32GP202/204  
and  
The DSP engine consists of  
a
high-speed  
dsPIC33FJ16GP304 ALU is 16 bits wide and is  
capable of addition, subtraction, bit shifts and logic  
operations. Unless otherwise mentioned, arithmetic  
operations are 2’s complement in nature. Depending  
on the operation, the ALU can affect the values of the  
Carry (C), Zero (Z), Negative (N), Overflow (OV) and  
Digit Carry (DC) Status bits in the SR register. The C  
and DC Status bits operate as Borrow and Digit Borrow  
bits, respectively, for subtraction operations.  
17-bit x 17-bit multiplier, a barrel shifter and a 40-bit  
adder/subtracter (with two target accumulators, round  
and saturation logic).  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
is a single-cycle instruction flow architecture; therefore,  
concurrent operation of the DSP engine with MCU  
instruction flow is not possible. However, some MCU  
ALU and DSP engine resources can be used  
concurrently by the same instruction (e.g., ED, EDAC).  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
The  
DSP  
engine  
can  
also  
perform  
accumulator-to-accumulator operations that require no  
additional data. These instructions are ADD, SUB and  
NEG.  
The DSP engine has options selected through bits in  
the CPU Core Control register (CORCON), as listed  
below:  
The  
dsPIC33FJ32GP202/204  
and  
• Fractional or integer DSP multiply (IF)  
• Signed or unsigned DSP multiply (US)  
• Conventional or convergent rounding (RND)  
• Automatic saturation on/off for AccA (SATA),  
AccB (SATB) and writes to data memory  
(SATDW)  
dsPIC33FJ16GP304 CPU incorporates hardware  
support for both multiplication and division. This  
includes a dedicated hardware multiplier and support  
hardware for 16-bit-divisor division.  
Refer to the “dsPIC30F/33F Programmer’s Reference  
Manual” (DS70157) for information on the SR bits  
affected by each instruction.  
• Accumulator Saturation mode selection (ACC-  
SAT)  
A block diagram of the DSP engine is shown in  
Figure 3-3.  
3.5.1  
MULTIPLIER  
Using the high-speed 17-bit x 17-bit multiplier of the DSP  
engine, the ALU supports unsigned, signed or mixed-sign  
operation in several MCU multiplication modes:  
TABLE 3-1:  
Instruction  
DSP INSTRUCTIONS  
SUMMARY  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
Algebraic  
Operation  
ACC Write  
Back  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
A = 0  
A = (x - y)2  
A = A + (x - y)2  
A = A + (x * y)  
A = A + x2  
No change in A  
A = x • y  
CLR  
Yes  
No  
ED  
EDAC  
MAC  
No  
Yes  
No  
3.5.2  
DIVIDER  
MAC  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
MOVSAC  
MPY  
Yes  
No  
MPY  
A = x2  
No  
• 32-bit signed/16-bit signed divide  
• 32-bit unsigned/16-bit unsigned divide  
• 16-bit signed/16-bit signed divide  
• 16-bit unsigned/16-bit unsigned divide  
MPY.N  
MSC  
A = - x • y  
No  
A = A - x • y  
Yes  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. 16-bit signed and unsigned  
DIVinstructions can specify any W register for both the  
16-bit divisor (Wn) and any W register (aligned) pair  
(W(m+1):Wm) for the 32-bit dividend. The divide  
algorithm takes one cycle per bit of divisor, so both  
32-bit/16-bit and 16-bit/16-bit instructions take the  
same number of cycles to execute.  
© 2011 Microchip Technology Inc.  
DS70290G-page 25  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 3-3:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
40-bit Accumulator A  
40-bit Accumulator B  
t
16  
40  
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Saturate  
e
Adder  
Carry/Borrow In  
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
DS70290G-page 26  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
3.6.1  
MULTIPLIER  
3.6.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The 17-bit x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17-bit x 17-bit  
multiplier/scaler is a 33-bit value that is sign-extended  
to 40 bits. Integer data is inherently represented as a  
signed 2’s complement value, where the Most  
Significant bit (MSb) is defined as a sign bit.  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side, and either true or complement  
data into the other input.  
• In the case of addition, the Carry/Borrow input is  
active-high and the other input is true data (not  
complemented).  
• In the case of subtraction, the Carry/Borrow input  
is active-low and the other input is complemented.  
The adder/subtracter generates Overflow Status bits,  
SA/SB and OA/OB, which are latched and reflected in  
the STATUS register:  
• The range of an N-bit 2’s complement integer is  
-2N-1 to 2N-1 - 1.  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• For a 16-bit integer, the data range is -32768  
(0x8000) to 32767 (0x7FFF) including ‘0’.  
• For a 32-bit integer, the data range is  
-2,147,483,648 (0x8000 0000) to 2,147,483,647  
(0x7FFF FFFF).  
• Overflow into guard bits 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
When the multiplier is configured for fractional  
multiplication, the data is represented as a 2’s  
complement fraction, where the MSb is defined as a  
sign bit and the radix point is implied to lie just after the  
sign bit (QX format). The range of an N-bit 2’s  
complement fraction with this implied radix point is -1.0  
to (1 - 21-N). For a 16-bit fraction, the Q15 data range is  
-1.0 (0x8000) to 0.999969482 (0x7FFF) including ‘0’  
and has a precision of 3.01518x10-5. In Fractional  
mode, the 16 x 16 multiply operation generates a 1.31  
The adder has an additional saturation block that  
controls accumulator data saturation, if selected. It  
uses the result of the adder, the Overflow Status bits  
described  
previously  
and  
the  
SAT<A:B>  
(CORCON<7:6>) and ACCSAT (CORCON<4>) mode  
control bits to determine when and to what value to  
saturate.  
Six STATUS register bits have been provided to  
support saturation and overflow:  
product that has a precision of 4.65661 x 10-10  
.
• OA: AccA overflowed into guard bits  
• OB: AccB overflowed into guard bits  
The same multiplier is used to support the MCU  
multiply instructions which include integer 16-bit  
signed, unsigned and mixed sign multiply operations.  
• SA: AccA saturated (bit 31 overflow and  
saturation)  
The MULinstruction can be directed to use byte or word  
sized operands. Byte operands will direct a 16-bit  
result, and word operands will direct a 32-bit result to  
the specified register(s) in the W array.  
or  
AccA overflowed into guard bits and saturated (bit  
39 overflow and saturation)  
• SB: AccB saturated (bit 31 overflow and  
saturation)  
or  
3.6.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
AccB overflowed into guard bits and saturated (bit  
39 overflow and saturation)  
The data accumulator consists of  
a
40-bit  
adder/subtracter with automatic sign extension logic. It  
can select one of two accumulators (A or B) as its  
pre-accumulation source and post-accumulation  
destination. For the ADDand LACinstructions, the data  
to be accumulated or loaded can be optionally scaled  
using the barrel shifter prior to accumulation.  
• OAB: Logical OR of OA and OB  
• SAB: Logical OR of SA and SB  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when set and the  
corresponding Overflow Trap Flag Enable bits (OVATE,  
OVBTE) in the INTCON1 register are set (refer to  
Section 7.0 “Interrupt Controller”). This allows the  
user application to take immediate action, for example,  
to correct system gain.  
© 2011 Microchip Technology Inc.  
DS70290G-page 27  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
The SA and SB bits are modified each time data  
passes through the adder/subtracter, but can only be  
cleared by the user application. When set, they indicate  
that the accumulator has overflowed its maximum  
range (bit 31 for 32-bit saturation or bit 39 for 40-bit  
saturation) and will be saturated (if saturation is  
enabled). When saturation is not enabled, SA and SB  
default to bit 39 overflow and thus indicate that a  
catastrophic overflow has occurred. If the COVTE bit in  
the INTCON1 register is set, SA and SB bits will  
generate an arithmetic warning trap when saturation is  
disabled.  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
• W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as a  
1.15 fraction.  
• [W13]+ = 2, Register Indirect with Post-Increment:  
The rounded contents of the non-target  
accumulator are written into the address pointed  
to by W13 as a 1.15 fraction. W13 is then  
incremented by 2 (for a word write).  
The Overflow and Saturation Status bits can optionally  
be viewed in the STATUS Register (SR) as the logical  
OR of OA and OB (in bit OAB) and the logical OR of SA  
and SB (in bit SAB). Programs can check one bit in the  
STATUS register to determine if either accumulator has  
overflowed, or one bit to determine if either  
accumulator has saturated. This is useful for complex  
number arithmetic, which typically uses both  
accumulators.  
3.6.2.3  
Round Logic  
The round logic is a combinational block that performs  
a conventional (biased) or convergent (unbiased)  
round function during an accumulator write (store). The  
Round mode is determined by the state of the RND bit  
in the CORCON register. It generates a 16-bit, 1.15  
data value that is passed to the data space write  
saturation logic. If rounding is not indicated by the  
instruction, a truncated 1.15 data value is stored and  
the least significant word (lsw) is simply discarded.  
The device supports three Saturation and Overflow  
modes:  
• Bit 39 Overflow and Saturation:  
Conventional rounding zero-extends bit 15 of the  
accumulator and adds it to the ACCxH word (bits 16  
through 31 of the accumulator).  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive 9.31  
(0x7FFFFFFFFF) or maximally negative 9.31 value  
(0x8000000000) into the target accumulator. The  
SA or SB bit is set and remains set until cleared by  
the user application. This condition is referred to as  
‘super saturation’ and provides protection against  
erroneous data or unexpected algorithm problems  
(such as gain calculations).  
• If the ACCxL word (bits 0 through 15 of the  
accumulator) is between 0x8000 and 0xFFFF  
(0x8000 included), ACCxH is incremented.  
• If ACCxL is between 0x0000 and 0x7FFF, ACCxH  
is left unchanged.  
A consequence of this algorithm is that over a  
succession of random rounding operations, the value  
tends to be biased slightly positive.  
• Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally positive  
1.31 value (0x007FFFFFFF) or maximally  
negative 1.31 value (0x0080000000) into the  
target accumulator. The SA or SB bit is set and  
remains set until cleared by the user application.  
When this Saturation mode is in effect, the guard  
bits are not used, so the OA, OB or OAB bits are  
never set.  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. In this case, the Least  
Significant bit (bit 16 of the accumulator) of ACCxH is  
examined.  
• If it is ‘1’, ACCxH is incremented.  
• If it is ‘0’, ACCxH is not modified. Assuming that  
bit 16 is effectively random in nature, this scheme  
removes any rounding bias that may accumulate.  
• Bit 39 Catastrophic Overflow:  
The bit 39 Overflow Status bit from the adder is  
used to set the SA or SB bit, which remains set  
until cleared by the user application. No saturation  
operation is performed and the accumulator is  
allowed to overflow, destroying its sign. If the  
COVTE bit in the INTCON1 register is set, a  
catastrophic overflow can initiate a trap exception.  
The SAC and SAC.R instructions store either a  
truncated (SAC), or rounded (SAC.R) version of the  
contents of the target accumulator to data memory via  
the  
X
bus, subject to data saturation (see  
Section 3.6.2.4 “Data Space Write Saturation”). For  
the MAC class of instructions, the accumulator  
write-back operation functions in the same manner,  
addressing combined MCU (X and Y) data space  
though the X bus. For this class of instructions, the data  
is always subject to rounding.  
3.6.2.2  
Accumulator ‘Write Back’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
DS70290G-page 28  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
3.6.2.4  
Data Space Write Saturation  
3.6.3  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space can also be saturated but without affecting the  
contents of the source accumulator. The data space  
write saturation logic block accepts a 16-bit, 1.15  
fractional value from the round logic block as its input,  
together with overflow status from the original source  
(accumulator) and the 16-bit round adder. These inputs  
are combined and used to select the appropriate 1.15  
fractional value as output to write to data space  
memory.  
The barrel shifter can perform up to 16-bit arithmetic or  
logic right shifts, or up to 16-bit left shifts in a single  
cycle. The source can be either of the two DSP  
accumulators or the X bus (to support multi-bit shifts of  
register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly:  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is  
presented to the barrel shifter between bit positions 16  
and 31 for right shifts, and between bit positions 0 and  
16 for left shifts.  
• For input data greater than 0x007FFF, data writ-  
ten to memory is forced to the maximum positive  
1.15 value, 0x7FFF.  
• For input data less than 0xFF8000, data written to  
memory is forced to the maximum negative 1.15  
value, 0x8000.  
The Most significant bit of the source (bit 39) is used to  
determine the sign of the operand being tested.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
© 2011 Microchip Technology Inc.  
DS70290G-page 29  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 30  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
4.1  
Program Address Space  
4.0  
MEMORY ORGANIZATION  
The program address memory space of the  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
devices is 4M instructions. The space is addressable by a  
24-bit value derived either from the 23-bit Program Counter  
(PC) during program execution, or from table operation  
or data space remapping as described in Section 4.6  
“Interfacing Program and Data Memory Spaces”.  
Section  
4.  
“Program  
Memory”  
(DS70202) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip website  
(www.microchip.com).  
User application access to the program memory space is  
restricted to the lower half of the address range (0x000000  
to 0x7FFFFF). The exception is the use of TBLRD/TBLWT  
operations, which use TBLPAG<7> to permit access to the  
Configuration bits and Device ID sections of the  
configuration memory space.  
The  
dsPIC33FJ32GP202/204  
and  
dsPIC33FJ16GP304 architecture features separate  
program and data memory spaces and buses. This  
architecture also allows the direct access of program  
memory from the data space during code execution.  
The memory maps for the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 devices are shown in Figure 4-1.  
FIGURE 4-1:  
PROGRAM MEMORY FOR dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
DEVICES  
dsPIC33FJ32GP202/204  
dsPIC33FJ16GP304  
0x000000  
0x000002  
0x000004  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Alternate Vector Table  
Alternate Vector Table  
User Program  
Flash Memory  
(11264 instructions)  
User Program  
Flash Memory  
(5632 instructions)  
0x0057FE  
0x005800  
0x002BFE  
0x002C00  
Unimplemented  
Unimplemented  
(Read ‘  
0
’s)  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
0x7FFFFE  
0x800000  
Reserved  
Reserved  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
Device Configuration  
Registers  
Device Configuration  
Registers  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
0xFEFFFE  
0xFF0000  
0xFEFFFE  
0xFF0000  
0xFFFFFE  
0xFFFFFE  
© 2011 Microchip Technology Inc.  
DS70290G-page 31  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.2  
INTERRUPT AND TRAP VECTORS  
All dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices reserve the addresses between 0x00000 and  
0x000200 for hard-coded program execution vectors.  
A hardware Reset vector is provided to redirect code  
execution from the default value of the PC on device  
Reset to the actual start of code. A GOTOinstruction is  
programmed by the user application at 0x000000, with  
the actual address for the start of code at 0x000002.  
The program memory space is organized in  
word-addressable blocks. Although it is treated as  
24 bits wide, it is more appropriate to think of each  
address of the program memory as a lower and upper  
word, with the upper byte of the upper word being  
unimplemented. The lower word always has an even  
address, while the upper word has an odd address  
(Figure 4-2).  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices also have two interrupt vector tables, located  
from 0x000004 to 0x0000FF and 0x000100 to  
0x0001FF. These vector tables allow each of the many  
device interrupt sources to be handled by separate  
Interrupt Service Routines (ISRs). A more detailed  
discussion of the interrupt vector tables is provided in  
Section 7.1 “Interrupt Vector Table”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement provides compatibility with data memory  
space addressing and makes data in the program  
memory space accessible.  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS70290G-page 32  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
All word accesses must be aligned to an even address.  
4.2  
Data Address Space  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed. If the instruction  
occurred on a write, the instruction is executed but the  
write does not occur. In either case, a trap is then  
executed, allowing the system and/or user application  
to examine the machine state prior to execution of the  
address Fault.  
The  
dsPIC33FJ32GP202/204  
and  
dsPIC33FJ16GP304 CPU has a separate 16-bit wide  
data memory space. The data space is accessed using  
separate Address Generation Units (AGUs) for read  
and write operations. The data memory maps is shown  
in Figure 4-3.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 4.6.3 “Reading Data from  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
A sign-extend instruction (SE) is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, user  
applications can clear the MSB of any W register by  
executing a zero-extend (ZE) instruction on the  
appropriate address.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices implement up to 2 Kbytes of data memory.  
Should an EA point to a location outside of this area, an  
all-zero word or byte will be returned.  
4.2.1  
DATA SPACE WIDTH  
4.2.3  
SFR SPACE  
The data memory space is organized in byte  
addressable, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
The first 2 Kbytes of the Near Data Space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
core and peripheral modules for controlling the  
operation of the device.  
SFRs are distributed among the modules that they  
control, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’. A complete listing of implemented  
SFRs, including their addresses, is shown in Table 4-1  
through Table 4-22.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCU  
devices and improve data space memory usage  
efficiency,  
the  
dsPIC33FJ32GP202/204  
and  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Refer to  
the corresponding device tables and  
pinout diagrams for device-specific  
information.  
dsPIC33FJ16GP304 instruction set supports both  
word and byte operations. As a consequence of byte  
accessibility, all effective address calculations are  
internally scaled to step through word-aligned memory.  
For example, the core recognizes that Post-Modified  
Register Indirect Addressing mode [Ws++] will result in  
a value of Ws + 1 for byte operations and Ws + 2 for  
word operations.  
4.2.4  
NEAR DATA SPACE  
The 8 Kbyte area between 0x0000 and 0x1FFF is  
referred to as the Near Data Space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode using a working  
register as an address pointer.  
Data byte reads will read the complete word that  
contains the byte, using the LSB of any EA to  
determine which byte to select. The selected byte is  
placed onto the LSB of the data path. That is, data  
memory and registers are organized as two parallel  
byte-wide entities with shared (word) address decode  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register that  
matches the byte address.  
© 2011 Microchip Technology Inc.  
DS70290G-page 33  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 4-3:  
DATA MEMORY MAP FOR dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
DEVICES WITH 2 KB RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
X Data RAM (X)  
Y Data RAM (Y)  
0x0BFF  
0x0001  
0x0BFE  
0x0C00  
8 Kbyte  
Near data space  
2 Kbyte  
SRAM Space  
0x0FFF  
0x1001  
0x0FFE  
0x1000  
0x1FFF  
0x2001  
0x1FFE  
0x2000  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70290G-page 34  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.Nand MSC) to provide  
two concurrent data read paths.  
4.2.5  
X AND Y DATA SPACES  
The core has two data spaces, X and Y. These data  
spaces can be considered either separate (for some  
DSP instructions), or as one unified linear address  
range (for MCU instructions). The data spaces are  
accessed using two Address Generation Units (AGUs)  
and separate data paths. This feature allows certain  
instructions to concurrently fetch two words from RAM,  
thereby enabling efficient execution of DSP algorithms  
such as Finite Impulse Response (FIR) filtering and  
Fast Fourier Transform (FFT).  
Both the X and Y data spaces support Modulo  
Addressing mode for all instructions, subject to  
addressing mode restrictions. Bit-Reversed Addressing  
mode is only supported for writes to X data space.  
All data memory writes, including in DSP instructions,  
view data space as combined X and Y address space.  
The boundary between the X and Y data spaces is  
device-dependent and is not user-programmable.  
The X data space is used by all instructions and  
supports all addressing modes. X data space has  
separate read and write data buses. The X read data  
bus is the read data path for all instructions that view  
data space as combined X and Y address space. It is  
also the X data prefetch path for the dual operand DSP  
instructions (MACclass).  
All effective addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes, or 32K words, though the  
implemented memory locations vary by device.  
© 2011 Microchip Technology Inc.  
DS70290G-page 35  
TABLE 4-1:  
CPU CORE REGISTERS MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
0026  
0028  
002A  
002C  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
003C  
003E  
0040  
0042  
0044  
0046  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
00xx  
xxxx  
00xx  
0000  
0020  
0000  
Stack Pointer Limit Register  
ACCAL  
Accumulator A Low Word Register  
Accumulator A High Word Register  
Accumulator A Upper Word Register  
Accumulator B Low Word Register  
Accumulator B High Word Register  
Accumulator B Upper Word Register  
Program Counter Low Word Register  
ACCAH  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
PCH  
Program Counter High Byte Register  
Table Page Address Pointer Register  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
DOSTARTH  
DOENDL  
DOENDH  
SR  
Program Memory Visibility Page Address Pointer Register  
Repeat Loop Counter Register  
DCOUNT<15:0>  
DOSTARTL<15:1>  
0
0
DOENDL<15:1>  
DOSTARTH<5:0>  
DOENDH  
OA  
OB  
SA  
SB  
US  
OAB  
EDT  
SAB  
DA  
DC  
IPL2  
SATA  
IPL1  
SATB  
IPL0  
RA  
N
OV  
Z
C
CORCON  
MODCON  
DL<2:0>  
SATDW ACCSAT  
IPL3  
PSV  
RND  
IF  
XMODEN YMODEN  
BWM<3:0>  
YWM<3:0>  
XWM<3:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-1:  
CPU CORE REGISTERS MAP (CONTINUED)  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
0048  
004A  
004C  
004E  
0050  
0052  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
0
1
0
1
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
BREN  
XB<14:0>  
DISICNT  
Disable Interrupts Counter Register  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-2:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GP202  
SFR  
Name  
Addr  
SFR  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
CN15IE  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN11IE  
CN27IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
0000  
0000  
—-  
CN24IE  
CN23IE  
CN22IE  
CN21IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE  
006A CN30PUE CN29PUE CN27PUE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
CN24PUE CN23PUE CN22PUE CN21PUE  
CN16PUE  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-3:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GP204 AND dsPIC33FJ16GP304  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CN15IE  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN28IE  
CN11IE  
CN27IE  
CN10IE  
CN26IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
CNEN1 0060  
CNEN2 0062  
CNPU1 0068  
CNPU2 006A  
0000  
0000  
0000  
0000  
CN25IE  
CN24IE  
CN23IE  
CN22IE  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
CN30PUE CN29PUE CN28PUE CN27PUE CN26PUE CN25PUE CN24PUE CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Legend:  
TABLE 4-4:  
INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
0000  
INTCON2 0082 ALTIVT  
DISI  
AD1IF  
INT2IF  
U1TXIF  
U1RXIF  
T3IF  
T2IF  
IC8IF  
OC2IF  
IC7IF  
T1IF  
CNIF  
INT2EP  
OC1IF  
INT1EP INT0EP 0000  
IC1IF INT0IF 0000  
MI2C1IF SI2C1IF 0000  
IFS0  
IFS1  
IFS4  
IEC0  
IEC1  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC7  
IPC16  
0084  
0086  
008C  
0094  
0096  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B2  
00C4  
SPI1IF SPI1EIF  
IC2IF  
INT1IF  
U1EIF  
IC1IE  
0000  
0000  
AD1IE  
INT2IE  
U1TXIE  
U1RXIE  
SPI1IE SPI1EIE  
T3IE  
T2IE  
IC8IE  
OC2IE  
IC7IE  
IC2IE  
T1IE  
CNIE  
OC1IE  
INT0IE  
INT1IE  
MI2C1IE SI2C1IE 0000  
U1EIE  
INT0IP<2:0>  
0000  
4444  
4440  
4444  
0044  
4044  
4404  
0040  
0040  
0000  
T1IP<2:0>  
T2IP<2:0>  
U1RXIP<2:0>  
OC1IP<2:0>  
IC1IP<2:0>  
IC2IP<2:0>  
SPI1EIP<2:0>  
AD1IP<2:0>  
MI2C1IP<2:0>  
OC2IP<2:0>  
SPI1IP<2:0>  
T3IP<2:0>  
U1TXIP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
CNIP<2:0>  
IC8IP<2:0>  
IC7IP<2:0>  
INT2IP<2:0>  
U1EIP<2:0>  
INTTREG 00E0  
Legend:  
ILR<3:0>  
VECNUM<6:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-5:  
TIMER REGISTER MAP  
SFR Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
0108  
010A  
010C  
010E  
0110  
0112  
Timer1 Register  
Period Register 1  
0000  
FFFF  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
T1CON  
TMR2  
TMR3HLD  
TMR3  
PR2  
TON  
TSIDL  
TGATE  
TCKPS<1:0>  
TSYNC  
TCS  
Timer2 Register  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-6:  
INPUT CAPTURE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC7BUF  
IC7CON  
IC8BUF  
IC8CON  
Legend:  
0140  
0142  
0144  
0146  
0158  
015A  
015C  
015E  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 7 Capture Register  
ICTMR  
Input 8 Capture Register  
ICTMR  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-7:  
OUTPUT COMPARE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCFLT OCTSEL  
OCFLT OCTSEL  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
I2C1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
Legend:  
0200  
0202  
0204  
0206  
0208  
020A  
020C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL  
IPMIEN  
A10M  
BCL  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
ADD10  
IWCOL  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
UART1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD URXINV  
ADDEN RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-10: SPI1 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
Legend:  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
PPRE<1:0>  
FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI1 Transmit and Receive Buffer Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-11: PERIPHERAL PIN SELECT INPUT REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1F00  
001F  
1F1F  
1F1F  
1F1F  
001F  
1F1F  
1F1F  
001F  
RPINR0  
RPINR1  
RPINR3  
RPINR7  
RPINR10  
RPINR11  
RPINR18  
RPINR20  
0680  
0682  
0686  
068E  
0694  
0696  
06A4  
06A8  
INT1R<4:0>  
INT2R<4:0>  
T2CKR<4:0>  
IC1R<4:0>  
IC7R<4:0>  
OCFAR<4:0>  
U1RX<R4:0>  
SDI1R<4:0>  
SS1R<4:0>  
T3CKR<4:0>  
IC2R<4:0>  
IC8R<4:0>  
U1CTSR<4:0>  
SCK1R<4:0>  
RPINR21 06AA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-12: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ32GP202  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
RP1R<4:0>  
RP3R<4:0>  
RP5R<4:0>  
RP7R<4:0>  
RP9R<4:0>  
RP11R<4:0>  
RP13R<4:0>  
RP15R<4:0>  
RP0R<4:0>  
RP2R<4:0>  
RP4R<4:0>  
RP6R<4:0>  
RP8R<4:0>  
RP10R<4:0>  
RP12R<4:0>  
RP14R<4:0>  
RPOR7  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-13: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ32GP204 AND dsPIC33FJ16GP304  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPOR0  
06C0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
RP1R<4:0>  
RP3R<4:0>  
RP5R<4:0>  
RP7R<4:0>  
RP9R<4:0>  
RP11R<4:0>  
RP13R<4:0>  
RP15R<4:0>  
RP17R<4:0>  
RP19R<4:0>  
RP21R<4:0>  
RP23R<4:0>  
RP25R<4:0>  
RP0R<4:0>  
RP2R<4:0>  
RP4R<4:0>  
RP6R<4:0>  
RP8R<4:0>  
RP10R<4:0>  
RP12R<4:0>  
RP14R<4:0>  
RP16R<4:0>  
RP18R<4:0>  
RP20R<4:0>  
RP22R<4:0>  
RP24R<4:0>  
RPOR1  
06C2  
RPOR2  
06C4  
RPOR3  
06C6  
RPOR4  
06C8  
RPOR5  
06CA  
RPOR6  
06CC  
RPOR7  
06CE  
RPOR8  
06D0  
RPOR9  
06D2  
RPOR10  
06D4  
RPOR11  
06D6  
RPOR12  
06D8  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-14: ADC1 REGISTER MAP FOR dsPIC33FJ32GP204 AND dsPIC33FJ16GP304  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
ADC1BUF5  
ADC1BUF6  
ADC1BUF7  
ADC1BUF8  
ADC1BUF9  
ADC1BUFA  
ADC1BUFB  
ADC1BUFC  
ADC1BUFD  
ADC1BUFE  
ADC1BUFE  
AD1CON1  
AD1CON2  
AD1CON3  
0300  
0302  
0304  
0306  
0308  
030A  
030C  
030E  
0310  
0312  
0314  
0316  
0318  
031A  
031C  
031E  
0320  
0322  
0324  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
ADON  
ADSIDL  
AD12B  
CSCNA  
FORM<1:0>  
CHPS<1:0>  
SSRC<2:0>  
SIMSAM ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
ADCS<7:0>  
ADRC  
SAMC<4:0>  
AD1CHS123 0326  
CH123NB<1:0>  
CH0SB<4:0>  
PCFG11 PCFG10 PCFG9  
CSS11 CSS10 CSS9  
CH123SB  
CH123NA<1:0>  
CH123SA 0000  
AD1CHS0  
AD1PCFGL  
AD1CSSL  
Legend:  
0328 CH0NB  
CH0NA  
PCFG7  
CSS7  
CH0SA<4:0>  
PCFG3 PCFG2 PCFG1  
CSS3 CSS2 CSS1  
0000  
032C  
0330  
PCFG12  
CSS12  
PCFG8  
CSS8  
PCFG6  
CSS6  
PCFG5  
CSS5  
PCFG4  
CSS4  
PCFG0  
CSS0  
0000  
0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-15: ADC1 REGISTER MAP FOR dsPIC33FJ32GP202  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
ADC1BUF5  
ADC1BUF6  
ADC1BUF7  
ADC1BUF8  
ADC1BUF9  
ADC1BUFA  
ADC1BUFB  
ADC1BUFC  
ADC1BUFD  
ADC1BUFE  
ADC1BUFF  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS123  
AD1CHS0  
0300  
0302  
0304  
0306  
0308  
030A  
030C  
030E  
0310  
0312  
0314  
0316  
0318  
031A  
031C  
031E  
0320  
0322  
0324  
0326  
0328  
032C  
0330  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
ADON  
ADSIDL  
AD12B  
CSCNA  
FORM<1:0>  
CHPS<1:0>  
SSRC<2:0>  
SIMSAM ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
ADCS<7:0>  
ADRC  
SAMC<4:0>  
CH123NB<1:0>  
CH0SB<4:0>  
PCFG12 PCFG11 PCFG10 PCFG9  
CSS12 CSS11 CSS10 CSS9  
CH123SB  
CH0NA  
CH123NA<1:0>  
CH123SA  
CH0NB  
CH0SA<4:0>  
PCFG3 PCFG2 PCFG1  
CSS3 CSS2 CSS1  
AD1PCFGL  
AD1CSSL  
PCFG5  
CSS5  
PCFG4  
CSS4  
PCFG0  
CSS0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-16: PORTA REGISTER MAP FOR dsPIC33FJ32GP202  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
02C6  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
001F  
xxxx  
xxxx  
0000  
LATA4  
ODCA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
ODCA1  
LATA0  
ODCA0  
ODCA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-17: PORTA REGISTER MAP FOR dsPIC33FJ32GP204 AND dsPIC33FJ16GP304  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
02C6  
TRISA10  
RA10  
TRISA9  
RA9  
TRISA8 TRISA7  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
001F  
xxxx  
xxxx  
0000  
RA8  
RA7  
LATA10  
ODCA10  
LATA9  
ODCA9  
LATA8  
ODCA8  
LATA7  
ODCA7  
LATA4  
ODCA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
ODCA1  
LATA0  
ODCA0  
ODCA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-18: PORTB REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8  
02CA  
02CC  
02CE  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9  
TRISB8  
RB8  
TRISB7  
RB7  
TRISB6  
RB6  
TRISB5  
RB5  
TRISB4  
RB4  
TRISB3  
RB3  
TRISB2  
RB2  
TRISB1 TRISB0  
FFFF  
xxxx  
xxxx  
0000  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB1  
RB0  
LATB15  
ODCB15  
LATB14  
ODCB14  
LATB13  
ODCB13  
LATB12  
ODCB12  
LATB11  
ODCB11  
LATB10  
ODCB10  
LATB9  
ODCB9  
LATB8  
ODCB8  
LATB7  
ODCB7  
LATB6  
ODCB6  
LATB5  
ODCB5  
LATB4  
ODCB4  
LATB3  
ODCB3  
LATB2  
ODCB2  
LATB1  
ODCB1  
LATB0  
ODCB0  
ODCB  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-19: PORTC REGISTER MAP FOR dsPIC33FJ32GP204 AND dsPIC33FJ16GP304  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
03FF  
xxxx  
xxxx  
0000  
TRISC  
PORTC  
LATC  
02D0  
02D2  
02D4  
02D6  
TRISC9 TRISC8 TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
RC9  
RC8  
RC7  
RC6  
RC5  
RC4  
RC4  
RC2  
RC1  
RC0  
LATC9  
LATC8  
LATC7  
LATC6  
LATC5  
LATC4  
LATC4  
LATC2  
LATC1  
LATC0  
ODCC  
ODCC9 ODCC8 ODCC7  
ODCC6 ODCC5 ODCC4 ODCC4 ODCC2 ODCC1 ODCC0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-20: SYSTEM CONTROL REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
RCON  
0740  
0742  
0744  
0746  
0748  
TRAPR IOPUWR  
COSC<2:0>  
DOZE<2:0>  
CM  
NOSC<2:0>  
FRCDIV<2:0>  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx  
0300  
3040  
0030  
0000  
(2)  
OSCCON  
CLKDIV  
PLLFBD  
OSCTUN  
CLKLOCK IOLOCK  
PLLPOST<1:0>  
LOCK  
LPOSCEN OSWEN  
ROI  
DOZEN  
PLLPRE<4:0>  
PLLDIV<8:0>  
TUN<5:0>  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
RCON register Reset values dependent on type of Reset.  
OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.  
TABLE 4-21: NVM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
ERASE  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
NVMOP<3:0>  
0000  
NVMKEY<7:0>  
0000  
Legend:  
Note 1:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-22: PMD REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
0770  
0772  
T3MD  
T2MD  
T1MD  
I2C1MD  
U1MD  
SPI1MD  
AD1MD  
OC1MD  
0000  
0000  
PMD2  
IC8MD  
IC7MD  
IC2MD  
IC1MD  
OC2MD  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
4.2.6  
SOFTWARE STACK  
4.2.7  
DATA RAM PROTECTION FEATURE  
In addition to its use as a working register, the W15  
register in the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 devices is also used as a  
software Stack Pointer. The Stack Pointer always  
points to the first available free word and grows from  
lower to higher addresses. It pre-decrements for stack  
pops and post-increments for stack pushes, as shown  
in Figure 4-4. For a PC push during any CALL  
instruction, the MSB of the PC is zero-extended before  
the push, ensuring that the MSB is always clear.  
The dsPIC33F product family supports Data RAM  
protection features that enable segments of RAM to be  
protected when used in conjunction with Boot and  
Secure Code Segment Security. BSRAM (Secure RAM  
segment for Boot Segment) is accessible only from the  
Boot Segment Flash code when enabled. SSRAM  
(Secure RAM segment for RAM) is accessible only  
from the Secure Segment Flash code when enabled.  
See Table 4-1 for an overview of the BSRAM and  
SSRAM SFRs.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSB  
of the PC prior to the push.  
4.3  
Instruction Addressing Modes  
The addressing modes shown in Table 4-23 form the  
basis of the addressing modes optimized to support the  
specific features of individual instructions. The  
addressing modes provided in the MAC class of  
instructions differ from those in the other instruction  
types.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
When an EA is generated using W15 as a source or  
destination pointer, the resulting address is compared  
with the value in SPLIM. If the contents of the Stack  
Pointer (W15) and the SPLIM register are equal and a  
push operation is performed, a stack error trap will not  
occur. The stack error trap will occur on a subsequent  
push operation. For example, to cause a stack error  
trap when the stack grows beyond address 0x1000 in  
RAM, initialize the SPLIM with the value 0x0FFE.  
4.3.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (Near Data Space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
4.3.2  
MCU INSTRUCTIONS  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
where:  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
FIGURE 4-4:  
CALL STACK FRAME  
Operand 1 is always a working register (that is, the  
addressing mode can only be register direct), which is  
referred to as Wb.  
0x0000  
15  
0
Operand 2 can be a W register, fetched from data  
memory, or a 5-bit literal.  
The result location can be either a W register or a data  
memory location. The following addressing modes are  
supported by MCU instructions:  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
• Register Direct  
W15 (after CALL)  
• Register Indirect  
POP : [--W15]  
PUSH: [W15++]  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-bit or 10-bit Literal  
Note:  
Not all instructions support all the  
addressing modes given above.  
Individual instructions can support  
different subsets of these addressing  
modes.  
© 2011 Microchip Technology Inc.  
DS70290G-page 47  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 4-23: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode  
File Register Direct  
Description  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the Effective Address (EA.)  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
(Register Indexed)  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
The two-source operand prefetch registers must be  
4.3.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
members of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 are always directed to the X RAGU,  
and W10 and W11 are always directed to the Y AGU.  
The effective addresses generated (before and after  
modification) must, therefore, be valid addresses within  
X data space for W8 and W9 and Y data space for W10  
and W11.  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
Addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
Note:  
Register Indirect with Register Offset  
Addressing mode is available only for W9  
(in X space) and W11 (in Y space).  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (Register Offset)  
field is shared by both source and  
destination (but typically only used by  
one).  
In summary, the following addressing modes are  
supported by the MACclass of instructions:  
• Register Indirect  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
• Register Direct  
4.3.5  
OTHER INSTRUCTIONS  
• Register Indirect  
Besides the addressing modes outlined previously, some  
instructions use literal constants of various sizes. For  
example, BRA (branch) instructions use 16-bit signed  
literals to specify the branch destination directly, whereas  
the DISIinstruction uses a 14-bit unsigned literal field. In  
some instructions, such as ADD Acc, the source of an  
operand or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
• 16-bit Literal  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
4.3.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also referred  
to as MACinstructions, use a simplified set of addressing  
modes to allow the user application to effectively  
manipulate the data pointers through register indirect  
tables.  
DS70290G-page 48  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
4.4  
Modulo Addressing  
Note:  
Y
space Modulo Addressing EA  
calculations assume word sized data  
(LSB of every EA is always clear).  
Modulo Addressing mode is a method of providing an  
automated means to support circular data buffers using  
hardware. The objective is to remove the need for  
software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the  
corresponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
Modulo Addressing can operate in either data or program  
space (since the data pointer mechanism is essentially  
the same for both). One circular buffer can be supported  
in each of the X (which also provides the pointers into  
program space) and Y data spaces. Modulo Addressing  
can operate on any W register pointer. However, it is not  
advisable to use W14 or W15 for Modulo Addressing  
since these two registers are used as the Stack Frame  
Pointer and Stack Pointer, respectively.  
4.4.2  
W ADDRESS REGISTER  
SELECTION  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags as well  
as a W register field to specify the W Address registers.  
The XWM and YWM fields select the registers that will  
operate with Modulo Addressing:  
In general, any particular circular buffer can be  
configured to operate in only one direction, as there are  
certain restrictions on the buffer start address (for incre-  
menting buffers), or end address (for decrementing  
buffers), based upon the direction of the buffer.  
• If XWM = 15, X RAGU and X WAGU Modulo  
Addressing is disabled.  
• If YWM = 15, Y AGU Modulo Addressing is  
disabled.  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 4-1). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The only exception to the usage restrictions is for  
buffers that have a power-of-two length. As these  
buffers satisfy the start and end address criteria, they  
can operate in a bidirectional mode (that is, address  
boundary checks are performed on both the lower and  
upper address boundaries).  
The Y Address Space Pointer W register (YWM) to  
which Modulo Addressing is to be applied is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
15’ and the YMODEN bit is set at MODCON<14>.  
4.4.1  
START AND END ADDRESS  
The Modulo Addressing scheme requires that a  
starting and ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 4-1).  
FIGURE 4-5:  
MODULO ADDRESSING OPERATION EXAMPLE  
Byte  
Address  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100, W0  
W0, XMODSRT  
#0x1163, W0  
W0, MODEND  
#0x8001, W0  
W0, MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000, W0  
#0x1110, W1  
DO  
MOV  
AGAIN, #0x31  
W0, [W1++]  
;fill the 50 buffer locations  
;fill the next location  
AGAIN: INC W0, W0  
;increment the fill value  
0x1163  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 words  
© 2011 Microchip Technology Inc.  
DS70290G-page 49  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
If the length of a bit-reversed buffer is M = 2N bytes,  
the last ‘N’ bits of the data buffer start address must  
be zeros.  
4.4.3  
MODULO ADDRESSING  
APPLICABILITY  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register.  
XB<14:0> is the Bit-Reversed Address modifier, or  
‘pivot point’, which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
Address boundaries check for addresses equal to:  
• The upper boundary addresses for incrementing  
buffers  
Note:  
All bit-reversed EA calculations assume  
word sized data (LSB of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
• The lower boundary addresses for decrementing  
buffers  
It is important to realize that the address boundaries  
also check for addresses less than or greater than  
these addresses. Address changes can, therefore,  
jump beyond boundaries and still be adjusted correctly.  
When enabled, Bit-Reversed Addressing is executed  
only for Register Indirect with Pre-Increment or  
Post-Increment Addressing and word sized data writes.  
It will not function for any other addressing mode or for  
byte sized data, and normal addresses are generated  
instead. When Bit-Reversed Addressing is active, the  
W Address Pointer is always added to the address  
modifier (XB), and the offset associated with the Regis-  
ter Indirect Addressing mode is ignored. In addition, as  
word sized data is a requirement, the LSb of the EA is  
ignored (and always clear).  
Note:  
The modulo corrected effective address is  
written back to the register only when  
Pre-Modify or Post-Modify Addressing  
mode is used to compute the effective  
address. When an address offset (such as  
[W7+W2]) is used, Modulo Address  
correction is performed but the contents of  
the register remain unchanged.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. If an application attempts to do  
so, Bit-Reversed Addressing will assume  
priority when active for the X WAGU and X  
WAGU Modulo Addressing will be  
disabled. However, Modulo Addressing will  
continue to function in the X RAGU.  
4.5  
Bit-Reversed Addressing  
Bit-Reversed Addressing mode is intended to simplify  
data re-ordering for radix-2 FFT algorithms. It is  
supported by the X AGU for data writes only.  
The modifier, which can be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN bit (XBREV<15>), a write to the  
XBREV register should not be immediately followed by  
an indirect read operation using the W register that has  
been designated as the bit-reversed pointer.  
4.5.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing mode is enabled in any of  
these situations:  
• BWM bits (W register selection) in the MODCON  
register are any value other than ‘15’ (the stack  
cannot be accessed using Bit-Reversed  
Addressing).  
• The BREN bit is set in the XBREV register.  
• The addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment.  
DS70290G-page 50  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 4-6:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b2 b3 b4  
0
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1  
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-Word Bit-Reversed Buffer  
TABLE 4-24: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
© 2011 Microchip Technology Inc.  
DS70290G-page 51  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
4.6.1  
ADDRESSING PROGRAM SPACE  
4.6  
Interfacing Program and Data  
Memory Spaces  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
architecture uses a 24-bit wide program space and a  
16-bit wide data space. The architecture is also a  
modified Harvard scheme, meaning that data can also  
be present in the program space. To use this data  
successfully, it must be accessed in a way that  
preserves the alignment of information in both spaces.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
Aside  
from  
normal  
execution,  
the  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
architecture provides two methods by which program  
space can be accessed during operation:  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
For remapping operations, the 8-bit Program Space  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated periodically. It also allows access  
to all bytes of the program word. The remapping  
method allows an application to access a large block of  
data on a read-only basis, which is ideal for look ups  
from a large table of static data. The application can  
only access the least significant word of the program  
word.  
Table 4-25 and Figure 4-7 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, and D<15:0> refers to a data space word.  
TABLE 4-25: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
0
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
DS70290G-page 52  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 4-7:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 bits  
16 bits  
24 bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 bits  
15 bits  
23 bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The Least Significant bit (LSb) of program space addresses is always fixed as ‘0’ to maintain  
word alignment of data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted in  
the configuration memory space.  
© 2011 Microchip Technology Inc.  
DS70290G-page 53  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
In Byte mode, either the upper or lower byte of the  
lower program word is mapped to the lower byte of  
a data address. The upper byte is selected when  
Byte Select is ‘1’; the lower byte is selected when  
it is ‘0’.  
4.6.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDH and TBLWTH  
instructions are the only method to read or write the  
upper 8 bits of a program space word as data.  
TBLRDH (Table Read High): In Word mode, this  
instruction maps the entire upper word of a program  
address (P<23:16>) to a data address. Note that  
D<15:8>, the ‘phantom byte’, will always be ‘0’.  
In Byte mode, this instruction maps the upper or  
lower byte of the program word to D<7:0> of the  
data address, as in the TBLRDLinstruction. Note  
that the data will always be ‘0’ when the upper  
‘phantom’ byte is selected (Byte Select = 1).  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
wide word address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space that contains the least significant  
data word. TBLRDHand TBLWTHaccess the space that  
contains the upper data byte.  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 5.0 “Flash  
Program Memory”.  
Two table instructions are provided to move byte or  
word sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and  
configuration spaces. When TBLPAG<7> = 0, the table  
page is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
TBLRDL(Table Read Low): In Word mode, this  
instruction maps the lower word of the program  
space location (P<15:0>) to a data address  
(D<15:0>).  
FIGURE 4-8:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B(Wn<0> = 0)  
TBLRDL.B(Wn<0> = 1)  
TBLRDL.B(Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
DS70290G-page 54  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.6.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access to stored  
constant data from the data space without the need to  
use special instructions (such as TBLRDH).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG  
functions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. By incrementing the PC by 2 for each  
program memory word, the lower 15 bits of data space  
addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
a REPEAT loop, the MOV and MOV.D instructions  
require one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV, and are executed inside  
a REPEATloop, these instances require two instruction  
cycles in addition to the specified execution time of the  
instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
Data reads to this area add a cycle to the instruction  
being executed, since two program memory fetches  
are required.  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Any other iteration of the REPEAT loop will allow the  
instruction using PSV to access data to execute in a  
single cycle.  
Although each data space address 8000h and higher  
maps directly into a corresponding program memory  
address (see Figure 4-9), only the lower 16 bits of the  
FIGURE 4-9:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space...  
0x8000  
PSV Area  
...whilethelower15bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
© 2011 Microchip Technology Inc.  
DS70290G-page 55  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 56  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
ground (VSS) and Master Clear (MCLR). This allows  
5.0  
FLASH PROGRAM MEMORY  
customers to manufacture boards with unprogrammed  
devices and then program the digital signal controller  
just before shipping the product. This also allows the  
most recent firmware or a custom firmware to be pro-  
grammed.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 5. “Flash Programming”  
(DS70191) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip website  
(www.microchip.com).  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
application can write program memory data either in  
blocks or ‘rows’ of 64 instructions (192 bytes) at a time  
or a single program memory word, and erase program  
memory in blocks or ‘pages’ of 512 instructions (1536  
bytes) at a time.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
5.1  
Table Instructions and Flash  
Programming  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits <7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 5-1.  
The  
dsPIC33FJ32GP202/204  
and  
dsPIC33FJ16GP304 devices contain internal Flash  
program memory for storing and executing application  
code. The memory is readable, writable and erasable  
during normal operation over the entire VDD range.  
Flash memory can be programmed in two ways:  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
• In-Circuit Serial Programming™ (ICSP™)  
programming capability  
• Run-Time Self-Programming (RTSP)  
ICSP allows  
a
dsPIC33FJ32GP202/204 and  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
dsPIC33FJ16GP304 device to be serially programmed  
while in the end application circuit. This is done with  
two lines for programming clock and programming data  
(one of the alternate programming pin pairs:  
PGECx/PGEDx), and three other lines for power (VDD),  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/Configuration  
Space Select  
Byte  
Select  
24-bit EA  
© 2011 Microchip Technology Inc.  
DS70290G-page 57  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
For example, if the device is operating at +125°C, the  
FRC accuracy will be ±5%. If the TUN<5:0> bits (see  
Register 8-4) are set to ‘b111111, the minimum row  
write time is equal to Equation 5-2.  
5.2  
RTSP Operation  
The  
dsPIC33FJ32GP202/204  
and  
dsPIC33FJ16GP304 Flash program memory array is  
organized into rows of 64 instructions or 192 bytes.  
RTSP allows the user application to erase a page of  
memory, which consists of eight rows (512 instructions)  
at a time, and to program one row or one word at a  
time. The 8-row erase pages and single row write rows  
are edge-aligned from the beginning of program  
memory, on boundaries of 1536 bytes and 192 bytes,  
respectively.  
EQUATION 5-2:  
MINIMUM ROW WRITE  
TIME  
11064 Cycles  
7.37 MHz × (1 + 0.05) × (1 – 0.00375)  
----------------------------------------------------------------------------------------------  
= 1.435ms  
TRW  
=
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers sequentially. The  
instruction words loaded must always be from a group  
of 64 boundary.  
The maximum row write time is equal to Equation 5-3.  
EQUATION 5-3:  
MAXIMUM ROW WRITE  
TIME  
11064 Cycles  
---------------------------------------------------------------------------------------------  
= 1.586ms  
TRW  
=
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register. A total  
of 64 TBLWTL and TBLWTH instructions are required  
to load the instructions.  
7.37 MHz × (1 – 0.05) × (1 – 0.00375)  
Setting the WR bit (NVMCON<15>) starts the  
operation, and the WR bit is automatically cleared  
when the operation is finished.  
All of the table write operations are single-word writes  
(two instruction cycles) because only the buffers are  
5.4  
Control Registers  
written.  
A
programming cycle is required for  
The two SFRs that are used to read and write the  
program Flash memory are:  
programming each row.  
NVMCON: Flash Memory Control Register  
NVMKEY: Nonvolatile Memory Key Register  
5.3  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. The processor stalls (waits) until the  
programming operation is finished.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
NVMKEY (Register 5-2) is a write-only register that is  
used for write protection. To start a programming or  
erase sequence, the user application must  
consecutively write 0x55 and 0xAA to the NVMKEY  
register. Refer to Section 5.3 “Programming  
Operations” for further details.  
The programming time depends on the FRC accuracy  
(see Table 22-18) and the value of the FRC Oscillator  
Tuning register (see Register 8-4). Use the following  
formula to calculate the minimum and maximum values  
for the Row Write Time, Page Erase Time, and Word  
Write Cycle Time parameters (see Table 22-12).  
EQUATION 5-1:  
PROGRAMMING TIME  
T
-------------------------------------------------------------------------------------------------------------------------  
7.37 MHz × (FRC Accuracy)% × (FRC Tuning)%  
DS70290G-page 58  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
WREN  
bit 15  
bit 8  
R/W-0(1)  
bit 0  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP<3:0>(2)  
bit 7  
Legend:  
SO = Settable Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP<3:0> on the next WR command  
0= Perform the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(2)  
If ERASE = 1:  
1111= Memory bulk erase operation  
1101= Erase General Segment  
1100= Erase Secure Segment  
0011= No operation  
0010= Memory page erase operation  
0001= No operation  
0000= Erase a single Configuration register byte  
If ERASE = 0:  
1111= No operation  
1101= No operation  
1100= No operation  
0011= Memory word program operation  
0010= No operation  
0001= Memory row program operation  
0000= Program a single Configuration register byte  
Note 1: These bits can only be reset on POR.  
2: All other combinations of NVMOP<3:0> bits are unimplemented.  
© 2011 Microchip Technology Inc.  
DS70290G-page 59  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 5-2:  
NVMKEY: NONVOLATILE MEMORY KEY REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
W-0  
bit 7  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
NVMKEY<7:0>  
Legend:  
SO = Settable Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
NVMKEY<7:0>: Key Register (Write Only) bits  
DS70290G-page 60  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 5-2).  
5.4.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
Programmers can program one row of program Flash  
memory at a time. To do this, it is necessary to erase  
the 8-row erase page that contains the desired row.  
The general process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 0x55 to NVMKEY.  
c) Write 0xAA to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash  
memory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 5-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE bit (NVMCON<6>) and the WREN  
bit (NVMCON<14>).  
6. Repeat steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash memory.  
b) Write the starting address of the page to be  
erased into the TBLPAG and W registers.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
application must wait for the programming time until  
programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs, as shown in Example 5-3.  
c) Write 0x55 to NVMKEY.  
d) Write 0xAA to NVMKEY.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the  
duration of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY PAGE  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
© 2011 Microchip Technology Inc.  
DS70290G-page 61  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
EXAMPLE 5-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the  
; erase command is asserted  
DS70290G-page 62  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
6.0  
RESETS  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 8. “Reset” (DS70192) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
Any active source of reset will make the SYSRST  
signal active. On system Reset, some of the registers  
associated with the CPU and peripherals are forced to  
a known Reset state and some are unaffected.  
Note:  
Refer to the specific peripheral section or  
Section 3.0 “CPU” of this manual for  
register Reset states.  
All types of device Reset sets a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
A POR clears all the bits, except for the POR bit  
(RCON<0>), that are set. The user application can set  
or clear any bit at any time during code execution. The  
RCON bits only serve as status bits. Setting a particular  
Reset status bit in software does not cause a device  
Reset to occur.  
The Reset module combines all reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset is meaningful.  
• MCLR: Master Clear Pin Reset  
• SWR: RESETInstruction  
• WDTO: Watchdog Timer Reset  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Condition Device Reset  
- Illegal Opcode Reset  
- Uninitialized W Register Reset  
- Security Reset  
FIGURE 6-1:  
RESET MODULE BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
Internal  
Regulator  
SYSRST  
VDD  
POR  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
Configuration Mismatch  
© 2011 Microchip Technology Inc.  
DS70290G-page 63  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(1)  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CM  
R/W-0  
IOPUWR  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1= A configuration mismatch Reset has occurred  
0= A configuration mismatch Reset has NOT occurred  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
VREGS: Voltage Regulator Standby During Sleep bit  
1= Voltage regulator is active during Sleep  
0= Voltage regulator goes into Standby mode during Sleep  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS70290G-page 64  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(1)  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER (CONTINUED)  
bit 1  
bit 0  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
© 2011 Microchip Technology Inc.  
DS70290G-page 65  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
A warm Reset is the result of all other reset sources,  
6.1  
System Reset  
including the RESET instruction. On warm Reset, the  
device will continue to operate from the current clock  
source as indicated by the Current Oscillator Selection  
bits (COSC<2:0>) in the Oscillator Control register  
(OSCCON<14:12>).  
The  
dsPIC33FJ32GP202/204  
and  
dsPIC33FJ16GP304 family of devices have two types  
of Reset:  
• Cold Reset  
• Warm Reset  
The device is kept in a Reset state until the system  
power supplies have stabilized at appropriate levels  
and the oscillator clock is ready. The sequence in  
which this occurs is detailed below and is shown in  
Figure 6-2.  
A cold Reset is the result of a Power-on Reset (POR)  
or a Brown-out Reset (BOR). On a cold Reset, the  
FNOSC configuration bits in the FOSC device  
configuration register selects the device clock source.  
TABLE 6-1:  
OSCILLATOR DELAY  
Oscillator  
Oscillator Start-up  
Timer  
Oscillator Mode  
PLL Lock Time  
Total Delay  
Start-up Delay  
FRC, FRCDIV16,  
FRCDIVN  
TOSCD  
TOSCD  
FRCPLL  
XT  
TOSCD  
TOSCD  
TOSCD  
TOST  
TOST  
TLOCK  
TOSCD + TLOCK  
TOSCD + TOST  
TOSCD + TOST  
HS  
EC  
XTPLL  
HSPLL  
ECPLL  
SOSC  
LPRC  
TOSCD  
TOSCD  
TOST  
TOST  
TLOCK  
TLOCK  
TLOCK  
TOSCD + TOST + TLOCK  
TOSCD + TOST + TLOCK  
TLOCK  
TOSCD  
TOSCD  
TOST  
TOSCD + TOST  
TOSCD  
Note 1: TOSCD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up  
times vary with crystal characteristics, load capacitance, etc.  
2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a  
10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.  
3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.  
DS70290G-page 66  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 6-2:  
SYSTEM RESET TIMING  
VBOR  
Vbor  
VPOR  
TPOR  
VDD  
1
POR Reset  
BOR Reset  
SYSRST  
TBOR  
2
3
TPWRT  
4
Oscillator Clock  
TLOCK  
TOSCD  
TOST  
6
TFSCM  
FSCM  
5
Reset  
Device Status  
Run  
Time  
Note 1: POR Reset: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is  
active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.  
2: BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses  
the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output  
becomes stable.  
3: PWRT Timer: The programmable power-up timer continues to hold the processor in Reset for a specific  
period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized  
at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes  
inactive, which in turn enables the selected oscillator to start generating clock cycles.  
4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections are given in  
Table 6-1. Refer to Section 8.0 “Oscillator Configuration” for more information.  
5: When the oscillator clock is ready, the processor begins execution from location 0x000000. The user  
application programs a GOTO instruction at the reset address, which redirects program execution to the  
appropriate start-up routine.  
6: The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock  
is ready and the delay TFSCM elapsed.  
© 2011 Microchip Technology Inc.  
DS70290G-page 67  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 6-2:  
OSCILLATOR DELAY  
Symbol  
Parameter  
POR threshold  
Value  
VPOR  
TPOR  
VBOR  
TBOR  
TPWRT  
TFSCM  
1.8V nominal  
POR extension time  
30 μs maximum  
2.5V nominal  
BOR threshold  
BOR extension time  
100 μs maximum  
Programmable power-up time delay  
Fail-Safe Clock Monitor Delay  
0-128 ms nominal  
900 μs maximum  
6.2.1  
Brown-out Reset (BOR) and  
Power-up timer (PWRT)  
Note: When the device exits the Reset  
condition (begins normal operation), the  
device operating parameters (voltage,  
frequency, temperature, etc.) must be  
within their operating ranges, otherwise  
the device may not function correctly.  
The user application must ensure that  
the delay between the time power is  
first applied, and the time SYSRST  
becomes inactive, is long enough to get  
The on-chip regulator has a Brown-out Reset (BOR)  
circuit that resets the device when the VDD is too low  
(VDD < VBOR) for proper device operation. The BOR  
circuit keeps the device in Reset until VDD crosses  
VBOR threshold and the delay TBOR has elapsed. The  
delay TBOR ensures the voltage regulator output  
becomes stable.  
The BOR status bit in the Reset Control register  
(RCON<1>) is set to indicate the Brown-out Reset.  
all  
operating  
parameters  
within  
specification.  
The device will not run at full speed after a BOR as the  
VDD should rise to acceptable levels for full-speed  
operation. The PWRT provides power-up time delay  
(TPWRT) to ensure that the system power supplies have  
stabilized at the appropriate levels for full-speed  
operation before the SYSRST is released.  
6.2  
Power-on Reset (POR)  
A Power-on Reset (POR) circuit ensures the device is  
reset from power-on. The POR circuit is active until  
VDD crosses the VPOR threshold and the delay TPOR  
has elapsed. The delay TPOR ensures the internal  
device bias circuits become stable.  
The power-up timer delay (TPWRT) is programmed by  
the Power-on Reset Timer Value Select bits  
(FPWRT<2:0>) in the POR Configuration register  
(FPOR<2:0>), which provide eight settings (from 0 ms  
to 128 ms). Refer to Section 19.0 “Special Features”  
for further details.  
The device supply voltage characteristics must meet  
the specified starting voltage and rise rate  
requirements to generate the POR. Refer to  
Section 22.0 “Electrical Characteristics” for details.  
The POR status (POR) bit in the Reset Control  
(RCON<0>) register is set to indicate the Power-on  
Reset.  
Figure 6-3 shows the typical brown-out scenarios. The  
reset delay (TBOR + TPWRT) is initiated each time VDD  
rises above the VBOR trip point  
DS70290G-page 68  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 6-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD dips before PWRTexpires  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
The Software Reset (Instruction) Flag bit (SWR) in the  
Reset Control register (RCON<6>) is set to indicate  
the software Reset.  
6.3  
External Reset (EXTR)  
The external Reset is generated by driving the MCLR  
pin low. The MCLR pin is a Schmitt trigger input with an  
additional glitch filter. Reset pulses that are longer than  
the minimum pulse-width will generate a Reset. Refer  
to Section 22.0 “Electrical Characteristics” for  
minimum pulse-width specifications. The External  
Reset (MCLR) Pin (EXTR) bit in the Reset Control  
(RCON) register is set to indicate the MCLR Reset.  
6.5  
Watchdog Time-out Reset (WDTO)  
Whenever a Watchdog time-out occurs, the device will  
asynchronously assert SYSRST. The clock source will  
remain unchanged. A WDT time-out during Sleep or  
Idle mode will wake-up the processor, but will not reset  
the processor.  
6.3.1  
EXTERNAL SUPERVISORY CIRCUIT  
The Watchdog Timer Time-out Flag (WDTO) bit in the  
Reset Control register (RCON<4>) is set to indicate  
the Watchdog Reset. Refer to Section 19.4  
“Watchdog Timer (WDT)” for more information on  
Watchdog Reset.  
Many systems have external supervisory circuits that  
generate reset signals to Reset multiple devices in the  
system. This external Reset signal can be directly  
connected to the MCLR pin to Reset the device when  
the rest of system is Reset.  
6.6  
Trap Conflict Reset  
6.3.2  
INTERNAL SUPERVISORY CIRCUIT  
If  
a
lower-priority hard trap occurs while  
a
When using the internal power supervisory circuit to  
Reset the device, the external reset pin (MCLR) should  
be tied directly or resistively to VDD. In this case, the  
MCLR pin will not be used to generate a Reset. The  
external reset pin (MCLR) does not have an internal  
pull-up and must not be left unconnected.  
higher-priority trap is being processed, a hard trap  
conflict Reset occurs. The hard traps include  
exceptions of priority level 13 through level 15,  
inclusive. The address error (level 13) and oscillator  
error (level 14) traps fall into this category.  
The Trap Reset Flag bit (TRAPR) in the Reset Control  
register (RCON<15>) is set to indicate the Trap Conflict  
Reset. Refer to Section 7.0 “Interrupt Controller” for  
more information on trap conflict Resets.  
6.4  
Software RESET Instruction (SWR)  
Whenever the RESET instruction is executed, the  
device will assert SYSRST, placing the device in a  
special Reset state. This Reset state will not  
re-initialize the clock. The clock source in effect prior to  
the RESETinstruction will remain. SYSRST is released  
at the next instruction cycle, and the reset vector fetch  
will commence.  
© 2011 Microchip Technology Inc.  
DS70290G-page 69  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
each program memory section to store the data values.  
The upper 8 bits should be programmed with 3Fh,  
which is an illegal opcode value.  
6.7  
Configuration Mismatch Reset  
To maintain the integrity of the peripheral pin select  
control registers, they are constantly monitored with  
shadow registers in hardware. If an unexpected  
change in any of the registers occur (such as cell  
disturbances caused by ESD or other external events),  
a configuration mismatch Reset occurs.  
6.8.2  
UNINITIALIZED W REGISTER  
RESET  
Any attempts to use the uninitialized W register as an  
address pointer will Reset the device. The W register  
array (with the exception of W15) is cleared during all  
resets and is considered uninitialized until written to.  
The Configuration Mismatch Flag bit (CM) in the  
Reset Control register (RCON<9>) is set to indicate  
the configuration mismatch Reset. Refer to  
Section 10.0 “I/O Ports” for more information on the  
configuration mismatch Reset.  
6.8.3  
SECURITY RESET  
If a Program Flow Change (PFC) or Vector Flow  
Change (VFC) targets a restricted location in a  
protected segment (Boot and Secure Segment), that  
operation will cause a security Reset.  
Note:  
The configuration mismatch feature and  
associated reset flag is not available on all  
devices.  
The PFC occurs when the Program Counter is  
reloaded as a result of a Call, Jump, Computed Jump,  
Return, Return from Subroutine, or other form of  
branch instruction.  
6.8  
Illegal Condition Device Reset  
An illegal condition device Reset occurs due to the  
following sources:  
The VFC occurs when the Program Counter is  
reloaded with an Interrupt or Trap vector.  
• Illegal Opcode Reset  
• Uninitialized W Register Reset  
• Security Reset  
Refer to Section 19.6 “Code Protection and  
CodeGuard™ Security” for more information on  
Security Reset.  
The Illegal Opcode or Uninitialized W Access Reset  
Flag bit (IOPUWR) in the Reset Control register  
(RCON<14>) is set to indicate the illegal condition  
device Reset.  
6.9  
Using the RCON Status Bits  
The user application can read the Reset Control  
register (RCON) after any device Reset to determine  
the cause of the reset.  
6.8.1  
ILLEGAL OPCODE RESET  
A device Reset is generated if the device attempts to  
execute an illegal opcode value that is fetched from  
program memory.  
Note: The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
The illegal opcode Reset function can prevent the  
device from executing program memory sections that  
are used to store constant data. To take advantage of  
the illegal opcode Reset, use only the lower 16 bits of  
Table 6-3 provides a summary of the reset flag bit  
operation.  
TABLE 6-3:  
RESET FLAG BIT OPERATION  
Flag Bit  
Set by:  
Cleared by:  
TRAPR (RCON<15>)  
IOPWR (RCON<14>)  
Trap conflict event  
POR,BOR  
POR,BOR  
Illegal opcode or uninitialized  
W register access or Security Reset  
CM (RCON<9>)  
Configuration Mismatch  
MCLR Reset  
POR,BOR  
POR  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
RESETinstruction  
WDT time-out  
POR,BOR  
PWRSAVinstruction,  
CLRWDTinstruction, POR,BOR  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
POR, BOR  
POR,BOR  
POR,BOR  
POR  
Note: All Reset flag bits can be set or cleared by user software.  
DS70290G-page 70  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
7.0  
INTERRUPT CONTROLLER  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 6. “Interrupts” (DS70184) of  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
the  
Reference Manual”, which is available  
from the Microchip website  
(www.microchip.com).  
“dsPIC33F/PIC24H  
Family  
The AIVT supports debugging by providing a means to  
switch between an application and  
a
support  
environment without requiring the interrupt vectors to  
be reprogrammed. This feature also enables switching  
between applications for evaluation of different  
software algorithms at run time. If the AIVT is not  
needed, the AIVT should be programmed with the  
same addresses used in the IVT.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
7.2  
Reset Sequence  
The  
dsPIC33FJ32GP202/204  
and  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
dsPIC33FJ16GP304 interrupt controller reduces the  
numerous peripheral interrupt request signals to a  
The  
dsPIC33FJ32GP202/204  
and  
single  
interrupt  
request  
signal  
to  
the  
dsPIC33FJ16GP304 device clears its registers in  
response to a Reset, which forces the PC to zero. The  
digital signal controller then begins program execution  
at location 0x000000. The user application can use a  
GOTOinstruction at the Reset address which redirects  
program execution to the appropriate start-up routine.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
CPU. It has the following features:  
• Up to eight processor exceptions and software  
traps  
• Seven user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
• A unique vector for each interrupt or exception  
source  
• Fixed priority within a specified user priority level  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table is shown in Figure 7-1. The  
IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors consisting of  
8 nonmaskable trap vectors plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Interrupt vectors are prioritized in terms of their natural  
priority; this priority is linked to their position in the  
vector table. Lower addresses generally have a higher  
natural priority. For example, the interrupt associated  
with vector 0 will take priority over interrupts at any  
other vector address.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices implement up to 21 unique interrupts and four  
nonmaskable traps. These are summarized in  
Table 7-1 and Table 7-2.  
© 2011 Microchip Technology Inc.  
DS70290G-page 71  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 7-1:  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
Interrupt Vector Table (IVT)(1)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
Alternate Interrupt Vector Table (AIVT)(1)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 7-1 for the list of implemented interrupt vectors.  
DS70290G-page 72  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 7-1:  
INTERRUPT VECTORS  
Interrupt  
Vector  
Number  
Request(IRQ)  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
8
0
0x000014  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000030  
0x000032  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
0x00003E  
0x000040  
0x000042  
0x000044  
0x000046  
0x000048  
0x00004A  
0x00004C  
0x00004E  
0x000050  
0x000052  
0x000054  
0x000056  
0x000058  
0x00005A  
0x00005C  
0x00005E  
0x000060  
0x000062  
0x000064  
0x000066  
0x000068  
0x00006A  
0x00006C  
0x00006E  
0x000114  
0x000116  
0x000118  
0x00011A  
0x00011C  
0x00011E  
0x000120  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
0x000130  
0x000132  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
0x00013E  
0x000140  
0x000142  
0x000144  
0x000146  
0x000148  
0x00014A  
0x00014C  
0x00014E  
0x000150  
0x000152  
0x000154  
0x000156  
0x000158  
0x00015A  
0x00015C  
0x00015E  
0x000160  
0x000162  
0x000164  
0x000166  
0x000168  
0x00016A  
0x00016C  
0x00016E  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer1  
9
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
2
3
4
Reserved  
5
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
6
7
8
T3 – Timer3  
9
SPI1E – SPI1 Error  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC1 – ADC1  
Reserved  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
Reserved  
SI2C1 – I2C1 Slave Events  
MI2C1 – I2C1 Master Events  
Reserved  
Change Notification Interrupt  
INT1 – External Interrupt 1  
Reserved  
IC7 – Input Capture 7  
IC8 – Input Capture 8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
INT2 – External Interrupt 2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
© 2011 Microchip Technology Inc.  
DS70290G-page 73  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 7-1:  
INTERRUPT VECTORS (CONTINUED)  
Interrupt  
Vector  
Number  
Request(IRQ)  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
54  
55  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72-117  
0x000070  
0x000072  
0x000074  
0x000076  
0x000078  
0x00007A  
0x00007C  
0x00007E  
0x000080  
0x000082  
0x000084  
0x000086  
0x000088  
0x00008A  
0x00008C  
0x00008E  
0x000090  
0x000092  
0x000094  
0x000096  
0x000098  
0x00009A  
0x00009C  
0x00009E  
0x0000A0  
0x0000A2  
0x000170  
0x000172  
0x000174  
0x000176  
0x000178  
0x00017A  
0x00017C  
0x00017E  
0x000180  
0x000182  
0x000184  
0x000186  
0x000188  
0x00018A  
0x00018C  
0x00018E  
0x000190  
0x000192  
0x000194  
0x000196  
0x000198  
0x00019A  
0x00019C  
0x00019E  
0x0001A0  
0x0001A2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
U1E – UART1 Error  
Reserved  
74  
75  
Reserved  
76  
Reserved  
77  
Reserved  
78  
79  
80-125  
Reserved  
Reserved  
0x0000A4-0x0000FE 0x0001A4-0x0001FE Reserved  
TABLE 7-2:  
TRAP VECTORS  
Vector Number  
IVT Address  
AIVT Address  
Trap Source  
Reserved  
0
1
2
3
4
5
6
7
0x000004  
0x000006  
0x000008  
0x00000A  
0x00000C  
0x00000E  
0x000010  
0x000012  
0x000104  
0x000106  
0x000108  
0x00010A  
0x00010C  
0x00010E  
0x000110  
0x000112  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
Reserved  
Reserved  
Reserved  
DS70290G-page 74  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
7.3.4  
IPCx  
7.3  
Interrupt Control and Status  
Registers  
The IPC registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices implement a total of 17 registers for the  
interrupt controller:  
7.3.5  
INTTREG  
• Interrupt Control Register 1 (INTCON1)  
• Interrupt Control Register 2 (INTCON2)  
• Interrupt Flag Status Registers (IFSx)  
• Interrupt Enable Control Registers (IECx)  
• Interrupt Priority Control Registers (IPCx)  
• Interrupt Control and Status Register (INTTREG)  
The INTTREG register contains the associated  
interrupt vector number and the new CPU interrupt  
priority level, which are latched into the vector number  
(VECNUM<6:0>) and Interrupt level bits (ILR<3:0>) in  
the INTTREG register. The new interrupt priority level  
is the priority of the pending interrupt.  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-1. For example, the INT0 (External  
Interrupt 0) is shown as having vector number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP  
bits in the first position of IPC0 (IPC0<2:0>).  
7.3.1  
INTCON1 AND INTCON2  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the  
Interrupt Nesting Disable (NSTDIS) bit as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
7.3.6  
STATUS REGISTERS  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers  
contain bits that control interrupt functionality:  
7.3.2  
IFSx  
The IFS registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
• The CPU STATUS register, SR, contains the  
IPL<2:0> bits (SR<7:5>). These bits indicate the  
current CPU interrupt priority level. The user can  
change the current CPU priority level by writing to  
the IPL bits.  
7.3.3  
IECx  
• The CORCON register contains the IPL3 bit  
which, together with IPL<2:0>, also indicates the  
current CPU priority level. IPL3 is a read-only bit,  
so that trap events cannot be masked by the user  
software.  
The IEC registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
All Interrupt bits and regsiters are described in  
Register 7-1 through Register 7-19.  
© 2011 Microchip Technology Inc.  
DS70290G-page 75  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(1)  
REGISTER 7-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA  
R/C-0  
SB  
R-0  
R/C-0  
SAB  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
bit 7  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 3-1.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS bit (INTCON1<15>) = 1.  
(1)  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
Note 1: For complete register details, see Register 3-2.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS70290G-page 76  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OVAERR  
OVBERR  
COVAERR COVBERR  
OVATE  
OVBTE  
COVTE  
bit 8  
R/W-0  
SFTACERR  
bit 7  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
DIV0ERR  
MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator A  
0= Trap was not caused by overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator B  
0= Trap was not caused by overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator A  
0= Trap was not caused by catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator B  
0= Trap was not caused by catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on catastrophic overflow of Accumulator A or B enabled  
0= Trap disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Arithmetic Error Status bit  
1= Math error trap was caused by a divide by zero  
0= Math error trap was not caused by a divide by zero  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Arithmetic Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
bit 3  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
© 2011 Microchip Technology Inc.  
DS70290G-page 77  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 2  
bit 1  
bit 0  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
DS70290G-page 78  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
ALTIVT  
bit 15  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DISI  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use alternate vector table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 1  
bit 0  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
© 2011 Microchip Technology Inc.  
DS70290G-page 79  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
U1TXIF  
U1RXIF  
SPI1EIF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
U-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70290G-page 80  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 1  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2011 Microchip Technology Inc.  
DS70290G-page 81  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
U-0  
U-0  
R/W-0  
INT2IF  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IC8IF  
R/W-0  
IC7IF  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
U-0  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
IC8IF: Input Capture Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
IC7IF: Input Capture Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70290G-page 82  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-7:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIF  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
Unimplemented: Read as ‘0’  
© 2011 Microchip Technology Inc.  
DS70290G-page 83  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-8:  
IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPI1EIE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1EIE: SPI1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70290G-page 84  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-8:  
IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 1  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2011 Microchip Technology Inc.  
DS70290G-page 85  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-9:  
IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
INT2IE  
bit 15  
bit 8  
R/W-0  
IC8IE  
R/W-0  
IC7IE  
U-0  
R/W-0  
R/W-0  
CNIE  
U-0  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
IC8IE: Input Capture Channel 8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
IC7IE: Input Capture Channel 7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70290G-page 86  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-10: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIE  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIE: UART1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
Unimplemented: Read as ‘0’  
© 2011 Microchip Technology Inc.  
DS70290G-page 87  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-11: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
T1IP<2:0>  
OC1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC1IP<2:0>  
INT0IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70290G-page 88  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-12: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
T2IP<2:0>  
OC2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
IC2IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2011 Microchip Technology Inc.  
DS70290G-page 89  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-13: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
U1RXIP<2:0>  
SPI1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
SPI1EIP<2:0>  
T3IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70290G-page 90  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-14: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AD1IP<2:0>  
U1TXIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2011 Microchip Technology Inc.  
DS70290G-page 91  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-15: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
CNIP<2:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11-7  
bit 6-4  
Unimplemented: Read as ‘0’  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70290G-page 92  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-16: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
IC8IP<2:0>  
IC7IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
INT1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2011 Microchip Technology Inc.  
DS70290G-page 93  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-17: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
INT2IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70290G-page 94  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-18: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1EIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
U1EIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2011 Microchip Technology Inc.  
DS70290G-page 95  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 7-19: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
0111111= Interrupt Vector pending is number 135  
0000001= Interrupt Vector pending is number 9  
0000000= Interrupt Vector pending is number 8  
DS70290G-page 96  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
7.4.3  
TRAP SERVICE ROUTINE  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
To configure an interrupt source at initialization:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources can be programmed  
to the same non-zero value.  
All user interrupts can be disabled using this  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value OEh with SRL.  
To enable user interrupts, the POP instruction can be  
Note: At a device Reset, the IPCx registers are  
initialized such that all user interrupt  
sources are assigned to priority level 4.  
used to restore the previous SR value.  
Note: Only user interrupts with a priority level of  
7 or lower can be disabled. Trap sources  
(level 8-level 15) cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of priority levels 1-6 for a fixed period  
of time. Level 7 interrupt sources are not disabled by  
the DISI instruction.  
4. Enable the interrupt source by setting the  
interrupt enable control bit associated with the  
source in the appropriate IECx register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
The method used to declare an Interrupt Service  
Routine (ISR) and initialize the IVT with the correct  
vector address depends on the programming language  
(C or Assembler) and the language development  
toolsuite used to develop the application.  
In general, the user application must clear the interrupt  
flag in the appropriate IFSx register for the source of  
interrupt that the ISR handles. Otherwise, the program  
will re-enter the ISR immediately after exiting the  
routine. If the ISR is coded in assembly language, it  
must be terminated using a RETFIE instruction to  
unstack the saved PC value, SRL value and old CPU  
priority level.  
© 2011 Microchip Technology Inc.  
DS70290G-page 97  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 98  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
oscillator system provides:  
8.0  
OSCILLATOR  
CONFIGURATION  
• External and internal oscillator options as clock  
sources.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 7. “Oscillator” (DS70186) of  
• An on-chip PLL to scale the internal operating  
frequency to the required system clock frequency.  
• An internal FRC oscillator that can also be used  
with the PLL, thereby allowing full-speed  
operation without any external clock generation  
hardware.  
the  
Reference Manual”, which is available  
from the Microchip website  
(www.microchip.com).  
“dsPIC33F/PIC24H  
Family  
• Clock switching between various clock sources.  
• Programmable clock postscaler for system power  
savings.  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• An Oscillator Control register (OSCCON).  
• Nonvolatile Configuration bits for main oscillator  
selection.  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
FIGURE 8-1:  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 OSCILLATOR SYSTEM DIAGRAM  
Primary Oscillator  
OSC1  
DOZE<2:0>  
XT, HS, EC  
S2  
(2)  
R
XTPLL, HSPLL,  
S3  
(3)  
CY  
ECPLL, FRCPLL  
F
(1)  
S1/S3  
PLL  
S1  
OSC2  
POSCMD<1:0>  
(3)  
P
F
FRC  
Oscillator  
FRCDIVN  
÷ 2  
S7  
FOSC  
FRCDIV<2:0>  
TUN<5:0>  
FRCDIV16  
FRC  
S6  
S0  
÷ 16  
LPRC  
LPRC  
Oscillator  
S5  
Secondary Oscillator  
SOSC  
SOSCO  
SOSCI  
S4  
LPOSCEN  
Clock Switch  
Reset  
Clock Fail  
S7  
NOSC<2:0> FNOSC<2:0>  
WDT, PWRT,  
FSCM  
Timer 1  
Note 1: See Figure 8-2 for PLL details.  
2: If the Oscillator is used with XT or HS modes, an external parallel resistor with the value of 1 MΩ must be connected.  
3: The term FP refers to the clock source for all the peripherals, while FCY refers to the clock source for the CPU.  
Throughout this document FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will  
be different when Doze mode is used in any ratio other than 1:1, which is the default.  
© 2011 Microchip Technology Inc.  
DS70290G-page 99  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
8.1.2  
SYSTEM CLOCK SELECTION  
8.1  
CPU Clocking System  
The oscillator source used at a device Power-on Reset  
event is selected using Configuration bit settings. The  
oscillator Configuration bit settings are located in the  
Configuration registers in the program memory. (Refer to  
Section 19.1 “Configuration Bits” for further details.)  
The Initial Oscillator Selection Configuration bits,  
FNOSC<2:0> (FOSCSEL<2:0>), and the Primary  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
device provides seven system clock options:  
• Fast RC (FRC) Oscillator  
• FRC Oscillator with PLL  
• Primary (XT, HS or EC) Oscillator  
• Primary Oscillator with PLL  
• Secondary (LP) Oscillator  
• Low-Power RC (LPRC) Oscillator  
• FRC Oscillator with postscaler  
Oscillator  
Mode  
Select  
Configuration  
bits,  
POSCMD<1:0> (FOSC<1:0>), select the oscillator  
source that is used at a Power-on Reset. The FRC  
primary oscillator is the default (unprogrammed)  
selection.  
8.1.1  
SYSTEM CLOCK SOURCES  
Fast RC  
The Configuration bits allow users to choose among 12  
different clock modes, shown in Table 8-1.  
8.1.1.1  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected) FOSC is divided by 2 to  
generate the device instruction clock (FCY) and the  
peripheral clock time base (FP). FCY defines the  
operating speed of the device, and speeds up to 40  
MHz are supported by the dsPIC33FJ32GP202/204  
and dsPIC33FJ16GP304 architecture.  
The Fast RC (FRC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. User software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> bits (CLKDIV<10:8>).  
8.1.1.2  
Primary  
Instruction execution speed or device operating  
frequency, FCY, is given by:  
The primary oscillator can use one of the following as  
its clock source:  
EQUATION 8-1:  
DEVICE OPERATING  
FREQUENCY  
• XT (Crystal): Crystals and ceramic resonators in  
the range of 3 MHz to 10 MHz. The crystal is  
connected to the OSC1 and OSC2 pins.  
FOSC  
-------------  
FCY =  
• HS (High-Speed Crystal): Crystals in the range of  
10 MHz to 40 MHz. The crystal is connected to  
the OSC1 and OSC2 pins.  
2
8.1.3  
PLL CONFIGURATION  
• EC (External Clock): The external clock signal is  
directly applied to the OSC1 pin.  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip PLL to obtain higher speeds  
of operation. The PLL provides significant flexibility in  
selecting the device operating speed. A block diagram  
of the PLL is shown in Figure 8-2.  
8.1.1.3  
Secondary  
The secondary (LP) oscillator is designed for low power  
and uses a 32.768 kHz crystal or ceramic resonator.  
The LP oscillator uses the SOSCI and SOSCO pins.  
The output of the primary oscillator or FRC, denoted as  
‘FIN’, is divided down by a prescale factor (N1) of 2, 3,  
... or 33 before being provided to the PLL’s Voltage  
Controlled Oscillator (VCO). The input to the VCO must  
be selected in the range of 0.8 MHz to 8 MHz. The  
prescale factor ‘N1’ is selected using the  
PLLPRE<4:0> bits (CLKDIV<4:0>).  
8.1.1.4  
Low-Power RC  
The Low-Power RC (LPRC) internal oscIllator runs at a  
nominal frequency of 32.768 kHz. It is also used as a  
reference clock by the Watchdog Timer (WDT) and  
Fail-Safe Clock Monitor (FSCM).  
The PLL Feedback Divisor, selected using the  
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor ‘M’,  
by which the input to the VCO is multiplied. This factor  
must be selected such that the resulting VCO output  
frequency is in the range of 100 MHz to 200 MHz.  
8.1.1.5  
FRC  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip  
Phase Locked Loop (PLL) to provide a wide range of  
output frequencies for device operation. PLL  
configuration is described in Section 8.1.3 “PLL  
Configuration”.  
The VCO output is further divided by a postscale factor  
‘N2.’ This factor is selected using the PLLPOST<1:0>  
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4 or 8, and  
must be selected such that the PLL output frequency  
(FOSC) is in the range of 12.5 MHz to 80 MHz, which  
generates device operating speeds of 6.25-40 MIPS.  
The FRC frequency depends on the FRC accuracy  
(see Table 22-18) and the value of the FRC Oscillator  
Tuning register (see Register 8-4).  
DS70290G-page 100  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
For a primary oscillator or FRC oscillator, output ‘FIN’,  
The PLL output ‘FOSC’ is given by:  
• If PLLDIV<8:0> = 0x1E, then M = 32. This yields a  
VCO output of 5 x 32 = 160 MHz, which is within  
the 100-200 MHz ranged needed.  
EQUATION 8-2:  
FOSC CALCULATION  
• If PLLPOST<1:0> = 0, then N2 = 2. This provides  
a Fosc of 160/2 = 80 MHz. The resultant device  
operating speed is 80/2 = 40 MIPS.  
M
------------------  
FOSC = FIN ⋅  
N1 N2  
EQUATION 8-3:  
XT WITH PLL MODE  
EXAMPLE  
For example, suppose a 10 MHz crystal is being used,  
with “XT with PLL” being the selected oscillator mode.  
FOSC  
2
1
2
10000000 32  
If PLLPRE<4:0> = 0, then N1 = 2. This yields a  
VCO input of 10/2 = 5 MHz, which is within the  
acceptable range of 0.8-8 MHz.  
-------------  
-- ---------------------------------  
FCY =  
=
= 40 MIPS  
2 2  
FIGURE 8-2:  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 PLL BLOCK DIAGRAM  
FVCO  
0.8-8.0 MHz  
Here(1)  
12.5-80 MHz  
Here(1)  
100-200 MHz  
Here(1)  
Source (Crystal, External Clock  
or Internal RC)  
FOSC  
PLLPRE  
VCO  
PLLPOST  
N2  
X
PLLDIV  
N1  
Divide by  
2-33  
Divide by  
2, 4, 8  
M
Divide by  
2-513  
Note 1: This frequency range must be satisfied at all times.  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode  
Oscillator Source  
POSCMD<1:0>  
FNOSC<2:0>  
See Note  
1, 2  
Fast RC Oscillator with Divide-by-N  
(FRCDIVN)  
Internal  
xx  
111  
Internal  
xx  
110  
1
Fast RC Oscillator with Divide-by-16  
(FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Internal  
Secondary  
Primary  
xx  
xx  
10  
101  
100  
011  
1
1
Secondary (Timer1) Oscillator (SOSC)  
Primary Oscillator (HS) with PLL  
(HSPLL)  
Primary Oscillator (XT) with PLL  
(XTPLL)  
Primary  
Primary  
01  
00  
011  
011  
1
Primary Oscillator (EC) with PLL  
(ECPLL)  
Primary Oscillator (HS)  
Primary  
Primary  
Primary  
Internal  
Internal  
10  
01  
00  
xx  
xx  
010  
010  
010  
001  
000  
1
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Fast RC Oscillator with PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
1
1
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
© 2011 Microchip Technology Inc.  
DS70290G-page 101  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(1,3)  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
R/W-y  
NOSC<2:0>(2)  
R/W-y  
bit 8  
COSC<2:0>  
bit 15  
R/W-0  
CLKLOCK  
bit 7  
R/W-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
R/W-0  
R/W-0  
IOLOCK  
LOCK  
LPOSCEN  
OSWEN  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
C = Clear only bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
111= Fast RC oscillator (FRC) with Divide-by-n  
110= Fast RC oscillator (FRC) with Divide-by-16  
101= Low-Power RC oscillator (LPRC)  
100= Secondary oscillator (SOSC)  
011= Primary oscillator (XT, HS, EC) with PLL  
010= Primary oscillator (XT, HS, EC)  
001= Fast RC oscillator (FRC) with PLL  
000= Fast RC oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(2)  
111= Fast RC oscillator (FRC) with Divide-by-n  
110= Fast RC oscillator (FRC) with Divide-by-16  
101= Low-Power RC oscillator (LPRC)  
100= Secondary oscillator (SOSC)  
011= Primary oscillator (XT, HS, EC) with PLL  
010= Primary oscillator (XT, HS, EC)  
001= Fast RC oscillator (FRC) with PLL  
000= Fast RC oscillator (FRC)  
bit 7  
CLKLOCK: Clock Lock Enable bit  
If clock switching is enabled and FSCM is disabled (FOSC<FCKSM> = 0b01)  
1= Clock switching is disabled, system clock source is locked  
0= Clock switching is enabled, system clock source can be modified by clock switching  
bit 6  
bit 5  
IOLOCK: Peripheral Pin Select Lock bit  
1= Peripherial Pin Select is locked, write to peripheral pin select register is not allowed  
0= Peripherial Pin Select is unlocked, write to peripheral pin select register is allowed  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock, or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
bit 4  
Unimplemented: Read as ‘0’  
Note 1: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70186) in the  
“dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
3: This register is reset only on a Power-on Reset (POR).  
DS70290G-page 102  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(1,3)  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
(CONTINUED)  
bit 3  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
LPOSCEN: Secondary (LP) Oscillator Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Request oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70186) in the  
“dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
3: This register is reset only on a Power-on Reset (POR).  
© 2011 Microchip Technology Inc.  
DS70290G-page 103  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(2)  
REGISTER 8-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
DOZE<2:0>  
FRCDIV<2:0>  
bit 15  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLLPOST<1:0>  
PLLPRE<4:0>  
bit 7  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits  
111= FCY/128  
110= FCY/64  
101= FCY/32  
100= FCY/16  
011= FCY/8 (default)  
010= FCY/4  
001= FCY/2  
000= FCY/1  
bit 11  
DOZEN: DOZE Mode Enable bit(1)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
111= FRC divide by 256  
110= FRC divide by 64  
101= FRC divide by 32  
100= FRC divide by 16  
011= FRC divide by 8  
010= FRC divide by 4  
001= FRC divide by 2  
000= FRC divide by 1 (default)  
bit 7-6  
bit 5  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
11= Output/8  
10= Reserved  
01= Output/4 (default)  
00= Output/2  
Unimplemented: Read as ‘0’  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
2: This register is reset only on a Power-on Reset (POR).  
DS70290G-page 104  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(2)  
REGISTER 8-2:  
CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)  
11111= Input/33  
00001= Input/3  
00000= Input/2 (default)  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
2: This register is reset only on a Power-on Reset (POR).  
© 2011 Microchip Technology Inc.  
DS70290G-page 105  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(1)  
REGISTER 8-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PLLDIV<8>  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
111111111= 513  
000110000= 50 (default)  
000000010= 4  
000000001= 3  
000000000= 2  
Note 1: This register is reset only on a Power-on Reset (POR).  
DS70290G-page 106  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(2)  
REGISTER 8-4:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TUN<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
111111= Center frequency - 0.375% (7.345 MHz)  
100001= Center frequency - 11.625% (6.52 MHz)  
100000= Center frequency - 12% (6.49 MHz)  
011111= Center frequency + 11.625% (8.23 MHz)  
011110= Center frequency + 11.25% (8.20 MHz)  
000001= Center frequency + 0.375% (7.40 MHz)  
000000= Center frequency (7.37 MHz nominal)  
Note 1: The OSCTUN functionality has been provided to help customers compensate for temperature effects on  
the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is  
neither characterized nor tested.  
2: This register is reset only on a Power-on Reset (POR).  
© 2011 Microchip Technology Inc.  
DS70290G-page 107  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
8.2  
Clock Switching Operation  
Applications are free to switch among any of the four  
clock sources (Primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects of this flexibility, dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 devices have a safeguard lock  
built into the switch process.  
2. If a valid clock switch has been initiated, the  
status bits, LOCK (OSCCON<5>) and CF  
(OSCCON<3>) are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the  
new source is using the PLL, the hardware waits  
until a PLL lock is detected (LOCK = 1).  
Note:  
Primary Oscillator mode has three different  
submodes (XT, HS and EC), which are  
determined by the POSCMD<1:0>  
Configuration bits. While an application  
can switch to and from Primary Oscillator  
mode in software, it cannot switch among  
the different primary submodes without  
reprogramming the device.  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSC  
bit values are transferred to the COSC status bits.  
8.2.1  
ENABLING CLOCK SWITCHING  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled) or LP (if LPOSCEN remains set).  
To enable clock switching, the FCKSM1 Configuration  
bit in the Configuration register must be programmed to  
0’. (Refer to Section 19.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is  
unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is  
the default setting.  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing-sensitive code should not be  
executed during this time.  
2: Direct clock switches between any pri-  
mary oscillator mode with PLL and FRC-  
PLL mode are not permitted. This applies  
to clock switches in either direction. In  
these instances, the application must  
switch to FRC mode as a transition clock  
source between the two PLL modes.  
3: Refer to Section 7. “Oscillator”  
(DS70186) in the “dsPIC33F/PIC24H  
Family Reference Manual” for details.  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is  
disabled. However, the COSC bits (OSCCON<14:12>)  
reflect the clock source selected by the FNOSC  
Configuration bits.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
8.2.2  
OSCILLATOR SWITCHING  
SEQUENCE  
8.3  
Fail-Safe Clock Monitor (FSCM)  
Performing  
a
clock switch requires this basic  
sequence:  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
1. If  
desired, read the COSC bits  
(OSCCON<14:12>) to determine the current  
oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
In the event of an oscillator failure, the FSCM  
generates a clock failure trap event and switches the  
system clock over to the FRC oscillator. Then the  
application program can either attempt to restart the  
oscillator or execute a controlled shutdown. The trap  
can be treated as a warm Reset by simply loading the  
Reset address into the oscillator fail trap vector.  
3. Write the appropriate value to the NOSC control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
1. The clock switching hardware compares the  
COSC status bits with the new value of the  
NOSC control bits. If they are the same, the  
clock switch is a redundant operation. In this  
DS70290G-page 108  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
9.2  
Instruction-Based Power-Saving  
Modes  
9.0  
POWER-SAVING FEATURES  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 9. “Watchdog Timer and  
Power Savings Modes” (DS70196) of  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices have two special power-saving modes that are  
entered through the execution of a special PWRSAV  
instruction. Sleep mode stops clock operation and halts  
all code execution. Idle mode halts the CPU and code  
execution, but allows peripheral modules to continue  
operation. The Assembler syntax of the PWRSAV  
instruction is shown in Example 9-1.  
the  
Reference Manual”, which is available  
from the Microchip website  
(www.microchip.com).  
“dsPIC33F/PIC24H  
Family  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset.  
When the device exits these modes, it is said to  
wake-up.  
9.2.1  
SLEEP MODE  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices provide the ability to manage power  
consumption by selectively managing clocking to the  
CPU and the peripherals. In general, a lower clock  
frequency and a reduction in the number of circuits being  
The following occur in Sleep mode:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current.  
clocked  
constitutes  
lower  
consumed  
power.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices can manage power consumption in four different  
ways:  
• The Fail-Safe Clock Monitor does not operate,  
since the system clock source is disabled.  
• The LPRC clock continues to run if the WDT is  
enabled.  
• Clock frequency  
• Instruction-based Sleep and Idle modes  
• Software-controlled Doze mode  
• Selective peripheral control in software  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
• Some device features or peripherals may continue  
to operate. This includes items such as the input  
change notification on the I/O ports, or peripherals  
that use an external clock input.  
Combinations of these methods can be used to  
selectively tailor an application’s power consumption  
while still maintaining critical application features, such  
as timing-sensitive communications.  
• Any peripheral that requires the system clock  
source for its operation is disabled.  
9.1  
Clock Frequency and Clock  
Switching  
The device will wake-up from Sleep mode on any of the  
these events:  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices allow a wide range of clock frequencies to be  
selected under application control. If the system clock  
configuration is not locked, users can choose  
low-power or high-precision oscillators by simply  
changing the NOSC bits (OSCCON<10:8>). The  
process of changing a system clock during operation,  
as well as limitations to the process, are discussed in  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
• A WDT time-out  
On wake-up from Sleep mode, the processor restarts  
with the same clock source that was active when Sleep  
mode was entered.  
more  
detail  
in  
Section 8.0  
“Oscillator  
Configuration”.  
EXAMPLE 9-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
© 2011 Microchip Technology Inc.  
DS70290G-page 109  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default setting.  
9.2.2  
IDLE MODE  
The following occur in Idle mode:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Peripheral Module Disable”).  
Programs can use Doze mode to selectively reduce  
power consumption in event-driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU idles, waiting for something to invoke an  
interrupt routine. An automatic return to full-speed CPU  
operation on interrupts can be enabled by setting the  
ROI bit (CLKDIV<15>). By default, interrupt events  
have no effect on Doze mode operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device will wake from Idle mode on any of these  
events:  
• Any interrupt that is individually enabled.  
• Any form of device Reset  
• A WDT time-out  
For example, suppose the device is operating at  
20 MIPS and the CAN module has been configured for  
500 kbps based on this device operating speed. If the  
device is placed in Doze mode with a clock frequency  
ratio of 1:4, the CAN module continues to communicate  
at the required bit rate of 500 kbps, but the CPU now  
starts executing instructions at a frequency of 5 MIPS.  
On wake-up from Idle mode, the clock is reapplied to  
the CPU and instruction execution will begin (2-4  
cycles later), starting with the instruction following the  
PWRSAVinstruction, or the first instruction in the ISR.  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
9.4  
Peripheral Module Disable  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled using the appropriate  
PMD control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers will have no effect and read  
values will be invalid.  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
9.3  
Doze Mode  
The preferred strategies for reducing power  
consumption are changing clock speed and invoking  
one of the power-saving modes. In some circumstances,  
however, these are not practical. For example, it may be  
necessary for an application to maintain uninterrupted  
synchronous communication, even while it is doing  
nothing else. Reducing system clock speed can  
A peripheral module is enabled only if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC® DSC  
variant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
introduce communication errors, while using  
power-saving mode can stop communications  
completely.  
a
Note:  
If a PMD bit is set, the corresponding  
module is disabled after a delay of one  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of one instruction  
cycle (assuming the module control  
registers are already configured to enable  
module operation).  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed, while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
DS70290G-page 110  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 9-1:  
PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
T3MD  
R/W-0  
T2MD  
R/W-0  
T1MD  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
I2C1MD  
bit 7  
U-0  
R/W-0  
U1MD  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
AD1MD(1)  
SPI1MD  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
T3MD: Timer3 Module Disable bit  
1= Timer3 module is disabled  
0= Timer3 module is enabled  
bit 12  
bit 11  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled  
0= Timer2 module is enabled  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled  
0= Timer1 module is enabled  
bit 10-8  
bit 7  
Unimplemented: Read as ‘0’  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled  
0= I2C1 module is enabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
U1MD: UART1 Module Disable bit  
1= UART1 module is disabled  
0= UART1 module is enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SPI1MD: SPI1 Module Disable bit  
1= SPI1 module is disabled  
0= SPI1 module is enabled  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
AD1MD: ADC1 Module Disable bit(1)  
1= ADC1 module is disabled  
0= ADC1 module is enabled  
Note 1: PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins  
multiplexed with ANx will be in Digital mode.  
© 2011 Microchip Technology Inc.  
DS70290G-page 111  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 9-2:  
R/W-0  
PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
IC8MD  
IC7MD  
IC2MD  
IC1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
OC2MD  
OC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
IC8MD: Input Capture 8 Module Disable bit  
1= Input Capture 8 module is disabled  
0= Input Capture 8 module is enabled  
IC7MD: Input Capture 2 Module Disable bit  
1= Input Capture 7 module is disabled  
0= Input Capture 7 module is enabled  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
IC2MD: Input Capture 2 Module Disable bit  
1= Input Capture 2 module is disabled  
0= Input Capture 2 module is enabled  
bit 8  
IC1MD: Input Capture 1 Module Disable bit  
1= Input Capture 1 module is disabled  
0= Input Capture 1 module is enabled  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
OC2MD: Output Compare 2 Module Disable bit  
1= Output Compare 2 module is disabled  
0= Output Compare 2 module is enabled  
bit 0  
OC1MD: Output Compare 1 Module Disable bit  
1= Output Compare 1 module is disabled  
0= Output Compare 1 module is enabled  
DS70290G-page 112  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
10.0 I/O PORTS  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 10. “I/O Ports” (DS70193) of  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
can be read, but the output driver for the parallel port bit  
is disabled. If a peripheral is enabled, but the peripheral  
is not actively driving a pin, that pin can be driven by a  
port.  
the  
Reference Manual”, which is available  
from the Microchip website  
(www.microchip.com).  
“dsPIC33F/PIC24H  
Family  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
All port pins have three registers directly associated  
with their operation as digital I/O. The data direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx) read the latch.  
Writes to the latch, write the latch. Reads from the port  
(PORTx) read the port pins, while writes to the port pins  
write the latch.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared among the peripherals and the  
parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pin will read as zeros.  
10.1 Parallel I/O (PIO) Ports  
A parallel I/O port that shares a pin with a peripheral is  
generally subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs.  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
0
Output Enable  
Output Data  
PIO Module  
1
0
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
Read LAT  
Read Port  
Input Data  
© 2011 Microchip Technology Inc.  
DS70290G-page 113  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
10.2 Open-Drain Configuration  
10.4 I/O Port Write/Read Timing  
In addition to the PORT, LAT and TRIS registers for  
data control, some port pins can also be individually  
configured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits  
configures the corresponding pin to act as an  
open-drain output.  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically this instruction  
would be a NOP. Examples are shown in Example 10-1  
and Example 10-2. This also applies to PORT bit oper-  
ations, such as BSET PORTB, # RB0, which are single  
cycle read-modify-write. All PORT bit operations, such  
as MOV PORTB, W0or BSET PORTB, # RBx, read  
the pin and not the latch.  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired 5V  
tolerant pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
10.5 Input Change Notification  
The input change notification function of the I/O ports  
See Pin Diagramsfor the available pins and their  
functionality.  
allows  
dsPIC33FJ16GP304 devices to generate interrupt  
requests to the processor in response to  
the  
dsPIC33FJ32GP202/204  
and  
a
change-of-state on selected input pins. This feature  
can detect input change-of-states even in Sleep mode,  
when the clocks are disabled. Depending on the device  
pin count, up to 31 external signals (CNx pin) can be  
selected (enabled) for generating an interrupt request  
on a change-of-state.  
10.3 Configuring Analog Port Pins  
The AD1PCFG and TRIS registers control the  
operation of the analog-to-digital (A/D) port pins. The  
port pins that are desired as analog inputs must have  
their corresponding TRIS bit set (input). If the TRIS bit  
is cleared (output), the digital output level (VOH or VOL)  
will be converted.  
Four control registers are associated with the CN  
module. The CNEN1 and CNEN2 registers contain the  
interrupt enable control bits for each of the CN input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
The AD1PCFGL register has a default value of 0x0000;  
therefore, all pins that share ANx functions are analog  
(not digital) by default.  
When the PORT register is read, all pins configured as  
analog input channels will read as cleared (a low level).  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source connected to the  
pin, and eliminate the need for external resistors when  
push button or keypad devices are connected. The  
pull-ups are enabled separately using the CNPU1 and  
CNPU2 registers, which contain the control bits for  
each of the CN pins. Setting any of the control bits  
enables the weak pull-ups for the corresponding pins.  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) can cause the  
input buffer to consume current that exceeds the  
device specifications.  
Note:  
Pull-ups on change notification pins  
should always be disabled when the port  
pin is configured as a digital output.  
EXAMPLE 10-1:  
PORT WRITE/READ  
MOV  
MOV  
NOP  
BTSS  
0xFF00, W0  
W0, TRISBB  
;Configure PORTB<15:8> as inputs  
;and PORTB<7:0> as outputs  
;Delay 1 cycle  
PORTB, #13  
;Next Instruction  
EXAMPLE 10-2:  
Incorrect:  
PORT BIT OPERATIONS  
BSET  
BSET  
PORTB, #RB1  
PORTB, #RB6  
;Set PORTB<RB1> high  
;Set PORTB<RB6> high  
Correct:  
BSET  
NOP  
BSET  
NOP  
PORTB, #RB1  
PORTB, #RB6  
;Set PORTB<RB1> high  
;Set PORTB<RB6> high  
Preferred:  
BSET  
BSET  
LATB, LATB1  
LATB, LATB6  
;Set PORTB<RB1> high  
;Set PORTB<RB6> high  
DS70290G-page 114  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
10.6.2.1  
Input Mapping  
10.6 Peripheral Pin Select  
The inputs of the peripheral pin select options are  
mapped on the basis of the peripheral. A control  
register associated with a peripheral dictates the pin it  
will be mapped to. The RPINRx registers are used to  
configure peripheral input mapping (see Register 10-1  
through Register 10-9). Each register contains sets of  
5-bit fields, with each set associated with one of the  
A major challenge in general-purpose devices is  
providing the largest possible set of peripheral features  
while minimizing the conflict of features on I/O pins.  
The challenge is even greater on low-pin count  
devices. In an application where more than one  
peripheral must be assigned to  
a single pin,  
inconvenient workarounds in application code or a  
complete redesign may be the only option.  
remappable peripherals. Programming  
a
given  
peripheral’s bit field with an appropriate 5-bit value  
maps the RPn pin with that value to that peripheral. For  
any given device, the valid range of values for any bit  
field corresponds to the maximum number of peripheral  
pin selections supported by the device.  
Peripheral pin select configuration enables peripheral  
set selection and placement on a wide range of I/O  
pins. By increasing the pinout options available on a  
particular device, programmers can better tailor the  
microcontroller to their entire application, rather than  
trimming the application to fit the device.  
Figure 10-2 Illustrates remappable pin selection for  
U1RX input.  
The peripheral pin select configuration feature  
operates over a fixed subset of digital I/O pins.  
Programmers can independently map the input and/or  
output of most digital peripherals to any one of these  
I/O pins. Peripheral pin select is performed in software,  
and generally does not require the device to be  
reprogrammed. Hardware safeguards are included that  
prevent accidental or spurious changes to the  
peripheral mapping, once it has been established.  
Note:  
For input mapping only, the Peripheral Pin  
Select (PPS) functionality does not have  
priority over the TRISx settings. There-  
fore, when configuring the RPn pin for  
input, the corresponding bit in the TRISx  
register must also be configured for input  
(i.e., set to ‘1’).  
FIGURE 10-2:  
REMAPPABLE MUX  
INPUT FOR U1RX  
10.6.1  
AVAILABLE PINS  
The peripheral pin select feature is used with a range  
of up to 26 pins. The number of available pins depends  
on the particular device and its pin count. Pins that  
support the peripheral pin select feature include the  
designation “RPn” in their full pin designation, where  
“RP” designates a remappable peripheral and “n” is the  
remappable pin number.  
U1RXR<4:0>  
0
RP0  
RP1  
RP2  
1
10.6.2  
CONTROLLING PERIPHERAL PIN  
SELECT  
U1RX input  
to peripheral  
2
Peripheral pin select features are controlled through  
two sets of special function registers: one to map  
peripheral inputs, and one to map outputs. Because  
they are separately controlled, a particular peripheral’s  
input and output (if the peripheral has both) can be  
placed on any selectable function pin without  
constraint.  
25  
RP25  
The association of a peripheral to a peripheral  
selectable pin is handled in two different ways,  
depending on whether an input or output is being  
mapped.  
© 2011 Microchip Technology Inc.  
DS70290G-page 115  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(1)  
TABLE 10-1: REMAPPABLE PERIPHERAL INPUTS  
Configuration  
Input Name  
Function Name  
Register  
Bits  
External Interrupt 1  
INT1  
INT2  
RPINR0  
RPINR1  
RPINR3  
RPINR3  
RPINR7  
RPINR7  
RPINR10  
RPINR10  
RPINR11  
RPINR18  
RPINR18  
RPINR20  
RPINR20  
RPINR21  
INT1R<4:0>  
INT2R<4:0>  
T2CKR<4:0>  
T3CKR<4:0>  
IC1R<4:0>  
External Interrupt 2  
Timer2 External Clock  
Timer3 External Clock  
Input Capture 1  
T2CK  
T3CK  
IC1  
Input Capture 2  
IC2  
IC2R<4:0>  
Input Capture 7  
IC7  
IC7R<4:0>  
Input Capture 8  
IC8  
IC8R<4:0>  
Output Compare Fault A  
UART1 Receive  
OCFA  
U1RX  
U1CTS  
SDI1  
SCK1IN  
SS1IN  
OCFAR<4:0>  
U1RXR<4:0>  
U1CTSR<4:0>  
SDI1R<4:0>  
SCK1R<4:0>  
SS1R<4:0>  
UART1 Clear To Send  
SPI1 Data Input  
SPI1 Clock Input  
SPI1 Slave Select Input  
Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.  
10.6.2.2  
Output Mapping  
FIGURE 10-3:  
MULTIPLEXING OF  
REMAPPABLE OUTPUT  
FOR RPn  
In contrast to inputs, the outputs of the peripheral pin  
select options are mapped on the basis of the pin. In  
this case, a control register associated with a particular  
pin dictates the peripheral output to be mapped. The  
RPORx registers are used to control output mapping.  
Like the RPINRx registers, each register contains sets  
of 5-bit fields, with each set associated with one RPn  
pin (see Register 10-10 through Register 10-22). The  
value of the bit field corresponds to one of the periph-  
erals, and that peripheral’s output is mapped to the pin  
(see Table 10-2 and Figure 10-3).  
RPnR<4:0>  
Default  
0
3
4
U1TX Output Enable  
U1RTS Output Enable  
Output Enable  
The list of peripherals for output mapping also includes  
a null value of ‘00000’ because of the mapping  
technique. This permits any given pin to remain  
unconnected from the output of any of the pin  
selectable peripherals.  
OC1 Output Enable  
OC2 Output Enable  
18  
19  
Default  
0
3
4
U1TX Output  
U1RTS Output  
RPn  
Output Data  
OC1 Output  
OC2 Output  
18  
19  
DS70290G-page 116  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)  
Function  
RPnR<4:0>  
Output Name  
RPn tied to default port pin  
NULL  
U1TX  
U1RTS  
SDO1  
00000  
00011  
00100  
00111  
01000  
01001  
10010  
10011  
RPn tied to UART1 Transmit  
RPn tied to UART1 Ready To Send  
RPn tied to SPI1 Data Output  
RPn tied to SPI1 Clock Output  
RPn tied to SPI1 Slave Select Output  
RPn tied to Output Compare 1  
RPn tied to Output Compare 2  
SCK1OUT  
SS1OUT  
OC1  
OC2  
Unlike the similar sequence with the oscillator’s LOCK  
bit, IOLOCK remains in one state until changed. This  
allows all of the peripheral pin selects to be configured  
with a single unlock sequence followed by an update to  
all control registers, then locked with a second lock  
sequence.  
10.6.3  
CONTROLLING CONFIGURATION  
CHANGES  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes. dsPIC33F devices include three features to  
prevent alterations to the peripheral map:  
10.6.3.2  
Continuous State Monitoring  
In addition to being protected from direct writes, the  
contents of the RPINRx and RPORx registers are  
constantly monitored in hardware by shadow registers.  
If an unexpected change in any of the registers occurs  
(such as cell disturbances caused by ESD or other  
external events), a configuration mismatch Reset will  
be triggered.  
• Control register lock sequence  
• Continuous state monitoring  
• Configuration bit pin select lock  
10.6.3.1  
Control Register Lock  
Under normal operation, writes to the RPINRx and  
RPORx registers are not allowed. Attempted writes  
appear to execute normally, but the contents of the  
registers remain unchanged. To change these  
registers, they must be unlocked in hardware. The  
register lock is controlled by the IOLOCK bit  
(OSCCON<6>). Setting IOLOCK prevents writes to the  
control registers; clearing IOLOCK allows writes.  
10.6.3.3  
Configuration Bit Pin Select Lock  
As an additional level of safety, the device can be  
configured to prevent more than one write session to  
the RPINRx and RPORx registers. The IOL1WAY  
configuration bit (FOSC<5>) blocks the IOLOCK bit  
from being cleared after it has been set once.  
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session. Programming  
IOL1WAY allows user applications unlimited access  
(with the proper use of the unlock sequence) to the  
peripheral pin select registers.  
To set or clear IOLOCK, a specific command sequence  
must be executed:  
1. Write 0x46 to OSCCON<7:0>.  
2. Write 0x57 to OSCCON<7:0>.  
3. Clear (or set) IOLOCK as a single operation.  
Note:  
MPLAB® C30 provides built-in  
C
language functions for unlocking the  
OSCCON register:  
__builtin_write_OSCCONL(value)  
__builtin_write_OSCCONH(value)  
See MPLAB® IDE Help for more  
information.  
© 2011 Microchip Technology Inc.  
DS70290G-page 117  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
10.7 Peripheral Pin Select Registers  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices implement 17 registers for remappable  
peripheral configuration:  
• Input Remappable Peripheral Registers (9)  
• Output Remappable Peripheral Registers (8)  
Note:  
Input and Output Register values can only  
be changed if OSCCON[IOLOCK] = 0.  
See Section 10.6.3.1 “Control Register  
Lock” for a specific command sequence.  
REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
INT1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-0  
Unimplemented: Read as ‘0’  
DS70290G-page 118  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT2R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
INT2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2011 Microchip Technology Inc.  
DS70290G-page 119  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
T3CKR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T2CKR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70290G-page 120  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
IC2R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
IC1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
IC2R<4:0>: Assign Input Capture 2 (IC2) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
IC1R<4:0>: Assign Input Capture 1 (IC1) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2011 Microchip Technology Inc.  
DS70290G-page 121  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-5: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
IC8R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
IC7R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
IC8R<4:0>: Assign Input Capture 8 (IC8) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
IC7R<4:0>: Assign Input Capture 7 (IC7) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70290G-page 122  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFAR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
OCFAR<4:0>: Assign Output Capture A (OCFA) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2011 Microchip Technology Inc.  
DS70290G-page 123  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-7: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
U1CTSR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U1RXR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
U1CTSR<4:0>: Assign UART 1 Clear to Send (U1CTS) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
U1RXR<4:0>: Assign UART 1 Receive (U1RX) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70290G-page 124  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-8: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
SCK1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SCK1R<4:0>: Assign SPI 1 Clock Input (SCK1IN) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SDI1R<4:0>: Assign SPI 1 Data Input (SDI1) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2011 Microchip Technology Inc.  
DS70290G-page 125  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-9: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to the corresponding RPn pin  
11111= Input tied to Vss  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70290G-page 126  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-10: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP0R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin (see Table 10-2 for peripheral  
function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin (see Table 10-2 for peripheral  
function numbers)  
REGISTER 10-11: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP3R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP2R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP3R<4:0>: Peripheral Output Function is Assigned to RP3 Output Pin (see Table 10-2 for peripheral  
function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP2R<4:0>: Peripheral Output Function is Assigned to RP2 Output Pin (see Table 10-2 for peripheral  
function numbers)  
© 2011 Microchip Technology Inc.  
DS70290G-page 127  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-12: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP5R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP4R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin (see Table 10-2 for peripheral  
function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP4R<4:0>: Peripheral Output Function is Assigned to RP4 Output Pin (see Table 10-2 for peripheral  
function numbers)  
REGISTER 10-13: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP7R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP6R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP7R<4:0>: Peripheral Output Function is Assigned to RP7 Output Pin (see Table 10-2 for peripheral  
function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP6R<4:0>: Peripheral Output Function is Assigned to RP6 Output Pin (see Table 10-2 for peripheral  
function numbers)  
DS70290G-page 128  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-14: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP9R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP8R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP9R<4:0>: Peripheral Output Function is Assigned to RP9 Output Pin (see Table 10-2 for peripheral  
function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP8R<4:0>: Peripheral Output Function is Assigned to RP8 Output Pin (see Table 10-2 for peripheral  
function numbers)  
REGISTER 10-15: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP11R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP10R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP11R<4:0>: Peripheral Output Function is Assigned to RP11 Output Pin (see Table 10-2 for periph-  
eral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP10R<4:0>: Peripheral Output Function is Assigned to RP10 Output Pin (see Table 10-2 for  
peripheral function numbers)  
© 2011 Microchip Technology Inc.  
DS70290G-page 129  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-16: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP13R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP12R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin (see Table 10-2 for  
peripheral function numbers)  
REGISTER 10-17: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP15R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP14R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP15R<4:0>: Peripheral Output Function is Assigned to RP15 Output Pin (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP14R<4:0>: Peripheral Output Function is Assigned to RP14 Output Pin (see Table 10-2 for  
peripheral function numbers)  
DS70290G-page 130  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-18: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP17R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP16R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP17R<4:0>: Peripheral Output Function is Assigned to RP17 Output Pin (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP16R<4:0>: Peripheral Output Function is Assigned to RP16 Output Pin (see Table 10-2 for  
peripheral function numbers)  
REGISTER 10-19: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP19R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP18R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP19R<4:0>: Peripheral Output Function is Assigned to RP19 Output Pin (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin (see Table 10-2 for  
peripheral function numbers)  
© 2011 Microchip Technology Inc.  
DS70290G-page 131  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-20: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP21R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP20R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin (see Table 10-2 for  
peripheral function numbers)  
REGISTER 10-21: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP23R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP22R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP23R<4:0>: Peripheral Output Function is Assigned to RP23 Output Pin (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP22R<4:0>: Peripheral Output Function is Assigned to RP22 Output Pin (see Table 10-2 for  
peripheral function numbers)  
DS70290G-page 132  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 10-22: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP25R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP24R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin (see Table 10-2 for  
peripheral function numbers)  
© 2011 Microchip Technology Inc.  
DS70290G-page 133  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 134  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Timer1 also supports these features:  
11.0 TIMER1  
• Timer gate operation  
Note 1: This data sheet summarizes the features  
• Selectable prescaler settings  
of the dsPIC33FJ32GP202/204 and  
• Timer operation during CPU Idle and Sleep  
dsPIC33FJ16GP304 family of devices. It  
modes  
is not intended to be a comprehensive  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
reference source. To complement the  
information in this data sheet, refer to  
Section 11. “Timers” (DS70205) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
Figure 11-1 illustrates a block diagram of the 16-bit  
timer module.  
To configure Timer1 for operation:  
1. Set the TON bit (= 1) in the T1CON register.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits in the T1CON register.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits in the T1CON register.  
4. Set or clear the TSYNC bit in the T1CON  
register to select synchronous or asynchronous  
operation.  
The Timer1 module is a 16-bit timer, which can serve  
as the time counter for the real-time clock, or operate  
as a free-running interval timer/counter. Timer1 can  
operate in three modes:  
5. Load the timer period value into the PR1  
register.  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP<2:0>, to set  
the interrupt priority.  
• 16-bit Timer  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
1
Sync  
TSYNC  
Comparator  
PR1  
© 2011 Microchip Technology Inc.  
DS70290G-page 135  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0> Timer1 Input Clock Prescale Select bits  
11 = 1:256  
10 = 1:64  
01 = 1:8  
00 = 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from pin T1CK (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
DS70290G-page 136  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
12.1 32-Bit Operation  
12.0 TIMER2/3 FEATURE  
To configure the Timer2/3 feature for 32-bit operation:  
1. Set the corresponding T32 control bit.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 11. “Timers” (DS70205) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
2. Select the prescaler ratio for Timer2 using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the  
corresponding TCS and TGATE bits.  
4. Load the timer period value. PR3 contains the  
most significant word of the value, while PR2  
contains the least significant word.  
5. If interrupts are required, set the interrupt enable  
bit, T3IE. Use the priority bits T3IP<2:0> to set  
the interrupt priority. While Timer2 controls the  
timer, the interrupt appears as a Timer3 inter-  
rupt.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
6. Set the corresponding TON bit.  
The timer value at any point is stored in the register pair  
TMR3:TMR2. TMR3 always contains the most  
significant word of the count, while TMR2 contains the  
least significant word.  
The Timer2/3 feature has 32-bit timers that can also be  
configured as two independent 16-bit timers with  
selectable operating modes.  
As a 32-bit timer, the Timer2/3 feature permits  
operation in three modes:  
To configure any of the timers for individual 16-bit  
operation:  
• Two Independent 16-bit timers (Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
1. Clear the T32 bit corresponding to that timer.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
• Single 32-bit timer (Timer2/3)  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
• Single 32-bit synchronous counter (Timer2/3)  
The Timer2/3 feature also supports:  
4. Load the timer period value into the PRx  
register.  
• Timer gate operation  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
• Selectable Prescaler Settings  
• Timer operation during Idle and Sleep modes  
• Interrupt on a 32-bit Period Register Match  
6. Set the TON bit.  
• Time Base for Input Capture and Output Compare  
Modules (Timer2 and Timer3 only)  
• ADC1 Event Trigger (Timer2/3 only)  
Individually, all eight of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the event trigger. The  
operating modes and enabled features are determined  
by setting the appropriate bit(s) in the T2CON and  
T3CON registers. T2CON registers are shown in  
generic form in Register 12-1. T3CON registers are  
shown in Register 12-2.  
For 32-bit timer/counter operation, Timer2 is the least  
significant word (lsw), and Timer3 is the most  
significant word (msw) of the 32-bit timers.  
Note:  
For 32-bit operation, T3CON control bits  
are ignored. Only T2CON control bit is  
used for setup and control. Timer2 clock  
and gate inputs are used for the 32-bit  
timer modules, but an interrupt is  
generated with the Timer3 interrupt flags.  
© 2011 Microchip Technology Inc.  
DS70290G-page 137  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(1)  
FIGURE 12-1:  
TIMER2/3 (32-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
1x  
01  
00  
T2CK  
Gate  
Sync  
Prescaler  
1, 8, 64, 256  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T3IF  
CK  
PR2  
PR3  
ADC Event Trigger(2)  
Equal  
Reset  
Comparator  
MSb  
LSb  
TMR3  
TMR2  
Sync  
16  
Read TMR2  
Write TMR2  
16  
16  
TMR3HLD  
16  
Data Bus<15:0>  
Note 1: The 32-bit timer control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective  
to the T2CON register.  
2: The ADC event trigger is available only on Timer2/3.  
DS70290G-page 138  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 12-2:  
TIMER2 (16-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TGATE  
TCS  
TGATE  
TCY  
1
0
Q
Q
D
Set T2IF  
CK  
Reset  
Equal  
Sync  
TMR2  
Comparator  
PR2  
© 2011 Microchip Technology Inc.  
DS70290G-page 139  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 12-1: T2CON CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer2 On bit  
When T32 = 1:  
1= Starts 32-bit Timer2/3  
0= Stops 32-bit Timer2/3  
When T32 = 0:  
1= Starts 16-bit Timer2  
0= Stops 16-bit Timer2  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer2 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timer2 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-bit Timer Mode Select bit  
1= Timer2 and Timer3 form a single 32-bit timer  
0= Timer2 and Timer3 act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer2 Clock Source Select bit  
1= External clock from pin T2CK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
DS70290G-page 140  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 12-2: T3CON CONTROL REGISTER  
R/W-0  
TON(2)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(2)  
R/W-0  
TCKPS<1:0>(2)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer3 On bit(2)  
1= Starts 16-bit Timer3  
0= Stops 16-bit Timer3  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue timer operation when device enters Idle mode  
0= Continue timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer3 Gated Time Accumulation Enable bit(2)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timer3 Input Clock Prescale Select bits(2)  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer3 Clock Source Select bit(2)  
1= External clock from T3CK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), the TSIDL bit  
must be cleared to operate the 32-bit timer in Idle mode.  
2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), these bits  
have no effect.  
© 2011 Microchip Technology Inc.  
DS70290G-page 141  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 142  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
• Simple Capture Event modes:  
13.0 INPUT CAPTURE  
- Capture timer value on every falling edge of  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 12. “Input Capture” (DS70198)  
of the “dsPIC33F/PIC24H Family  
Reference Manual”, which is available  
input at ICx pin  
- Capture timer value on every rising edge of  
input at ICx pin  
• Capture timer value on every edge (rising and  
falling).  
• Prescaler Capture Event modes:  
- Capture timer value on every 4th rising edge  
of input at ICx pin  
from  
the  
Microchip  
website  
- Capture timer value on every 16th rising  
edge of input at ICx pin  
(www.microchip.com).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Each input capture channel can select one of two  
16-bit timers (Timer2 or Timer3) for the time base.  
The selected timer can use either an internal or  
external clock.  
Other operational features include:  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices support up to eight input capture channels.  
• Interrupt on input capture event  
• 4-word FIFO buffer for capture values  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
at the ICx pin. The events that cause a capture event  
are listed below in three categories:  
• Use of input capture to provide additional sources  
of external interrupts  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-bit Timers  
TMR2 TMR3  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Edge Detection Logic  
and  
Clock Synchronizer  
FIFO  
R/W  
Logic  
Prescaler  
Counter  
(1, 4, 16)  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
3
Mode Select  
ICOV, ICBNE (ICxCON<4:3>)  
ICxBUF  
ICxI<1:0>  
Interrupt  
Logic  
ICxCON  
System Bus  
Set Flag ICxIF  
(in IFSn Register)  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
© 2011 Microchip Technology Inc.  
DS70290G-page 143  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
13.1 Input Capture Registers  
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
R/W-0  
ICTMR  
ICI<1:0>  
ICM<2:0>  
bit 7  
Legend:  
HC = Cleared in hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture Module Stop in Idle Control bit  
1= Input capture module will halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture Timer Select bits  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode  
(Rising edge detect only, all other control bits are not applicable.)  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling)  
(ICI<1:0> bits do not control interrupt generation for this mode.)  
000= Input capture module turned off  
DS70290G-page 144  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
The Output Compare module can select either Timer2  
or Timer3 for its time base. The module compares the  
14.0 OUTPUT COMPARE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 13. “Output Compare”  
(DS70209) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip website  
(www.microchip.com).  
value of the timer with the value of one or two compare  
registers depending on the operating mode selected.  
The state of the output pin changes when the timer  
value matches the compare register value. The Output  
Compare module generates either a single output  
pulse or a sequence of output pulses, by changing the  
state of the output pin on the compare match events.  
The Output Compare module can also generate  
interrupts on compare match events.  
The Output Compare module has multiple operating  
modes:  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Active-Low One-Shot mode  
• Active-High One-Shot mode  
Toggle mode  
• Delayed One-Shot mode  
• Continuous Pulse mode  
• PWM mode without fault protection  
• PWM mode with fault protection  
FIGURE 14-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
3
Output  
Enable  
Logic  
Output  
Enable  
OCM<2:0>  
Mode Select  
Comparator  
OCFA  
0
0
OCTSEL  
1
1
16  
16  
TMR2  
Rollover  
TMR3  
Rollover  
TMR3  
TMR2  
© 2011 Microchip Technology Inc.  
DS70290G-page 145  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
application must disable the associated timer when  
writing to the output compare control registers to avoid  
Configure the Output Compare modes by setting the  
malfunctions.  
14.1 Output Compare Modes  
appropriate Output Compare Mode bits (OCM<2:0>) in  
Note:  
See Section 13. “Output Compare”  
(DS70209) in the “dsPIC33F/PIC24H  
Family Reference Manual” for OCxR and  
OCxRS register restrictions.  
the Output Compare Control register (OCxCON<2:0>).  
Table 14-1 lists the different bit settings for the Output  
Compare modes. Figure 14-2 illustrates the output  
compare operation for various modes. The user  
TABLE 14-1: OUTPUT COMPARE MODES  
OCM<2:0>  
Mode  
Module Disabled  
OCx Pin Initial State  
OCx Interrupt Generation  
000  
001  
010  
011  
100  
101  
110  
Controlled by GPIO register  
OCx Rising edge  
OCx Falling edge  
Active-Low One-Shot  
Active-High One-Shot  
Toggle Mode  
0
1
Current output is maintained OCx Rising and Falling edge  
Delayed One-Shot  
Continuous Pulse mode  
0
0
OCx Falling edge  
OCx Falling edge  
No interrupt  
PWM mode without fault  
protection  
0, if OCxR is zero  
1, if OCxR is non-zero  
111  
PWM mode with fault protection 0, if OCxR is zero  
1, if OCxR is non-zero  
OCFA Falling edge for OC1 to OC4  
FIGURE 14-2:  
OUTPUT COMPARE OPERATION  
Output Compare  
Mode enabled  
Timer is reset on  
period match  
OCxRS  
OCxR  
TMRy  
Active-Low One-Shot  
(OCM = 001)  
Active-High One-Shot  
(OCM = 010)  
Toggle Mode  
(OCM = 011)  
Delayed One-Shot  
(OCM = 100)  
Continuous Pulse Mode  
(OCM = 101)  
PWM Mode  
(OCM = 110or 111)  
DS70290G-page 146  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
14.2 Output Compare Register  
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R-0 HC  
OCFLT  
R/W-0  
R/W-0  
R/W-0  
OCTSEL  
OCM<2:0>  
bit 7  
Legend:  
HC = Cleared in Hardware  
W = Writable bit  
HS = Set in Hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare in Idle Mode Control bit  
1= Output Compare x will halt in CPU Idle mode  
0= Output Compare x will continue to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in hardware only)  
0= No PWM Fault condition has occurred  
(This bit is only used when OCM<2:0> = 111.)  
bit 3  
OCTSEL: Output Compare Timer Select bit  
1= Timer3 is the clock source for Compare x  
0= Timer2 is the clock source for Compare x  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OCx, Fault pin enabled  
110= PWM mode on OCx, Fault pin disabled  
101= Initialize OCx pin low, generate continuous output pulses on OCx pin  
100= Initialize OCx pin low, generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high, compare event forces OCx pin low  
001= Initialize OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
© 2011 Microchip Technology Inc.  
DS70290G-page 147  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 148  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
The Serial Peripheral Interface (SPI) module is a  
15.0 SERIAL PERIPHERAL  
synchronous serial interface useful for communicating  
INTERFACE (SPI)  
with other peripheral or microcontroller devices. These  
peripheral devices can be serial EEPROMs, shift  
Note 1: This data sheet summarizes the features  
registers, display drivers, Analog-to-Digital Converters  
of the dsPIC33FJ32GP202/204 and  
(ADC), etc. The SPI module is compatible with  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
Motorola® SPI and SIOP.  
reference source. To complement the  
information in this data sheet, refer to  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates status conditions.  
Section  
18.  
“Serial  
Peripheral  
Interface (SPI)” (DS70206) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
The serial interface consists of 4 pins:  
• SDIx (serial data input)  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• SDOx (serial data output)  
• SCKx (shift clock input or output)  
• SSx (active-low slave select)  
In Master mode operation, SCK is a clock output. In  
Slave mode, it is a clock input.  
FIGURE 15-1:  
SPI MODULE BLOCK DIAGRAM  
SCKx  
SSx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB SPIxTXB  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
© 2011 Microchip Technology Inc.  
DS70290G-page 149  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded. The user software has not read the  
previous data in the SPIxBUF register  
0= No overflow has occurred.  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.  
DS70290G-page 150  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(2)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
SPRE<2:0>(3)  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
PPRE<1:0>(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled, pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)(2)  
1= SSx pin used for Slave mode  
0= SSx pin not used by module. Pin controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: This bit must be cleared when FRMEN = 1.  
3: Do not set both Primary and Secondary prescalers to a value of 1:1.  
© 2011 Microchip Technology Inc.  
DS70290G-page 151  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2  
SPRE<2:0>: Secondary Prescale bits (Master mode)(3)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)(3)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: This bit must be cleared when FRMEN = 1.  
3: Do not set both Primary and Secondary prescalers to a value of 1:1.  
DS70290G-page 152  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled (SSx pin used as frame sync pulse input/output)  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with first bit clock  
0= Frame sync pulse precedes first bit clock  
bit 0  
Unimplemented: This bit must not be set to ‘1’ by the user application  
© 2011 Microchip Technology Inc.  
DS70290G-page 153  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 154  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
16.1 Operating Modes  
16.0 INTER-INTEGRATED  
2
CIRCUIT™ (I C™)  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7-bit and 10-bit addressing.  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 19. “Inter-Integrated Circuit™  
(I2C™)” (DS70195) of the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available on the Microchip  
website (www.microchip.com).  
The following types of I2C operation are supported:  
• I2C slave operation with 7-bit addressing  
• I2C slave operation with 10-bit addressing  
• I2C master operation with 7-bit or 10-bit addressing  
For details about the communication sequence in each  
of these modes, refer to the “dsPIC33F/PIC24H Family  
Reference Manual”.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
16.2 I2C Registers  
I2CxCON and I2CxSTAT are control and status  
registers, respectively. The I2CxCON register is  
readable and writable. The lower six bits of I2CxSTAT  
are read-only. The remaining bits of the I2CSTAT are  
read/write.  
The Inter-Integrated Circuit (I2C) module provides  
complete hardware support for both Slave and  
Multi-Master modes of the I2C serial communication  
standard, with a 16-bit interface.  
• I2CxRSR is the shift register used for shifting  
data.  
The I2C module has a 2-pin interface:  
• I2CxRCV is the receive buffer and the register to  
which data bytes are written, or from which data  
bytes are read.  
• The SCLx pin is clock  
• The SDAx pin is data  
• I2CxTRN is the transmit register to which bytes  
are written during a transmit operation.  
The I2C module offers the following key features:  
• I2C interface supporting both Master and Slave  
modes of operation  
• I2C Slave mode supports 7-bit and 10-bit  
addressing  
• I2C Master mode supports 7-bit and 10-bit  
addressing  
• The I2CxADD register holds the slave address.  
• A status bit, ADD10, indicates 10-bit Address  
mode.  
I2CxBRG acts as the Baud Rate Generator  
(BRG) reload value.  
In receive operations, I2CxRSR and I2CxRCV together  
form a double-buffered receiver. When I2CxRSR  
receives a complete byte, it is transferred to I2CxRCV,  
and an interrupt pulse is generated.  
• I2C port allows bidirectional transfers between  
master and slaves  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control)  
• I2C supports multi-master operation, detects bus  
collision and arbitrates accordingly  
© 2011 Microchip Technology Inc.  
DS70290G-page 155  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
2
FIGURE 16-1:  
I C™ BLOCK DIAGRAM (X = 1)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSb  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSb  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS70290G-page 156  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0 HC  
ACKEN  
R/W-0 HC  
RCEN  
R/W-0 HC  
PEN  
R/W-0 HC  
RSEN  
R/W-0 HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HC = Cleared in hardware  
x = Bit is unknown  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module. All I2C pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters an Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C™ slave)  
1= Release SCLx clock  
0= Hold SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear  
at beginning of slave transmission. Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses Acknowledged  
0= IPMI mode disabled  
A10M: 10-bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enable I/O pin thresholds compliant with SMBus specification  
0= Disable SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enable interrupt when a general call address is received in the I2CxRSR  
(module is enabled for reception)  
0= General call address disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enable software or receive clock stretching  
0= Disable software or receive clock stretching  
© 2011 Microchip Technology Inc.  
DS70290G-page 157  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Send NACK during Acknowledge  
0= Send ACK during Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master, applicable during master receive)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.  
Hardware clear at end of master Acknowledge sequence  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of  
master Repeated Start sequence  
0= Repeated Start condition not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence  
0= Start condition not in progress  
DS70290G-page 158  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0 HSC  
R-0 HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0 HS  
BCL  
R-0 HSC  
GCSTAT  
R-0 HSC  
ADD10  
ACKSTAT  
bit 15  
bit 8  
R/C-0 HS  
IWCOL  
R/C-0 HS  
I2COV  
R-0 HSC  
D_A  
R/C-0 HSC R/C-0 HSC  
R-0 HSC  
R_W  
R-0 HSC  
RBF  
R-0 HSC  
TBF  
P
S
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HSC = Hardware set/cleared  
x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(when operating as I2C master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware set or clear at end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address. Hardware clear at Stop detection.  
ADD10: 10-bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match. Hardware set by reception of slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
© 2011 Microchip Technology Inc.  
DS70290G-page 159  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware set when I2CxRCV is written with received byte. Hardware clear when software  
reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.  
DS70290G-page 160  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSKx: Mask for Address bit x Select bit  
1= Enable masking for bit x of incoming message address; bit match not required in this position  
0= Disable masking for bit x; bit match required in this position  
© 2011 Microchip Technology Inc.  
DS70290G-page 161  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 162  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
The primary features of the UART module are:  
17.0 UNIVERSAL ASYNCHRONOUS  
• Full-Duplex, 8-bit or 9-bit Data Transmission  
through the UxTX and UxRX pins  
RECEIVER TRANSMITTER  
(UART)  
• Even, odd or no parity options (for 8-bit data)  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 17. “UART” (DS70188) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available on the  
Microchip website (www.microchip.com).  
• One or two stop bits  
• Hardware Flow Control Option with UxCTS and  
UxRTS pins  
• Fully Integrated Baud Rate Generator with 16-bit  
prescaler  
• Baud rates ranging from 10 Mbps to 38 bps at 40  
MIPS  
• 4-deep first-in-first-out (FIFO) Transmit Data  
Buffer  
• 4-Deep FIFO Receive Data Buffer  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Parity, framing and buffer overrun error detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive interrupts  
• A separate interrupt for all UART error conditions  
• Loopback mode for diagnostic support  
• Support for Sync and Break characters  
• Support for automatic baud rate detection  
• IrDA® encoder and decoder logic  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules  
available in the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 device family. The UART is a  
full-duplex  
asynchronous  
system  
that  
can  
• 16x baud clock output for IrDA® support  
communicate with peripheral devices, such as  
personal computers, LIN, RS-232 and RS-485  
interfaces. The module also supports a hardware flow  
control option with the UxCTS and UxRTS pins and  
also includes an IrDA® encoder and decoder.  
A simplified block diagram of the UART module is  
shown in Figure 17-1. The UART module consists of  
these key hardware elements:  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
FIGURE 17-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
BCLK  
Hardware Flow Control  
UART Receiver  
UxRTS  
UxCTS  
UxRX  
UxTX  
UART Transmitter  
© 2011 Microchip Technology Inc.  
DS70290G-page 163  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
R/W-0  
RTSMD  
UEN<1:0>  
bit 15  
bit 8  
R/W-0 HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL<1:0>  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA® encoder and decoder enabled  
0= IrDA® encoder and decoder disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11= UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared  
in hardware on following rising edge  
0= No wake-up enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h)  
before other data; cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
bit 4  
URXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS70290G-page 164  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
© 2011 Microchip Technology Inc.  
DS70290G-page 165  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
UTXEN(1)  
R-0  
R-1  
UTXISEL1  
UTXINV  
UTXISEL0  
UTXBF  
TRMT  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
C = Clear only bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is  
at least one character open in the transmit buffer)  
bit 14  
UTXINV: Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle state is ‘0’  
0= UxTX Idle state is ‘1’  
If IREN = 1:  
1= IrDA® encoded UxTX Idle state is ‘1’  
0= IrDA® encoded UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission disabled or completed  
bit 10  
UTXEN: Transmit Enable bit(1)  
1= Transmit enabled, UxTX pin controlled by UARTx  
0= Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled  
by port  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11= Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer. Receive buffer has one or more characters  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
DS70290G-page 166  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect  
0= Address Detect mode disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive  
FIFO)  
0= Framing error has not been detected  
bit 1  
bit 0  
OERR: Receive Buffer Overrun Error Status bit (read/clear only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed. Clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the UxRSR to the empty state  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
© 2011 Microchip Technology Inc.  
DS70290G-page 167  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 168  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
The 12-bit ADC configuration supports all the above  
features, except:  
18.0 10-BIT/12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
• In the 12-bit configuration, conversion speeds of  
up to 500 ksps are supported.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
• There is only one sample and hold (S&H) ampli-  
fier in the 12-bit configuration, so simultaneous  
sampling of multiple channels is not supported.  
Depending on the particular device pinout, the ADC  
can have up to 13 analog input pins, designated AN0  
through AN12. In addition, there are two analog input  
pins for external voltage reference connections. These  
voltage reference inputs can be shared with other  
analog input pins.  
Section  
16.  
“Analog-to-Digital  
Converter (ADC)” (DS70183) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available on the  
Microchip website (www.microchip.com).  
The actual number of analog input pins and external  
voltage reference input configuration will depend on the  
specific device. Refer to the specific device data sheet  
for further details.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
A
block diagram of  
the ADC  
for the  
dsPIC33FJ16GP304 and dsPIC33FJ32GP204 devices  
is shown in Figure 18-1. A block diagram of the ADC for  
the dsPIC33FJ32GP202 device is shown in  
Figure 18-2.  
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices have up to 13 Analog-to-Digital Conversion  
(ADC) module input channels.  
18.2 ADC Initialization  
The AD12B bit (AD1CON1<10>) allows each of the  
ADC modules to be configured as either a 10-bit,  
4-sample-and-hold ADC (default configuration) or a  
12-bit, 1-sample-and-hold ADC.  
To configure the ADC module:  
1. Select  
port  
pins  
as  
analog  
inputs  
(AD1PCFGH<15:0> or AD1PCFGL<15:0>).  
2. Select voltage reference source to match  
Note:  
The ADC module must be disabled before  
the AD12B bit can be modified.  
expected  
range  
on  
analog  
inputs  
(AD1CON2<15:13>).  
3. Select the analog conversion clock to match  
desired data rate with processor clock  
(AD1CON3<7:0>).  
18.1 Key Features  
The 10-bit ADC configuration has the following key  
features:  
4. Determine  
how  
many  
sample-and-hold  
channels will be used (AD1CON2<9:8> and  
AD1PCFGH<15:0> or AD1PCFGL<15:0>).  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 1.1 Msps  
• Up to 13 analog input pins  
5. Select the appropriate sample/conversion  
sequence  
(AD1CON1<7:5>  
and  
• External voltage reference input pins  
AD1CON3<12:8>).  
• Simultaneous sampling of up to four analog input  
pins  
6. Select the way conversion results are presented  
in the buffer (AD1CON1<9:8>).  
• Automatic Channel Scan mode  
• Selectable conversion trigger source  
• Selectable Buffer Fill modes  
e) Turn on the ADC module (AD1CON1<15>).  
7. Configure ADC interrupt (if required):  
a) Clear the AD1IF bit.  
• Four result alignment options (signed/unsigned,  
fractional/integer)  
b) Select ADC interrupt priority.  
• Operation during CPU Sleep and Idle modes  
• 16-word conversion result buffer  
© 2011 Microchip Technology Inc.  
DS70290G-page 169  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 18-1:  
ADC1 MODULE BLOCK DIAGRAM FOR dsPIC33FJ16GP304 AND  
dsPIC33FJ32GP204 DEVICES  
AN0  
AN12  
S/H0  
CHANNEL  
SCAN  
+
CH0SB<4:0>  
CH0SA<4:0>  
-
CH0  
CSCNA  
AN1  
VREFL  
CH0NB  
CH0NA  
AN0  
AN3  
(1)  
(1)  
VREF+ AVDDVREF - AVSS  
S/H1  
+
-
CH123SA  
CH123SB  
(2)  
CH1  
AN6  
AN9  
VCFG<2:0>  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
VREFL  
VREFH  
VREFL  
CH123NB  
CH123NA  
SAR ADC  
AN1  
AN4  
S/H2  
ADC1BUFE  
ADC1BUFF  
+
-
CH123SA  
CH123SB  
(2)  
CH2  
AN7  
AN10  
VREFL  
CH123NA  
CH123NB  
AN2  
AN5  
S/H3  
+
-
CH123SA CH123SB  
AN8  
(2)  
CH3  
AN11  
VREFL  
CH123NA  
CH123NB  
Alternate  
Input Selection  
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.  
2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
DS70290G-page 170  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 18-2:  
ADC1 MODULE BLOCK DIAGRAM FOR dsPIC33FJ32GP202 DEVICES  
AN0  
AN12  
S/H0  
CHANNEL  
SCAN  
+
CH0SB<4:0>  
CH0SA<4:0>  
-
CH0  
CSCNA  
AN1  
VREFL  
CH0NB  
CH0NA  
AN0  
AN3  
(1)  
(1)  
VREF+ AVDDVREF - AVSS  
S/H1  
+
-
CH123SA  
CH123SB  
(2)  
CH1  
AN9  
VCFG<2:0>  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
VREFL  
VREFH  
VREFL  
CH123NB  
CH123NA  
SAR ADC  
AN1  
AN4  
S/H2  
ADC1BUFE  
ADC1BUFF  
+
-
CH123SA  
CH123SB  
(2)  
CH2  
AN10  
VREFL  
CH123NA  
CH123NB  
AN2  
AN5  
S/H3  
+
-
CH123SA CH123SB  
(2)  
CH3  
AN11  
VREFL  
CH123NA  
CH123NB  
Alternate  
Input Selection  
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.  
2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
© 2011 Microchip Technology Inc.  
DS70290G-page 171  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 18-3:  
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM  
AD1CON3<15>  
ADC Internal  
RC Clock(2)  
0
1
TAD  
AD1CON3<5:0>  
6
ADC Conversion  
Clock Multiplier  
TCY  
(1)  
X2  
TOSC  
1, 2, 3, 4, 5,..., 64  
Note 1: Refer to Figure 8-2 for the derivation of FOSC when the PLL is enabled. If the PLL is not used, FOSC is equal  
to the clock frequency. TOSC = 1/FOSC.  
2: See the ADC Electrical Characteristics for the exact RC clock value.  
DS70290G-page 172  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 18-1: AD1CON1: ADC1 CONTROL REGISTER 1  
R/W-0  
ADON  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADSIDL  
AD12B  
FORM<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
ASAM  
R/W-0  
HC,HS  
R/C-0  
HC, HS  
SSRC<2:0>  
SIMSAM  
SAMP  
DONE  
bit 7  
Legend:  
bit 0  
HC = Cleared by hardware  
W = Writable bit  
HS = Set by hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
C = Clear only bit  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
ADON: ADC Operating Mode bit  
1= ADC module is operating  
0= ADC is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
AD12B: 10-bit or 12-bit Operation Mode bit  
1= 12-bit, 1-channel ADC operation  
0= 10-bit, 4-channel ADC operation  
bit 9-8  
FORM<1:0>: Data Output Format bits  
For 10-bit operation:  
11= Signed fractional (DOUT = sddd dddd dd00 0000, where s= .NOT.d<9>)  
10= Fractional (DOUT = dddd dddd dd00 0000)  
01= Signed integer (DOUT = ssss sssd dddd dddd, where s= .NOT.d<9>)  
00= Integer (DOUT = 0000 00dd dddd dddd)  
For 12-bit operation:  
11= Signed fractional (DOUT = sddd dddd dddd 0000, where s= .NOT.d<11>)  
10= Fractional (DOUT = dddd dddd dddd 0000)  
01= Signed Integer (DOUT = ssss sddd dddd dddd, where s= .NOT.d<11>)  
00= Integer (DOUT = 0000 dddd dddd dddd)  
bit 7-5  
SSRC<2:0>: Sample Clock Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= Reserved  
101= Motor Control PWM2 interval ends sampling and starts conversion  
100= Reserved  
011= Motor Control PWM1 interval ends sampling and starts conversion  
010= GP timer 3 compare ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing sample bit ends sampling and starts conversion  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SIMSAM: Simultaneous Sample Select bit (applicable only when CHPS<1:0> = 01or 1x)  
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0’  
1= Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or  
Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)  
0= Samples multiple channels individually in sequence  
© 2011 Microchip Technology Inc.  
DS70290G-page 173  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 18-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)  
bit 2  
ASAM: ADC Sample Auto-Start bit  
1= Sampling begins immediately after last conversion. SAMP bit is auto-set  
0= Sampling begins when SAMP bit is set  
bit 1  
SAMP: ADC Sample Enable bit  
1= ADC sample-and-hold amplifiers are sampling  
0= ADC sample-and-hold amplifiers are holding  
If ASAM = 0, software can write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1.  
If SSRC = 000, software can write ‘0’ to end sampling and start conversion. If SSRC 000,  
automatically cleared by hardware to end sampling and start conversion.  
bit 0  
DONE: ADC Conversion Status bit  
1= ADC conversion cycle is completed  
0= ADC conversion not started or in progress  
Automatically set by hardware when ADC conversion is complete. Software can write ‘0’ to clear  
DONE status (software not allowed to write ‘1’). Clearing this bit will NOT affect any operation in  
progress. Automatically cleared by hardware at start of a new conversion.  
DS70290G-page 174  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 18-2: AD1CON2: ADC1 CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VCFG<2:0>  
CSCNA  
CHPS<1:0>  
bit 15  
bit 8  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
SMPI<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
VCFG<2:0>: Converter Voltage Reference Configuration bits  
ADREF+  
ADREF-  
000  
AVDD  
AVSS  
AVSS  
001 External VREF+  
010  
011 External VREF+  
1xx  
AVDD  
External VREF-  
External VREF-  
Avss  
AVDD  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ during Sample A bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
CHPS<1:0>: Select Channels Utilized bits  
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’  
1x= Converts CH0, CH1, CH2 and CH3  
01= Converts CH0 and CH1  
00= Converts CH0  
BUFS: Buffer Fill Status bit (valid only when BUFM = 1)  
1= ADC is currently filling second half of buffer, user application should access data in the first half  
0= ADC is currently filling first half of buffer, user application should access data in the second half  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits  
1111= Interrupts at the completion of conversion for each 16th sample/convert sequence  
1110= Interrupts at the completion of conversion for each 15th sample/convert sequence  
0001= Interrupts at the completion of conversion for each 2nd sample/convert sequence  
0000= Interrupts at the completion of conversion for each sample/convert sequence  
bit 1  
bit 0  
BUFM: Buffer Fill Mode Select bit  
1= Starts filling first half of buffer on first interrupt and the second half of buffer on next interrupt  
0= Always starts filling buffer from the beginning  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses channel input selects for Sample A on first sample and Sample B on next sample  
0= Always uses channel input selects for Sample A  
© 2011 Microchip Technology Inc.  
DS70290G-page 175  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 18-3: AD1CON3: ADC1 CONTROL REGISTER 3  
R/W-0  
ADRC  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
SAMC<4:0>(1)  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
ADCS<7:0>(2)  
R/W-0  
R/W-0  
R/W-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADRC: ADC Conversion Clock Source bit  
1= ADC internal RC clock  
0= Clock derived from system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC<4:0>: Auto Sample Time bits(1)  
11111= 31 TAD  
00001= 1 TAD  
00000= 0 TAD  
bit 7-0  
ADCS<7:0>: ADC Conversion Clock Select bits(2)  
11111111= Reserved  
01000000= Reserved  
00111111= TCY ·(ADCS<7:0> + 1) = 64 ·TCY = TAD  
00000010= TCY ·(ADCS<7:0> + 1) = 3 ·TCY = TAD  
00000001= TCY ·(ADCS<7:0> + 1) = 2 ·TCY = TAD  
00000000= TCY ·(ADCS<7:0> + 1) = 1 ·TCY = TAD  
Note 1: This bit only used if AD1CON1<7:5> (SSRC<2:0>) = 111.  
2: This bit is not used if AD1CON3<15> (ADRC) = 1.  
DS70290G-page 176  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 18-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NB<1:0>  
CH123SB  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NA<1:0>  
CH123SA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits  
dsPIC33FJ32GP202 devices only:  
If AD12B = 1:  
11= Reserved  
10= Reserved  
01= Reserved  
00= Reserved  
If AD12B = 0:  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= Reserved  
01= CH1, CH2, CH3 negative input is VREF-  
00= CH1, CH2, CH3 negative input is VREF-  
dsPIC33FJ32GP204 and dsPIC33FJ16GP304 devices only:  
If AD12B = 1:  
11= Reserved  
10= Reserved  
01= Reserved  
00= Reserved  
If AD12B = 0:  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
01= CH1, CH2, CH3 negative input is VREF-  
00= CH1, CH2, CH3 negative input is VREF-  
bit 8  
CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit  
If AD12B = 1:  
1= Reserved  
0= Reserved  
If AD12B = 0:  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
bit 7-3  
Unimplemented: Read as ‘0’  
© 2011 Microchip Technology Inc.  
DS70290G-page 177  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 18-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)  
bit 2-1  
CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits  
dsPIC33FJ32GP202 devices only:  
If AD12B = 1:  
11= Reserved  
10= Reserved  
01= Reserved  
00= Reserved  
If AD12B = 0:  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= Reserved  
01= CH1, CH2, CH3 negative input is VREF-  
00= CH1, CH2, CH3 negative input is VREF-  
dsPIC33FJ32GP204 and dsPIC33FJ16GP304 devices only:  
If AD12B = 1:  
11= Reserved  
10= Reserved  
01= Reserved  
00= Reserved  
If AD12B = 0:  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
01= CH1, CH2, CH3 negative input is VREF-  
00= CH1, CH2, CH3 negative input is VREF-  
bit 0  
CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit  
If AD12B = 1:  
1= Reserved  
0= Reserved  
If AD12B = 0:  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
DS70290G-page 178  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 18-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
CH0NB  
CH0SB<4:0>  
bit 15  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NA  
CH0SA<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for Sample B bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREF-  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits  
dsPIC33FJ32GP204 and dsPIC33FJ16GP304 devices only:  
01100= Channel 0 positive input is AN12  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
dsPIC33FJ32GP202 devices only:  
01100= Channel 0 positive input is AN12  
01000= Reserved  
00111= Reserved  
00110= Reserved  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
bit 7  
CH0NA: Channel 0 Negative Input Select for Sample A bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREF-  
bit 6-5  
Unimplemented: Read as ‘0’  
© 2011 Microchip Technology Inc.  
DS70290G-page 179  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
REGISTER 18-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)  
bit 4-0  
CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits  
dsPIC33FJ32GP204 and dsPIC33FJ16GP304 devices only:  
01100= Channel 0 positive input is AN12  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
dsPIC33FJ32GP202 devices only:  
01100= Channel 0 positive input is AN12  
01000= Reserved  
00111= Reserved  
00110= Reserved  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
DS70290G-page 180  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(1,2)  
REGISTER 18-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS9  
R/W-0  
CSS8  
CSS12  
CSS11  
CSS10  
bit 15  
bit 8  
R/W-0  
CSS7  
R/W-0  
CSS6  
R/W-0  
CSS5  
R/W-0  
CSS4  
R/W-0  
CSS3  
R/W-0  
CSS2  
R/W-0  
CSS1  
R/W-0  
CSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-0  
Unimplemented: Read as ‘0’  
CSS<12:0>: ADC Input Scan Selection bits  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: On devices without 13 analog inputs, all AD1CSSL bits can be selected by the user application. However,  
inputs selected for scan without a corresponding input on device converts VREFL.  
2: CSSx = ANx, where x = 0 through 12.  
(1,2,3)  
REGISTER 18-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG12  
PCFG11  
PCFG10  
PCFG9  
PCFG8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG7  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-0  
Unimplemented: Read as ‘0’  
PCFG<12:0>: ADC Port Configuration Control bits  
1= Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVSS  
0= Port pin in Analog mode, port read input disabled, ADC samples pin voltage  
Note 1: On devices without 13 analog inputs, all PCFG bits are R/W by user software. However, the PCFG bits are  
ignored on ports without a corresponding input on device.  
2: PCFGx = ANx, where x = 0 through 12.  
3: The PCFGx bits have no effect if the ADC module is disabled by setting ADxMD bit in the PMDx Register.  
In this case, all port pins multiplexed with ANx will be in Digital mode.  
© 2011 Microchip Technology Inc.  
DS70290G-page 181  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 182  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
19.1 Configuration Bits  
19.0 SPECIAL FEATURES  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices provide nonvolatile memory implementation  
for device configuration bits. Refer to Section 25.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the informa-  
tion in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
dsPIC33F/PIC24H Family Reference  
Manual sections.  
“Device  
Configuration”  
(DS70194)  
of  
the  
“dsPIC33F/PIC24H Family Reference Manual”, for  
more information on this implementation.  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select  
various device configurations. These bits are mapped  
starting at program memory location 0xF80000.  
The Device Configuration register map is shown in  
Table 19-1.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
devices include several features intended to maximize  
application flexibility and reliability, and minimize cost  
through elimination of external components. These are:  
The individual Configuration bit descriptions for the  
Configuration registers are shown in Table 19-2.  
Note that address 0xF80000 is beyond the user program  
memory space. It belongs to the configuration memory  
space (0x800000-0xFFFFFF), which can only be  
accessed using table reads and table writes.  
• Flexible configuration  
• Watchdog Timer (WDT)  
• Code Protection and CodeGuard™ Security  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Emulation  
TABLE 19-1: DEVICE CONFIGURATION REGISTER MAP  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
BSS<2:0>  
Bit 1  
Bit 0  
BWRP  
0xF80000 FBS  
0xF80002 Reserved  
0xF80004 FGS  
GSS<1:0>  
FNOSC<2:0>  
GWRP  
0xF80006 FOSCSEL  
0xF80008 FOSC  
0xF8000A FWDT  
0xF8000C FPOR  
0xF8000E FICD  
0xF80010 FUID0  
0xF80012 FUID1  
0xF80014 FUID2  
0xF80016 FUID3  
IESO  
FCKSM<1:0>  
FWDTEN WINDIS  
Reserved(2)  
IOL1WAY  
OSCIOFNC POSCMD<1:0>  
WDTPOST<3:0>  
WDTPRE  
ALTI2C  
FPWRT<2:0>  
Reserved(1)  
JTAGEN  
ICS<1:0>  
User Unit ID Byte 0  
User Unit ID Byte 1  
User Unit ID Byte 2  
User Unit ID Byte 3  
Legend: — = unimplemented bit, read as ‘0’.  
Note 1: These bits are reserved for use by development tools and must be programmed as ‘1’.  
2: These bits are reserved and always read as ‘1’.  
© 2011 Microchip Technology Inc.  
DS70290G-page 183  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 19-2: dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 CONFIGURATION BITS  
DESCRIPTION  
RTSP  
Effect  
Bit Field  
Register  
Description  
BWRP  
FBS  
Immediate Boot Segment Program Flash Write Protection  
1= Boot segment may be written  
0= Boot segment is write-protected  
BSS<2:0>  
BSS<2:0>  
GSS<1:0>  
FBS  
Immediate dsPIC33FJ32GP202 and dsPIC33FJ32GP204 Devices Only  
Boot Segment Program Flash Code Protection Size  
X11= No Boot program Flash segment  
Boot space is 768 Instruction Words (except interrupt vectors)  
110= Standard security; boot program Flash segment ends at 0x0007FE  
010= High security; boot program Flash segment ends at 0x0007FE  
Boot space is 3840 Instruction Words (except interrupt vectors)  
101= Standard security; boot program Flash segment, ends at 0x001FFE  
001= High security; boot program Flash segment ends at 0x001FFE  
Boot space is 7936 Instruction Words (except interrupt vectors)  
100= Standard security; boot program Flash segment ends at 0x003FFE  
000= High security; boot program Flash segment ends at 0x003FFE  
FBS  
Immediate dsPIC33FJ16GP304 Devices Only  
Boot Segment Program Flash Code Protection Size  
X11= No Boot program Flash segment  
Boot space is 768 Instruction Words (except interrupt vectors)  
110= Standard security; boot program Flash segment ends at 0x0007FE  
010= High security; boot program Flash segment ends at 0x0007FE  
Boot space is 3840 Instruction Words (except interrupt vectors)  
101= Standard security; boot program Flash segment, ends at 0x001FFE  
001= High security; boot program Flash segment ends at 0x001FFE  
Boot space is 5376 Instruction Words (except interrupt vectors)  
100= Standard security; boot program Flash segment ends at 0x002BFE  
000= High security; boot program Flash segment ends at 0x002BFE  
FGS  
FGS  
Immediate General Segment Code-Protect bit  
11= User program memory is not code-protected  
10= Standard security  
0x= High security  
GWRP  
IESO  
Immediate General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
FOSCSEL Immediate Two-speed Oscillator Start-up Enable bit  
1= Start-up device with FRC, then automatically switch to the  
user-selected oscillator source when ready  
0= Start-up device with user-selected oscillator source  
FNOSC<2:0> FOSCSEL If clock Initial Oscillator Source Selection bits  
switch is 111= Internal Fast RC (FRC) oscillator with postscaler  
enabled, 110= Internal Fast RC (FRC) oscillator with divide-by-16  
RTSP 101= LPRC oscillator  
effect is 100= Secondary (LP) oscillator  
on any 011= Primary (XT, HS, EC) oscillator with PLL  
device  
Reset;  
010= Primary (XT, HS, EC) oscillator  
001= Internal Fast RC (FRC) oscillator with PLL  
otherwise, 000= FRC oscillator  
Immediate  
DS70290G-page 184  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 19-2: dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 CONFIGURATION BITS  
DESCRIPTION (CONTINUED)  
RTSP  
Effect  
Bit Field  
Register  
Description  
FCKSM<1:0>  
FOSC  
Immediate Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
IOL1WAY  
OSCIOFNC  
FOSC  
FOSC  
FOSC  
Immediate Peripheral Pin Select Configuration  
1= Allow only one re-configuration  
0= Allow multiple re-configurations  
Immediate OSC2 Pin Function bit (except in XT and HS modes)  
1= OSC2 is clock output  
0= OSC2 is general purpose digital I/O pin  
POSCMD<1:0>  
Immediate Primary Oscillator Mode Select bits  
11= Primary oscillator disabled  
10= HS Crystal Oscillator mode  
01= XT Crystal Oscillator mode  
00= EC (External Clock) mode  
FWDTEN  
FWDT  
Immediate Watchdog Timer Enable bit  
1= Watchdog Timer always enabled (LPRC oscillator cannot be disabled.  
Clearing the SWDTEN bit in the RCON register will have no effect.)  
0= Watchdog Timer enabled/disabled by user software (LPRC can be  
disabled by clearing the SWDTEN bit in the RCON register)  
WINDIS  
WDTPRE  
FWDT  
FWDT  
FWDT  
Immediate Watchdog Timer Window Enable bit  
1= Watchdog Timer in Non-Window mode  
0= Watchdog Timer in Window mode  
Immediate Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
WDTPOST<3:0>  
Immediate Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
.
.
.
0001= 1:2  
0000= 1:1  
ALTI2C  
FPOR  
FPOR  
Immediate Alternate I2C pins  
1 = I2C mapped to SDA1/SCL1 pins  
0 = I2C mapped to ASDA1/ASCL1 pins  
FPWRT<2:0>  
Immediate Power-on Reset Timer Value Select bits  
111= PWRT = 128 ms  
110= PWRT = 64 ms  
101= PWRT = 32 ms  
100= PWRT = 16 ms  
011= PWRT = 8 ms  
010= PWRT = 4 ms  
001= PWRT = 2 ms  
000= PWRT = Disabled  
JTAGEN  
ICS<1:0>  
FICD  
FICD  
Immediate JTAG Enable bit  
1= JTAG enabled  
0= JTAG disabled  
Immediate ICD Communication Channel Select bits  
11= Communicate on PGEC1 and PGED1  
10= Communicate on PGEC2 and PGED2  
01= Communicate on PGEC3 and PGED3  
00= Reserved, do not use  
© 2011 Microchip Technology Inc.  
DS70290G-page 185  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
19.2 On-Chip Voltage Regulator  
19.3 BOR: Brown-Out Reset  
All  
of  
the  
dsPIC33FJ32GP202/204  
and  
The Brown-out Reset (BOR) module is based on an  
internal voltage reference circuit that monitors the  
regulated voltage VCAP. The main purpose of the BOR  
module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (for  
example, missing portions of the AC cycle waveform  
due to bad power transmission lines, or voltage sags  
due to excessive current draw when a large inductive  
load is turned on).  
dsPIC33FJ16GP304 devices power their core digital  
logic at a nominal 2.5V. This can create a conflict for  
designs that are required to operate at a higher typical  
voltage, such as 3.3V. To simplify system design, all  
devices in the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 family incorporate an on-chip  
regulator that allows the device to run its core logic from  
VDD.  
The regulator provides power to the core from the other  
VDD pins. When the regulator is enabled, a low-ESR  
(less than 5 ohms) capacitor (such as tantalum or  
ceramic) must be connected to the VCAP pin  
(Figure 19-1). This helps to maintain the stability of the  
regulator. The recommended value for the filter capac-  
itor is provided in Table 22-13 located in Section 22.1  
“DC Characteristics”.  
A BOR generates a Reset pulse, which resets the  
device. The BOR selects the clock source, based on  
the device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>).  
If an oscillator mode is selected, the BOR activates the  
Oscillator Start-up Timer (OST). The system clock is  
held until OST expires. If the PLL is used, the clock is  
held until the LOCK bit (OSCCON<5>) is ‘1’.  
Note:  
It is important for the low-ESR capacitor to  
be placed as close as possible to the VCAP  
pin.  
Concurrently, the PWRT time-out (TPWRT) will be  
applied before the internal Reset is released. If TPWRT  
= 0 and a crystal oscillator is being used, a nominal  
delay of TFSCM = 100is applied. The total delay in this  
case is TFSCM.  
On a POR, it takes approximately 20 μs for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
The BOR Status bit (RCON<1>) is set to indicate that a  
BOR has occurred. The BOR circuit continues to  
operate while in Sleep or Idle modes and resets the  
device should VDD fall below the BOR threshold  
voltage.  
FIGURE 19-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
(1)  
REGULATOR  
3.3V  
dsPIC33F  
VDD  
VCAP  
VSS  
CEFC  
10 µF  
Note 1: These are typical operating voltages. Refer to  
Table 22-13 for the full operating ranges of  
VDD and VCAP.  
2: It is important for the low-ESR capacitor to  
be placed as close as possible to the VCAP  
pin.  
DS70290G-page 186  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
19.4.2  
SLEEP AND IDLE MODES  
19.4 Watchdog Timer (WDT)  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake the device and code execution will  
continue from where the PWRSAV instruction was  
executed. The corresponding SLEEP or IDLE bits  
(RCON<3:2>) will need to be cleared in software after  
the device wakes up.  
For  
dsPIC33FJ32GP202/204  
and  
dsPIC33FJ16GP304 devices, the WDT is driven by the  
LPRC oscillator. When the WDT is enabled, the clock  
source is also enabled.  
19.4.1  
PRESCALER/POSTSCALER  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler than can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or  
4 ms in 7-bit mode.  
19.4.3  
ENABLING WDT  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register.  
When the FWDTEN Configuration bit is set, the WDT is  
always enabled.  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>), which allow the  
selection of 16 settings, from 1:1 to 1:32,768. Using the  
prescaler and postscaler, time-out periods ranging from  
1 ms to 131 seconds can be achieved.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN  
control bit is cleared on any device Reset. The software  
WDT option allows the user application to enable the  
WDT for critical code segments and disable the WDT  
during non-critical segments for maximum power  
savings.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
Note:  
If the WINDIS bit (FWDT<6>) is cleared,  
the CLRWDTinstruction should be executed  
by the application software only during the  
last 1/4 of the WDT period. This CLRWDT  
window can be determined by using a timer.  
If a CLRWDTinstruction is executed before  
this window, a WDT Reset occurs.  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
FIGURE 19-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
Sleep/Idle  
WDTPRE  
Prescaler  
WDTPOST<3:0>  
SWDTEN  
FWDTEN  
WDT  
Wake-up  
1
0
RS  
RS  
Postscaler  
WDT  
Reset  
(divide by N1)  
(divide by N2)  
LPRC Clock  
WDT Window Select  
WINDIS  
CLRWDTInstruction  
© 2011 Microchip Technology Inc.  
DS70290G-page 187  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
peripherals) on a single chip. This feature helps protect  
individual Intellectual Property in collaborative system  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
designs.  
19.5 JTAG Interface  
devices implement a JTAG interface, which supports  
When coupled with software encryption libraries, Code-  
boundary scan device testing, as well as in-circuit  
Guard™ Security can be used to securely update Flash  
programming. Detailed information on this interface will  
even when multiple IPs reside on the single chip.  
be provided in future revisions of the document.  
The code protection features are controlled by the  
Configuration registers: FBS and FGS. The Secure  
segment and RAM is not implemented.  
19.6 Code Protection and  
CodeGuard™ Security  
Note:  
Refer to Section 23. “CodeGuard™  
Security” (DS70199) in the  
“dsPIC33F/PIC24H Family Reference  
Manual” for further information on  
usage, configuration and operation of  
CodeGuard Security.  
The  
dsPIC33FJ32GP202/204  
and  
dsPIC33FJ16GP304 product families offer the  
intermediate implementation of CodeGuard™ Security.  
CodeGuard Security enables multiple parties to  
securely share resources (memory, interrupts and  
TABLE 19-3: CODE FLASH SECURITY  
SEGMENT SIZES FOR  
32 KBYTE DEVICES  
TABLE 19-4: CODE FLASH SECURITY  
SEGMENT SIZES FOR  
16 KBYTE DEVICES  
CONFIG BITS  
CONFIG BITS  
000000h  
VS = 256 IW  
000000h  
VS = 256 IW  
0001FEh  
0001FEh  
000200h  
000200h  
0007FEh  
0007FEh  
BSS<2:0> = x11  
BSS<2:0> = x11  
000800h  
001FFEh  
000800h  
001FFEh  
002000h  
003FFEh  
004000h  
002000h  
0K  
0K  
GS = 11008 IW  
GS = 5376 IW  
0057FEh  
002BFEh  
000000h  
0001FEh  
000200h  
0007FEh  
000800h  
001FFEh  
002000h  
000000h  
0001FEh  
000200h  
0007FEh  
000800h  
001FFEh  
002000h  
003FFEh  
004000h  
VS = 256 IW  
BS = 768 IW  
VS = 256 IW  
BS = 768 IW  
BSS<2:0> = x10  
BSS<2:0> = x10  
256  
256  
GS = 10240 IW  
GS = 4608 IW  
0057FEh  
002BFEh  
000000h  
0001FEh  
000200h  
0007FEh  
000800h  
001FFEh  
002000h  
003FFEh  
004000h  
000000h  
0001FEh  
000200h  
0007FEh  
000800h  
001FFEh  
002000h  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 3840 IW  
BSS<2:0> = x01  
BSS<2:0> = x01  
768  
768  
GS = 7168 IW  
GS = 1536 IW  
0057FEh  
002BFEh  
000000h  
0001FEh  
000200h  
0007FEh  
000800h  
001FFEh  
002000h  
003FFEh  
004000h  
000000h  
0001FEh  
000200h  
0007FEh  
000800h  
001FFEh  
002000h  
VS = 256 IW  
BS = 7936 IW  
VS = 256 IW  
BS = 5376 IW  
BSS<2:0> = x00  
BSS<2:0> = x00  
1792  
1792  
GS = 3072 IW  
0057FEh  
002BFEh  
DS70290G-page 188  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
19.7  
In-Circuit Serial Programming  
19.8 In-Circuit Debugger  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
family digital signal controllers can be serially pro-  
grammed while in the end application circuit. This is  
done with two lines for clock and data and three other  
lines for power, ground and the programming  
sequence. Serial programming allows customers to  
manufacture boards with unprogrammed devices and  
then program the digital signal controller just before  
shipping the product. Serial programming also allows  
the most recent firmware or a custom firmware to be  
programmed. Refer to the “dsPIC33F/PIC24H Flash  
Programming Specification” (DS70152) document for  
details about In-Circuit Serial Programming (ICSP).  
When MPLAB® ICD 2 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This  
function allows simple debugging functions when used  
with MPLAB IDE. Debugging functionality is controlled  
through the PGECx (Emulation/Debug Clock) and  
PGEDx (Emulation/Debug Data) pin functions.  
Any of the three pairs of debugging clock/data pins can  
be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS, and the PGECx/PGEDx pin pair. In  
addition, when the feature is enabled, some of the  
resources are not available for general use. These  
resources include the first 80 bytes of data RAM and  
two I/O pins.  
Any of the three pairs of programming clock/data pins  
can be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
© 2011 Microchip Technology Inc.  
DS70290G-page 189  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 190  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
20.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the informa-  
tion in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
dsPIC33F/PIC24H Family Reference  
Manual sections.  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
The literal instructions that involve data movement can  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The dsPIC33F instruction set is identical to that of the  
dsPIC30F.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The second source operand, which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions can use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The accumulator (A or B) to be used (required  
operand)  
• DSP operations  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write back destination  
• Control operations  
Table 20-1 shows the general symbols used in  
describing the instructions.  
The dsPIC33F instruction set summary in Table 20-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
The other DSP instructions do not involve any  
multiplication and can include:  
• The accumulator to be used (required)  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
• The amount of shift specified by a W register ‘Wn’  
or a literal value  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
The control instructions can use some of the following  
operands:  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
• A program memory address  
• The mode of the table read and table write  
instructions  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value ‘f’  
• The destination, which could be either the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
© 2011 Microchip Technology Inc.  
DS70290G-page 191  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Most instructions are  
a
single word. Certain  
all table reads and writes and RETURN/RETFIE  
instructions, which are single-word instructions but take  
two or three cycles. Certain instructions that involve skip-  
ping over the subsequent instruction require either two  
or three cycles if the skip is performed, depending on  
whether the instruction being skipped is a single-word or  
two-word instruction. Moreover, double-word moves  
require two cycles.  
double-word instructions are designed to provide all of  
the required information in these 48 bits. In the second  
word, the 8 MSbs are ‘0’s. If this second word is  
executed as an instruction (by itself), it will execute as  
a NOP. The double-word instructions execute in two  
instruction cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles with the additional instruction cycle(s)  
executed as a NOP. Notable exceptions are the BRA  
(unconditional/computed branch), indirect CALL/GOTO,  
Note:  
For more details on the instruction set,  
refer to the “16-bit MCU and DSC  
Programmer’s  
Reference  
Manual”  
(DS70157).  
TABLE 20-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator write back destination address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSb must be ‘0’  
Field does not require an entry, may be blank  
DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register ∈  
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor working register pair (direct addressing)  
DS70290G-page 192  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 20-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wm*Wm  
Wm*Wn  
Multiplicand and Multiplier working register pair for Square instructions ∈  
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Multiplicand and Multiplier working register pair for DSP instructions ∈  
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0...W15}  
One of 16 source working registers {W0...W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register ∈  
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X data space prefetch address register for DSP instructions  
{[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2,  
[W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2,  
[W9 + W12], none}  
Wxd  
Wy  
X data space prefetch destination register for DSP instructions {W4...W7}  
Y data space prefetch address register for DSP instructions  
{[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2,  
[W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2,  
[W11 + W12], none}  
Wyd  
Y data space prefetch destination register for DSP instructions {W4...W7}  
© 2011 Microchip Technology Inc.  
DS70290G-page 193  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 20-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
AND  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
1
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
Wd = Wb .AND. Ws  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
None  
None  
None  
None  
None  
None  
Branch if unsigned less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A overflow  
Branch if Accumulator B overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A saturated  
Branch if Accumulator B saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
9
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
1
None  
Bit Toggle Ws  
1
None  
DS70290G-page 194  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
10  
BTSC  
BTSS  
BTST  
BTSC  
BTSC  
BTSS  
BTSS  
f,#bit4  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
Bit Test f, Skip if Clear  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
11  
12  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
C
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call subroutine  
C
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
CLR  
CLR  
CLR  
CLRWDT  
COM  
COM  
COM  
CP  
lit23  
None  
Wn  
Call indirect subroutine  
f = 0x0000  
None  
f
None  
WREG  
WREG = 0x0000  
None  
Ws  
Ws = 0x0000  
None  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
f
f,WREG  
Ws,Wd  
f
WREG = f  
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb - Ws - C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if ≠  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = decimal adjust Wn  
f = f - 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f - 1  
DEC  
Wd = Ws - 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f - 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f - 2  
Wd = Ws - 2  
Disable Interrupts for k instruction cycles  
© 2011 Microchip Technology Inc.  
DS70290G-page 195  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-bit Integer Divide  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Signed 32/16-bit Integer Divide  
Wm,Wn  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC + Expr, lit14 + 1 times  
Do code to PC + Expr, (Wn) + 1 times  
Euclidean Distance (no accumulate)  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
None  
None  
None  
None  
None  
None  
None  
None  
None  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
Move Wn to f  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Prefetch and store accumulator  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70290G-page 196  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
-(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns + 1) to Top-of-Stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
2
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
#lit10,Wn  
Return with literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
© 2011 Microchip Technology Inc.  
DS70290G-page 197  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
RRNC  
SAC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = sign-extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
f
f = f - WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f - WREG  
Wn = Wn - lit10  
SUB  
SUB  
Wd = Wb - Ws  
SUB  
Wd = Wb - lit5  
73  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
f = f - WREG - (C)  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f - WREG - (C)  
Wn = Wn - lit10 - (C)  
Wd = Wb - Ws - (C)  
Wd = Wb - lit5 - (C)  
f = WREG - f  
74  
75  
SUBR  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG - f  
Wd = Ws - Wb  
Wd = lit5 - Wb  
SUBBR  
f = WREG - f - (C)  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
WREG = WREG - f - (C)  
Wd = Ws - Wb - (C)  
Wd = lit5 - Wb - (C)  
Wn = nibble swap Wn  
Wn = byte swap Wn  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
76  
SWAP  
Wn  
None  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
None  
XOR  
f
N,Z  
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
Wd = Wb .XOR. lit5  
Wnd = Zero-extend Ws  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
N,Z  
83  
ZE  
ZE  
C,Z,N  
DS70290G-page 198  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
21.1 MPLAB Integrated Development  
Environment Software  
21.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2011 Microchip Technology Inc.  
DS70290G-page 199  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
21.2 MPLAB C Compilers for Various  
Device Families  
21.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
21.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
21.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
21.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS70290G-page 200  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
21.7 MPLAB SIM Software Simulator  
21.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD  
3 In-Circuit Debugger System is  
Microchip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital  
Signal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash  
microcontrollers and dsPIC® DSCs with the powerful,  
yet easy-to-use graphical user interface of MPLAB  
Integrated Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The  
software simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory  
environment, making it an excellent, economical  
software development tool.  
21.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
21.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit  
programming of  
3
allows debugging and  
and Flash  
dsPIC®  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
PIC®  
microcontrollers at a most affordable price point using  
the powerful graphical user interface of the MPLAB  
Integrated Development Environment (IDE). The  
MPLAB PICkit 3 is connected to the design engineer's  
PC using a full speed USB interface and can be  
connected to the target via an Microchip debug (RJ-11)  
connector (compatible with MPLAB ICD 3 and MPLAB  
REAL ICE). The connector uses two device I/O pins  
and the reset line to implement in-circuit debugging and  
In-Circuit Serial Programming™.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new  
high-speed, noise tolerant, Low-Voltage Differential  
Signal (LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2011 Microchip Technology Inc.  
DS70290G-page 201  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
21.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
21.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use  
interface for programming and debugging Microchip’s  
Flash families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC®  
microcontrollers. In-Circuit Debugging runs, halts and  
single steps the program while the PIC microcontroller  
is embedded in the application. When halted at a  
breakpoint, the file registers can be examined and  
modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
21.12 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70290G-page 202  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
22.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 electrical characteristics.  
Additional information will be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 family are listed below. Exposure  
to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device  
at these or any other conditions above the parameters indicated in the operation listings of this specification is not  
implied.  
Absolute Maximum Ratings(1)  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +160°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(4) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(4)................................................... -0.3V to +5.6V  
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V(4)...................................................... -0.3V to 3.6V  
Voltage on VCAP with respect to VSS ...................................................................................................... 2.25V to 2.75V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum output current sunk by any I/O pin(3) ........................................................................................................4 mA  
Maximum output current sourced by any I/O pin(3)...................................................................................................4 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods can affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 22-2).  
3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx  
and PGEDx pins, which are able to sink/source 12 mA.  
4: Refer to the Pin Diagramssection for 5V tolerant pins.  
© 2011 Microchip Technology Inc.  
DS70290G-page 203  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
22.1 DC Characteristics  
TABLE 22-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
Characteristic  
dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304  
3.0-3.6V  
3.0-3.6V  
-40°C to +85°C  
-40°C to +125°C  
40  
40  
TABLE 22-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Industrial Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Extended Temperature Devices  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+155  
+125  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD - Σ IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ - TA)/θJA  
TABLE 22-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 44-pin QFN  
Package Thermal Resistance, 44-pin TFQP  
Package Thermal Resistance, 28-pin SPDIP  
Package Thermal Resistance, 28-pin SOIC  
Package Thermal Resistance, 28-pin SSOP  
Package Thermal Resistance, 28-pin QFN-S  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
32  
45  
45  
50  
71  
35  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.  
DS70290G-page 204  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
3.0  
1.8  
3.6  
V
V
V
Industrial and Extended  
DC12  
DC16  
VDR  
RAM Data Retention Voltage(2)  
VPOR  
VDD Start Voltage  
to ensure internal  
VSS  
Power-on Reset signal  
DC17  
DC18  
SVDD  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
VDD Core(3)  
0.03  
2.25  
V/ms 0-3.0V in 0.1s  
VCORE  
2.75  
V
Voltage is dependent on  
Internal regulator voltage  
load, temperature and  
VDD  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: This is the limit to which VDD can be lowered without losing RAM data.  
3: These parameters are characterized, but are not tested in manufacturing.  
© 2011 Microchip Technology Inc.  
DS70290G-page 205  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(2)  
DC20d  
DC20a  
DC20b  
DC20c  
DC21d  
DC21a  
DC21b  
DC21c  
DC22d  
DC22a  
DC22b  
DC22c  
DC23d  
DC23a  
DC23b  
DC23c  
DC24d  
DC24a  
DC24b  
DC24c  
20  
19  
19  
19  
28  
27  
27  
27  
33  
33  
33  
33  
44  
43  
42  
41  
55  
54  
52  
51  
30  
22  
25  
30  
40  
30  
32  
36  
50  
40  
40  
50  
60  
50  
55  
65  
75  
65  
70  
80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS(3)  
16 MIPS(3)  
20 MIPS(3)  
30 MIPS(3)  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VSS.  
MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are  
operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits  
are all zeroed).  
3: These parameters are characterized, but are not tested in manufacturing.  
DS70290G-page 206  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Idle Current (IIDLE): Core OFF Clock ON Base Current(2)  
DC40d  
DC40a  
DC40b  
DC40c  
DC41d  
DC41a  
DC41b  
DC41c  
DC42d  
DC42a  
DC42b  
DC42c  
DC43d  
DC43a  
DC43b  
DC43c  
DC44d  
DC44a  
DC44b  
DC44c  
7
20  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
6
10 MIPS(3)  
16 MIPS(3)  
20 MIPS(3)  
30 MIPS(3)  
40 MIPS  
3.3V  
3.3V  
6
10  
20  
20  
9
6
10  
8
+25°C  
+85°C  
+125°C  
-40°C  
8
10  
20  
20  
10  
12  
20  
25  
14  
15  
25  
25  
20  
20  
30  
8
11  
10  
10  
10  
14  
13  
13  
13  
14  
17  
17  
18  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module  
Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to VSS.  
3: These parameters are characterized, but are not tested in manufacturing.  
© 2011 Microchip Technology Inc.  
DS70290G-page 207  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Power-Down Current (IPD)(2)  
DC60d  
DC60a  
DC60b  
DC60c  
DC61d  
DC61a  
DC61b  
DC61c  
55  
63  
85  
146  
8
500  
300  
350  
600  
15  
3
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
Base Power-Down Current(3,4)  
2
+25°C  
+85°C  
+125°C  
(3,5)  
Watchdog Timer Current: ΔIWDT  
2
2
3
5
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.  
3: The Δ current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
5: These parameters are characterized, but are not tested in manufacturing.  
TABLE 22-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Doze  
Ratio  
Parameter No.  
Typical(1,2)  
Max  
Units  
Conditions  
DC73a  
DC73f  
DC73g  
DC70a  
DC70f  
DC70g  
DC71a  
DC71f  
DC71g  
DC72a  
DC72f  
DC72g  
41  
20  
19  
40  
18  
18  
40  
18  
18  
39  
18  
18  
51  
28  
24  
46  
20  
20  
46  
25  
20  
55  
30  
25  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
3.3V  
40 MIPS  
40 MIPS  
40 MIPS  
40 MIPS  
1:64  
1:128  
1:2  
3.3V  
3.3V  
1:64  
1:128  
1:2  
1:64  
1:128  
+125°C 3.3V  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.  
2: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.  
DS70290G-page 208  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O pins  
DI10  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
DI15  
DI16  
DI18  
DI19  
MCLR  
I/O Pins with OSC1 or SOSCI  
SDAx, SCLx  
SMbus disabled  
SDAx, SCLx  
SMbus enabled  
VIH  
Input High Voltage  
DI20  
I/O Pins Not 5V Tolerant(4)  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
I/O Pins 5V Tolerant(4)  
DI28  
DI29  
SDAx, SCLx  
0.7 VDD  
2.1  
5.5  
5.5  
V
V
SMbus disabled  
SMbus enabled  
SDAx, SCLx  
ICNPU  
IIL  
CNx Pull-up Current  
DI30  
50  
250  
400  
μA VDD = 3.3V, VPIN = VSS  
Input Leakage Current(2,3)  
DI50  
DI51  
I/O Pins 5V Tolerant(4)  
±2  
±1  
μA  
μA  
VSS VPIN VDD,  
Pin at high-impedance  
I/O Pins Not 5V Tolerant(4)  
VSS VPIN VDD,  
Pin at high-impedance,  
-40°C TA +85°C  
DI51a  
DI51b  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
±2  
μA Shared with external refer-  
ence pins, -40°C TA +85°C  
±3.5  
μA VSS VPIN VDD, Pin at  
high-impedance,  
-40°C TA +125°C  
DI51c  
I/O Pins Not 5V Tolerant(4)  
±8  
μA Analog pins shared with  
external reference pins,  
-40°C TA +125°C  
DI55  
DI56  
MCLR  
OSC1  
±2  
±2  
μA  
μA  
VSS VPIN VDD  
VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor a list of digital-only and analog pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5V or devices with USB, “D+”  
and “D-“ VIH source > (VUSB + 0.3). Characterized but not tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
© 2011 Microchip Technology Inc.  
DS70290G-page 209  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
IICL  
Input Low Injection Current  
DI60a  
All pins except VDD, VSS,  
AVDD, AVSS, MCLR, VCAP,  
SOSCI, SOSCO, and RB14  
0
-5(5,8)  
mA  
IICH  
Input High Injection Current  
DI60b  
DI60c  
All pins except VDD, VSS,  
AVDD, AVSS, MCLR, VCAP,  
0
+5(6,7,8) mA SOSCI, SOSCO, RB14, and  
digital 5V-tolerant designated  
pins  
IICT  
Total Input Injection Current  
(sum of all I/O and control  
pins)  
-20(9)  
+20(9)  
mA Absolute instantaneous sum of  
all ± input injection currents  
from all I/O pins  
( | IICL + | IICH | ) ≤ ∑IICT  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor a list of digital-only and analog pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5V or devices with USB, “D+”  
and “D-“ VIH source > (VUSB + 0.3). Characterized but not tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
DS70290G-page 210  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
VOL  
Output Low Voltage  
I/O ports  
DO10  
DO16  
0.4  
0.4  
V
V
IOL = 2mA, VDD = 3.3V  
IOL = 2mA, VDD = 3.3V  
OSC2/CLKO  
VOH  
Output High Voltage  
I/O ports  
DO20  
DO26  
2.40  
2.41  
V
V
IOH = -2.3 mA, VDD = 3.3V  
IOH = -1.3 mA, VDD = 3.3V  
OSC2/CLKO  
TABLE 22-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
BO10  
VBOR  
BOR Event on VDD transition  
high-to-low  
2.40  
2.55  
V
BOR event is tied to VDD core voltage  
decrease  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
© 2011 Microchip Technology Inc.  
DS70290G-page 211  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(3)  
Min Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10,000  
VMIN  
E/W -40°C to +125°C  
VPR  
VDD for Read  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
VMIN  
20  
10  
3.6  
V
VMIN = Minimum operating  
voltage  
D134  
D135  
TRETD  
IDDP  
Year Provided no other specifications  
are violated, -40°C to +125°C  
Supply Current during  
Programming  
mA  
D136a TRW  
D136b TRW  
D137a TPE  
D137b TPE  
D138a TWW  
D138b TWW  
Row Write Time  
1.32  
1.28  
20.1  
19.5  
42.3  
41.1  
1.74  
1.79  
26.5  
27.3  
55.9  
57.6  
ms TRW = 11064 FRC cycles,  
TA = +85°C, See Note 2  
Row Write Time  
ms TRW = 11064 FRC cycles,  
TA = +125°C, See Note 2  
Page Erase Time  
Page Erase Time  
Word Write Cycle Time  
Word Write Cycle Time  
ms TPE = 168517 FRC cycles,  
TA = +85°C, See Note 2  
ms TPE = 168517 FRC cycles,  
TA = +125°C, See Note 2  
μs TWW = 355 FRC cycles,  
TA = +85°C, See Note 2  
μs TWW = 355 FRC cycles,  
TA = +125°C, See Note 2  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111(for Min), TUN<5:0> = b'100000(for Max).  
This parameter depends on the FRC accuracy (see Table 22-18) and the value of the FRC Oscillator Tun-  
ing register (see Register 8-4). For complete details on calculating the Minimum and Maximum time see  
Section 5.3 “Programming Operations”.  
3: These parameters are assured by design, but are not characterized or tested in manufacturing.  
TABLE 22-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value  
4.7  
10  
μF  
Capacitor must be low  
series resistance  
(< 5 ohms)  
DS70290G-page 212  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
22.2 AC Characteristics and Timing  
Parameters  
The information contained in this section defines  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 AC  
characteristics and timing parameters.  
TABLE 22-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Table 22-1.  
FIGURE 22-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 22-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
No.  
DO50 COSC2  
OSC2/SOSC2 pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
© 2011 Microchip Technology Inc.  
DS70290G-page 213  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS31 OS31  
OS25  
OS41  
OS40  
TABLE 22-16: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency(4)  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
40  
MHz EC  
Oscillator Crystal Frequency(5)  
3.5  
10  
10  
40  
33  
MHz XT  
MHz HS  
kHz SOSC  
(4)  
OS20  
OS25  
OS30  
TOSC  
TCY  
TOSC = 1/FOSC  
12.5  
25  
DC  
DC  
ns  
ns  
Instruction Cycle Time(2,4)  
External Clock in (OSC1)(5)  
High or Low Time  
External Clock in (OSC1)(5)  
Rise or Fall Time  
TosL,  
TosH  
0.375 x TOSC  
0.625 x TOSC  
ns  
EC  
EC  
OS31  
TosR,  
TosF  
20  
ns  
OS40  
OS41  
OS42  
TckR  
TckF  
GM  
CLKO Rise Time(3,5)  
CLKO Fall Time(3,5)  
14  
5.2  
5.2  
16  
18  
ns  
ns  
External Oscillator  
mA/V VDD = 3.3V  
TA = +25ºC  
Transconductance(6)  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits can result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
4: These parameters are characterized by similarity, but are tested in manufacturing at FIN = 40 MHz only.  
5: These parameters are characterized by similarity, but are not tested in manufacturing.  
6: Data for this parameter is preliminary. This parameter is characterized, but is not tested in manufacturing.  
DS70290G-page 214  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range(2)  
0.8  
8
MHz ECPLL, XTPLL modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency(3)  
100  
200  
MHz  
OS52  
OS53  
TLOCK PLL Start-up Time (Lock Time)(3)  
CLKO Stability (Jitter)(3)  
0.9  
-3  
1.5  
0.5  
3.1  
3
ms  
%
DCLK  
Measured over 100 ms  
period  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: These parameters are characterized by similarity, but are tested in manufacturing at 7.7 MHz input only.  
3: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is  
based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases  
or communication clocks use this formula:  
DCLK  
-----------------------------------------------------------------------  
Peripheral Clock Jitter =  
FOSC  
-------------------------------------------------------------  
Peripheral Bit Rate Clock  
For example: Fosc = 32 MHz, DCLK = 3%, SPI bit rate clock, (i.e., SCK) is 2 MHz.  
DCLK  
3%  
3%  
-------  
-----------------------------  
---------  
SPI SCK Jitter =  
=
=
= 0.75%  
4
16  
32 MHz  
--------------------  
2 MHz  
TABLE 22-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1)  
F20a  
F20b  
FRC  
FRC  
-2  
-5  
+2  
+5  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.  
TABLE 22-19: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1,2)  
F21a LPRC  
-15  
±6  
+15  
%
-40°C TA +85°C  
VDD = 3.0-3.6V  
Note 1: Change of LPRC frequency as VDD changes.  
2: LPRC impacts the Watchdog Timer Time-out Period (TWDT1). See Section 19.4 “Watchdog Timer  
(WDT)” for more information.  
© 2011 Microchip Technology Inc.  
DS70290G-page 215  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-19: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
-40°C TA +125°C VDD = 3.0-3.6V  
F21b LPRC  
-40  
+40  
%
Note 1: Change of LPRC frequency as VDD changes.  
2: LPRC impacts the Watchdog Timer Time-out Period (TWDT1). See Section 19.4 “Watchdog Timer  
(WDT)” for more information.  
DS70290G-page 216  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-3:  
I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 22-1 for load conditions.  
TABLE 22-20: I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(2)  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
25  
2
10  
10  
25  
25  
ns  
ns  
Port Output Fall Time  
INTx Pin High or Low Time (input)  
CNx High or Low Time (input)  
ns  
DI40  
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: These parameters are characterized, but are not tested in manufacturing.  
© 2011 Microchip Technology Inc.  
DS70290G-page 217  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 22-1 for load conditions.  
DS70290G-page 218  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min Typ(2) Max Units  
Conditions  
SY10  
SY11  
TMCL  
MCLR Pulse-Width (low)(1)  
Power-up Timer Period  
2
μs  
-40°C to +85°C  
TPWRT  
2
4
ms  
-40°C to +85°C  
User programmable  
8
16  
32  
64  
128  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay(3)  
3
10  
30  
μs  
μs  
-40°C to +85°C  
I/O High-Impedance from  
MCLR Low or Watchdog  
Timer Reset(1)  
0.68  
0.72  
1.2  
SY20  
TWDT1  
Watchdog Timer Time-out  
Period(1)  
ms  
See Section 19.4 “Watchdog  
Timer (WDT)” and LPRC parameter  
F21a (Table 22-19).  
SY30  
SY35  
TOST  
Oscillator Start-up Time  
1024  
TOSC  
TOSC = OSC1 period  
TFSCM  
Fail-Safe Clock Monitor  
Delay(1)  
500  
900  
μs  
-40°C to +85°C  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: These parameters are characterized, but are not tested in manufacturing.  
© 2011 Microchip Technology Inc.  
DS70290G-page 219  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-5:  
TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 22-1 for load conditions.  
(1)  
TABLE 22-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(2)  
Min  
Typ  
Max Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TxCK High Time  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
ns  
ns  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
Asynchronous  
10  
ns  
ns  
Synchronous,  
no prescaler  
0.5 TCY + 20  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 40  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
TA20  
Ft1  
SOSC1/T1CK Oscillator Input  
frequency Range (oscillator enabled  
by setting bit TCS (T1CON<1>))  
DC  
50  
kHz  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: Timer1 is a Type A.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
DS70290G-page 220  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-23: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Synchronous  
Min  
Typ  
Max  
Units  
Conditions  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
TB10 TtxH  
TB11 TtxL  
TB15 TtxP  
TxCKHigh  
Must also meet  
parameter TB15  
N = prescale  
value  
mode  
Time  
(1, 8, 64, 256)  
TxCK Low Synchronous  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
Must also meet  
parameter TB15  
N = prescale  
value  
Time  
mode  
(1, 8, 64, 256)  
TxCK  
Input  
Synchronous  
mode  
Greater of:  
40 or  
(2 TCY + 40)/N  
ns  
ns  
N = prescale  
value  
(1, 8, 64, 256)  
Period  
TB20 TCKEXTMRL Delay from External TxCK 0.75 TCY + 40  
1.75 TCY + 40  
Clock Edge to Timer Incre-  
ment  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
TABLE 22-24: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TC10  
TC11  
TC15  
TtxH  
TtxL  
TtxP  
TxCK High Synchronous  
Time  
TCY + 20  
ns  
Must also meet  
parameter TC15  
TxCK Low Synchronous  
Time  
TCY + 20  
ns  
ns  
Must also meet  
parameter TC15  
TxCK Input Synchronous,  
2 TCY + 40  
N = prescale  
value  
Period  
with prescaler  
(1, 8, 64, 256)  
TC20  
TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer Incre-  
ment  
0.75 TCY + 40  
1.75 TCY + 40  
ns  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
© 2011 Microchip Technology Inc.  
DS70290G-page 221  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-6:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 22-1 for load conditions.  
TABLE 22-25: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 22-7:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 22-1 for load conditions.  
TABLE 22-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter D032  
See parameter D031  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70290G-page 222  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-8:  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OCFA/OCFB  
OC15  
Active  
Tri-state  
OCx  
TABLE 22-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
TCY + 20  
ns  
OC20  
TFLT  
Fault Input Pulse-Width  
TCY + 20  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
© 2011 Microchip Technology Inc.  
DS70290G-page 223  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Master  
Transmit Only  
(Half-Duplex)  
Master  
Slave  
Maximum  
Data Rate  
Transmit/Receive Transmit/Receive  
(Full-Duplex)  
CKE  
CKP  
SMP  
(Full-Duplex)  
15 Mhz  
9 Mhz  
Table 22-29  
0,1  
1
0,1  
0,1  
0,1  
0
0,1  
1
Table 22-30  
9 Mhz  
Table 22-31  
0
1
15 Mhz  
11 Mhz  
15 Mhz  
11 Mhz  
Table 22-32  
Table 22-33  
Table 22-34  
Table 22-35  
1
0
1
1
0
0
1
0
0
0
0
FIGURE 22-9:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING  
CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SP30, SP31  
SP30, SP31  
Note: Refer to Figure 22-1 for load conditions.  
FIGURE 22-10:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING  
CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
Note: Refer to Figure 22-1 for load conditions.  
DS70290G-page 224  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-29: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See Note 3  
SP10  
SP20  
Maximum SCK Frequency  
SCKx Output Fall Time  
15  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SCKx Output Rise Time  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, SDOx Data Output Setup to  
TdiV2scL  
First SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2011 Microchip Technology Inc.  
DS70290G-page 225  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-11:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING  
CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
SDIx  
SP40  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
Note: Refer to Figure 22-1 for load conditions.  
TABLE 22-30: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See Note 3  
SP10  
SP20  
Maximum SCK Frequency  
SCKx Output Fall Time  
9
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Output Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70290G-page 226  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-12:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = X, SMP = 1) TIMING  
CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30, SP31  
MSb In  
SP30, SP31  
LSb In  
Bit 14 - - - -1  
SP40  
SP41  
Note: Refer to Figure 22-1 for load conditions.  
TABLE 22-31: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
-40ºC to +125ºC and  
SP10  
Maximum SCK Frequency  
9
MHz  
see Note 3  
SP20  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Fall Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO32  
and Note 4  
SCKx Output Rise Time  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO31  
and Note 4  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2011 Microchip Technology Inc.  
DS70290G-page 227  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-13:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
MSb  
Bit 14 - - - - - -1  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 22-1 for load conditions.  
DS70290G-page 228  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-32: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
15  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SCKx Input Rise Time  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP41  
SP50  
SP51  
SP52  
SP60  
30  
50  
50  
ns  
ns  
ns  
ns  
ns  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2011 Microchip Technology Inc.  
DS70290G-page 229  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-14:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP72  
SP73  
SP70  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 22-1 for load conditions.  
DS70290G-page 230  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-33: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
11  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Input Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP50  
SP51  
SP52  
SP60  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
50  
50  
ns  
ns  
ns  
ns  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2011 Microchip Technology Inc.  
DS70290G-page 231  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-15:  
SPIx SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
LSb  
SP35  
MSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 22-1 for load conditions.  
DS70290G-page 232  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-34: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
15  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Input Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP50  
SP51  
SP52  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
10  
50  
ns  
ns  
ns  
TssH2doZ SSx to SDOx Output  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2011 Microchip Technology Inc.  
DS70290G-page 233  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-16:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
LSb  
SP35  
MSb  
SDOX  
SDIX  
Bit 14 - - - - - -1  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 22-1 for load conditions.  
DS70290G-page 234  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-35: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
11  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Input Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP50  
SP51  
SP52  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
10  
50  
ns  
ns  
ns  
TssH2doZ SSx to SDOx Output  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2011 Microchip Technology Inc.  
DS70290G-page 235  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-17:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 22-1 for load conditions.  
FIGURE 22-18:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 22-1 for load conditions.  
DS70290G-page 236  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(3)  
Min(1)  
Max  
Units  
Conditions  
IM10  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
ns  
1 MHz mode(2) TCY/2 (BRG + 1)  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
250  
100  
40  
0
TSU:DAT Data Input  
Setup Time  
THD:DAT Data Input  
Hold Time  
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
0.5  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
IM50  
IM51  
CB  
Bus Capacitive Loading  
Pulse Gobbler Delay  
400  
390  
TPGD  
65  
See Note 4  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit (I2C™)”  
(DS70195) in the “dsPIC33F/PIC24H Family Reference Manual”.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
3: These parameters are characterized by similarity, but are not tested in manufacturing.  
4: Typical value for this parameter is 130ns.  
© 2011 Microchip Technology Inc.  
DS70290G-page 237  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-19:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 22-20:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
DS70290G-page 238  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param Symbol  
Characteristic(2)  
Min  
Max  
Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
4.7  
μs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
μs  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
μs  
μs  
IS11  
THI:SCL Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1 MHz mode(1)  
0.6  
μs  
Device must operate at a  
minimum of 10 MHz  
0.5  
300  
300  
100  
1000  
300  
300  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TR:SCL SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:ST Stop Condition  
O
Hold Time  
TAA:SCL Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
2: These parameters are characterized by similarity, but not tested in manufacturing.  
© 2011 Microchip Technology Inc.  
DS70290G-page 239  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-38: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Module VDD Supply(2)  
Module VSS Supply(2)  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01  
AVDD  
Greater of  
VDD – 0.3  
or 3.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
AD02  
AVSS  
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05  
VREFH  
Reference Voltage High AVSS + 2.5  
3.0  
AVDD  
3.6  
V
V
See Note 1  
AD05a  
VREFH = AVDD  
VREFL = AVSS = 0, see Note 2  
AD06  
VREFL  
Reference Voltage Low  
AVSS  
0
AVDD – 2.5  
0
V
V
See Note 1  
AD06a  
VREFH = AVDD  
VREFL = AVSS = 0, see Note 2  
AD07  
AD08  
VREF  
IREF  
Absolute Reference  
Voltage(2)  
2.5  
3.6  
V
VREF = VREFH - VREFL  
Current Drain  
250  
550  
10  
μA ADC operating, See Note 1  
μA ADC off, See Note 1  
AD08a IAD  
Operating Current  
7.0  
2.7  
9.0  
3.2  
mA 10-bit ADC mode, See Note 2  
mA 12-bit ADC mode, See Note 2  
Analog Input  
AD12  
AD13  
AD17  
VINH  
Input Voltage Range  
VINH  
VINL  
VREFH  
V
This voltage reflects Sample  
and Hold Channels 0, 1, 2,  
and 3 (CH0-CH3), positive  
input  
(2)  
VINL  
RIN  
Input Voltage Range  
VREFL  
AVSS + 1V  
V
This voltage reflects Sample  
and Hold Channels 0, 1, 2,  
and 3 (CH0-CH3), negative  
input  
(2)  
VINL  
Recommended Imped-  
ance of Analog Voltage  
Source(3)  
200  
200  
Ω
Ω
10-bit ADC  
12-bit ADC  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: These parameters are characterized, but are not tested in manufacturing.  
3: These parameters are assured by design, but are not characterized or tested in manufacturing.  
DS70290G-page 240  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-39: ADC MODULE SPECIFICATIONS (12-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-(3)  
AD20a Nr  
AD21a INL  
Resolution(4)  
12 data bits  
bits  
Integral Nonlinearity  
-2  
>-1  
+2  
<1  
10  
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD22a DNL  
Differential Nonlinearity  
Gain Error  
3.4  
0.9  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD23a  
AD24a  
AD25a  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Monotonicity  
Guaranteed(1)  
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-(3)  
AD20a Nr  
AD21a INL  
AD22a DNL  
Resolution(4)  
12 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
>-1  
+2  
<1  
20  
10  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23a  
AD24a  
AD25a  
GERR  
EOFF  
10.5  
3.8  
Offset Error  
Monotonicity  
Guaranteed(1)  
Dynamic Performance (12-bit Mode)(2)  
AD30a THD  
Total Harmonic Distortion  
-75  
dB  
dB  
AD31a SINAD  
Signal to Noise and  
Distortion  
68.5  
69.5  
AD32a SFDR  
Spurious Free Dynamic  
Range  
80  
dB  
AD33a  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
250  
kHz  
bits  
AD34a ENOB  
11.09  
11.3  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: These parameters are characterized, but are tested at 20 ksps only.  
4: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
© 2011 Microchip Technology Inc.  
DS70290G-page 241  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 22-40: ADC MODULE SPECIFICATIONS (10-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-(3)  
AD20b Nr  
AD21b INL  
Resolution(4)  
10 data bits  
bits  
Integral Nonlinearity  
-1.5  
>-1  
+1.5  
<1  
6
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD22b DNL  
Differential Nonlinearity  
Gain Error  
3
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
2
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Monotonicity  
Guaranteed(1)  
ADC Accuracy (10-bit Mode) – Measurements with internal VREF+/VREF-(3)  
AD20b Nr  
AD21b INL  
AD22b DNL  
Resolution(4)  
10 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-1  
>-1  
7
+1  
<1  
15  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
Offset Error  
3
Monotonicity  
Guaranteed(1)  
Dynamic Performance (10-bit Mode)(2)  
AD30b THD  
Total Harmonic Distortion  
-64  
dB  
dB  
AD31b SINAD  
Signal to Noise and  
Distortion  
57  
58.5  
AD32b SFDR  
Spurious Free Dynamic  
Range  
72  
dB  
AD33b  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
550  
kHz  
bits  
AD34b ENOB  
9.16  
9.4  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: These parameters are characterized, but are tested at 20 ksps only.  
4: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
DS70290G-page 242  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-21:  
ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS  
(ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
AD61  
Clear SAMP  
SAMP  
AD60  
TSAMP  
AD55  
DONE  
AD1IF  
1
2
3
4
5
6
7
8
9
– Software sets AD1CON. SAMP to start sampling.  
– Convert bit 11.  
1
2
5
6
7
8
9
– Sampling starts after discharge period. TSAMP is described in  
Section 16. “Analog-to-Digital Converter (ADC)” (DS70183) in the  
“dsPIC33F/PIC24H Family Reference Manual”.  
– Convert bit 10.  
– Convert bit 1.  
– Convert bit 0.  
– Software clears AD1CON. SAMP to start conversion.  
3
4
– One TAD for end of conversion.  
– Sampling ends, conversion sequence starts.  
TABLE 22-41: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
tRC  
ADC Clock Period(2)  
117.6  
ns  
ns  
ADC Internal RC Oscillator  
Period(2)  
250  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
Conversion Time(2)  
Throughput Rate(2)  
Sample Time(2)  
14 TAD  
500  
ns  
Ksps  
TSAMP  
3.0 TAD  
Timing Parameters  
AD60  
AD61  
AD62  
AD63  
tPCS  
tPSS  
tCSS  
tDPU  
Conversion Start from Sample  
Trigger(2)  
2.0 TAD  
2.0 TAD  
3.0 TAD  
3.0 TAD  
μs  
Auto Convert Trigger  
not selected  
Sample Start from Setting  
Sample (SAMP) bit(2)  
Conversion Completion to  
0.5 TAD  
Sample Start (ASAM = 1)(2)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(2)  
20  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
2: These parameters are characterized but not tested in manufacturing.  
© 2011 Microchip Technology Inc.  
DS70290G-page 243  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
FIGURE 22-22:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS  
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)  
AD50  
Set SAMP  
AD61  
ADCLK  
Instruction  
Execution  
Clear SAMP  
AD60  
SAMP  
TSAMP  
AD55  
AD55  
DONE  
AD1IF  
Buffer(0)  
Buffer(1)  
1
2
3
4
5
6
7
8
5
6
7
8
– Convert bit 9.  
– Convert bit 8.  
– Convert bit 0.  
– Software sets AD1CON. SAMP to start sampling.  
5
6
7
8
1
2
– Sampling starts after discharge period. TSAMP is described in  
Section 16. “Analog-to-Digital Converter (ADC)” (DS70183) in the  
“dsPIC33F/PIC24H Family Reference Manual”.  
– One TAD for end of conversion.  
– Software clears AD1CON. SAMP to start conversion.  
3
4
– Sampling ends, conversion sequence starts.  
FIGURE 22-23:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)  
AD50  
ADCLK  
Instruction  
Execution  
Set ADON  
SAMP  
AD1IF  
TSAMP  
TSAMP  
AD55  
AD55  
AD55  
DONE  
1
2
3
4
5
6
7
3
4
5
6
8
– Software sets AD1CON. ADON to start AD operation.  
– Convert bit 0.  
1
2
5
6
– Sampling starts after discharge period. TSAMP is described in  
Section 16. “Analog-to-Digital Converter (ADC)” (DS70183) in the  
“dsPIC33F/PIC24H Family Reference Manual”.  
– One TAD for end of conversion.  
– Begin conversion of next channel.  
7
8
– Sample for time specified by SAMC<4:0>.  
– Convert bit 9.  
3
4
– Convert bit 8.  
DS70290G-page 244  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
Conditions  
Clock Parameters  
AD50 TAD  
AD51 tRC  
ADC Clock Period(1)  
76  
ns  
ns  
ADC Internal RC Oscillator  
Period(1)  
250  
Conversion Rate  
AD55 tCONV  
AD56 FCNV  
AD57 TSAMP Sample Time(1)  
Conversion Time(1)  
Throughput Rate(1)  
12 TAD  
1.1  
Msps  
2.0 TAD  
Timing Parameters  
AD60 tPCS  
AD61 tPSS  
AD62 tCSS  
AD63 tDPU  
Conversion Start from Sample  
2.0 TAD  
2.0 TAD  
3.0 TAD  
3.0 TAD  
μs  
Auto-Convert Trigger  
not selected  
Trigger(1)  
Sample Start from Setting  
Sample (SAMP) bit(1)  
0.5 TAD  
Conversion Completion to  
Sample Start (ASAM = 1)(1)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(1)  
20  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
© 2011 Microchip Technology Inc.  
DS70290G-page 245  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 246  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
23.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 electrical characteristics for  
devices operating in an ambient temperature range of -40°C to +150°C.  
Note:  
Programming of the Flash memory is not allowed above 125°C.  
The specifications between -40°C to +150°C are identical to those shown in Section 22.0 “Electrical Characteristics”  
for operation between -40°C to +125°C, with the exception of the parameters listed in this section.  
Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in  
Section 22.0 “Electrical Characteristics” is the Industrial and Extended temperature equivalent of HDC10.  
Absolute maximum ratings for the dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 high temperature devices are  
listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional  
operation of the device at these or any other conditions above the parameters indicated in the operation listings of this  
specification is not implied.  
Absolute Maximum Ratings(1)  
Ambient temperature under bias(4) .........................................................................................................-40°C to +150°C  
Storage temperature .............................................................................................................................. -65°C to +160°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(5) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(5) .................................................... -0.3V to 3.6V  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(5) .................................................... -0.3V to 5.6V  
Voltage on VCAP with respect to VSS ...................................................................................................... 2.25V to 2.75V  
Maximum current out of VSS pin .............................................................................................................................60 mA  
Maximum current into VDD pin(2).............................................................................................................................60 mA  
Maximum junction temperature............................................................................................................................. +155°C  
Maximum output current sunk by any I/O pin(3) ........................................................................................................1 mA  
Maximum output current sourced by any I/O pin(3)...................................................................................................1 mA  
Maximum current sunk by all ports combined ........................................................................................................10 mA  
Maximum current sourced by all ports combined(2) ................................................................................................10 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods can affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 23-2).  
3: Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+,  
VREF-, SCLx, SDAx, PGCx, and PGDx pins.  
4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which  
the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior  
written approval from Microchip Technology Inc.  
5: Refer to the Pin Diagramssection for 5V tolerant pins.  
© 2011 Microchip Technology Inc.  
DS70290G-page 247  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
23.1 High Temperature DC Characteristics  
TABLE 23-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temperature Range  
(in °C)  
Characteristic  
dsPIC33FJ32GP202/204 and  
dsPIC33FJ16GP304  
3.0V to 3.6V  
-40°C to +150°C  
20  
TABLE 23-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
High Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+155  
+150  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD - Σ IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ - TA)/θJA  
TABLE 23-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
DC CHARACTERISTICS  
Parameter  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Operating Voltage  
HDC10  
Supply Voltage  
VDD  
3.0  
3.3  
3.6  
V
-40°C to +150°C  
TABLE 23-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Parameter  
Typical  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)(3)  
HDC60e  
HDC61c  
250  
3
2000  
5
μA  
μA  
+150°C  
+150°C  
3.3V  
3.3V  
Base Power-Down Current(1,3)  
(2,4)  
Watchdog Timer Current: ΔIWDT  
Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.  
2: The Δ current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
3: These currents are measured on the device containing the most memory in this family.  
4: These parameters are characterized, but are not tested in manufacturing.  
DS70290G-page 248  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 23-5: DC CHARACTERISTICS: DOZE CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Operating Current (IPD)(1)  
HDC20  
HDC21  
HDC22  
19  
27  
33  
35  
45  
55  
mA  
mA  
mA  
+150°C  
+150°C  
+150°C  
3.3V  
10 MIPS  
16 MIPS  
20 MIPS  
3.3V  
3.3V  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
TABLE 23-6: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Parameter  
Typical(1)  
No.  
Doze  
Ratio  
Max  
Units  
Conditions  
HDC72a  
HDC72f  
HDC72g  
39  
18  
18  
45  
25  
25  
1:2  
1:64  
1:128  
mA  
mA  
mA  
+150°C  
3.3V  
20 MIPS  
Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.  
TABLE 23-7: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
VOL  
Output Low Voltage  
I/O ports  
HDO10  
HDO16  
0.4  
0.4  
V
V
IOL = 1 mA, VDD = 3.3V  
IOL = 1 mA, VDD = 3.3V  
OSC2/CLKO  
VOH  
Output High Voltage  
I/O ports  
HDO20  
HDO26  
2.40  
2.41  
V
V
IOH = -1 mA, VDD = 3.3V  
IOH = -1 mA, VDD = 3.3V  
OSC2/CLKO  
© 2011 Microchip Technology Inc.  
DS70290G-page 249  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 23-8: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
HD130 EP  
10,000  
20  
E/W -40°C to +150°C(2)  
HD134 TRETD  
Characteristic Retention  
Year 1000 E/W cycles or less and no  
other specifications are violated  
Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.  
2: Programming of the Flash memory is not allowed above 125°C.  
DS70290G-page 250  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Parameters in this section begin with an H, which  
denotes High temperature. For example, parameter  
OS53 in Section 22.2 “AC Characteristics and  
23.2 AC Characteristics and Timing  
Parameters  
The information contained in this section defines  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 AC  
characteristics and timing parameters for high  
temperature devices. However, all AC timing  
specifications in this section are the same as those in  
Section 22.2 “AC Characteristics and Timing  
Parameters”, with the exception of the parameters  
listed in this section.  
Timing Parameters” is the Industrial and Extended  
temperature equivalent of HOS53.  
TABLE 23-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC CHARACTERISTICS  
Operating voltage VDD range as described in Table 23-1.  
FIGURE 23-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 23-10: PLL CLOCK TIMING SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
HOS53  
DCLK  
CLKO Stability (Jitter)(1)  
-5  
0.5  
5
%
Measured over 100 ms  
period  
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is  
based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time  
bases or communication clocks use this formula::  
DCLK  
-----------------------------------------------------------------------  
Peripheral Clock Jitter =  
FOSC  
-------------------------------------------------------------  
Peripheral Bit Rate Clock  
For example: Fosc = 32 MHz, DCLK = 5%, SPI bit rate clock, (i.e., SCK) is 2 MHz.  
DCLK  
5%  
5%  
-------  
-----------------------------  
---------  
SPI SCK Jitter =  
=
=
= 1.25%  
4
16  
32 MHz  
--------------------  
2 MHz  
© 2011 Microchip Technology Inc.  
DS70290G-page 251  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 23-11: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35  
HSP40  
HSP41  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
10  
25  
ns  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
28  
35  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 23-12: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
10  
25  
ns  
HSP36 TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
35  
28  
35  
ns  
ns  
ns  
HSP40 TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
HSP41 TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70290G-page 252  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 23-13: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max Units  
Conditions  
HSP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
HSP40 TdiV2scH, Setup Time of SDIx Data Input  
35  
55  
ns  
ns  
ns  
ns  
25  
25  
15  
TdiV2scL  
to SCKx Edge  
HSP41 TscH2diL,  
TscL2diL  
Hold Time of SDIx Data Input to  
SCKx Edge  
See Note 2  
HSP51 TssH2doZ SSx to SDOx Output  
High-Impedance  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Assumes 50 pF load on all SPIx pins.  
TABLE 23-14: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35  
HSP40  
HSP41  
HSP51  
HSP60  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
35  
ns  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
25  
25  
15  
55  
55  
ns  
ns  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
See Note 2  
TssH2doZ SSx to SDOX Output  
High-Impedance  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Assumes 50 pF load on all SPIx pins.  
TABLE 23-15: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1,2)  
HF21 LPRC  
-70  
+70  
%
-40°C TA +150°C  
VDD = 3.0-3.6V  
Note 1: Change of LPRC frequency as VDD changes.  
2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 19.4 “Watchdog  
Timer (WDT)” for more information.  
© 2011 Microchip Technology Inc.  
DS70290G-page 253  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 23-16: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
Reference Inputs  
HAD08  
IREF  
Current Drain  
250  
600  
50  
μA ADC operating, See Note 1  
μA ADC off, See Note 1  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: These parameters are characterized, but are not tested in manufacturing.  
(3)  
TABLE 23-17: ADC MODULE SPECIFICATIONS (12-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF-(1)  
HAD20a Nr  
HAD21a INL  
Resolution(3)  
12 data bits  
bits  
Integral Nonlinearity  
-2  
> -1  
-2  
+2  
< 1  
10  
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
HAD22a DNL  
HAD23a GERR  
HAD24a EOFF  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
-3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
ADC Accuracy (12-bit Mode) – Measurements with Internal VREF+/VREF-(1)  
HAD20a Nr  
Resolution(3)  
12 data bits  
bits  
HAD21a INL  
HAD22a DNL  
HAD23a GERR  
HAD24a EOFF  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
> -1  
2
+2  
< 1  
20  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
Offset Error  
2
10  
Dynamic Performance (12-bit Mode)(2)  
HAD33a FNYQ  
Input Signal Bandwidth 200 kHz  
Note 1: These parameters are characterized, but are tested at 20 ksps only.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
DS70290G-page 254  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
(3)  
TABLE 23-18: ADC MODULE SPECIFICATIONS (10-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
ADC Accuracy (10-bit Mode) – Measurements with External VREF+/VREF-(1)  
HAD20b Nr  
HAD21b INL  
Resolution(3)  
10 data bits  
bits  
Integral Nonlinearity  
-3  
> -1  
-5  
3
< 1  
6
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
HAD22b DNL  
HAD23b GERR  
HAD24b EOFF  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
-1  
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
ADC Accuracy (10-bit Mode) – Measurements with Internal VREF+/VREF-(1)  
HAD20b Nr  
Resolution(3)  
10 data bits  
bits  
HAD21b INL  
HAD22b DNL  
HAD23b GERR  
HAD24b EOFF  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
> -1  
-5  
2
< 1  
15  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
Offset Error  
-1.5  
Dynamic Performance (10-bit Mode)(2)  
HAD33b FNYQ  
Input Signal Bandwidth 400 kHz  
Note 1: These parameters are characterized, but are tested at 20 ksps only.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
© 2011 Microchip Technology Inc.  
DS70290G-page 255  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE 23-19: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Clock Parameters  
HAD50 TAD  
ADC Clock Period(1)  
Throughput Rate(1)  
147  
Conversion Rate  
ns  
HAD56 FCNV  
400  
Ksps  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 23-20: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Clock Parameters  
HAD50  
HAD56  
TAD  
ADC Clock Period(1)  
Throughput Rate(1)  
104  
ns  
Conversion Rate  
FCNV  
800  
Ksps  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70290G-page 256  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
24.0 PACKAGING INFORMATION  
24.1 Package Marking Information  
28-Lead SPDIP  
Example  
dsPIC33FJ32GP  
202-E/SP  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
e
3
0730235  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
dsPIC33FJ32GP  
e
3
202-E/SO  
0730235  
YYWWNNN  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
33FJ32GP  
202-E/SS  
e
3
YYWWNNN  
0730235  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
© 2011 Microchip Technology Inc.  
DS70290G-page 257  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
24.1 Package Marking Information (Continued)  
28-Lead QFN-S  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33FJ32GP  
202E/MM  
0730235  
e
3
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJGP  
3
e
MC204-E/ML  
0730235  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJ  
32GP204  
e
3
-E/PT  
0730235  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
DS70290G-page 258  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
24.2 Package Details  
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
Units  
Dimension Limits  
INCHES  
NOM  
28  
.100 BSC  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
.200  
.150  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.120  
.015  
.290  
.240  
1.345  
.110  
.008  
.040  
.014  
.135  
.310  
.285  
1.365  
.130  
.010  
.050  
.018  
.335  
.295  
1.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing §  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-070B  
© 2011 Microchip Technology Inc.  
DS70290G-page 259  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
28  
1.27 BSC  
Overall Height  
Molded Package Thickness  
Standoff §  
A
2.05  
0.10  
2.65  
0.30  
A2  
A1  
E
Overall Width  
10.30 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
7.50 BSC  
17.90 BSC  
0.25  
0.40  
0.75  
1.27  
L
Footprint  
L1  
φ
1.40 REF  
Foot Angle Top  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0°  
0.18  
0.31  
5°  
8°  
c
b
α
0.33  
0.51  
15°  
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-052B  
DS70290G-page 260  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢐꢌꢑꢒꢇꢎꢓꢅꢉꢉꢇꢔꢕꢋꢉꢌꢑꢄꢇꢖꢎꢎꢗꢇMꢇꢘꢙꢚꢛꢇꢓꢓꢇꢜ ꢆ!ꢇ"ꢎꢎꢔꢈ#  
$ ꢋꢄ% 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
5ꢄꢃ&!  
ꢑꢙ66ꢙꢑ+ꢗ+ꢘꢕ  
ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢑꢙ7  
78ꢑ  
ꢑꢔ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ:  
ꢒꢁꢚ.ꢅ/ꢕ0  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢓꢍ&  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅꢗꢍꢃꢌ3ꢄꢈ!!  
ꢕ&ꢆꢄ#ꢋ%%ꢅ  
8 ꢈꢉꢆꢇꢇꢅ=ꢃ#&ꢍ  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅ=ꢃ#&ꢍ  
8 ꢈꢉꢆꢇꢇꢅ6ꢈꢄꢓ&ꢍ  
2ꢋꢋ&ꢅ6ꢈꢄꢓ&ꢍ  
2ꢋꢋ&ꢐꢉꢃꢄ&  
6ꢈꢆ#ꢅꢗꢍꢃꢌ3ꢄꢈ!!  
2ꢋꢋ&ꢅꢔꢄꢓꢇꢈ  
M
M
ꢀꢁꢛ.  
M
ꢛꢁ:ꢒ  
.ꢁ,ꢒ  
ꢀꢒꢁꢎꢒ  
ꢒꢁꢛ.  
ꢀꢁꢎ.ꢅꢘ+2  
M
ꢎꢁꢒꢒ  
ꢀꢁ:.  
M
:ꢁꢎꢒ  
.ꢁꢚꢒ  
ꢀꢒꢁ.ꢒ  
ꢒꢁꢜ.  
ꢔꢎ  
ꢔꢀ  
+
+ꢀ  
6
6ꢀ  
ꢀꢁꢚ.  
ꢒꢁꢒ.  
ꢛꢁꢖꢒ  
.ꢁꢒꢒ  
ꢜꢁꢜꢒ  
ꢒꢁ..  
ꢒꢁꢒꢜ  
ꢒꢝ  
ꢒꢁꢎ.  
:ꢝ  
ꢖꢝ  
6ꢈꢆ#ꢅ=ꢃ#&ꢍ  
)
ꢒꢁꢎꢎ  
M
ꢒꢁ,:  
$ ꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢏꢅꢆꢄ#ꢅ+ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢑꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢒꢁꢎꢒꢅ''ꢅꢐꢈꢉꢅ!ꢃ#ꢈꢁ  
,ꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢓꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢓꢅꢐꢈꢉꢅꢔꢕꢑ+ꢅ-ꢀꢖꢁ.ꢑꢁ  
/ꢕ01 /ꢆ!ꢃꢌꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢗꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢘ+21 ꢘꢈ%ꢈꢉꢈꢄꢌꢈꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢐ"ꢉꢐꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢑꢃꢌꢉꢋꢌꢍꢃꢐ ꢌꢍꢄꢋꢇꢋꢓꢊ ꢏꢉꢆ*ꢃꢄꢓ 0ꢒꢖꢞꢒꢛ,/  
© 2011 Microchip Technology Inc.  
DS70290G-page 261  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ&ꢕꢅꢆꢇ'ꢉꢅꢋ(ꢇ$ ꢇꢃꢄꢅꢆꢇꢈꢅꢍꢒꢅ)ꢄꢇꢖ**ꢗꢇMꢇ+,+,ꢛꢙ-ꢇꢓꢓꢇꢜ ꢆ!ꢇ"&'$ꢂꢎ#  
.ꢌꢋꢏꢇꢛꢙ/ꢛꢇꢓꢓꢇ0 ꢑꢋꢅꢍꢋꢇꢃꢄꢑ)ꢋꢏ  
$ ꢋꢄ% 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
D2  
D
EXPOSED  
PAD  
e
E2  
E
b
2
1
2
1
K
N
N
L
NOTE 1  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
5ꢄꢃ&!  
ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢑꢙ66ꢙꢑ+ꢗ+ꢘꢕ  
78ꢑ  
ꢑꢙ7  
ꢑꢔ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢓꢍ&  
ꢕ&ꢆꢄ#ꢋ%%ꢅ  
0ꢋꢄ&ꢆꢌ&ꢅꢗꢍꢃꢌ3ꢄꢈ!!  
8 ꢈꢉꢆꢇꢇꢅ=ꢃ#&ꢍ  
+$ꢐꢋ!ꢈ#ꢅꢂꢆ#ꢅ=ꢃ#&ꢍ  
8 ꢈꢉꢆꢇꢇꢅ6ꢈꢄꢓ&ꢍ  
+$ꢐꢋ!ꢈ#ꢅꢂꢆ#ꢅ6ꢈꢄꢓ&ꢍ  
0ꢋꢄ&ꢆꢌ&ꢅ=ꢃ#&ꢍ  
0ꢋꢄ&ꢆꢌ&ꢅ6ꢈꢄꢓ&ꢍ  
0ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ+$ꢐꢋ!ꢈ#ꢅꢂꢆ#  
7
ꢔꢀ  
ꢔ,  
+
+ꢎ  
ꢎ:  
ꢒꢁꢚ.ꢅ/ꢕ0  
ꢒꢁꢜꢒ  
ꢒꢁ:ꢒ  
ꢒꢁꢒꢒ  
ꢀꢁꢒꢒ  
ꢒꢁꢒ.  
ꢒꢁꢒꢎ  
ꢒꢁꢎꢒꢅꢘ+2  
ꢚꢁꢒꢒꢅ/ꢕ0  
,ꢁꢛꢒ  
ꢚꢁꢒꢒꢅ/ꢕ0  
,ꢁꢛꢒ  
ꢒꢁ,:  
ꢒꢁꢖꢒ  
M
,ꢁꢚ.  
ꢖꢁꢛꢒ  
ꢏꢎ  
)
6
,ꢁꢚ.  
ꢒꢁꢎ,  
ꢒꢁ,ꢒ  
ꢒꢁꢎꢒ  
ꢖꢁꢛꢒ  
ꢒꢁꢖ,  
ꢒꢁ.ꢒ  
M
?
$ ꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ3ꢆꢓꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢓ"ꢇꢆ&ꢈ#ꢁ  
,ꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢓꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢓꢅꢐꢈꢉꢅꢔꢕꢑ+ꢅ-ꢀꢖꢁ.ꢑꢁ  
/ꢕ01 /ꢆ!ꢃꢌꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢗꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢘ+21 ꢘꢈ%ꢈꢉꢈꢄꢌꢈꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢐ"ꢉꢐꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢑꢃꢌꢉꢋꢌꢍꢃꢐ ꢌꢍꢄꢋꢇꢋꢓꢊ ꢏꢉꢆ*ꢃꢄꢓ 0ꢒꢖꢞꢀꢎꢖ/  
DS70290G-page 262  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ&ꢕꢅꢆꢇ'ꢉꢅꢋ(ꢇ$ ꢇꢃꢄꢅꢆꢇꢈꢅꢍꢒꢅ)ꢄꢇꢖ**ꢗꢇMꢇ+,+,ꢛꢙ-ꢇꢓꢓꢇꢜ ꢆ!ꢇ"&'$ꢂꢎ#  
.ꢌꢋꢏꢇꢛꢙ/ꢛꢇꢓꢓꢇ0 ꢑꢋꢅꢍꢋꢇꢃꢄꢑ)ꢋꢏ  
$ ꢋꢄ% 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
© 2011 Microchip Technology Inc.  
DS70290G-page 263  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
0.65 BSC  
0.90  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Width  
N
e
A
A1  
A3  
E
E2  
D
0.80  
0.00  
1.00  
0.05  
0.02  
0.20 REF  
8.00 BSC  
6.45  
8.00 BSC  
6.45  
0.30  
0.40  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
6.30  
6.80  
D2  
b
L
6.30  
0.25  
0.30  
0.20  
6.80  
0.38  
0.50  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-103B  
DS70290G-page 264  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
//ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ&ꢕꢅꢆꢇ'ꢉꢅꢋ(ꢇ$ ꢇꢃꢄꢅꢆꢇꢈꢅꢍꢒꢅ)ꢄꢇꢖ*ꢃꢗꢇMꢇꢁ,ꢁꢇꢓꢓꢇꢜ ꢆ!ꢇ"&'$#  
$ ꢋꢄ% 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
© 2011 Microchip Technology Inc.  
DS70290G-page 265  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
0.80 BSC  
1.00  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Foot Length  
N
e
A
A2  
A1  
L
1.20  
1.05  
0.15  
0.75  
0.95  
0.05  
0.45  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
Overall Length  
E
D
E1  
D1  
c
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0.09  
0.30  
11°  
0.20  
0.45  
13°  
b
α
0.37  
12°  
12°  
β
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-076B  
DS70290G-page 266  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
//ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ1ꢏꢌꢑꢇ&ꢕꢅꢆꢇ'ꢉꢅꢋ2ꢅꢍꢒꢇꢖꢈ1ꢗꢇMꢇ3ꢛ,3ꢛ,3ꢇꢓꢓꢇꢜ ꢆ!(ꢇꢀꢙꢛꢛꢇꢓꢓꢇ"1&'ꢈ#  
$ ꢋꢄ% 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
© 2011 Microchip Technology Inc.  
DS70290G-page 267  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
NOTES:  
DS70290G-page 268  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
APPENDIX A: REVISION HISTORY  
Revision A (July 2007)  
Initial release of this document.  
Revision B (June 2008)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
The major changes are referenced by their respective  
section in the following table.  
TABLE A-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital  
Signal Controllers”  
Added Extended Interrupts column to Remappable Peripherals in the  
Controller Families table and Note 2 (see Table 1).  
Added Note 1 to all pin diagrams, which references RPn pin usage by  
remappable peripherals (see “Pin Diagrams”).  
Section 1.0 “Device Overview”  
Changed PORTA pin name from RA15 to RA10 (see Table 1-1).  
Section 3.0 “Memory Organization” Added SFR definitions (ACCAL, ACCAH, ACCAU, ACCBL, ACCBH, and  
ACCBU) to the CPU Core Register Map (see Table 3-1).  
Updated Reset value for CORCON (see Table 3-1).  
Updated Reset values for the following SFRs: IPC1, IPC3-IPC5, IPC7,  
IPC16 and INTTREG (see Table 3-4).  
Updated the Reset value for CLKDIV in the System Control Register Map  
(see Table 3-20).  
Section 6.0 “Resets”  
Entire section was replaced to maintain consistency with other dsPIC33F  
data sheets.  
Section 7.0 “Oscillator  
Configuration”  
Removed the first sentence of the third clock source item (External Clock) in  
Section 7.1.1.2 “Primary”.  
Updated the default bit values for DOZE and FRCDIV in the Clock Divisor  
Register (see Register 7-2).  
Added the center frequency in the OSCTUN register for the FRC Tuning bits  
(TUN<5:0>) value 011111and updated the center frequency for bits value  
011110(see Register 7-4).  
Section 8.0 “Power-Saving  
Features”  
Added the following two registers:  
• PMD1: Peripheral Module Disable Control Register 1  
• PMD2: Peripheral Module Disable Control Register 2  
Section 9.0 “I/O Ports”  
Added paragraph and Table 9-1 to Section 9.1.1 “Open-Drain  
Configuration”, which provides details on I/O pins and their functionality.  
Removed the following sections, which are now available in the related  
section of the dsPIC33F/PIC24H Family Reference Manual:  
• 9.4.2 “Available Peripherals”  
• 9.4.3.3 “Mapping”  
• 9.4.5 “Considerations for Peripheral Pin Selection”  
Section 13.0 “Output Compare”  
Replaced sections 13.1, 13.2 and 13.3 and related figures and tables with  
entirely new content.  
© 2011 Microchip Technology Inc.  
DS70290G-page 269  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE A-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 14.0 “Serial Peripheral  
Interface (SPI)”  
Removed the following sections, which are now available in the related  
section of the dsPIC33F/PIC24H Family Reference Manual:  
• 14.1 “Interrupts”  
• 14.2 “Receive Operations”  
• 14.3 “Transmit Operations”  
• 14.4 “SPI Setup” (retained Figure 14-1: SPI Module Block Diagram)  
Section 15.0 “Inter-Integrated  
Circuit (I2C™)”  
Removed the following sections, which are now available in the related  
section of the dsPIC33F/PIC24H Family Reference Manual:  
• 15.3 “I2C Interrupts”  
• 15.4 “Baud Rate Generator” (retained Figure 15-1: I2C Block Diagram)  
• 15.5 “I2C Module Addresses”  
• 15.6 “Slave Address Masking”  
• 15.7 “IPMI Support”  
• 15.8 “General Call Address Support”  
• 15.9 “Automatic Clock Stretch”  
• 15.10 “Software Controlled Clock Stretching (STREN = 1)”  
• 15.11 “Slope Control”  
• 15.12 “Clock Arbitration”  
• 15.13 “Multi-Master Communication, Bus Collision, and Bus Arbitration”  
• 15.14 “Peripheral Pin Select Limitations”  
Removed the following sections, which are now available in the related  
Section 16.0 “Universal  
Asynchronous Receiver Transmitter section of the dsPIC33F/PIC24H Family Reference Manual:  
(UART)”  
• 16.1 “UART Baud Rate Generator”  
• 16.2 “Transmitting in 8-bit Data Mode”  
• 16.3 “Transmitting in 9-bit Data Mode”  
• 16.4 “Break and Sync Transmit Sequence”  
• 16.5 “Receiving in 8-bit or 9-bit Data Mode”  
• 16.6 “Flow Control Using UxCTS and UxRTS Pins”  
• 16.7 “Infrared Support”  
Removed IrDA references and Note 1, and updated the bit and bit value  
descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control  
Register (see Register 16-2).  
Section 17.0 “10-bit/12-bit Analog-  
to-Digital Converter (ADC)”  
Removed Equation 17-1: ADC Conversion Clock Period and Figure 17-2:  
ADC Transfer Function (10-Bit Example).  
Added ADC1 Module Block Diagram for dsPIC33FJ16GP304 and  
dsPIC33FJ32GP204 Devices (Figure 18-1) and ADC1 Module Block  
Diagram FOR dsPIC33FJ32GP202 Devices (Figure 17-2).  
Added Note 2 to Figure 17-3: ADC Conversion Clock Period Block Diagram.  
Added device-specific information to Note 1 in the ADC1 Input Scan Select  
Register Low (see Register 17-6), and updated the default bit value for bits  
12-10 (CSS12-CSS10) from U-0 to R/W-0.  
Added device-specific information to Note 1 in the ADC1 Port Configuration  
Register Low (see Register 17-7), and updated the default bit value for bits  
12-10 (PCFG12-PCFG10) from U-0 to R/W-0.  
DS70290G-page 270  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE A-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 18.0 “Special Features”  
Added FICD register information for address 0xF8000E in the Device  
Configuration Register Map (see Table 18-1).  
Added FICD register content (BKBUG, COE, JTAGEN, and ICS<1:0> to the  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 Configuration Bits  
Description (see Table 18-2).  
Added a note regarding the placement of low-ESR capacitors, after the  
second paragraph of Section 18.2 “On-Chip Voltage Regulator” and to  
Figure 18-1.  
Removed the words “if enabled” from the second sentence in the fifth  
paragraph of Section 18.3 “BOR: Brown-Out Reset”.  
Section 21.0 “Electrical  
Characteristics”  
Updated Max MIPS value for -40ºC to +125ºC temperature range in  
Operating MIPS vs. Voltage (see Table 21-1).  
Removed Typ value for parameter DC12 (see Table 22-4).  
Updated MIPS conditions for parameters DC24c, DC44c, DC72a, DC72f  
and DC72g (see Table 21-5, Table 21-6 and Table 21-8).  
Added Note 4 (reference to new table containing digital-only and analog pin  
information to I/O Pin Input Specifications (see Table 21-9).  
Updated Typ, Min, and Max values for Program Memory parameters D136,  
D137, and D138 (see Table 21-12).  
Updated Max value for Internal RC Accuracy parameter F21 for -40°C TA  
+125°C condition and added Note 2 (see Table 21-19).  
Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer,  
and Power-up Timer parameter SY20 and updated conditions, which now  
refers to Section 18.4 “Watchdog Timer (WDT)” and LPRC parameter  
F21a (see Table 21-21).  
Updated Min and Typ values for parameters AD60, AD61, AD62 and AD63  
and removed Note 3 (see Table 21-37).  
Updated Min and Typ values for parameters AD60, AD61, AD62 and AD63  
and removed Note 3 (see Table 21-38).  
© 2011 Microchip Technology Inc.  
DS70290G-page 271  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Revision C (December 2008)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
The major changes are referenced by their respective  
section in the following table.  
TABLE A-2:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital  
Signal Controllers”  
Updated all pin diagrams to denote the pin voltage tolerance (see “Pin  
Diagrams”).  
Section 2.0 “Guidelines for Getting Added new section to the data sheet that provides guidelines on getting  
Started with 16-bit Digital Signal  
Controllers”  
started with 16-bit Digital Signal Controllers.  
Section 10.0 “I/O Ports”  
Updated 5V tolerant status for I/O pin RB4 from Yes to No (see Table 10-1).  
Section 22.0 “Electrical  
Characteristics”  
Removed the maximum value for parameter DC12 (RAM Data Retention  
Voltage) in Table 22-4.  
Updated typical values for Operating Current (IDD) and added Note 3 in  
Table 22-5.  
Updated typical and maximum values for Idle Current (IIDLE): Core OFF  
Clock ON Base Current and added Note 3 in Table 22-6.  
Updated typical and maximum values for Power Down Current (IPD) and  
added Note 5 in Table 22-7.  
Updated typical and maximum values for Doze Current (IDOZE) and added  
Note 2 in Table 22-8.  
Added Note 3 to Table 22-12.  
Updated minimum value for Internal Voltage Regulator Specifications in  
Table 22-13.  
Added parameter OS42 (GM) and Notes 4, 5, and 6 to Table 22-16.  
Added Notes 2 and 3 to Table 22-17.  
Added Note 2 to Table 22-20.  
Added Note 2 to Table 22-21.  
Added Note 2 to Table 22-22.  
Added Note 1 to Table 22-23.  
Added Note 1 to Table 22-24.  
Added Note 3 to Table 22-32.  
Added Note 2 to Table 22-33.  
Updated typical value for parameter AD08 (ADC in operation) and added  
Notes 2 and 3 in Table 22-34.  
Updated minimum, typical, and maximum values for parameters AD23a,  
AD24a, AD30a, AD32a, AD32a, and AD34a, and added Notes 2 and 3 in  
Table 22-35.  
Updated minimum, typical, and maximum values for parameters AD23b,  
AD24b, AD30b, AD32b, AD32b, and AD34b, and added Notes 2 and 3 in  
Table 22-36.  
DS70290G-page 272  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Revision D (October 2009)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
Global changes include:  
• Changed all instances of OSCI to OSC1 and  
OSCO to OSC2.  
• Changed all instances of PGCx/EMUCx and  
PGDx/EMUDx (where x = 1, 2 or 3) to PGECx  
and PGEDx.  
Changed all instances of VDDCORE and VDDCORE/VCAP  
to VCAP/VDDCORE  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-3:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital Signal Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams,  
Controllers”  
which references pin connections to VSS.  
Section 8.0 “Oscillator Configuration”  
Updated the Oscillator System Diagram (see Figure 8-1).  
Added Note 1 to the Oscillator Tuning (OSCTUN) register (see  
Register 8-4).  
Section 10.0 “I/O Ports”  
Removed Table 10-1 and added reference to pin diagrams for I/O pin  
availability and functionality.  
Section 15.0 “Serial Peripheral Interface Added Note 2 to the SPIx Control Register 1 (see Register 15-2).  
(SPI)”  
Section 17.0 “Universal Asynchronous  
Receiver Transmitter (UART)”  
Updated the UTXINV bit settings in the UxSTA register and added Note  
1 (see Register 17-2).  
Section 22.0 “Electrical Characteristics” Updated the Min value for parameter DC12 (RAM Retention Voltage)  
and added Note 4 to the DC Temperature and Voltage Specifications  
(see Table 22-4).  
Updated the Min value for parameter DI35 (see Table 22-20).  
Updated AD08 and added reference to Note 2 for parameters AD05a,  
AD06a and AD08a (see Table 22-34).  
© 2011 Microchip Technology Inc.  
DS70290G-page 273  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Revision E (November 2009)  
The revision includes the following global update:  
• Added Note 2 to the shaded table that appears at  
the beginning of each chapter. This new note  
provides information regarding the availability of  
registers and their associated bits  
This revision also includes minor typographical and  
formatting changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-4:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital Signal  
Controllers”  
Added information on high temperature operation (see  
“Operating Range:”).  
Section 10.0 “I/O Ports”  
Changed the reference to digital-only pins to 5V tolerant pins in  
the second paragraph of Section 10.2 “Open-Drain  
Configuration”.  
Section 17.0 “Universal Asynchronous  
Receiver Transmitter (UART)”  
Updated the two baud rate range features to: 10 Mbps to 38 bps  
at 40 MIPS.  
Section 18.0 “10-bit/12-bit Analog-to-Digital  
Converter (ADC)”  
Updated the ADC1 block diagrams (see Figure 18-1 and  
Figure 18-2).  
Section 19.0 “Special Features”  
Updated the second paragraph and removed the fourth  
paragraph in Section 19.1 “Configuration Bits”.  
Updated the Device Configuration Register Map (see Table 19-1).  
Section 22.0 “Electrical Characteristics”  
Updated the Absolute Maximum Ratings for high temperature  
and added Note 4.  
Updated the SPIx Module Slave Mode (CKE = 1) Timing  
Characteristics (see Figure 22-12).  
Updated the Internal RC Accuracy parameter numbers (see  
Table 22-18 and Table 22-19).  
Section 23.0 “High Temperature Electrical  
Characteristics”  
Added new chapter with high temperature specifications.  
“Product Identification System”  
Added the “H” definition for high temperature.  
Revision F (November 2009)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-5:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital Signal  
Controllers”  
Updated MIPS rating from 16 to 20 for high temperature devices  
in “Operating Range:” and in TABLE 22-1: “Operating MIPS vs.  
Voltage”.  
DS70290G-page 274  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
Revision G (January 2011)  
This revision includes typographical and formatting  
changes throughout the data sheet text. In addition, all  
instances of VDDCORE have been removed.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-6:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
High-Performance, 16-bit Digital Signal  
Controllers  
Added the SSOP package information (see “Packaging:”, Table 1,  
and “Pin Diagrams”).  
Section 2.0 “Guidelines for Getting Started Updated the title of Section 2.3 “CPU Logic Filter Capacitor  
with 16-bit Digital Signal Controllers”  
Connection (Vcap)”.  
The frequency limitation for device PLL start-up conditions was  
updated in Section 2.7 “Oscillator Value Conditions on Device  
Start-up”.  
The second paragraph in Section 2.9 “Unused I/Os” was updated.  
Section 3.0 “CPU”  
Removed references to DMA in the CPU Core Block Diagram (see  
Figure 3-1).  
Section 4.0 “Memory Organization”  
Updated the data memory reference in the third paragraph in  
Section 4.2 “Data Address Space”.  
The All Resets values for the following SFRs in the Timer Register  
Map were changed (see Table 4-5):  
• TMR1  
• TMR2  
• TMR3  
Section 8.0 “Oscillator Configuration”  
Added Note 3 to the OSCCON: Oscillator Control Register (see  
Register 8-1).  
Added Note 2 to the CLKDIV: Clock Divisor Register (see  
Register 8-2).  
Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see  
Register 8-3).  
Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see  
Register 8-4).  
Section 18.0 “10-bit/12-bit Analog-to-Digital Updated the VREFL references in the ADC1 module block diagrams  
Converter (ADC)”  
(see Figure 18-1 and Figure 18-2).  
Section 19.0 “Special Features”  
Added a new paragraph and removed the third paragraph in  
Section 19.1 “Configuration Bits”.  
Added the column “RTSP Effects” to the Configuration Bits  
Descriptions (see Table 19-2).  
Section 24.0 “Packaging Information”  
Added the 28-Lead SSOP package information (see Section 24.1  
“Package Marking Information” and Section 24.2 “Package  
Details”).  
© 2011 Microchip Technology Inc.  
DS70290G-page 275  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
TABLE A-6:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 22.0 “Electrical Characteristics”  
Added the 28-pin SSOP Thermal Packaging Characteristics (see  
Table 22-3).  
Removed Note 4 from the DC Temperature and Voltage  
Specifications (see Table 22-4).  
Updated the maximum value for parameters DI18 and DI19 and  
added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O  
Pin Input Specifications (see Table 22-9).  
Updated Note 3 in the PLL Clock Timing Specifications (see  
Table 22-17).  
Removed Note 2 from the AC Characteristics: Internal RC Accuracy  
(see Table 22-18).  
Updated the characteristic description for parameter DI35 in the I/O  
Timing Requirements (see Table 22-20).  
Updated all SPI specifications (see Table 22-28 through Table 22-35  
and Figure 22-10 through Figure 22-16).  
Added Note 4 to the 12-bit mode ADC Module Specifications (see  
Table 22-39).  
Added Note 4 to the 10-bit mode ADC Module Specifications (see  
Table 22-40).  
Section 23.0 “High Temperature Electrical  
Characteristics”  
Updated all ambient temperature end range values to +150ºC  
throughout the chapter.  
Updated the storage temperature end range to +160ºC.  
Updated the maximum junction temperature from +145ºC to +155ºC.  
Updated Note 1 in the PLL Clock Timing Specifications (see  
Table 23-10).  
Added Note 3 to the 12-bit Mode ADC Module Specifications (see  
Table 23-17).  
Added Note 3 to the 10-bit Mode ADC Module Specifications (see  
Table 23-18).  
“Product Identification System”  
Added the “SS” definition for the SSOP package.  
DS70290G-page 276  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
INDEX  
Options ..................................................................... 100  
Selection................................................................... 100  
A
A/D Converter ................................................................... 169  
Customer Change Notification Service............................. 281  
Initialization ............................................................... 169  
Customer Notification Service .......................................... 281  
Key Features............................................................. 169  
Customer Support............................................................. 281  
AC Characteristics .................................................... 213, 251  
ADC Module.............................................................. 254  
D
ADC Module (10-bit Mode) ....................................... 255  
Data Accumulators and Adder/Subtractor .......................... 27  
ADC Module (12-bit Mode) ....................................... 254  
Data Space Write Saturation...................................... 29  
Internal RC Accuracy................................................ 215  
Overflow and Saturation............................................. 27  
Load Conditions................................................ 213, 251  
Round Logic ............................................................... 28  
ADC Module  
Write Back .................................................................. 28  
ADC11 Register Map...................................... 41, 43, 44  
Data Address Space........................................................... 33  
Alternate.............................................................................. 71  
Alignment.................................................................... 33  
Alternate Interrupt Vector Table.......................................... 71  
Memory Map for dsPIC33F Devices with 8 KBs RAM 34  
Alternate Interrupt Vector Table (AIVT) .............................. 71  
Near Data Space........................................................ 33  
Arithmetic Logic Unit (ALU)................................................. 25  
Software Stack ........................................................... 47  
Assembler  
Width .......................................................................... 33  
MPASM Assembler................................................... 200  
DC Characteristics............................................................ 204  
Doze Current (IDOZE)................................................ 249  
High Temperature..................................................... 248  
B
Barrel Shifter....................................................................... 29  
I/O Pin Input Specifications ...................................... 209  
Bit-Reversed Addressing .................................................... 50  
I/O Pin Output........................................................... 249  
Example...................................................................... 51  
I/O Pin Output Specifications.................................... 211  
Implementation ........................................................... 50  
Idle Current (IDOZE) .................................................. 208  
Sequence Table (16-Entry)......................................... 51  
Idle Current (IIDLE).................................................... 207  
Block Diagrams  
Operating Current (IDD) ............................................ 206  
16-bit Timer1 Module................................................ 135  
Operating MIPS vs. Voltage ..................................... 248  
A/D Module ....................................................... 170, 171  
Power-Down Current (IPD)........................................ 208  
Connections for On-Chip Voltage Regulator............. 186  
Power-down Current (IPD) ........................................ 248  
Device Clock....................................................... 99, 101  
Program Memory.............................................. 212, 250  
DSP Engine ................................................................ 26  
Temperature and Voltage......................................... 248  
dsPIC33F.................................................................... 12  
Temperature and Voltage Specifications.................. 205  
dsPIC33F CPU Core................................................... 20  
Thermal Operating Conditions.................................. 248  
Input Capture ............................................................ 143  
Development Support....................................................... 199  
Output Compare ....................................................... 145  
DSP Engine........................................................................ 25  
PLL............................................................................ 101  
Multiplier ..................................................................... 27  
Reset System.............................................................. 63  
Shared Port Structure ............................................... 113  
E
SPI ............................................................................ 149  
Electrical Characteristics .................................................. 203  
Timer2 (16-bit) .......................................................... 139  
AC..................................................................... 213, 251  
Timer2/3 (32-bit) ....................................................... 138  
Equations  
UART ........................................................................ 163  
Device Operating Frequency.................................... 100  
Watchdog Timer (WDT)............................................ 187  
Errata.................................................................................... 9  
C
F
C Compilers  
Flash Program Memory ...................................................... 57  
MPLAB C18 .............................................................. 200  
Control Registers........................................................ 58  
Clock Switching................................................................. 108  
Operations.................................................................. 58  
Enabling.................................................................... 108  
Programming Algorithm.............................................. 61  
Sequence.................................................................. 108  
RTSP Operation ......................................................... 58  
Code Examples  
Table Instructions ....................................................... 57  
Erasing a Program Memory Page............................... 61  
Flexible Configuration....................................................... 183  
Initiating a Programming Sequence............................ 62  
Loading Write Buffers ................................................. 62  
Port Write/Read ........................................................ 114  
H
High Temperature Electrical Characteristics .................... 247  
PWRSAV Instruction Syntax..................................... 109  
Code Protection ........................................................ 183, 188  
Configuration Bits.............................................................. 183  
Description (Table).................................................... 184  
Configuration Register Map .............................................. 183  
Configuring Analog Port Pins............................................ 114  
CPU  
I
I/O Ports ........................................................................... 113  
Parallel I/O (PIO) ...................................................... 113  
Write/Read Timing.................................................... 114  
I2C  
Operating Modes...................................................... 155  
Registers .................................................................. 155  
Control Register.......................................................... 22  
CPU Clocking System....................................................... 100  
© 2011 Microchip Technology Inc.  
DS70290G-page 277  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
I2C Module  
I2C1 Register Map......................................................40  
In-Circuit Debugger...........................................................189  
In-Circuit Emulation...........................................................183  
In-Circuit Serial Programming (ICSP) .......................183, 189  
Input Capture  
Registers...................................................................144  
Input Change Notification..................................................114  
Instruction Addressing Modes.............................................47  
File Register Instructions ............................................47  
Fundamental Modes Supported..................................48  
MAC Instructions.........................................................48  
MCU Instructions ........................................................47  
Move and Accumulator Instructions............................48  
Other Instructions........................................................48  
Instruction Set  
Details....................................................................... 259  
Marking............................................................. 257, 258  
Peripheral Module Disable (PMD) .................................... 110  
Pinout I/O Descriptions (table)............................................ 13  
PMD Module  
Register Map .............................................................. 46  
PORTA  
Register Map .............................................................. 45  
PORTB  
Register Map .............................................................. 45  
Power-on Reset (POR)....................................................... 68  
Power-Saving Features .................................................... 109  
Clock Frequency and Switching ............................... 109  
Program Address Space..................................................... 31  
Construction ............................................................... 52  
Data Access from Program Memory Using  
Overview...................................................................194  
Summary...................................................................191  
Instruction-Based Power-Saving Modes...........................109  
Idle ............................................................................110  
Sleep.........................................................................109  
Internal RC Oscillator  
Program Space Visibility..................................... 55  
Data Access from Program Memory Using  
Table Instructions ............................................... 54  
Data Access from, Address Generation ..................... 53  
Memory Map............................................................... 31  
Table Read Instructions  
Use with WDT...........................................................187  
Internet Address................................................................281  
Interrupt Control and Status Registers................................75  
IECx ............................................................................75  
IFSx.............................................................................75  
INTCON1 ....................................................................75  
INTCON2 ....................................................................75  
IPCx ............................................................................75  
Interrupt Setup Procedures.................................................97  
Initialization .................................................................97  
Interrupt Disable..........................................................97  
Interrupt Service Routine ............................................97  
Trap Service Routine ..................................................97  
Interrupt Vector Table (IVT) ................................................71  
Interrupts Coincident with Power Save Instructions..........110  
TBLRDH ............................................................. 54  
TBLRDL.............................................................. 54  
Visibility Operation...................................................... 55  
Program Memory  
Interrupt Vector........................................................... 32  
Organization ............................................................... 32  
Reset Vector............................................................... 32  
R
Reader Response............................................................. 282  
Registers  
AD1CHS0 (ADC1 Input Channel 0 Select................ 179  
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select)... 177  
AD1CON1 (ADC1 Control 1) .................................... 173  
AD1CON2 (ADC1 Control 2) .................................... 175  
AD1CON3 (ADC1 Control 3) .................................... 176  
AD1CSSL (ADC1 Input Scan Select Low)................ 181  
AD1PCFGL (ADC1 Port Configuration Low) ............ 181  
CLKDIV (Clock Divisor) ............................................ 104  
CORCON (Core Control)...................................... 24, 76  
I2CxCON (I2Cx Control)........................................... 157  
I2CxMSK (I2Cx Slave Mode Address Mask)............ 161  
I2CxSTAT (I2Cx Status) ........................................... 159  
ICxCON (Input Capture x Control)............................ 144  
IEC0 (Interrupt Enable Control 0)................... 84, 86, 87  
IFS0 (Interrupt Flag Status 0) ..................................... 80  
IFS1 (Interrupt Flag Status 1) ..................................... 82  
IFS4 (Interrupt Flag Status 4) ..................................... 83  
INTCON1 (Interrupt Control 1).................................... 77  
INTCON2 (Interrupt Control 2).................................... 79  
INTTREG Interrupt Control and Status Register ........ 96  
IPC0 (Interrupt Priority Control 0) ............................... 88  
IPC1 (Interrupt Priority Control 1) ............................... 89  
IPC16 (Interrupt Priority Control 16) ........................... 95  
IPC2 (Interrupt Priority Control 2) ............................... 90  
IPC3 (Interrupt Priority Control 3) ............................... 91  
IPC4 (Interrupt Priority Control 4) ............................... 92  
IPC5 (Interrupt Priority Control 5) ............................... 93  
IPC7 (Interrupt Priority Control 7) ............................... 94  
NVMCOM (Flash Memory Control)....................... 59, 60  
OCxCON (Output Compare x Control) ..................... 147  
OSCCON (Oscillator Control)................................... 102  
OSCTUN (FRC Oscillator Tuning)............................ 107  
PLLFBD (PLL Feedback Divisor).............................. 106  
J
JTAG Boundary Scan Interface ........................................183  
M
Memory Organization..........................................................31  
Microchip Internet Web Site..............................................281  
Modulo Addressing .............................................................49  
Applicability.................................................................50  
Operation Example .....................................................49  
Start and End Address................................................49  
W Address Register Selection ....................................49  
MPLAB ASM30 Assembler, Linker, Librarian ...................200  
MPLAB Integrated Development Environment Software ..199  
MPLAB PM3 Device Programmer.....................................202  
MPLAB REAL ICE In-Circuit Emulator System.................201  
MPLINK Object Linker/MPLIB Object Librarian ................200  
N
NVM Module  
Register Map...............................................................46  
O
Open-Drain Configuration .................................................114  
Output Compare................................................................145  
Registers...................................................................147  
P
Packaging .........................................................................257  
DS70290G-page 278  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
PMD1 (Peripheral Module Disable Control  
Register 1) ........................................................ 111  
PMD2 (Peripheral Module Disable Control  
I2Cx Bus Data (Master Mode).................................. 236  
I2Cx Bus Data (Slave Mode).................................... 238  
I2Cx Bus Start/Stop Bits (Master Mode)................... 236  
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 238  
Input Capture (CAPx) ............................................... 222  
OC/PWM .................................................................. 223  
Output Compare (OCx) ............................................ 222  
Reset, Watchdog Timer, Oscillator Start-up Timer  
and Power-up Timer......................................... 218  
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock .............. 220  
Timing Requirements  
Register 2) ........................................................ 112  
RCON (Reset Control)................................................ 64  
SPIxCON1 (SPIx Control 1)...................................... 151  
SPIxCON2 (SPIx Control 2)...................................... 153  
SPIxSTAT (SPIx Status and Control) ....................... 150  
SR (CPU Status)................................................... 22, 76  
T1CON (Timer1 Control)........................................... 136  
TxCON (T2CON, T4CON, T6CON or  
T8CON Control)................................................ 140  
TyCON (T3CON, T5CON, T7CON or  
T9CON Control)................................................ 141  
UxMODE (UARTx Mode).......................................... 164  
UxSTA (UARTx Status and Control)......................... 166  
ADC Conversion (10-bit mode) ................................ 256  
ADC Conversion (12-bit Mode) ................................ 256  
CLKO and I/O........................................................... 217  
External Clock .......................................................... 214  
Input Capture............................................................ 222  
SPIx Master Mode (CKE = 0) ................................... 252  
SPIx Module Master Mode (CKE = 1) ...................... 252  
SPIx Module Slave Mode (CKE = 0) ........................ 253  
SPIx Module Slave Mode (CKE = 1) ........................ 253  
Timing Specifications  
Reset  
Illegal Opcode....................................................... 63, 70  
Trap Conflict.......................................................... 69, 70  
Uninitialized W Register........................................ 63, 70  
Reset Sequence ................................................................. 71  
Resets................................................................................. 63  
10-bit A/D Conversion Requirements....................... 245  
12-bit A/D Conversion Requirements....................... 243  
I2Cx Bus Data Requirements (Master Mode)........... 237  
I2Cx Bus Data Requirements (Slave Mode)............. 239  
Output Compare Requirements................................ 222  
PLL Clock ......................................................... 215, 251  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out  
Reset Requirements......................................... 219  
Simple OC/PWM Mode Requirements..................... 223  
Timer1 External Clock Requirements....................... 220  
Timer2 External Clock Requirements....................... 221  
Timer3 External Clock Requirements....................... 221  
S
Serial Peripheral Interface (SPI) ....................................... 149  
Software Reset Instruction (SWR)...................................... 69  
Software Simulator (MPLAB SIM)..................................... 201  
Software Stack Pointer, Frame Pointer  
CALL Stack Frame...................................................... 47  
Special Features of the CPU ............................................ 183  
SPI Module  
SPI1 Register Map...................................................... 40  
Symbols Used in Opcode Descriptions............................. 192  
System Control  
Register Map............................................................... 46  
U
T
UART Module  
Temperature and Voltage Specifications  
UART1 Register Map ................................................. 40  
Using the RCON Status Bits............................................... 70  
AC..................................................................... 213, 251  
Timer1............................................................................... 135  
Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ..................... 137  
Timing Characteristics  
V
Voltage Regulator (On-Chip) ............................................ 186  
CLKO and I/O ........................................................... 217  
Timing Diagrams  
W
Watchdog Time-out Reset (WDTR).................................... 69  
Watchdog Timer (WDT)............................................ 183, 187  
Programming Considerations................................... 187  
WWW Address ................................................................. 281  
WWW, On-Line Support ....................................................... 9  
10-bit A/D Conversion............................................... 244  
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0,  
ASAM = 0, SSRC = 000) .................................. 244  
12-bit A/D Conversion (ASAM = 0, SSRC = 000)..... 243  
Brown-out Situations................................................... 69  
External Clock........................................................... 214  
© 2011 Microchip Technology Inc.  
DS70290G-page 279  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
DS70290G-page 280  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
© 2011 Microchip Technology Inc.  
DS70290G-page 281  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
DS70290G  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70290G-page 282  
© 2011 Microchip Technology Inc.  
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
dsPIC 33 FJ 32 GP2 02 T E / SP - XXX  
a)  
dsPIC33FJ32GP202-E/SP:  
General-purpose dsPIC33, 32 KB  
program memory, 28-pin, Extended  
temp., SPDIP package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
33  
=
=
16-bit Digital Signal Controller  
Flash program memory, 3.3V  
Flash Memory Family: FJ  
Product Group:  
Pin Count:  
GP2  
=
=
General purpose family  
General purpose family  
GP3  
02  
03  
=
=
28-pin  
44-pin  
Temperature Range:  
I
E
H
=
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
-40°C to +150°C (High)  
Package:  
SP  
SO  
SS  
ML  
PT  
=
=
=
=
=
=
Skinny Plastic Dual In-Line - 300 mil body (SPDIP)  
Plastic Small Outline - Wide - 7.5 mm body (SOIC)  
Plastic Shrink Small Outline - 5.3 mm body (SSOP)  
Plastic Quad, No Lead Package - 8x8 mm body (QFN)  
Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)  
Plastic Quad, No Lead Package - 6x6 mm body (QFN-S)  
MM  
© 2011 Microchip Technology Inc.  
DS70290G-page 283  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/04/10  
DS70290G-page 284  
© 2011 Microchip Technology Inc.  

相关型号:

DSPIC33FJ32GP203-E/ML

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203-E/MM

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203-E/PT

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203-E/SO

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203-E/SP

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203-H/TSP

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PDIP28, 0.300 INCH, LEAD FREE, PLASTIC, DIP-28
MICROCHIP

DSPIC33FJ32GP203-I/ML

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203-I/MM

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203-I/PT

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203-I/SO

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203-I/SP

High-Performance, 16-Bit Microcontrollers
MICROCHIP

DSPIC33FJ32GP203T-E/ML

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQCC44, 8 X 8 MM, LEAD FREE, PLASTIC, QFN-44
MICROCHIP