DSPIC33FJ64GS406-50I/MR [MICROCHIP]

IC,DSP,16-BIT,CMOS,LLCC,64PIN,PLASTIC;
DSPIC33FJ64GS406-50I/MR
型号: DSPIC33FJ64GS406-50I/MR
厂家: MICROCHIP    MICROCHIP
描述:

IC,DSP,16-BIT,CMOS,LLCC,64PIN,PLASTIC

时钟 外围集成电路
文件: 总462页 (文件大小:3238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610  
16-Bit Digital Signal Controllers with High-Speed PWM,  
ADC and Comparators  
Operating Conditions  
Timers/Output Compare/Input Capture  
• 3.0V to 3.6V, -40ºC to +85ºC, DC to 50 MIPS  
• 3.0V to 3.6V, -40ºC to +125ºC, DC to 40 MIPS  
• Six General Purpose Timers:  
- Five 16-bit and up to two 32-bit timers/counters  
• Four Output Compare (OC) modules Configurable as  
Timers/Counters  
Core: 16-Bit dsPIC33F  
• Code-Efficient (C and Assembly) Architecture  
• Two 40-Bit Wide Accumulators  
• Quadrature Encoder Interface (QEI) module  
Configurable as Timer/Counter  
• Single-Cycle (MAC/MPY) with Dual Data Fetch  
• Single-Cycle Mixed-Sign MUL plus Hardware Divide  
• 32-Bit Multiply Support  
• Four Input Capture (IC) modules  
Communication Interfaces  
• Two UART modules (12.5 Mbps):  
®
Clock Management  
• ±1% Internal Oscillator  
• Programmable PLLs and Oscillator Clock Sources  
• Fail-Safe Clock Monitor (FSCM)  
• Independent Watchdog Timer (WDT)  
• Fast Wake-up and Start-up  
- With support for LIN/J2602 2.0 protocols and IrDA  
• Two 4-Wire SPI modules (15 Mbps)  
• ECAN™ module (1 Mbaud) with ECAN 2.0B Support  
2
• Two I C™ modules (up to 1 Mbaud) with SMBus  
Support  
Direct Memory Access (DMA)  
Power Management  
• 4-Channel DMA with User-Selectable Priority  
Arbitration  
• UART, SPI, ECAN, IC, OC and Timers  
• Low-Power Management modes (Sleep, Idle, Doze)  
• Integrated Power-on Reset and Brown-out Reset  
• 1.7 mA/MHz Dynamic Current (typical)  
• 50 µA IPD Current (typical)  
Input/Output  
• Sink/Source 18 mA on 18 Pins, 10 mA on 1 Pin or  
6 mA on 66 Pins  
High-Speed PWM  
• 5V Tolerant Pins  
• Selectable Open-Drain and Pull-ups  
• 29 External Interrupts  
• Up to 9 PWM Pairs with Independent Timing  
• Dead Time for Rising and Falling Edges  
• 1.04 ns PWM Resolution  
• PWM Support for:  
- DC/DC, AC/DC, Inverters, PFC, Lighting  
- BLDC, PMSM, ACIM, SRM  
• Programmable Fault Inputs  
• Flexible Trigger Configurations for ADC Conversions  
Qualification and Class B Support  
• AEC-Q100 REVG (Grade 1, -40ºC to +125ºC)  
• Class B Safety Library, IEC 60730, VDE Certified  
Debugger Development Support  
Advanced Analog Features  
• High-Speed ADC module:  
- 10-bit resolution with up to two Successive  
Approximation Register (SAR) converters  
(up to 4 Msps)  
• In-Circuit and In-Application Programming  
• Two Program and Two Complex Data Breakpoints  
• IEEE 1149.2 Compatible (JTAG) Boundary Scan  
• Trace and Run-Time Watch  
- Up to 24 input channels grouped into  
12 conversion pairs plus two voltage reference  
monitoring inputs  
- Dedicated result buffer for each analog channel  
• Flexible and Independent ADC Trigger Sources  
• Up to 4 High-Speed Comparators with Direct  
Connection to the PWM module:  
- 10-bit Digital-to-Analog Converter (DAC) for each  
comparator  
- DAC reference output  
- Programmable references with 1024 voltage points  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 1  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610  
PRODUCT FAMILIES  
The device names, pin counts, memory sizes and  
peripheral availability of each device are listed in Table 1.  
The following pages show their pinout diagrams.  
TABLE 1:  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
CONTROLLER FAMILIES  
ADC  
Device  
dsPIC33FJ32GS406 64 32 4K  
dsPIC33FJ32GS606 64 32 4K  
5
5
4
4
4
4
2
2
1
2
2
2
0
0
0
0
6x2  
6x2  
0
4
5
5
0
1
2
2
1
2
5
6
16 58 PT,  
MR  
16 58 PT,  
MR  
dsPIC33FJ32GS608 80 32 4K  
dsPIC33FJ32GS610 100 32 4K  
5
5
4
4
4
4
2
2
2
2
2
2
0
0
0
0
8x2  
9x2  
4
4
5
5
1
1
2
2
2
2
6
6
18 74 PT  
24 85 PT,  
PF  
dsPIC33FJ64GS406 64 64 8K  
5
5
4
4
4
4
2
2
1
2
2
2
0
1
0
4
6x2  
6x2  
0
4
5
5
0
1
2
2
1
2
5
6
16 58 PT,  
MR  
(1)  
dsPIC33FJ64GS606 64 64 9K  
16 58 PT,  
MR  
(1)  
(1)  
dsPIC33FJ64GS608 80 64 9K  
dsPIC33FJ64GS610 100 64 9K  
5
5
4
4
4
4
2
2
2
2
2
2
1
1
4
4
8x2  
9x2  
4
4
5
5
1
1
2
2
2
2
6
6
18 74 PT  
24 85 PT,  
PF  
Note 1: RAM size is inclusive of 1-Kbyte DMA RAM.  
DS7000591F-page 2  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams  
64-Pin TQFP  
= Pins are up to 5V tolerant  
PWM3H/RE5  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/INT4/RD11  
IC3/INDX1/FLT3/INT3/RD10  
IC2/FLT2/U1CTS/INT2/RD9  
IC1/FLT1/SYNCI1/INT1/RD8  
VSS  
PWM4L/RE6  
PWM4H/RE7  
2
3
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
SDO2/FLT10/CN10/RG8  
MCLR  
4
5
6
7
SS2/FLT9/SYNCI2/CN11/RG9  
VSS  
8
dsPIC33FJ32GS406  
dsPIC33FJ64GS406  
9
OSC2/REFCLKO/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/AQEB1/CN7/RB5  
AN4/AQEA1/CN6/RB4  
AN3/AINDX1/CN5/RB3  
AN2/ASS1/CN4/RB2  
PGEC3/AN1/CN3/RB1  
PGED3/AN0/CN2/RB0  
SCL1/RG2  
SDA1/RG3  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 3  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
64-Pin QFN  
64 6362 61 6059 58 57 56 55 54 53 52 51 5049  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/INT4/RD11  
IC3/INDX1/FLT3/INT3/RD10  
IC2/FLT2/U1CTS/INT2/RD9  
IC1/FLT1/SYNCI1/INT1/RD8  
VSS  
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
SDO2/FLT10/CN10/RG8  
MCLR  
SS2/FLT9/SYNCI2/CN11/RG9  
VSS  
dsPIC33FJ32GS406  
dsPIC33FJ64GS406  
OSC2/REFCLKO/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
AN5/AQEB1/CN7/RB5  
AN4/AQEA1/CN6/RB4  
AN3/AINDX1/CN5/RB3  
AN2/ASS1/CN4/RB2  
PGEC3/AN1/CN3/RB1  
PGED3/AN0/CN2/RB0  
SCL1/RG2  
SDA1/RG3  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
17 18 19 20 21 2223 24 2526 27 2829 30 31 32  
Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
DS7000591F-page 4  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams (Continued)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/INT4/RD11  
IC3/INDX1/FLT3/INT3/RD10  
IC2/FLT2/U1CTS/INT2/RD9  
IC1/FLT1/SYNCI1/INT1/RD8  
VSS  
2
3
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
4
5
SDO2/FLT10/CN10/RG8  
MCLR  
6
7
SS2/FLT9/SYNCI2/T5CK/CN11/RG9  
VSS  
8
dsPIC33FJ32GS606  
9
OSC2/REFCLKO/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/CMP3B/AQEB1/CN7/RB5  
AN4/CMP2C/CMP3A/AQEA1/CN6/RB4  
AN3/CMP2B/AINDX1/CN5/RB3  
AN2/CMP1C/CMP2A/ASS1/CN4/RB2  
PGEC3/AN1/CMP1B/CN3/RB1  
PGED3/AN0/CMP1A/CMP4C/CN2/RB0  
SCL1/RG2  
SDA1/RG3  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 5  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams (Continued)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/INT4/RD11  
IC3/INDX1/FLT3/INT3/RD10  
IC2/FLT2/U1CTS/INT2/RD9  
IC1/FLT1/SYNCI1/INT1/RD8  
VSS  
2
3
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
4
5
SDO2/FLT10/CN10/RG8  
MCLR  
6
7
SS2/FLT9/SYNCI2/T5CK/CN11/RG9  
VSS  
8
dsPIC33FJ64GS606  
9
OSC2/REFCLKO/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/CMP3B/AQEB1/CN7/RB5  
AN4/CMP2C/CMP3A/AQEA1/CN6/RB4  
AN3/CMP2B/AINDX1/CN5/RB3  
AN2/CMP1C/CMP2A/ASS1/CN4/RB2  
PGEC3/AN1/CMP1B/CN3/RB1  
PGED3/AN0/CMP1A/CMP4C/CN2/RB0  
SCL1/RG2  
SDA1/RG3  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
DS7000591F-page 6  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
64-Pin QFN  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/INT4/RD11  
IC3/INDX1/FLT3/INT3/RD10  
IC2/FLT2/U1CTS/INT2/RD9  
IC1/FLT1/SYNCI1/INT1/RD8  
VSS  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
3
4
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
5
SDO2/FLT10/CN10/RG8  
MCLR  
6
7
8
SS2/FLT9/SYNCI2/T5CK/CN11/RG9  
VSS  
dsPIC33FJ32GS606  
OSC2/REFCLKO/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/CMP3B/AQEB1/CN7/RB5  
AN4/CMP2C/CMP3A/AQEA1/CN6/RB4  
AN3/CMP2B/AINDX1/CN5/RB3  
AN2/CMP1C/CMP2A/ASS1/CN4/RB2  
PGEC3/AN1/CMP1B/CN3/RB1  
PGED3/AN0/CMP1A/CMP4C/CN2/RB0  
SCL1/RG2  
SDA1/RG3  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 7  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
64-Pin QFN  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/INT4/RD11  
IC3/INDX1/FLT3/INT3/RD10  
IC2/FLT2/U1CTS/INT2/RD9  
IC1/FLT1/SYNCI1/INT1/RD8  
VSS  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
3
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
4
5
SDO2/FLT10/CN10/RG8  
MCLR  
6
7
SS2/FLT9/SYNCI2/T5CK/CN11/RG9  
VSS  
8
9
dsPIC33FJ64GS606  
OSC2/REFCLKO/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/CMP3B/AQEB1/CN7/RB5  
AN4/CMP2C/CMP3A/AQEA1/CN6/RB4  
AN3/CMP2B/AINDX1/CN5/RB3  
AN2/CMP1C/CMP2A/ASS1/CN4/RB2  
PGEC3/AN1/CMP1B/CN3/RB1  
PGED3/AN0/CMP1A/CMP4C/CN2/RB0  
SCL1/RG2  
SDA1/RG3  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
DS7000591F-page 8  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
80-Pin TQFP  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
2
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/RD11  
IC3/INDX1/FLT3/RD10  
IC2/FLT2/RD9  
3
AN16/T2CK/RC1  
AN17/T3CK/RC2  
4
5
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
SDO2/FLT10/CN10/RG8  
MCLR  
6
IC1/FLT1/SYNCI1/RD8  
SDA2/INT4/FLT19/RA15  
7
8
SCL2/INT3/FLT20/RA14  
VSS  
9
SS2/FLT9/T5CK/CN11/RG9  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
dsPIC33FJ32GS608  
OSC2/REFCLKO/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
TMS/FLT13/INT1/RE8  
VDD  
SCL1/RG2  
SDA1/RG3  
TDO/FLT14/INT2/RE9  
AN5/CMP3B/AQEB1/CN7/RB5  
AN4/CMP2C/CMP3A/AQEA1/CN6/RB4  
AN3/CMP2B/AINDX1/CN5/RB3  
SCK1/INT0/RF6  
SDI1/RF7  
AN2/CMP1C/CMP2A/ASS1/CN4/RB2  
PGEC3/AN1/CMP1B/CN3/RB1  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
PGED3/AN0/CMP1A/CMP4C/CN2/RB0  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 9  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
80-Pin TQFP  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/RD11  
IC3/INDX1/FLT3/RD10  
IC2/FLT2/RD9  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
2
3
AN16/T2CK/RC1  
AN17/T3CK/RC2  
4
5
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
SDO2/FLT10/CN10/RG8  
MCLR  
6
IC1/FLT1/SYNCI1/RD8  
SDA2/INT4/FLT19/RA15  
7
8
SCL2/INT3/FLT20/RA14  
VSS  
9
SS2/FLT9/T5CK/CN11/RG9  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
dsPIC33FJ64GS608  
OSC2/REFCLKO/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
TMS/FLT13/INT1/RE8  
TDO/FLT14/INT2/RE9  
AN5/CMP3B/AQEB1/CN7/RB5  
AN4/CMP2C/CMP3A/AQEA1/CN6/RB4  
AN3/CMP2B/AINDX1/CN5/RB3  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN2/CMP1C/CMP2A/ASS1/CN4/RB2  
PGEC3/AN1/CMP1B/CN3/RB1  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
PGED3/AN0/CMP1A/CMP4C/CN2/RB0  
DS7000591F-page 10  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
100-Pin TQFP  
Vss  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
SYNCI1/RG15  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/CN1/RC13  
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/RD11  
IC3/INDX1/FLT3/RD10  
IC2/FLT2/RD9  
VDD  
2
3
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
4
5
AN16/T2CK/RC1  
AN17/T3CK/RC2  
AN18/T4CK/RC3  
AN19/T5CK/RC4  
6
7
IC1/FLT1/RD8  
INT4/FLT19/SYNCI4/RA15  
8
9
INT3/FLT20/RA14  
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
SDO2/FLT10/CN10/RG8  
MCLR  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
OSC2/REFCLKO/CLKO/RC15  
dsPIC33FJ32GS610  
OSC1/CLKIN/RC12  
VDD  
SS2/FLT9/CN11/RG9  
VSS  
TDO/RA5  
VDD  
TMS/RA0  
TDI/RA4  
SDA2/FLT21/RA3  
AN20/FLT13/INT1/RE8  
AN21/FLT14/INT2/RE9  
SCL2/FLT22/RA2  
SCL1/RG2  
AN5/CMP3B/AQEB1/CN7/RB5  
AN4/CMP2C/CMP3A/AQEA1/CN6/RB4  
AN3/CMP2B/AINDX1/CN5/RB3  
AN2/CMP1C/CMP2A/ASS1/CN4/RB2  
PGEC3/AN1/CMP1B/CN3/RB1  
PGED3/AN0/CMP1A/CMP4C/CN2/RB0  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 11  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
100-Pin TQFP  
Vss  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
SYNCI1/RG15  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/CN1/RC13  
OC1/QEB1/FLT5/RD0  
IC4/QEA1/FLT4/RD11  
IC3/INDX1/FLT3/RD10  
IC2/FLT2/RD9  
VDD  
2
3
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
4
5
AN16/T2CK/RC1  
AN17/T3CK/RC2  
AN18/T4CK/RC3  
AN19/T5CK/RC4  
6
7
IC1/FLT1/RD8  
INT4/FLT19/SYNCI4/RA15  
8
9
INT3/FLT20/RA14  
SCK2/FLT12/CN8/RG6  
SDI2/FLT11/CN9/RG7  
SDO2/FLT10/CN10/RG8  
MCLR  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
OSC2/REFCLKO/CLKO/RC15  
OSC1/CLKIN/RC12  
dsPIC33FJ64GS610  
VDD  
SS2/FLT9/CN11/RG9  
TDO/RA5  
VSS  
VDD  
TDI/RA4  
SDA2/FLT21/RA3  
TMS/RA0  
AN20/FLT13/INT1/RE8  
AN21/FLT14/INT2/RE9  
SCL2/FLT22/RA2  
SCL1/RG2  
AN5/CMP3B/AQEB1/CN7/RB5  
AN4/CMP2C/CMP3A/AQEA1/CN6/RB4  
AN3/CMP2B/AINDX1/CN5/RB3  
AN2/CMP1C/CMP2A/ASS1/CN4/RB2  
PGEC3/AN1/CMP1B/CN3/RB1  
PGED3/AN0/CMP1A/CMP4C/CN2/RB0  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
DS7000591F-page 12  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Table of Contents  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Product Families ............................................................... 2  
1.0 Device Overview ........................................................................................................................................................................ 17  
2.0 Guidelines for Getting Started with 16-Bit Digital Signal Controllers.......................................................................................... 23  
3.0 CPU............................................................................................................................................................................................ 33  
4.0 Memory Organization................................................................................................................................................................. 45  
5.0 Flash Program Memory............................................................................................................................................................ 109  
6.0 Resets ..................................................................................................................................................................................... 115  
7.0 Interrupt Controller ................................................................................................................................................................... 123  
8.0 Direct Memory Access (DMA).................................................................................................................................................. 179  
9.0 Oscillator Configuration............................................................................................................................................................ 189  
10.0 Power-Saving Features............................................................................................................................................................ 203  
11.0 I/O Ports ................................................................................................................................................................................... 213  
12.0 Timer1 ...................................................................................................................................................................................... 217  
13.0 Timer2/3/4/5 features .............................................................................................................................................................. 219  
14.0 Input Capture............................................................................................................................................................................ 225  
15.0 Output Compare....................................................................................................................................................................... 227  
16.0 High-Speed PWM..................................................................................................................................................................... 231  
17.0 Quadrature Encoder Interface (QEI) Module ........................................................................................................................... 261  
18.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 265  
2
19.0 Inter-Integrated Circuit (I C™) ................................................................................................................................................ 271  
20.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 279  
21.0 Enhanced CAN (ECAN™) Module........................................................................................................................................... 285  
22.0 High-Speed, 10-Bit Analog-to-Digital Converter (ADC)............................................................................................................ 313  
23.0 High-Speed Analog Comparator .............................................................................................................................................. 345  
24.0 Special Features ...................................................................................................................................................................... 349  
25.0 Instruction Set Summary.......................................................................................................................................................... 357  
26.0 Development Support............................................................................................................................................................... 365  
27.0 Electrical Characteristics.......................................................................................................................................................... 369  
28.0 50 MIPS Electrical Characteristics ........................................................................................................................................... 417  
29.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 423  
30.0 Packaging Information.............................................................................................................................................................. 427  
Appendix A: Migrating from dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 to dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 Devices................................................................................................................... 441  
Appendix B: Revision History............................................................................................................................................................. 442  
Index ................................................................................................................................................................................................. 449  
The Microchip Web Site..................................................................................................................................................................... 457  
Customer Change Notification Service .............................................................................................................................................. 457  
Customer Support.............................................................................................................................................................................. 457  
Product Identification System ............................................................................................................................................................ 459  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 13  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS7000591F-page 14  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Referenced Sources  
This device data sheet is based on the following individ-  
ual chapters of the “dsPIC33/PIC24 Family Reference  
Manual”. These documents should be considered as the  
primary reference for the operation of a particular module  
or device feature.  
Note 1: To access the documents listed below,  
browse to the documentation section  
of the dsPIC33FJ64GS610 product  
page of the Microchip web site  
(www.microchip.com) to select a family  
reference manual section from the  
following list.  
In addition to parameters, features and  
other documentation, the resulting page  
provides links to the related family  
reference manual sections.  
“CPU” (DS70204)  
“Data Memory” (DS70202)  
“Program Memory” (DS70203)  
“Flash Programming” (DS70191)  
“Reset” (DS70192)  
“Watchdog Timer (WDT) and Power-Saving Modes” (DS70196)  
“I/O Ports” (DS70193)  
“Timers” (DS70205)  
“Input Capture” (DS70198)  
“Output Compare” (DS70005157)  
“Quadrature Encoder Interface (QEI)” (DS70208)  
“Analog-to-Digital Converter (ADC)” (DS70183)  
“UART” (DS70188)  
“Serial Peripheral Interface (SPI)” (DS70206)  
“Inter-Integrated Circuit™ (I2C™)” (DS70000195)  
“ECAN™” (DS70185)  
“Direct Memory Access (DMA)” (DS70182)  
“CodeGuard™ Security” (DS70199)  
“Programming and Diagnostics” (DS70207)  
“Device Configuration” (DS70194)  
“Development Tool Support” (DS70200)  
“Oscillator (Part IV)” (DS70307)  
“High-Speed PWM” (DS70000323)  
“High-Speed 10-Bit ADC” (DS70000321)  
“High-Speed Analog Comparator” (DS70296)  
“Interrupts (Part V)” (DS70597)  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 15  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS7000591F-page 16  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The  
dsPIC33FJ32GS406/606/608/610  
and  
1.0  
DEVICE OVERVIEW  
dsPIC33FJ64GS406/606/608/610 families of devices  
contain extensive Digital Signal Processor (DSP) func-  
tionality with a high-performance 16-bit microcontroller  
(MCU) architecture.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to the latest sections in the  
Figure 1-1 shows a general block diagram of the core  
and peripheral modules in the dsPIC33FJ32GS406/  
606/608/610 and dsPIC33FJ64GS406/606/608/610  
devices. Table 1-1 lists the functions of the various pins  
shown in the pinout diagrams.  
“dsPIC33/PIC24  
Family  
Reference  
Manual”, which are available from the  
Microchip web site (www.microchip.com).  
The information in this data sheet  
supersedes the information in the FRM.  
This document contains device-specific information for  
the following dsPIC33F Digital Signal Controller (DSC)  
devices:  
• dsPIC33FJ32GS406  
• dsPIC33FJ32GS606  
• dsPIC33FJ32GS608  
• dsPIC33FJ32GS610  
• dsPIC33FJ64GS406  
• dsPIC33FJ64GS606  
• dsPIC33FJ64GS608  
• dsPIC33FJ64GS610  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 17  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 1-1:  
DEVICE BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
PORTA  
PORTB  
Controller  
DMA  
RAM  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
16  
23  
PCU PCH  
PCL  
Y RAM  
23  
Program Counter  
Address  
Latch  
DMA  
Controller  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
16  
23  
16  
16  
16  
PORTC  
PORTD  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
PORTE  
PORTF  
PORTG  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
Power-up  
Timer  
W Register Array  
Divide Support  
16  
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
Oscillator  
Start-up Timer  
Power-on  
Reset  
FRC/LPRC  
Oscillators  
16-Bit ALU  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VCAP  
VDD, VSS  
MCLR  
Timers  
1-5  
PWM  
9 x 2  
ECAN1  
QEI1,2  
UART1/2  
ADC1  
CNx  
OC1-4  
I2C1/2  
Analog  
Comparator 1-4  
SPI1,2  
IC1-4  
Note:  
Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins and features  
present on each device.  
DS7000591F-page 18  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 1-1:  
Pin Name  
AN0-AN23  
PINOUT I/O DESCRIPTIONS  
Pin  
Type  
Buffer  
Type  
Description  
I
Analog Analog input channels.  
CLKI  
I
ST/CMOS External clock source input. Always associated with OSC1 pin function.  
CLKO  
O
Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes.  
Always associated with OSC2 pin function.  
OSC1  
OSC2  
I
ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS  
otherwise.  
I/O  
Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes.  
SOSCI  
I
ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise.  
SOSCO  
O
32.768 kHz low-power oscillator crystal output.  
CN0-CN23  
I
ST  
Change Notification inputs. Can be software programmed for internal  
weak pull-ups on all inputs.  
C1RX  
C1TX  
I
O
ST  
ECAN1 bus receive pin.  
ECAN1 bus transmit pin.  
IC1-IC4  
I
ST  
Capture Inputs 1 through 4.  
INDX1, INDX2, AINDX1  
QEA1, QEA2, AQEA1  
I
I
ST  
ST  
Quadrature Encoder Index Pulse input.  
Quadrature Encoder Phase A input in QEI mode.  
Auxiliary Timer External Clock/Gate input in Timer mode.  
Quadrature Encoder Phase A input in QEI mode.  
Auxiliary Timer External Clock/Gate input in Timer mode.  
QEB1, QEB2, AQEB1  
I
ST  
UPDN1  
O
CMOS Position Up/Down Counter Direction State.  
OCFA  
OC1-OC4  
I
O
ST  
Compare Fault A input.  
Compare Outputs 1 through 4.  
INT0  
INT1  
INT2  
INT3  
INT4  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
External Interrupt 0.  
External Interrupt 1.  
External Interrupt 2.  
External Interrupt 3.  
External Interrupt 4.  
RA0-RA15  
RB0-RB15  
RC0-RC15  
RD0-RD15  
RE0-RE9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTA is a bidirectional I/O port.  
PORTB is a bidirectional I/O port.  
PORTC is a bidirectional I/O port.  
PORTD is a bidirectional I/O port.  
PORTE is a bidirectional I/O port.  
PORTF is a bidirectional I/O port.  
PORTG is a bidirectional I/O port.  
RF0-RF13  
RG0-RG15  
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
Timer1 external clock input.  
Timer2 external clock input.  
Timer3 external clock input.  
Timer4 external clock input.  
Timer5 external clock input.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = Transistor-Transistor Logic  
Analog = Analog input  
P = Power  
I = Input  
O = Output  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 19  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
Description  
Type  
U1CTS  
U1RTS  
U1RX  
I
O
I
O
I
O
I
O
ST  
ST  
ST  
ST  
UART1 Clear-to-Send.  
UART1 Request-to-Send.  
UART1 receive.  
U1TX  
UART1 transmit.  
U2CTS  
U2RTS  
U2RX  
UART2 Clear-to-Send.  
UART2 Request-to-Send.  
UART2 receive.  
U2TX  
UART2 transmit.  
SCK1  
SDI1  
SDO1  
SS1, ASS1  
SCK2  
SDI2  
I/O  
I
O
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for SPI1.  
SPI1 data in.  
SPI1 data out.  
SPI1 slave synchronization or frame pulse I/O.  
Synchronous serial clock input/output for SPI2.  
SPI2 data in.  
SDO2  
SS2  
O
I/O  
SPI2 data out.  
SPI2 slave synchronization or frame pulse I/O.  
ST  
SCL1  
SDA1  
SCL2  
SDA2  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for I2C1.  
Synchronous serial data input/output for I2C1.  
Synchronous serial clock input/output for I2C2.  
Synchronous serial data input/output for I2C2.  
TMS  
TCK  
TDI  
I
I
I
TTL  
TTL  
TTL  
JTAG Test mode select pin.  
JTAG test clock input pin.  
JTAG test data input pin.  
JTAG test data output pin.  
TDO  
O
CMP1A  
CMP1B  
CMP1C  
CMP1D  
CMP2A  
CMP2B  
CMP2C  
CMP2D  
CMP3A  
CMP3B  
CMP3C  
CMP3D  
CMP4A  
CMP4B  
CMP4C  
CMP4D  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Analog Comparator 1 Channel A.  
Analog Comparator 1 Channel B.  
Analog Comparator 1 Channel C.  
Analog Comparator 1 Channel D.  
Analog Comparator 2 Channel A  
Analog Comparator 2 Channel B.  
Analog Comparator 2 Channel C.  
Analog Comparator 2 Channel D.  
Analog Comparator 3 Channel A.  
Analog Comparator 3 Channel B.  
Analog Comparator 3 Channel C.  
Analog Comparator 3 Channel D.  
Analog Comparator 4 Channel A.  
Analog Comparator 4 Channel B.  
Analog Comparator 4 Channel C.  
Analog Comparator 4 Channel D.  
DACOUT  
EXTREF  
REFCLK  
O
I
DAC output voltage.  
Analog External voltage reference input for the reference DACs.  
REFCLK output signal is a postscaled derivative of the system clock.  
O
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = Transistor-Transistor Logic  
Analog = Analog input  
P = Power  
I = Input  
O = Output  
DS7000591F-page 20  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 1-1:  
Pin Name  
FLT1-FLT23  
SYNCI1-SYNCI4  
SYNCO1-SYNCO2  
PWM1L  
PWM1H  
PWM2L  
PWM2H  
PWM3L  
PWM3H  
PWM4L  
PWM4H  
PWM5L  
PWM5H  
PWM6L  
PWM6H  
PWM7L  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Type  
Buffer  
Type  
Description  
I
I
ST  
ST  
Fault inputs to PWM module.  
External synchronization signal to PWM master time base.  
PWM master time base for external device synchronization.  
PWM1 low output.  
PWM1 high output.  
PWM2 low output.  
PWM2 high output.  
PWM3 low output.  
PWM3 high output.  
PWM4 low output.  
PWM4 high output.  
PWM5 low output.  
PWM5 high output.  
PWM6 low output.  
PWM6 high output.  
PWM7 low output.  
PWM7 high output.  
PWM8 low output.  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
PWM7H  
PWM8L  
PWM8H  
PWM9L  
PWM8 high output.  
PWM9 low output.  
PWM9 high output.  
PWM9H  
PGED1  
PGEC1  
PGED2  
PGEC2  
PGED3  
PGEC3  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
Data I/O pin for Programming/Debugging Communication Channel 1.  
Clock input pin for Programming/Debugging Communication Channel 1.  
Data I/O pin for Programming/Debugging Communication Channel 2.  
Clock input pin for Programming/Debugging Communication Channel 2.  
Data I/O pin for Programming/Debugging Communication Channel 3.  
Clock input pin for Programming/Debugging Communication Channel 3.  
I
I/O  
I
I/O  
I
MCLR  
I/P  
ST  
Master Clear (Reset) input. This pin is an active-low Reset to the  
device.  
AVDD  
AVSS  
VDD  
P
P
P
P
P
P
P
Positive supply for analog modules.  
Ground reference for analog modules.  
Positive supply for peripheral logic and I/O pins.  
CPU logic filter capacitor connection.  
Ground reference for logic and I/O pins.  
VCAP  
VSS  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = Transistor-Transistor Logic  
Analog = Analog input  
P = Power  
I = Input  
O = Output  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 21  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS7000591F-page 22  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
DIGITAL SIGNAL  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS, is required.  
CONTROLLERS  
Consider the following criteria when using decoupling  
capacitors:  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in  
this data sheet, refer to the “dsPIC33/  
PIC24 Family Reference Manual”.  
Please see the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33/PIC24 Family Reference Man-  
ual sections. The information in this  
data sheet supersedes the information  
in the FRM.  
Value and type of capacitor: Recommendation of  
0.1 µF (100 nF), 10-20V. This capacitor should be a  
low-ESR and have resonance frequency in the  
range of 20 MHz and higher. It is recommended that  
ceramic capacitors be used.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close to  
the pins as possible. It is recommended to place the  
capacitors on the same side of the board as the  
device. If space is constricted, the capacitor can be  
placed on another layer on the PCB using a via;  
however, ensure that the trace length from the pin to  
the capacitor is within one-quarter inch (6 mm) in  
length.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise, upward of tens  
of MHz, add a second ceramic-type capacitor in par-  
allel to the above described decoupling capacitor.  
The value of the second capacitor can be in the  
range of 0.01 µF to 0.001 µF. Place this second  
capacitor next to the primary decoupling capacitor.  
In high-speed circuit designs, consider implement-  
ing a decade pair of capacitances as close to the  
power and ground pins as possible. For example,  
0.1 µF in parallel with 0.001 µF.  
2.1  
Basic Connection Requirements  
Getting started with the dsPIC33FJ32GS406/606/  
608/610 and dsPIC33FJ64GS406/606/608/610  
family of 16-bit Digital Signal Controllers (DSC)  
requires attention to a minimal set of device pin  
connections before proceeding with development.  
The following is a list of pin names, which must  
always be connected:  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first, and  
then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB track inductance.  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
• All AVDD and AVSS pins (regardless if ADC module  
is not used)  
(see Section 2.2 “Decoupling Capacitors”)  
• VCAP  
(see Section 2.3 “Capacitor on Internal Voltage  
Regulator (VCAP)”)  
• MCLR pin  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
• OSC1 and OSC2 pins when external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 23  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The placement of this capacitor should be close to the  
VCAP. It is recommended that the trace length not  
exceed one-quarter inch (6 mm). Refer to Section 24.2  
“On-Chip Voltage Regulator” for details.  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
0.1 µF  
22 µF  
Ceramic  
VDD  
Tantalum  
2.4  
Master Clear (MCLR) Pin  
R
C
The MCLR pin provides for two specific device  
functions:  
R1  
MCLR  
• Device Reset  
• Device programming and debugging  
dsPIC33F  
During device programming and debugging, the  
resistance and capacitance that can be added to the  
pin must be considered. Device programmers and  
debuggers drive the MCLR pin. Consequently,  
specific voltage levels (VIH and VIL) and fast signal  
transitions must not be adversely affected. Therefore,  
specific values of R and C will need to be adjusted  
based on the application and PCB requirements.  
VDD  
VSS  
VDD  
VSS  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
(1)  
L1  
For example, as shown in Figure 2-2, it is  
recommended that the capacitor C, be isolated from  
the MCLR pin during programming and debugging  
operations.  
Note 1: As an option, instead of a hard-wired connection, an  
inductor (L1) can be substituted between VDD and  
AVDD to improve ADC noise rejection. The inductor  
impedance should be less than 1and the inductor  
capacity greater than 10 mA.  
Place the components shown in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
Where:  
FCNV  
2
f = -------------  
(i.e., ADC conversion rate/2)  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS(1,2)  
1
f = -----------------------  
2LC  
VDD  
2  
1
L = ---------------------  
2f C  
R
R1  
MCLR  
2.2.1  
TANK CAPACITORS  
dsPIC33F  
JP  
C
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including DSCs to supply a local  
power source. The value of the tank capacitor should  
be determined based on the trace resistance that con-  
nects the power supply source to the device and the  
maximum current drawn by the device in the applica-  
tion. In other words, select the tank capacitor so that it  
meets the acceptable voltage sag at the device. Typical  
values range from 4.7 µF to 47 µF.  
Note 1: R 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2: R1 470will limit any current flowing into  
MCLR from the external capacitor C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
2.3  
Capacitor on Internal Voltage  
Regulator (VCAP)  
A low-ESR (< 0.5 Ohms) capacitor is required on the  
VCAP pin, which is used to stabilize the voltage  
regulator output voltage. The VCAP pin must not be  
connected to VDD, and must have a minimum capacitor  
of 22 µF, 16V connected to ground. The type can be  
ceramic or tantalum. Refer to Section 27.0 “Electrical  
Characteristics” for additional information.  
DS7000591F-page 24  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
2.5  
ICSP Pins  
2.6  
External Oscillator Pins  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming™ (ICSP™) and debugging pur-  
poses. It is recommended to keep the trace length  
between the ICSP connector and the ICSP pins on the  
device as short as possible. If the ICSP connector is  
expected to experience an ESD event, a series resistor  
is recommended, with the value in the range of a few  
tens of Ohms, not to exceed 100 Ohms.  
Many DSCs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 9.0 “Oscillator  
Configuration” for details).  
The oscillator circuit should be placed on the same  
side of the board as the device. Also, place the  
oscillator circuit close to the respective oscillator pins,  
not exceeding one-half inch (12 mm) distance  
between them. The load capacitors should be placed  
next to the oscillator itself, on the same side of the  
board. Use a grounded copper pour around the  
oscillator circuit to isolate them from surrounding  
circuits. The grounded copper pour should be routed  
directly to the MCU ground. Do not run any signal  
traces or power traces inside the ground pour. Also, if  
using a two-sided board, avoid any traces on the  
other side of the board where the crystal is placed. A  
suggested layout is shown in Figure 2-3.  
Pull-up resistors, series diodes, and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
Ensure that the “Communication Channel Select” (i.e.,  
PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP to  
MPLAB® ICD 3 or MPLAB REAL ICE™.  
For more information on ICD 3 and REAL ICE  
connection requirements, refer to the following  
documents that are available on the Microchip web  
site.  
“Using MPLAB® ICD 3” (poster) (DS51765)  
“MPLAB® ICD 3 Design Advisory” (DS51764)  
“MPLAB® REAL ICE™ In-Circuit Debugger  
User’s Guide” (DS51616)  
“Using MPLAB® REAL ICE™” (poster) (DS51749)  
Main Oscillator  
Guard Ring  
13  
14  
15  
16  
17  
18  
Guard Trace  
Secondary  
Oscillator  
19  
20  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 25  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
If your application needs to use certain Analog-to-  
2.7  
Oscillator Value Conditions on  
Device Start-up  
Digital pins as analog input pins during the debug  
session, the user application must clear the  
corresponding bits in the ADPCFG and ADPCFG2  
registers during initialization of the ADC module.  
If the PLL of the target device is enabled and  
configured for the device start-up oscillator, the  
maximum oscillator source frequency must be limited  
to 4 MHz < FIN < 8 MHz to comply with device PLL  
start-up conditions. This means that if the external  
oscillator frequency is outside this range, the  
application must start-up in the FRC mode first. The  
default PLL settings after a POR with an oscillator  
frequency outside this range will violate the device  
operating speed.  
When MPLAB ICD 3 or REAL ICE is used as a  
programmer, the user application firmware must  
correctly configure the ADPCFG and ADPCFG2  
registers. Automatic initialization of these registers is  
only done during debugger operation. Failure to  
correctly configure the register(s) will result in all  
Analog-to-Digital pins being recognized as analog input  
pins, resulting in the port value being read as a logic ‘0’,  
which may affect user application functionality.  
Once the device powers up, the application firmware  
can initialize the PLL SFRs, CLKDIV and PLLDBF to a  
suitable value, and then perform a clock switch to the  
Oscillator + PLL clock source. Note that clock switching  
must be enabled in the device Configuration Word.  
2.9  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state.  
2.8  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
Alternatively, connect a 1k to 10k resistor between VSS  
and unused pins and drive the output to logic low.  
2.10 Typical Application Connection  
Examples  
If MPLAB ICD 3 or REAL ICE is selected as a  
debugger, it automatically initializes all of the Analog-  
to-Digital input pins (ANx) as “digital” pins, by setting all  
bits in the ADPCFG and ADPCFG2 registers.  
Examples of typical application connections are shown  
in Figure 2-4 through Figure 2-11.  
The bits in the registers that correspond to the Analog-to-  
Digital pins that are initialized by MPLAB ICD 2, ICD 3, or  
REAL ICE, must not be cleared by the user application  
firmware; otherwise, communication errors will result  
between the debugger and the device.  
DS7000591F-page 26  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 2-4:  
DIGITAL PFC  
IPFC  
VHV_BUS  
|VAC|  
k
1
k
3
VAC  
FET  
Driver  
k
2
ADC Channel  
ADC Channel  
PWM  
Output  
ADC Channel  
dsPIC33FJ32GS406  
FIGURE 2-5:  
BOOST CONVERTER IMPLEMENTATION  
IPFC  
VINPUT  
VOUTPUT  
k
1
k
3
FET  
Driver  
k
2
ADC Channel  
ADC  
Channel  
PWM  
Output  
ADC Channel  
dsPIC33FJ32GS406  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 27  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 2-6:  
SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER  
12V Input  
5V Output  
I
5V  
FET  
Driver  
k
k
k
7
2
1
ADC  
Channel  
Analog  
Comp.  
ADC  
Channel  
dsPIC33FJ32GS606  
FIGURE 2-7:  
MULTIPHASE SYNCHRONOUS BUCK CONVERTER  
3.3V Output  
12V Input  
k
6
FET  
Driver  
FET  
Driver  
k
7
ADC  
Channel  
PWM  
PWM  
FET  
Driver  
k
k
k
Analog Comparator  
3
4
5
dsPIC33FJ32GS608  
Analog Comparator  
Analog Comparator  
ADC Channel  
DS7000591F-page 28  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 2-8:  
OFF-LINE UPS  
VDC  
Full-Bridge Inverter  
Push-Pull Converter  
V
OUT  
+
-
VBAT  
+
VOUT  
GND  
GND  
FET  
Driver  
FET  
FET  
FET  
FET  
FET  
Driver  
k
k
k
k
5
2
1
4
Driver Driver Driver Driver  
PWM  
ADC  
PWM ADC ADC  
or  
PWM PWM  
PWM PWM  
Analog Comp.  
k
ADC  
ADC  
3
dsPIC33FJ64GS610  
PWM  
ADC  
FET  
Driver  
k
6
+
Battery Charger  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 29  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 2-9:  
INTERLEAVED PFC  
VOUT+  
|VAC|  
k
VAC  
4
k
3
k
k
2
1
VOUT-  
FET  
Driver  
FET  
Driver  
ADC Channel  
ADC Channel  
PWM ADC  
Channel  
PWM  
ADC  
Channel  
ADC  
Channel  
dsPIC33FJ32GS608  
DS7000591F-page 30  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 2-10:  
PHASE-SHIFTED FULL-BRIDGE CONVERTER  
VIN+  
Gate 6  
Gate 3  
Gate 1  
VOUT+  
VOUT-  
S1  
S3  
Gate 2  
VIN-  
Gate 4  
Gate 5  
Gate 5  
FET  
Driver  
k
2
k
1
Analog  
Ground  
Gate 1  
S1  
FET  
Driver  
PWM  
PWM  
ADC  
Channel  
PWM  
ADC  
Channel  
Gate 3  
S3  
dsPIC33FJ32GS606  
FET  
Driver  
Gate 2  
Gate 4  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 31  
 
FIGURE 2-11:  
AC-TO-DC POWER SUPPLY WITH PFC AND THREE OUTPUTS (12V, 5V AND 3.3V)  
ZVT with Current Doubler Synchronous Rectifier  
VHV_BUS  
Isolation  
Barrier  
VOUT  
IZVT  
3.3V Multiphase Buck Stage  
3.3V Output  
12V Input  
I3.3V_1  
FET  
Driver  
FET  
Driver  
FET  
Driver  
5V Output  
I5V  
5V Buck Stage  
k4  
I3.3V_2  
ADC  
ADC  
Channel Channel  
FET  
FET  
Driver Driver  
PWM  
k11  
Primary Controller  
dsPIC33FJ64GS610  
FET  
Driver  
I3.3V_3  
PWM  
k5  
k6  
k7  
ADC  
Ch.  
ADC  
Ch.  
PWM  
Output  
ADC  
Ch.  
UART  
RX  
ADC  
Channel  
Analog  
Comp.  
ADC  
Channel  
PWM  
PWM  
FET  
Driver  
k8  
k9  
Analog Comparator  
Secondary Controller  
dsPIC33FJ64GS610  
Analog Comparator  
PFC Stage  
UART  
TX  
k2  
k10  
Analog Comparator  
ADC Channel  
FET Driver  
VAC  
k3  
k1  
|VAC|  
VHV_BUS  
IPFC  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
As a result, three parameter instructions can be sup-  
ported, allowing A + B = C operations to be executed in a  
3.0  
CPU  
Note 1: This data sheet summarizes the features  
single cycle.  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “CPU” (DS70204) in the  
dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
The information in this data sheet  
supersedes the information in the FRM.  
A
block diagram of the CPU is shown in  
Figure 3-1, and the programmer’s model for  
the  
dsPIC33FJ64GS406/606/608/610 is shown in  
Figure 3-2.  
dsPIC33FJ32GS406/606/608/610  
and  
3.1  
Data Addressing Overview  
The data space can be addressed as 32K words or  
64 Kbytes and is split into two blocks, referred to as X  
and Y data memory. Each memory block has its own  
independent Address Generation Unit (AGU). The  
MCU class of instructions operates solely through  
the X memory AGU, which accesses the entire  
memory map as one linear data space. Certain DSP  
instructions operate through the X and Y AGUs to  
support dual operand reads, which splits the data  
address space into two parts. The X and Y data space  
boundary is device-specific.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 CPU module has a  
16-bit (data) modified Harvard architecture with an  
enhanced instruction set, including significant support  
for DSP. The CPU has a 24-bit instruction word with a  
variable length opcode field. The Program Counter  
(PC) is 23 bits wide and addresses up to 4M x 24 bits  
of user program memory space. The actual amount of  
program memory implemented varies from device to  
device. A single-cycle instruction prefetch mechanism is  
used to help maintain throughput and provides  
predictable execution. All instructions execute in a single  
cycle, with the exception of instructions that change the  
program flow, the double-word move (MOV.D) instruction  
and the table instructions. Overhead-free program loop  
constructs are supported using the DO and REPEAT  
instructions, both of which are interruptible at any point.  
Overhead-free circular buffers (Modulo Addressing  
mode) are supported in both X and Y address spaces.  
The Modulo Addressing removes the software  
boundary checking overhead for DSP algorithms.  
Furthermore, the X AGU circular addressing can be  
used with any of the MCU class of instructions. The X  
AGU also supports Bit-Reversed Addressing to greatly  
simplify input or output data reordering for radix-2 FFT  
algorithms.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K program word boundary defined by the 8-bit  
Program Space Visibility Page (PSVPAG) register. The  
program-to-data space mapping feature lets any  
instruction access program space as if it were data  
space.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices have six-  
teen, 16-bit Working registers in the programmer’s  
model. Each of the Working registers can serve as a  
data, address or address offset register. The sixteenth  
Working register (W15) operates as a Software Stack  
Pointer (SSP) for interrupts and calls.  
3.2  
DSP Engine Overview  
The DSP engine features a high-speed, 17-bit by 17-bit  
multiplier, 40-bit ALU, two 40-bit saturating  
a
accumulators and a 40-bit bidirectional barrel shifter.  
The barrel shifter is capable of shifting a 40-bit value up  
to 16 bits, right or left, in a single cycle. The DSP  
instructions operate seamlessly with all other  
instructions and have been designed for optimal real-  
time performance. The MAC instruction and other  
associated instructions can concurrently fetch two data  
operands from memory while multiplying two W  
registers and accumulating and optionally saturating  
the result in the same cycle. This instruction  
functionality requires that the RAM data space be split  
for these instructions and linear for all others. Data  
space partitioning is achieved in a transparent and  
flexible manner through dedicating certain Working  
registers to each address space.  
There are two classes of instruction in the  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices: MCU and  
DSP. These two instruction classes are seamlessly  
integrated into a single CPU. The instruction set includes  
many addressing modes and is designed for optimum C  
compiler efficiency. For most instructions, the  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices are capable  
of executing a data (or program data) memory read, a  
Working register (data) read, a data memory write and a  
program (instruction) memory read per instruction cycle.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 33  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The  
dsPIC33FJ32GS406/606/608/610  
and  
3.3  
Special MCU Features  
dsPIC33FJ64GS406/606/608/610 supports 16/16 and  
32/16 divide operations, both fractional and integer. All  
divide instructions are iterative operations. They must  
be executed within a REPEATloop, resulting in a total  
execution time of 19 instruction cycles. The divide  
operation can be interrupted during any of those  
19 cycles without loss of data.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 features a 17-bit by  
17-bit single-cycle multiplier that is shared by both the  
MCU ALU and DSP engine. The multiplier can perform  
signed, unsigned and mixed sign multiplication. Using  
a 17-bit by 17-bit multiplier for 16-bit by 16-bit  
multiplication not only allows you to perform mixed sign  
multiplication, it also achieves accurate results for  
special operations, such as (-1.0) x (-1.0).  
A 40-bit barrel shifter is used to perform up to a 16-bit  
left or right shift in a single cycle. The barrel shifter can  
be used by both MCU and DSP instructions.  
FIGURE 3-1:  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU  
CORE BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
23  
16  
PCU PCH PCL  
Program Counter  
Y RAM  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
16  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
W Register Array  
Divide Support  
16  
16-Bit ALU  
16  
To Peripheral Modules  
DS7000591F-page 34  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 3-2:  
PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
PUSH.SShadow  
DOShadow  
W1  
W2  
W3  
Legend  
W4  
W5  
DSP Operand  
Registers  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write-Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD15  
AD39  
AD31  
AD0  
ACCA  
ACCB  
DSP  
Accumulators  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
7
Data Table Page Address  
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
15  
0
Core Configuration Register  
CORCON  
OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA  
N
OV  
Z
C
STATUS Register  
SRH  
SRL  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 35  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
3.4  
CPU Control Registers  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA(1)  
R/C-0  
SB(1)  
R-0  
R/C-0  
SAB(1,4)  
R-0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
bit 7  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
OA: Accumulator A Overflow Status bit  
1= Accumulator A has overflowed  
0= Accumulator A has not overflowed  
OB: Accumulator B Overflow Status bit  
1= Accumulator B has overflowed  
0= Accumulator B has not overflowed  
SA: Accumulator A Saturation ‘Sticky’ Status bit(1)  
1= Accumulator A is saturated or has been saturated at some time  
0= Accumulator A is not saturated  
SB: Accumulator B Saturation ‘Sticky’ Status bit(1)  
1= Accumulator B is saturated or has been saturated at some time  
0= Accumulator B is not saturated  
OAB: OA || OB Combined Accumulator Overflow Status bit  
1= Accumulator A or B has overflowed  
0= Neither Accumulator A or B has overflowed  
SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit(1,4)  
1= Accumulator A or B is saturated or has been saturated at some time in the past  
0= Neither Accumulator A or B is saturated  
DA: DOLoop Active bit  
1= DOloop in progress  
0= DOloop not in progress  
bit 8  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized  
data) of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
4: Clearing this bit will clear SA and SB.  
DS7000591F-page 36  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 3-1:  
SR: CPU STATUS REGISTER (CONTINUED)  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop is in progress  
0= REPEATloop is not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of a magnitude that  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation that affects the Z bit has set it at some time in the past  
0= The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
4: Clearing this bit will clear SA and SB.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 37  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT(1)  
R-0  
R-0  
R-0  
DL2  
DL1  
DL0  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
US: DSP Multiply Unsigned/Signed Control bit  
1= DSP engine multiplies are unsigned  
0= DSP engine multiplies are signed  
bit 11  
EDT: Early DOLoop Termination Control bit(1)  
1= Terminates executing DOloop at the end of the current loop iteration  
0= No effect  
bit 10-8  
DL<2:0>: DOLoop Nesting Level Status bits  
111= 7 DOloops are active  
001= 1 DOloop is active  
000= 0 DOloops are active  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SATA: ACCA Saturation Enable bit  
1= Accumulator A saturation is enabled  
0= Accumulator A saturation is disabled  
SATB: ACCB Saturation Enable bit  
1= Accumulator B saturation is enabled  
0= Accumulator B saturation is disabled  
SATDW: Data Space Write from DSP Engine Saturation Enable bit  
1= Data space write saturation is enabled  
0= Data space write saturation is disabled  
ACCSAT: Accumulator Saturation Mode Select bit  
1= 9.31 saturation (super saturation)  
0= 1.31 saturation (normal saturation)  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space is visible in data space  
0= Program space is not visible in data space  
RND: Rounding Mode Select bit  
1= Biased (conventional) rounding is enabled  
0= Unbiased (convergent) rounding is enabled  
IF: Integer or Fractional Multiplier Mode Select bit  
1= Integer mode is enabled for DSP multiply operations  
0= Fractional mode is enabled for DSP multiply operations  
Note 1: This bit will always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS7000591F-page 38  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
3.5  
Arithmetic Logic Unit (ALU)  
3.6  
DSP Engine  
The  
dsPIC33FJ32GS406/606/608/610  
and  
The DSP engine consists of a high-speed, 17-bit x 17-bit  
multiplier, a barrel shifter and a 40-bit adder/subtracter  
(with two target accumulators, round and saturation logic).  
dsPIC33FJ64GS406/606/608/610 ALU is 16 bits wide  
and is capable of addition, subtraction, bit shifts and logic  
operations. Unless otherwise mentioned, arithmetic  
operations are 2’s complement in nature. Depending on  
the operation, the ALU can affect the values of the Carry  
(C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry  
(DC) Status bits in the SR register. The C and DC Status  
bits operate as Borrow and Digit Borrow bits, respectively,  
for subtraction operations.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 is a single-cycle  
instruction flow architecture; therefore, concurrent  
operation of the DSP engine with MCU instruction flow  
is not possible. However, some MCU ALU and DSP  
engine resources can be used concurrently by the  
same instruction (for example, ED, EDAC).  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
The DSP engine can also perform inherent  
accumulator-to-accumulator operations that require no  
additional data. These instructions are ADD, SUB and  
NEG.  
The DSP engine has options selected through bits in  
the CPU Core Control register (CORCON), as listed  
below:  
Refer to the “16-bit MCU and DSC Programmer’s Ref-  
erence Manual” (DS70157) for information on the SR  
bits affected by each instruction.  
• Fractional or integer DSP multiply (IF)  
• Signed or unsigned DSP multiply (US)  
• Conventional or convergent rounding (RND)  
• Automatic saturation on/off for ACCA (SATA)  
• Automatic saturation on/off for ACCB (SATB)  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 CPU incorporates  
hardware support for both multiplication and division. This  
includes a dedicated hardware multiplier and support  
hardware for 16-bit divisor division.  
• Automatic saturation on/off for writes to data  
memory (SATDW)  
• Accumulator Saturation mode selection  
(ACCSAT)  
3.5.1  
MULTIPLIER  
Using the high-speed, 17-bit x 17-bit multiplier of the DSP  
engine, the ALU supports unsigned, signed or mixed sign  
operation in several MCU multiplication modes:  
A block diagram of the DSP engine is shown in  
Figure 3-3.  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
TABLE 3-1:  
Instruction  
DSP INSTRUCTIONS  
SUMMARY  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
Algebraic  
ACC  
Operation  
Write-Back  
CLR  
A = 0  
Yes  
No  
ED  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x * y)  
A = A + x2  
EDAC  
MAC  
No  
3.5.2  
DIVIDER  
Yes  
No  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
MAC  
MOVSAC  
MPY  
No change in A  
Yes  
No  
• 32-bit signed/16-bit signed divide  
• 32-bit unsigned/16-bit unsigned divide  
• 16-bit signed/16-bit signed divide  
• 16-bit unsigned/16-bit unsigned divide  
A = x * y  
A = x2  
MPY  
No  
MPY.N  
MSC  
A = – x * y  
No  
A = A – x * y  
Yes  
The quotient for all divide instructions ends up in W0 and  
the remainder in W1. 16-bit signed and unsigned DIV  
instructions can specify any W register for both the 16-bit  
divisor (Wn) and any  
W register (aligned) pair  
(W(m + 1):Wm) for the 32-bit dividend. The divide  
algorithm takes one cycle per bit of divisor, so both 32-bit/  
16-bit and 16-bit/16-bit instructions take the same  
number of cycles to execute.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 39  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 3-3:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
40-Bit Accumulator A  
40-Bit Accumulator B  
t
u
r
16  
40  
Round  
Logic  
a
t
Carry/Borrow Out  
Carry/Borrow In  
Saturate  
Adder  
e
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-Bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
DS7000591F-page 40  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
3.6.1  
MULTIPLIER  
3.6.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The 17-bit x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17-bit x 17-bit  
multiplier/scaler is a 33-bit value that is sign-extended  
to 40 bits. Integer data is inherently represented as a  
signed 2’s complement value, where the Most  
Significant bit (MSb) is defined as a sign bit. The range  
of an N-bit 2’s complement integer is -2N-1 to 2N-1 – 1.  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side and either true or complement  
data into the other input.  
• In the case of addition, the Carry/Borrow input is  
active-high and the other input is true data (not  
complemented).  
• In the case of subtraction, the Carry/Borrow input  
is active-low and the other input is complemented.  
The adder/subtracter generates Overflow Status bits,  
SA/SB and OA/OB, which are latched and reflected in  
the STATUS Register (SR):  
• For a 16-bit integer, the data range is -32768  
(0x8000) to 32767 (0x7FFF) including 0.  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• For a 32-bit integer, the data range is  
-2,147,483,648 (0x8000 0000) to 2,147,483,647  
(0x7FFF FFFF).  
• Overflow into guard bits, 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
When the multiplier is configured for fractional  
multiplication, the data is represented as a 2’s  
complement fraction, where the MSb is defined as a  
sign bit and the radix point is implied to lie just after the  
sign bit (QX format). The range of an N-bit 2’s  
complement fraction with this implied radix point is -1.0  
to (1 – 21-N). For a 16-bit fraction, the Q15 data range  
is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0  
and has a precision of 3.01518x10-5. In Fractional  
mode, the 16 x 16 multiply operation generates a  
The adder has an additional saturation block that  
controls accumulator data saturation, if selected. It  
uses the result of the adder, the Overflow Status bits  
described  
previously  
and  
the  
SAT<A:B>  
(CORCON<7:6>) and ACCSAT (CORCON<4>) mode  
control bits to determine when and to what value to  
saturate.  
Six STATUS Register bits support saturation and  
overflow:  
1.31 product that has a precision of 4.65661 x 10-10  
.
The same multiplier is used to support the MCU  
multiply instructions, which include integer 16-bit  
signed, unsigned and mixed sign multiply operations.  
• OA: ACCA overflowed into guard bits  
• OB: ACCB overflowed into guard bits  
• SA: ACCA saturated (bit 31 overflow and  
saturation)  
or  
ACCA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
The MUL instruction can be directed to use byte or  
word-sized operands. Byte operands will direct a 16-bit  
result and word operands will direct a 32-bit result to  
the specified register(s) in the W array.  
• SB: ACCB saturated (bit 31 overflow and  
saturation)  
or  
3.6.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
The data accumulator consists of a 40-bit adder/  
subtracter with automatic sign extension logic. It can  
select one of two accumulators (A or B) as its pre-  
ACCB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
• OAB: Logical OR of OA and OB  
• SAB: Logical OR of SA and SB  
accumulation  
source  
and  
post-accumulation  
destination. For the ADDand LACinstructions, the data  
to be accumulated or loaded can be optionally scaled  
using the barrel shifter prior to accumulation.  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when set and the correspond-  
ing Overflow Trap Flag Enable bits (OVATE, OVBTE) in  
the INTCON1 register are set (refer to Section 7.0  
“Interrupt Controller”). This allows the user applica-  
tion to take immediate action, for example, to correct  
system gain.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 41  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The SA and SB bits are modified each time data  
passes through the adder/subtracter, but can only be  
cleared by the user application. When set, they indicate  
that the accumulator has overflowed its maximum  
range (bit 31 for 32-bit saturation or bit 39 for 40-bit  
saturation) and will be saturated (if saturation is  
enabled). When saturation is not enabled, SA and SB  
default to bit 39 overflow and thus, indicate that a cata-  
strophic overflow has occurred. If the COVTE bit in the  
INTCON1 register is set, SA and SB bits will generate  
an arithmetic warning trap when saturation is disabled.  
3.6.3  
ACCUMULATOR ‘WRITE-BACK’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
• W13, Register Direct:  
The rounded contents of the non-target accumulator  
are written into W13 as a 1.15 fraction.  
• [W13] + = 2, Register Indirect with Post-Increment:  
The rounded contents of the non-target  
accumulator are written into the address pointed  
to by W13 as a 1.15 fraction. W13 is then  
incremented by 2 (for a word write).  
The Overflow and Saturation Status bits can optionally be  
viewed in the STATUS Register (SR) as the logical OR of  
OA and OB (in bit OAB) and the logical OR of SA and SB  
(in bit SAB). Programmers can check one bit in the  
STATUS Register to determine if either accumulator has  
overflowed, or one bit to determine if either accumulator  
has saturated. This is useful for complex number  
arithmetic, which typically uses both accumulators.  
3.6.3.1  
Round Logic  
The round logic is a combinational block that performs  
a conventional (biased) or convergent (unbiased)  
round function during an accumulator write (store). The  
Round mode is determined by the state of the RND bit  
in the CORCON register. It generates a 16-bit,  
1.15 data value that is passed to the data space write  
saturation logic. If rounding is not indicated by the  
instruction, a truncated 1.15 data value is stored and  
the least significant word is simply discarded.  
The device supports three Saturation and Overflow  
modes:  
• Bit 39 Overflow and Saturation:  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive  
9.31 (0x7FFFFFFFFF) or maximally negative  
9.31 value (0x8000000000) into the target accu-  
mulator. The SA or SB bit is set and remains set  
until cleared by the user application. This  
condition is referred to as ‘super saturation’ and  
provides protection against erroneous data or  
unexpected algorithm problems (such as  
gain calculations).  
Conventional rounding zero-extends bit 15 of the accu-  
mulator and adds it to the ACCxH word (bits 16 through  
31 of the accumulator).  
• If the ACCxL word (bits 0 through 15 of the  
accumulator) is between 0x8000 and 0xFFFF  
(0x8000 included), ACCxH is incremented.  
• If ACCxL is between 0x0000 and 0x7FFF, ACCxH  
is left unchanged.  
• Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally positive  
1.31 value (0x007FFFFFFF) or maximally nega-  
tive 1.31 value (0x0080000000) into the target  
accumulator. The SA or SB bit is set and remains  
set until cleared by the user application. When  
this Saturation mode is in effect, the guard bits are  
not used, so the OA, OB or OAB bits are  
never set.  
A consequence of this algorithm is that over a  
succession of random rounding operations, the value  
tends to be biased slightly positive.  
Convergent (or unbiased) rounding operates in the same  
manner as conventional rounding, except when ACCxL  
equals 0x8000. In this case, the Least Significant bit  
(bit 16 of the accumulator) of ACCxH is examined:  
• Bit 39 Catastrophic Overflow:  
The bit 39 Overflow Status bit from the adder is  
used to set the SA or SB bit, which remains set  
until cleared by the user application. No saturation  
operation is performed, and the accumulator is  
allowed to overflow, destroying its sign. If the  
COVTE bit in the INTCON1 register is set, a  
catastrophic overflow can initiate a trap exception.  
• If it is ‘1’, ACCxH is incremented.  
• If it is ‘0’, ACCxH is not modified.  
Assuming that bit 16 is effectively random in nature, this  
scheme removes any rounding bias that may accumulate.  
The SACand SAC.Rinstructions store either a truncated  
(SAC), or rounded (SAC.R) version of the contents of the  
target accumulator to data memory via the X bus, subject  
to data saturation (see Section 3.6.3.2 “Data Space  
Write Saturation”). For the MACclass of instructions, the  
accumulator write-back operation functions in the same  
manner, addressing combined MCU (X and Y) data space  
though the X bus. For this class of instructions, the data is  
always subject to rounding.  
DS7000591F-page 42  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
3.6.3.2  
Data Space Write Saturation  
3.6.4  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space can also be saturated, but without affecting the  
contents of the source accumulator. The data space  
write saturation logic block accepts a 16-bit, 1.15  
fractional value from the round logic block as its input,  
together with overflow status from the original source  
(accumulator) and the 16-bit round adder. These inputs  
are combined and used to select the appropriate  
1.15 fractional value as output to write to data space  
memory.  
The barrel shifter can perform up to 16-bit arithmetic or  
logic right shifts, or up to 16-bit left shifts in a single  
cycle. The source can be either of the two DSP  
accumulators or the X bus (to support multi-bit shifts of  
register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly:  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is  
presented to the barrel shifter between bit positions 16  
and 31 for right shifts, and between bit positions 0 and  
16 for left shifts.  
• For input data greater than 0x007FFF, data  
written to memory is forced to the maximum  
positive 1.15 value, 0x7FFF.  
• For input data less than 0xFF8000, data written to  
memory is forced to the maximum negative  
1.15 value, 0x8000.  
The Most Significant bit of the source (bit 39) is used to  
determine the sign of the operand being tested.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 43  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS7000591F-page 44  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
4.1  
Program Address Space  
4.0  
MEMORY ORGANIZATION  
The program address memory space is 4M instruc-  
tions. The space is addressable by a 24-bit value  
derived either from the 23-bit Program Counter (PC)  
during program execution, or from table operation or  
data space remapping as described in Section 4.6  
“Interfacing Program and Data Memory Spaces”.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to the dsPIC33/PIC24 Family  
Reference Manual, Program Memory”  
(DS70203), which is available from the  
Microchip web site (www.microchip.com).  
The information in this data sheet  
supersedes the information in the FRM.  
User application access to the program memory space  
is restricted to the lower half of the address range  
(0x000000 to 0x7FFFFF). The exception is the use of  
TBLRD/TBLWT operations, which use TBLPAG<7> to  
permit access to the Configuration bits and Device ID  
sections of the configuration memory space.  
The memory maps are shown in Figure 4-1.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 architecture features  
separate program and data memory spaces and buses.  
This architecture also allows the direct access to program  
memory from the data space during code execution.  
FIGURE 4-1:  
PROGRAM MEMORY MAPS FOR dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 DEVICES  
dsPIC33FJ32GS406/606/608/610  
dsPIC33FJ64GS406/606/608/610  
0x000000  
0x000002  
0x000004  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Alternate Vector Table  
Alternate Vector Table  
User Program  
Flash Memory  
User Program  
Flash Memory  
(11008 instructions)  
(21760 instructions)  
0x0057FE  
0x005800  
0x00ABFE  
0x00AC00  
Unimplemented  
Unimplemented  
(Read ‘0’s)  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
0x7FFFFE  
0x800000  
Reserved  
Reserved  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
Device Configuration  
Registers  
Device Configuration  
Registers  
Reserved  
Reserved  
0xFEFFFE  
0xFEFFFE  
DEVID (2)  
Reserved  
DEVID (2)  
Reserved  
0xFF0000  
0xFF0002  
0xFFFFFE  
0xFF0000  
0xFF0002  
0xFFFFFE  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 45  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.2  
All  
INTERRUPT AND TRAP VECTORS  
dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 devices reserve the  
addresses between 0x00000 and 0x000200 for hard-  
coded program execution vectors. A hardware Reset  
vector is provided to redirect code execution from the  
default value of the PC on device Reset to the actual  
start of code. A GOTOinstruction is programmed by the  
user application at 0x000000, with the actual address  
for the start of code at 0x000002.  
The program memory space is organized in word-  
addressable blocks. Although it is treated as 24 bits  
wide, it is more appropriate to think of each address of  
the program memory as a lower and upper word, with  
the upper byte of the upper word being unimplemented.  
The lower word always has an even address, while the  
upper word has an odd address (see Figure 4-2).  
Program memory addresses are always word-aligned  
on the lower word and addresses are incremented or  
decremented by two during the code execution. This  
arrangement provides compatibility with data memory  
space addressing and makes data in the program  
memory space accessible.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices also have  
two Interrupt Vector Tables (IVT), located from  
0x000004 to 0x0000FF and 0x000100 to 0x0001FF.  
These vector tables allow each of the device interrupt  
sources to be handled by separate Interrupt Service  
Routines (ISRs). A more detailed discussion of the  
Interrupt Vector Tables is provided in Section 7.1  
“Interrupt Vector Table”.  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS7000591F-page 46  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
4.2  
Data Address Space  
The CPU has a separate 16-bit-wide data memory space.  
The data space is accessed using separate Address  
Generation Units (AGUs) for read and write operations.  
The data memory maps is shown in Figure 4-3.  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed. If the error occurred  
on a write, the instruction is executed but the write does  
not occur. In either case, a trap is then executed,  
allowing the system and/or user application to examine  
the machine state prior to execution of the address  
Fault.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 4.6.3 “Reading Data from  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
A Sign-Extend (SE) instruction is provided to allow user  
applications to translate 8-bit signed data to 16-bit  
signed values. Alternatively, for 16-bit unsigned data,  
user applications can clear the MSB of any W register  
by executing a Zero-Extend (ZE) instruction on the  
appropriate address.  
dsPIC33FJ64GS406/606/608/610 devices implement  
up to 9 Kbytes of data memory. Should an EA point to  
a location outside of this area, an all-zero word or byte  
will be returned.  
4.2.1  
DATA SPACE WIDTH  
4.2.3  
SFR SPACE  
The data memory space is organized in byte  
addressable, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
The first 2 Kbytes of the Near Data Space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the core and  
peripheral modules for controlling the operation of the  
device.  
SFRs are distributed among the modules that they  
control and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCU  
devices and improve data space memory usage  
efficiency, the instruction set supports both word and  
byte operations. As a consequence of byte accessibil-  
ity, all Effective Address calculations are internally  
scaled to step through word-aligned memory. For  
example, the core recognizes that Post-Modified  
Register Indirect Addressing mode [Ws++] that results  
in a value of Ws + 1 for byte operations and Ws + 2 for  
word operations.  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Refer to the  
corresponding device tables and pinout  
diagrams for device-specific information.  
4.2.4  
NEAR DATA SPACE  
The 8-Kbyte area between 0x0000 and 0x1FFF is  
referred to as the Near Data Space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode using a Working  
register as an Address Pointer.  
Data byte reads will read the complete word that  
contains the byte, using the LSB of any EA to  
determine which byte to select. The selected byte is  
placed onto the LSB of the data path. That is, data  
memory and registers are organized as two parallel  
byte-wide entities with shared (word) address decode  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register that  
matches the byte address.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 47  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 4-3:  
DATA MEMORY MAP FOR DEVICES WITH 4-KBYTE RAM  
MSB  
Address  
LSB  
Address  
16 Bits  
MSb  
LSb  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
6-Kbyte  
Near Data  
Space  
X Data RAM (X)  
Y Data RAM (Y)  
0x0FFF  
0x1001  
0x0FFE  
0x1000  
0x17FF  
0x1801  
0x17FE  
0x1800  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS7000591F-page 48  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 4-4:  
DATA MEMORY MAP FOR DEVICES WITH 8-KBYTE RAM  
MSB  
Address  
LSB  
Address  
16 Bits  
MSb  
LSb  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8-Kbyte  
Near Data  
Space  
X Data RAM (X)  
Y Data RAM (Y)  
0x17FF  
0x1801  
0x17FE  
0x1800  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x27FF  
0x2801  
0x27FE  
0x2800  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 49  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 4-5:  
DATA MEMORY MAP FOR DEVICES WITH 9-KBYTE RAM  
MSB  
Address  
LSB  
Address  
16 Bits  
MSb  
LSb  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8-Kbyte  
Near Data  
Space  
X Data RAM (X)  
Y Data RAM (Y)  
0x17FF  
0x1801  
0x17FE  
0x1800  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x27FF  
0x2801  
0x27FE  
0x2800  
DMA RAM  
0x2BFF  
0x2C01  
0x2BFE  
0x2C00  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS7000591F-page 50  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
All data memory writes, including in DSP instructions,  
view data space as combined X and Y address space.  
The boundary between the X and Y data spaces is  
device-dependent and is not user-programmable.  
4.2.5  
X AND Y DATA SPACES  
The core has two data spaces, X and Y. These data  
spaces can be considered either separate (for some  
DSP instructions), or as one unified linear address  
range (for MCU instructions). The data spaces are  
accessed using two Address Generation Units (AGUs)  
and separate data paths. This feature allows certain  
instructions to concurrently fetch two words from RAM,  
thereby enabling efficient execution of DSP algorithms  
such as Finite Impulse Response (FIR) filtering and  
Fast Fourier Transform (FFT).  
All Effective Addresses (EAs) are 16 bits wide and point  
to bytes within the data space. Therefore, the data  
space address range is 64 Kbytes, or 32K words,  
though the implemented memory locations vary by  
device.  
4.2.6  
DMA RAM  
Some devices contain 1 Kbyte of dual ported DMA  
RAM, which is located at the end of Y data space.  
Memory locations that are part of Y data RAM and are in  
the DMA RAM space are accessible simultaneously by  
the CPU and the DMA Controller module. DMA RAM is  
utilized by the DMA Controller to store data to be  
transferred to various peripherals using DMA, as well as  
data transferred from various peripherals using DMA.  
The DMA RAM can be accessed by the DMA Controller  
without having to steal cycles from the CPU.  
The X data space is used by all instructions and  
supports all addressing modes. X data space has  
separate read and write data buses. The X read data  
bus is the read data path for all instructions that view  
data space as combined X and Y address space. It is  
also the X data prefetch path for the dual operand DSP  
instructions (MACclass).  
The Y data space is used in concert with the X data  
space by the MACclass of instructions (CLR, ED, EDAC,  
MAC, MOVSAC, MPY, MPY.N and MSC) to provide two  
concurrent data read paths.  
When the CPU and the DMA Controller attempt to  
concurrently write to the same DMA RAM location, the  
hardware ensures that the CPU is given precedence in  
accessing the DMA RAM location. Therefore, the DMA  
RAM provides a reliable means of transferring DMA  
data without ever having to stall the CPU.  
Both the X and Y data spaces support Modulo  
Addressing mode for all instructions, subject to  
addressing mode restrictions. Bit-Reversed Addressing  
mode is only supported for writes to X data space.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 51  
TABLE 4-1:  
CPU CORE REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
00xx  
xxxx  
00xx  
0000  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
Stack Pointer Limit Register  
ACCAL  
ACCAH  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
ACCAL  
ACCAH  
0026 ACCA<39> ACCA<39> ACCA<39> ACCA<39> ACCA<39> ACCA<39> ACCA<39> ACCA<39>  
ACCAU  
0028  
002A  
ACCBL  
ACCBH  
002C ACCB<39> ACCB<39> ACCB<39> ACCB<39> ACCB<39> ACCB<39> ACCB<39> ACCB<39>  
ACCBU  
002E  
0030  
0032  
0034  
0036  
0038  
Program Counter Low Byte Register  
PCH  
Program Counter High Byte Register  
Table Page Address Pointer Register  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
Program Memory Visibility Page Address Pointer Register  
REPEATLoop Counter Register  
DCOUNT<15:0>  
DOSTARTL 003A  
DOSTARTH 003C  
DOSTARTL<15:1>  
0
0
DOSTARTH<5:0>  
DOENDH  
DOENDL  
DOENDH  
SR  
003E  
0040  
0042  
DOENDL<15:1>  
OA  
OB  
SA  
SB  
OAB  
SAB  
DA  
DC  
IPL2  
IPL1  
IPL0  
RA  
N
OV  
Z
C
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-1:  
CPU CORE REGISTER MAP (CONTINUED)  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1  
PSV RND  
Bit 0  
CORCON  
MODCON  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
0044  
0046  
0048  
004A  
004C  
004E  
0050  
0052  
US  
EDT  
DL2  
DL1  
BWM1  
DL0  
SATA SATB SATDW ACCSAT IPL3  
YWM3 YWM2 YWM1  
IF  
0000  
XMODEN  
YMODEN  
BWM3  
BWM2  
BWM0  
YWM0 XWM3 XWM2 XWM1 XWM0 0000  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
XB9  
0
1
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0
1
BREN  
XB14  
XB13  
XB12  
XB11  
XB10  
XB8  
XB7  
XB6  
XB5  
XB4  
XB3  
XB2  
XB1  
XB0  
DISICNT  
Disable Interrupts Counter Register  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-2:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
0060  
0062  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CN23IE  
CN22IE  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000  
006A CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-3:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
0060  
0062  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CN23IE  
CN22IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000  
006A CN23PUE CN22PUE CN18PUE CN17PUE CN16PUE 0000  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-4:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE  
OVBTE  
COVTE SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR  
OSCFAIL  
INT1EP  
IC1IF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
4444  
4444  
0444  
0044  
4444  
0004  
4444  
4444  
4444  
0444  
0440  
0440  
INTCON2 0082 ALTIVT  
0084  
0086 U2TXIF  
DISI  
DMA1IF  
U2RXIF  
ADIF  
INT2IF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
SPI1IF  
OC4IF  
T3IF  
DMA2IF  
T2IF  
OC2IF  
IC2IF  
INT4EP  
DMA0IF  
INT1IF  
DMA3IF  
INT3EP  
T1IF  
CNIF  
C1IF  
INT2EP  
OC1IF  
INT0EP  
INT0IF  
SI2C1IF  
SPI2EIF  
IFS0  
IFS1  
IFS2  
IFS3  
IFS4  
IFS5  
IFS6  
IFS7  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC12  
IPC13  
Legend:  
SPI1EIF  
OC3IF  
AC1IF  
MI2C1IF  
SPI2IF  
0088  
008A  
008C  
IC4IF  
INT4IF  
C1TXIF  
IC3IF  
INT3IF  
C1RXIF  
MI2C2IF  
U2EIF  
QEI1IF  
PSEMIF  
PSESMIF  
SI2C2IF  
U1EIF  
QEI2IF  
008E PWM2IF PWM1IF ADCP12IF  
ADCP11IF ADCP10IF ADCP9IF ADCP8IF  
0090 ADCP1IF ADCP0IF  
AC4IF  
AC3IF  
AC2IF  
PWM9IF  
PWM8IF  
ADCP7IF  
IC2IE  
PWM7IF  
ADCP6IF  
DMA0IE  
INT1IE  
DMA3IE  
PWM6IF  
ADCP5IF  
T1IE  
PWM5IF  
PWM4IF  
PWM3IF  
ADCP2IF  
INT0IE  
SI2C1IE  
SPI2EIE  
0092  
0094  
DMA1IE  
U2RXIE  
ADCP4IF ADCP3IF  
ADIE  
INT2IE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
SPI1IE  
OC4IE  
SPI1EIE  
OC3IE  
T3IE  
DMA2IE  
T2IE  
OC2IE  
OC1IE  
AC1IE  
IC1IE  
MI2C1IE  
SPI2IE  
SI2C2IE  
U1EIE  
0096 U2TXIE  
CNIE  
C1IE  
0098  
009A  
009C  
IC4IE  
INT4IE  
C1TXIE  
IC3IE  
INT3IE  
C1RXIE  
MI2C2IE  
U2EIE  
QEI1IE  
PSEMIE  
PSESMIE  
QEI2IE  
009E PWM2IE PWM1IE ADCP12IE  
ADCP11IE ADCP10IE ADCP9IE ADCP8IE  
00A0 ADCP1IE ADCP0IE  
AC4IE  
AC3IE  
AC2IE  
PWM9IE  
PWM8IE  
ADCP7IE  
IC1IP1  
IC2IP1  
PWM7IE  
ADCP6IE  
IC1IP0  
PWM6IE  
PWM5IE  
PWM4IE  
PWM3IE  
ADCP2IE  
INT0IP0  
DMA0IP0  
T3IP0  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00BC  
00BE  
ADCP5IE ADCP4IE ADCP3IE  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
INT0IP2  
INT0IP1  
IC2IP0  
DMA0IP2 DMA0IP1  
U1RXIP2 U1RXIP1 U1RXIP0  
SPI1EIP2 SPI1EIP1  
ADIP2 ADIP1  
SPI1EIP0  
ADIP0  
T3IP2  
T3IP1  
CNIP2  
CNIP1  
CNIP0  
DMA1IP2 DMA1IP1 DMA1IP0  
U1TXIP2  
U1TXIP1  
U1TXIP0  
SI2C1IP0  
INT1IP0  
DMA2IP0  
T5IP0  
AC1IP2  
AC1IP1  
AC1IP0  
MI2C1IP2 MI2C1IP1 MI2C1IP0  
SI2C1IP2 SI2C1IP1  
INT1IP2 INT1IP1  
DMA2IP2 DMA2IP1  
T5IP2 T5IP1  
T4IP2  
U2TXIP2  
C1IP2  
T4IP1  
U2TXIP1  
C1IP1  
T4IP0  
U2TXIP0  
C1IP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
U2RXIP2 U2RXIP1 U2RXIP0  
C1RXIP2 C1RXIP1 C1RXIP0  
SPI2EIP2 SPI2EIP1  
DMA3IP2 DMA3IP1  
SPI2EIP0  
DMA3IP0  
IC4IP2  
MI2C2IP2 MI2C2IP1 MI2C2IP0  
INT4IP2 INT4IP1 INT4IP0  
’. Reset values are shown in hexadecimal.  
IC4IP1  
IC4IP0  
SI2C2IP2  
INT3IP2  
SI2C2IP1  
INT3IP1  
SI2C2IP0  
INT3IP0  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
TABLE 4-4:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES (CONTINUED)  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPC14  
00C0  
00C4  
00C6  
00C8  
00CC  
00CE  
00D2  
00D4  
00D6  
00D8  
00DA  
00DC  
00DE  
QEI1IP2 QEI1IP1 QEI1IP0  
U2EIP2 U2EIP1 U2EIP0  
C1TXIP2 C1TXIP1 C1TXIP0  
PSEMIP2 PSEMIP1  
PSEMIP0  
U1EIP0  
0440  
0440  
0400  
4040  
4440  
IPC16  
IPC17  
IPC18  
IPC20  
IPC21  
IPC23  
IPC24  
IPC25  
IPC26  
IPC27  
IPC28  
IPC29  
U1EIP2  
U1EIP1  
QEI2IP2  
QEI2IP1  
QEI2IP0  
PSESMIP2 PSESMIP1 PSESMIP0  
ADCP8IP2 ADCP8IP1 ADCP8IP0  
ADCP12IP2 ADCP12IP1 ADCP12IP0  
ADCP10IP2 ADCP10IP1 ADCP10IP0  
ADCP9IP2 ADCP9IP1 ADCP9IP0  
ADCP11IP2 ADCP11IP1 ADCP11IP0 0044  
PWM2IP2 PWM2IP1 PWM2IP0  
PWM6IP2 PWM6IP1 PWM6IP0  
PWM1IP2 PWM1IP1 PWM1IP0  
PWM5IP2 PWM5IP1 PWM5IP0  
PWM9IP2 PWM9IP1 PWM9IP0  
4400  
4444  
4444  
0044  
4400  
PWM4IP2 PWM4IP1 PWM4IP0  
PWM8IP2 PWM8IP1 PWM8IP0  
PWM3IP2 PWM3IP1 PWM3IP0  
PWM7IP2 PWM7IP1 PWM7IP0  
AC2IP2  
AC2IP1  
AC2IP0  
AC4IP2  
AC4IP1  
AC4IP0  
AC3IP2  
AC3IP1  
AC3IP0  
ADCP1IP2 ADCP1IP1 ADCP1IP0  
ADCP5IP2 ADCP5IP1 ADCP5IP0  
ADCP0IP2 ADCP0IP1 ADCP0IP0  
ADCP4IP2 ADCP4IP1 ADCP4IP0  
ADCP3IP2 ADCP3IP1 ADCP3IP0  
ADCP7IP2 ADCP7IP1 ADCP7IP0  
ADCP2IP2 ADCP2IP1 ADCP2IP0 4444  
ADCP6IP2 ADCP6IP1 ADCP6IP0 0044  
INTTREG 00E0  
Legend:  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-5:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE  
OVBTE  
COVTE SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR OSCFAIL  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INTCON2 0082 ALTIVT  
DISI  
DMA1IF  
U2RXIF  
ADIF  
INT2IF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
SPI1IF  
OC4IF  
T3IF  
DMA2IF  
T2IF  
OC2IF  
IC2IF  
INT4EP  
DMA0IF  
INT1IF  
DMA3IF  
INT3EP  
T1IF  
CNIF  
C1IF  
INT2EP  
OC1IF  
AC1IF  
INT1EP  
IC1IF  
INT0EP  
INT0IF  
IFS0  
0084  
SPI1EIF  
OC3IF  
IFS1  
0086 U2TXIF  
MI2C1IF SI2C1IF  
IFS2  
0088  
008A  
008C  
IC4IF  
INT4IF  
C1TXIF  
IC3IF  
INT3IF  
C1RXIF  
SPI2IF  
SPI2EIF  
IFS3  
QEI1IF  
PSEMIF  
PSESMIF  
MI2C2IF SI2C2IF  
IFS4  
QEI2IF  
U2EIF  
U1EIF  
IFS5  
008E PWM2IF PWM1IF ADCP12IF  
ADCP8IF  
IFS6  
0090 ADCP1IF ADCP0IF  
AC4IF  
AC3IF  
AC2IF  
PWM8IF  
PWM7IF  
PWM6IF PWM5IF PWM4IF PWM3IF 0000  
IFS7  
0092  
0094  
DMA1IE  
U2RXIE  
ADCP7IF ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC12  
IPC13  
IPC14  
IPC16  
IPC17  
IPC18  
Legend:  
ADIE  
INT2IE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
SPI1IE  
OC4IE  
SPI1EIE  
OC3IE  
T3IE  
DMA2IE  
T2IE  
OC2IE  
IC2IE  
DMA0IE  
INT1IE  
DMA3IE  
T1IE  
CNIE  
C1IE  
OC1IE  
AC1IE  
IC1IE  
INT0IE  
0000  
0000  
0000  
0000  
0000  
0000  
0096 U2TXIE  
MI2C1IE SI2C1IE  
0098  
009A  
009C  
IC4IE  
INT4IE  
C1TXIE  
IC3IE  
INT3IE  
C1RXIE  
SPI2IE  
SPI2EIE  
QEI1IE  
PSEMIE  
PSESMIE  
MI2C2IE SI2C2IE  
QEI2IE  
U2EIE  
U1EIE  
009E PWM2IE PWM1IE ADCP12IE  
ADCP8IE  
00A0 ADCP1IE ADCP0IE  
AC4IE  
AC3IE  
AC2IE  
PWM8IE  
PWM7IE  
PWM6IE PWM5IE PWM4IE PWM3IE 0000  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00BC  
00BE  
00C0  
00C4  
00C6  
00C8  
ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
U1RXIP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
IC1IP1  
IC2IP1  
IC1IP0  
IC2IP0  
INT0IP2  
DMA0IP2 DMA0IP1 DMA0IP0 4444  
T3IP2 T3IP1 T3IP0 4444  
INT0IP1  
INT0IP0  
4444  
U1RXIP2 U1RXIP1  
SPI1EIP2 SPI1EIP1 SPI1EIP0  
ADIP2 ADIP1 ADIP0  
MI2C1IP2 MI2C1IP1 MI2C1IP0  
CNIP2  
CNIP1  
DMA1IP2 DMA1IP1 DMA1IP0  
U1TXIP2 U1TXIP1 U1TXIP0 4444  
SI2C1IP2 SI2C1IP1 SI2C1IP0 4444  
CNIP0  
AC1IP2  
AC1IP1  
AC1IP0  
INT1IP2  
DMA2IP2 DMA2IP1 DMA2IP0 4444  
T5IP2 T5IP1 T5IP0 4444  
INT1IP1  
INT1IP0  
0004  
T4IP2  
U2TXIP2  
C1IP2  
T4IP1  
U2TXIP1  
C1IP1  
T4IP0  
U2TXIP0  
C1IP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
U2RXIP2 U2RXIP1 U2RXIP0  
C1RXIP2 C1RXIP1 C1RXIP0  
SPI2EIP2 SPI2EIP1 SPI2EIP0 4444  
DMA3IP2 DMA3IP1 DMA3IP0 0444  
IC4IP2  
IC4IP1  
IC4IP0  
MI2C2IP2 MI2C2IP1 MI2C2IP0  
SI2C2IP2 SI2C2IP1 SI2C2IP0  
INT3IP2 INT3IP1 INT3IP0  
PSEMIP2 PSEMIP1 PSEMIP0  
0440  
0440  
0440  
0440  
0400  
4040  
INT4IP2  
QEI1IP2  
U2EIP2  
INT4IP1  
QEI1IP0  
U2EIP1  
INT4IP0  
QEI1IP0  
U2EIP0  
U1EIP2  
U1EIP1  
U1EIP0  
C1TXIP2 C1TXIP1 C1TXIP0  
QEI2IP2  
QEI2IP1  
QEI2IP0  
PSESMIP2 PSESMIP1 PSESMIP0  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-5:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES (CONTINUED)  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPC20  
00CC  
00CE  
00D2  
00D4  
00D6  
00D8  
00DA  
00DC  
00DE  
ADCP8IP2 ADCP8IP1 ADCP8IP0  
ADCP12IP2 ADCP12IP1 ADCP12IP0  
0040  
0040  
4400  
IPC21  
IPC23  
IPC24  
IPC25  
IPC26  
IPC27  
IPC28  
IPC29  
PWM2IP2 PWM2IP1 PWM2IP0  
PWM6IP2 PWM6IP2 PWM6IP2  
PWM1IP2 PWM1IP1 PWM1IP0  
PWM5IP2 PWM5IP1 PWM5IP0  
PWM4IP2 PWM4IP1 PWM4IP0  
PWM8IP2 PWM8IP1 PWM8IP0  
PWM3IP2 PWM3IP1 PWM3IP0 4444  
PWM7IP2 PWM7IP1 PWM7IP0 4044  
AC2IP2  
AC2IP1  
AC2IP0  
AC4IP2  
AC4IP1  
AC4IP0  
AC3IP2  
AC3IP1  
AC3IP0  
0044  
4400  
ADCP1IP2 ADCP1IP1 ADCP1IP0  
ADCP5IP2 ADCP5IP1 ADCP5IP0  
ADCP0IP2 ADCP0IP1 ADCP0IP0  
ADCP4IP2 ADCP4IP1 ADCP4IP0  
ADCP3IP2 ADCP3IP1 ADCP3IP0  
ADCP7IP2 ADCP7IP1 ADCP7IP0  
ADCP2IP2 ADCP2IP1 ADCP2IP0 4444  
ADCP6IP2 ADCP6IP1 ADCP6IP0 0044  
INTTREG 00E0  
Legend:  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-6:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE  
OVBTE  
COVTE SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR OSCFAIL  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INTCON2 0082 ALTIVT  
DISI  
ADIF  
INT2IF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
SPI1IF  
OC4IF  
T3IF  
DMA2IF  
T2IF  
OC2IF  
IC2IF  
INT4EP  
DMA0IF  
INT1IF  
DMA3IF  
INT3EP  
T1IF  
CNIF  
C1IF  
INT2EP  
OC1IF  
AC1IF  
INT1EP  
IC1IF  
INT0EP  
INT0IF  
IFS0  
0084  
DMA1IF  
SPI1EIF  
OC3IF  
IFS1  
0086 U2TXIF U2RXIF  
MI2C1IF SI2C1IF  
IFS2  
0088  
008A  
008C  
IC4IF  
IC3IF  
C1RXIF  
SPI2IF  
SPI2EIF  
IFS3  
QEI1IF  
PSEMIF  
PSESMIF  
INT4IF  
C1TXIF  
INT3IF  
MI2C2IF SI2C2IF  
IFS4  
QEI2IF  
U2EIF  
U1EIF  
IFS5  
008E PWM2IF PWM1IF ADCP12IF  
IFS6  
0090 ADCP1IF ADCP0IF  
AC4IF  
AC3IF  
AC2IF  
PWM9IF  
PWM8IF  
ADCP7IF  
IC2IE  
PWM7IF  
ADCP6IF  
DMA0IE  
INT1IE  
DMA3IE  
PWM6IF  
PWM5IF PWM4IF PWM3IF  
IFS7  
0092  
0094  
ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC12  
IPC13  
IPC14  
IPC16  
IPC17  
IPC18  
Legend:  
DMA1IE  
ADIE  
INT2IE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
SPI1IE  
OC4IE  
SPI1EIE  
OC3IE  
T3IE  
DMA2IE  
T2IE  
OC2IE  
T1IE  
CNIE  
C1IE  
OC1IE  
AC1IE  
IC1IE  
INT0IE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0096 U2TXIE U2RXIE  
MI2C1IE SI2C1IE  
0098  
009A  
009C  
IC4IE  
INT4IE  
C1TXIE  
IC3IE  
C1RXIE  
SPI2IE  
SPI2EIE  
QEI1IE  
PSEMIE  
PSESMIE  
INT3IE  
MI2C2IE SI2C2IE  
QEI2IE  
U2EIE  
U1EIE  
009E PWM2IE PWM1IE ADCP12IE  
00A0 ADCP1IE ADCP0IE  
AC4IE  
AC3IE  
AC2IE  
PWM6IE PWM5IE PWM4IE PWM3IE  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00BC  
00BE  
00C0  
00C4  
00C6  
00C8  
ADCP7IE  
IC1IP1  
IC2IP1  
SPI1EIP1  
ADIP1  
MI2C1IP2  
ADCP6IE  
IC1IP0  
IC2IP0  
SPI1EIP0  
ADIP0  
MI2C1IP2  
ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000  
INT0IP2 INT0IP1 INT0IP0 4444  
DMA0IP2 DMA0IP1 DMA0IP0 4444  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
SPI1EIP2  
ADIP2  
MI2C1IP2  
U1RXIP2 U1RXIP1 U1RXIP0  
T3IP2  
T3IP1  
T3IP0  
4444  
4444  
CNIP2  
CNIP1  
CNIP0  
DMA1IP2 DMA1IP1 DMA1IP0  
U1TXIP2 U1TXIP1 U1TXIP0  
AC1IP2  
AC1IP1  
AC1IP0  
SI2C1IP2 SI2C1IP1 SI2C1IP0 4444  
INT1IP2 INT1IP1 INT1IP0 0004  
DMA2IP2 DMA2IP1 DMA2IP0 4444  
T5IP2 T5IP1 T5IP0 4444  
T4IP2  
T4IP1  
T4IP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
SI2C2IP2  
INT3IP2  
PSEMIP2  
U1EIP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
SI2C2IP1  
INT3IP1  
PSEMIP1  
U1EIP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
SI2C2IP0  
INT3IP0  
PSEMIP0  
U1EIP0  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
C1RXIP2 C1RXIP1 C1RXIP0  
C1IP2  
C1IP1  
C1IP0  
SPI2EIP2 SPI2EIP1 SPI2EIP0 4444  
DMA3IP2 DMA3IP1 DMA3IP0 0444  
IC4IP2  
IC4IP1  
IC4IP0  
MI2C2IP2 MI2C2IP1 MI2C2IP0  
0440  
0440  
0440  
0440  
0400  
4040  
INT4IP2  
QEI1IP2  
U2EIP2  
INT4IP1  
QEI1IP1 QEI1IP0  
U2EIP1 U2EIP0  
INT4IP0  
C1TXIP2 C1TXIP1 C1TXIP0  
QEI2IP2  
QEI2IP1  
QEI2IP0  
PSESMIP2 PSESMIP1 PSESMIP0  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-6:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES (CONTINUED)  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPC21  
00CE  
00D2  
00D4  
00D6  
00D8  
00DA  
00DC  
00DE  
ADCP12IP2 ADCP12IP1 ADCP12IP0  
0040  
4400  
IPC23  
IPC24  
IPC25  
IPC26  
IPC27  
IPC28  
IPC29  
PWM2IP2 PWM2IP1 PWM2IP0  
PWM6IP2 PWM6IP1 PWM6IP0  
PWM1IP2 PWM1IP1 PWM1IP0  
PWM5IP2 PWM5IP1 PWM5IP0  
PWM9IP2 PWM9IP1 PWM9IP0  
PWM4IP2 PWM4IP1 PWM4IP0  
PWM8IP2 PWM8IP1 PWM8IP0  
PWM3IP2 PWM3IP1 PWM3IP0 4444  
PWM7IP2 PWM7IP1 PWM7IP0 4000  
AC2IP2  
AC2IP1  
AC2IP0  
AC4IP2  
AC4IP1  
AC4IP0  
AC3IP2  
AC3IP1  
AC3IP0  
0044  
4400  
ADCP1IP2 ADCP1IP1 ADCP1IP0  
ADCP5IP2 ADCP5IP1 ADCP5IP0  
ADCP0IP2 ADCP0IP1 ADCP0IP0  
ADCP4IP2 ADCP4IP1 ADCP4IP0  
ADCP3IP2 ADCP3IP1 ADCP3IP0  
ADCP7IP2 ADCP7IP1 ADCP7IP0  
ADCP2IP2 ADCP2IP1 ADCP2IP0 4444  
ADCP6IP2 ADCP6IP1 ADCP6IP0 0004  
INTTREG 00E0  
Legend:  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-7:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR  
OVATE  
OVBTE  
COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
INT0EP  
INT0IF  
SI2C1IF  
SPI2EIF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INTCON2 0082 ALTIVT  
DISI  
ADIF  
INT2IF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
T3IF  
T2IF  
T2IE  
OC2IF  
INT4EP  
INT3EP  
T1IF  
CNIF  
INT2EP  
OC1IF  
INT1EP  
IC1IF  
IFS0  
0084  
SPI1IF  
OC4IF  
SPI1EIF  
OC3IF  
IC2IF  
IFS1  
0086 U2TXIF  
U2RXIF  
INT1IF  
MI2C1IF  
SPI2IF  
SI2C2IF  
U1EIF  
IFS2  
0088  
008A  
008C  
IC4IF  
INT4IF  
IC3IF  
INT3IF  
IFS3  
QEI1IF  
PSEMIF  
PSESMIF  
MI2C2IF  
U2EIF  
IFS4  
IFS5  
008E PWM2IF PWM1IF ADCP12IF  
IFS6  
0090 ADCP1IF ADCP0IF  
PWM6IF  
PWM5IF PWM4IF  
PWM3IF  
IFS7  
0092  
0094  
ADCP7IF ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC12  
IPC13  
IPC14  
IPC16  
IPC18  
IPC23  
Legend:  
ADIE  
INT2IE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
SPI1IE  
OC4IE  
SPI1EIE  
OC3IE  
T3IE  
OC2IE  
IC2IE  
INT1IE  
T1IE  
CNIE  
OC1IE  
IC1IE  
MI2C1IE  
SPI2IE  
SI2C2IE  
U1EIE  
INT0IE  
SI2C1IE  
SPI2EIE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0096 U2TXIE  
U2RXIE  
0098  
009A  
009C  
IC4IE  
INT4IE  
IC3IE  
INT3IE  
QEI1IE  
PSEMIE  
PSESMIE  
MI2C2IE  
U2EIE  
009E PWM2IE PWM1IE ADCP12IE  
00A0  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00BC  
00BE  
00C0  
00C4  
00C8  
00D2  
ADCP0IE  
PWM6IE PWM5IE PWM4IE PWM3IE  
ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
IC1IP1  
IC2IP1  
IC1IP0  
IC2IP0  
INT0IP2  
INT0IP1  
INT0IP0  
4444  
4440  
4444  
0044  
U1RXIP2 U1RXIP1 U1RXIP0  
SPI1EIP2 SPI1EIP1 SPI1EIP0  
ADIP2 ADIP1 ADIP0  
MI2C1IP2 MI2C1IP1 MI2C1IP0  
T3IP2  
T3IP1  
T3IP0  
CNIP2  
CNIP1  
CNIP0  
U1TXIP2 U1TXIP1 U1TXIP0  
SI2C1IP2 SI2C1IP1 SI2C1IP0 4444  
INT1IP2  
INT1IP1  
INT1IP0  
0004  
4440  
4444  
T4IP2  
T4IP1  
T4IP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
T5IP2  
T5IP1  
T5IP0  
SPI2EIP2 SPI2EIP1 SPI2EIP0 0044  
IC4IP2  
IC4IP1  
IC4IP0  
0440  
0440  
0440  
0440  
0440  
0040  
4400  
MI2C2IP2 MI2C2IP1 MI2C2IP0  
SI2C2IP2 SI2C2IP1 SI2C2IP0  
INT3IP2 INT3IP1 INT3IP0  
PSEMIP2 PSEMIP1 PSEMIP0  
U1EIP2 U1EIP1 U1EIP0  
PSESMIP2 PSESMIP1 PSESMIP0  
INT4IP2  
QEI1IP2  
U2EIP2  
INT4IP1  
QEI1IP1  
U2EIP1  
INT4IP0  
QEI1IP0  
U2EIP0  
PWM2IP2 PWM2IP1 PWM2IP0  
PWM1IP2 PWM1IP1 PWM1IP0  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
’. Reset values are shown in hexadecimal.  
 
TABLE 4-7:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES (CONTINUED)  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPC24  
00D4  
00DA  
00DC  
00DE  
PWM6IP2 PWM6IP1 PWM6IP0  
ADCP1IP2 ADCP1IP1 ADCP1IP0  
ADCP5IP2 ADCP5IP1 ADCP5IP0  
PWM5IP2 PWM5IP1 PWM5IP0  
ADCP0IP2 ADCP0IP1 ADCP0IP0  
ADCP4IP2 ADCP4IP1 ADCP4IP0  
PWM4IP2 PWM4IP1 PWM4IP0  
PWM3IP2 PWM3IP1 PWM3IP0 4444  
4400  
IPC27  
IPC28  
IPC29  
ADCP3IP2 ADCP3IP1 ADCP3IP0  
ADCP7IP2 ADCP7IP1 ADCP7IP0  
ADCP2IP2 ADCP2IP1 ADCP2IP0 4444  
ADCP6IP2 ADCP6IP1 ADCP6IP0 0004  
INTTREG 00E0  
Legend:  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE  
OVBTE  
COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
INT0EP  
INT0IF  
SI2C1IF  
SPI2EIF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INTCON2 0082 ALTIVT  
DISI  
ADIF  
INT2IF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
SPI1IF  
OC4IF  
T3IF  
T2IF  
OC2IF  
INT4EP  
INT3EP  
T1IF  
CNIF  
INT2EP  
OC1IF  
AC1IF  
INT1EP  
IC1IF  
IFS0  
0084  
SPI1EIF  
OC3IF  
IC2IF  
IFS1  
0086 U2TXIF  
U2RXIF  
INT1IF  
MI2C1IF  
SPI2IF  
SI2C2IF  
U1EIF  
IFS2  
0088  
008A  
008C  
IC4IF  
INT4IF  
IC3IF  
INT3IF  
IFS3  
QEI1IF  
PSEMIF  
PSESMIF  
MI2C2IF  
U2EIF  
IFS4  
QEI2IF  
IFS5  
008E PWM2IF PWM1IF ADCP12IF  
ADCP11IF ADCP10IF ADCP9IF ADCP8IF  
PWM7IF PWM6IF PWM5IF PWM4IF  
IFS6  
0090 ADCP1IF ADCP0IF  
AC4IF  
AC3IF  
AC2IF  
PWM9IF  
PWM8IF  
ADCP7IF  
IC2IE  
PWM3IF  
IFS7  
0092  
0094  
ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC12  
IPC13  
IPC14  
IPC16  
IPC18  
IPC20  
Legend:  
ADIE  
INT2IE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
SPI1IE  
OC4IE  
SPI1EIE  
OC3IE  
T3IE  
T2IE  
OC2IE  
INT1IE  
T1IE  
CNIE  
OC1IE  
AC1IE  
IC1IE  
MI2C1IE  
SPI2IE  
SI2C2IE  
U1EIE  
INT0IE  
SI2C1IE  
SPI2EIE  
0096 U2TXIE  
U2RXIE  
0098  
009A  
009C  
IC4IE  
INT4IE  
IC3IE  
INT3IE  
QEI1IE  
PSEMIE  
PSESMIE  
MI2C2IE  
U2EIE  
QEI2IE  
009E PWM2IE PWM1IE ADCP12IE  
ADCP11IE ADCP10IE ADCP9IE ADCP8IE  
PWM7IE PWM6IE PWM5IE PWM4IE  
00A0 ADCP1IE ADCP0IE  
AC4IE  
AC3IE  
AC2IE  
PWM9IE  
PWM8IE  
PWM3IE  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00BC  
00BE  
00C0  
00C4  
00C8  
00CC  
ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
U1RXIP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
IC1IP1  
IC2IP1  
IC1IP0  
IC2IP0  
INT0IP2  
INT0IP1  
INT0IP0  
4444  
4440  
4444  
0044  
4444  
0004  
4440  
4444  
U1RXIP2 U1RXIP1  
SPI1EIP2 SPI1EIP1 SPI1EIP0  
ADIP2 ADIP1 ADIP0  
MI2C1IP2 MI2C1IP1 MI2C1IP0  
T3IP2  
U1TXIP2  
T3IP1  
T3IP0  
CNIP2  
CNIP1  
U1TXIP1 U1TXIP0  
CNIP0  
AC1IP2  
AC1IP1  
AC1IP0  
SI2C1IP2 SI2C1IP1 SI2C1IP0  
INT1IP2  
INT1IP1  
INT1IP0  
T4IP2  
U2TXIP2  
T4IP1  
U2TXIP1  
T4IP0  
U2TXIP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
U2RXIP2 U2RXIP1 U2RXIP0  
T5IP2  
T5IP1  
T5IP0  
SPI2EIP2 SPI2EIP1 SPI2EIP0 0044  
IC4IP2  
IC4IP1  
IC4IP0  
0440  
0440  
0440  
0440  
0440  
4040  
4440  
MI2C2IP2 MI2C2IP1 MI2C2IP0  
SI2C2IP2 SI2C2IP1 SI2C2IP0  
INT3IP2 INT3IP1 INT3IP0  
PSEMIP2 PSEMIP1 PSEMIP0  
U1EIP2 U1EIP1 U1EIP0  
INT4IP2  
QEI1IP2  
U2EIP2  
INT4IP1  
QEI1IP1  
U2EIP1  
INT4IP0  
QEI1IP0  
U2EIP0  
QEI2IP2  
QEI2IP1  
QEI2IP0  
PSESMIP2 PSESMIP1 PSESMIP0  
ADCP8IP2 ADCP8IP1 ADCP8IP0  
ADCP10IP2 ADCP10IP1 ADCP10IP0  
ADCP9IP2 ADCP9IP1 ADCP9IP0  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
’. Reset values are shown in hexadecimal.  
 
TABLE 4-8:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES (CONTINUED)  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPC21  
00CE  
00D2  
00D4  
00D6  
00D8  
00DA  
00DC  
00DE  
ADCP12IP2 ADCP12IP1 ADCP12IP0  
ADCP11IP2 ADCP11IP1 ADCP11IP0 0044  
4400  
IPC23  
IPC24  
IPC25  
IPC26  
IPC27  
IPC28  
IPC29  
PWM2IP2 PWM2IP1 PWM2IP0  
PWM6IP2 PWM6IP1 PWM6IP0  
PWM1IP2 PWM1IP1 PWM1IP0  
PWM5IP2 PWM5IP1 PWM5IP0  
PWM9IP2 PWM9IP1 PWM9IP0  
PWM4IP2 PWM4IP1 PWM4IP0  
PWM8IP2 PWM8IP1 PWM8IP0  
PWM3IP2 PWM3IP1 PWM3IP0 4444  
PWM7IP2 PWM7IP1 PWM7IP0 4444  
AC2IP2  
AC2IP1  
AC2IP0  
AC4IP2  
AC4IP1  
AC4IP0  
AC3IP2  
AC3IP1  
AC3IP0  
0044  
4400  
ADCP1IP2 ADCP1IP1 ADCP1IP0  
ADCP5IP2 ADCP5IP1 ADCP5IP0  
ADCP0IP2 ADCP0IP1 ADCP0IP0  
ADCP4IP2 ADCP4IP1 ADCP4IP0  
ADCP3IP2 ADCP3IP1 ADCP3IP0  
ADCP7IP2 ADCP7IP1 ADCP7IP0  
ADCP2IP2 ADCP2IP1 ADCP2IP0 4444  
ADCP6IP2 ADCP6IP1 ADCP6IP0 0044  
INTTREG 00E0  
Legend:  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE  
OVBTE  
COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INTCON2 0082 ALTIVT  
DISI  
ADIF  
INT2IF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
SPI1IF  
OC4IF  
T3IF  
T2IF  
OC2IF  
INT4EP  
INT3EP  
T1IF  
CNIF  
INT2EP  
OC1IF  
AC1IF  
INT1EP  
IC1IF  
INT0EP  
INT0IF  
IFS0  
0084  
SPI1EIF  
OC3IF  
IC2IF  
IFS1  
0086 U2TXIF U2RXIF  
INT1IF  
MI2C1IF SI2C1IF  
IFS2  
0088  
008A  
008C  
IC4IF  
INT4IF  
IC3IF  
INT3IF  
SPI2IF  
SPI2EIF  
IFS3  
QEI1IF  
PSEMIF  
PSESMIF  
MI2C2IF SI2C2IF  
IFS4  
QEI2IF  
U2EIF  
U1EIF  
IFS5  
008E PWM2IF PWM1IF ADCP12IF  
ADCP8IF  
IFS6  
0090 ADCP1IF ADCP0IF  
AC4IF  
AC3IF  
AC2IF  
PWM8IF  
ADCP7IF  
IC2IE  
PWM7IF  
ADCP6IF  
PWM6IF  
PWM5IF PWM4IF PWM3IF  
IFS7  
0092  
0094  
ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC12  
IPC13  
IPC14  
IPC16  
IPC18  
IPC20  
Legend:  
ADIE  
INT2IE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
SPI1IE  
OC4IE  
SPI1EIE  
OC3IE  
T3IE  
T2IE  
OC2IE  
T1IE  
CNIE  
OC1IE  
IC1IE  
INT0IE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0096 U2TXIE U2RXIE  
INT1IE  
MI2C1IE SI2C1IE  
0098  
009A  
009C  
IC4IE  
INT4IE  
IC3IE  
INT3IE  
SPI2IE  
SPI2EIE  
QEI1IE  
PSEMIE  
PSESMIE  
MI2C2IE SI2C2IE  
QEI2IE  
U2EIE  
U1EIE  
009E PWM2IE PWM1IE ADCP12IE  
ADCP8IE  
00A0 ADCP1IE ADCP0IE  
AC4IE  
AC3IE  
AC2IE  
PWM8IE  
ADCP7IE  
IC1IP1  
IC2IP1  
PWM7IE  
PWM6IE PWM5IE PWM4IE PWM3IE  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00BC  
00BE  
00C0  
00C4  
00C8  
00CC  
ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
IC1IP0  
IC2IP0  
INT0IP2  
INT0IP1  
INT0IP0  
4444  
4440  
4444  
U1RXIP2 U1RXIP1 U1RXIP0  
SPI1EIP2 SPI1EIP1 SPI1EIP0  
ADIP2 ADIP1 ADIP0  
MI2C1IP2 MI2C1IP1 MI2C1IP0  
T3IP2  
T3IP1  
T3IP0  
CNIP2  
CNIP1  
CNIP0  
U1TXIP2 U1TXIP1 U1TXIP0 0044  
SI2C1IP2 SI2C1IP1 SI2C1IP0 4444  
AC1IP2  
AC1IP1  
AC1IP0  
INT1IP2  
INT1IP1  
INT1IP0  
0004  
4440  
4444  
T4IP2  
T4IP1  
T4IP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
T5IP2  
T5IP1  
T5IP0  
SPI2EIP2 SPI2EIP1 SPI2EIP0 0044  
IC4IP2  
IC4IP1  
IC4IP0  
0440  
0440  
0440  
0440  
0440  
4040  
0040  
MI2C2IP2 MI2C2IP1 MI2C2IP0  
SI2C2IP2 SI2C2IP1  
INT3IP2 INT3IP1  
SI2C2IP0  
INT3IP0  
INT4IP2  
QEI1IP2  
U2EIP2  
INT4IP1  
QEI1IP1  
U2EIP1  
INT4IP0  
QEI1IP0  
U2EIP0  
PSEMIP2 PSEMIP1 PSEMIP0  
U1EIP2 U1EIP1 U1EIP0  
QEI2IP2  
QEI2IP1  
QEI2IP0  
PSESMIP2 PSESMIP1 PSESMIP0  
ADCP8IP2 ADCP8IP1 ADCP8IP0  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-9:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608 (CONTINUED)  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPC21  
00CE  
00D2  
00D4  
00D6  
00D8  
00DA  
00DC  
00DE  
ADCP12IP2 ADCP12IP1 ADCP12IP1  
0040  
4400  
IPC23  
IPC24  
IPC25  
IPC26  
IPC27  
IPC28  
IPC29  
PWM2IP2 PWM2IP1 PWM2IP0  
PWM6IP2 PWM6IP1 PWM6IP0  
PWM1IP2 PWM1IP1 PWM1IP0  
PWM5IP2 PWM5IP1 PWM5IP0  
PWM4IP2 PWM4IP1 PWM4IP0  
PWM8IP2 PWM8IP1 PWM8IP0  
PWM3IP2 PWM3IP1 PWM3IP0 4444  
PWM7IP2 PWM7IP1 PWM7IP0 4044  
AC2IP2  
AC2IP1  
AC2IP0  
AC4IP2  
AC4IP1  
AC4IP0  
AC3IP2  
AC3IP1  
AC3IP0  
0044  
4400  
ADCP1IP2 ADCP1IP1 ADCP1IP0  
ADCP5IP2 ADCP5IP1 ADCP5IP0  
ADCP0IP2 ADCP0IP1 ADCP0IP0  
ADCP4IP2 ADCP4IP1 ADCP4IP0  
ADCP3IP2 ADCP3IP1 ADCP3IP0  
ADCP7IP2 ADCP7IP1 ADCP7IP0  
ADCP2IP2 ADCP2IP1 ADCP2IP0 4444  
ADCP6IP2 ADCP6IP1 ADCP6IP0 0044  
INTTREG 00E0  
Legend:  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-10: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR  
OVATE  
OVBTE  
COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
INT0EP  
INT0IF  
SI2C1IF  
SPI2EIF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INTCON2 0082 ALTIVT  
DISI  
ADIF  
INT2IF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
T3IF  
T2IF  
OC2IF  
INT4EP  
INT3EP  
T1IF  
CNIF  
INT2EP  
OC1IF  
AC1IF  
INT1EP  
IC1IF  
IFS0  
0084  
SPI1IF  
OC4IF  
SPI1EIF  
OC3IF  
IC2IF  
IFS1  
0086 U2TXIF U2RXIF  
INT1IF  
MI2C1IF  
SPI2IF  
SI2C2IF  
U1EIF  
IFS2  
0088  
008A  
008C  
IC4IF  
INT4IF  
IC3IF  
INT3IF  
IFS3  
QEI1IF  
PSEMIF  
PSESMIF  
MI2C2IF  
U2EIF  
IFS4  
QEI2IF  
IFS5  
008E PWM2IF PWM1IF ADCP12IF  
IFS6  
0090 ADCP1IF ADCP0IF  
AC4IF  
AC3IF  
AC2IF  
PWM6IF  
PWM5IF PWM4IF PWM3IF  
IFS7  
0092  
0094  
ADCP7IF  
IC2IE  
ADCP6IF  
ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC12  
IPC13  
IPC14  
IPC16  
IPC18  
IPC21  
Legend:  
ADIE  
INT2IE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
SPI1IE  
OC4IE  
SPI1EIE  
OC3IE  
T3IE  
T2IE  
OC2IE  
T1IE  
CNIE  
OC1IE  
AC1IE  
IC1IE  
INT0IE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0096 U2TXIE U2RXIE  
INT1IE  
MI2C1IE SI2C1IE  
0098  
009A  
009C  
IC4IE  
INT4IE  
IC3IE  
INT3IE  
SPI2IE  
SPI2EIE  
QEI1IE  
PSEMIE  
PSESMIE  
MI2C2IE SI2C2IE  
QEI2IE  
U2EIE  
U1EIE  
009E PWM2IE PWM1IE ADCP12IE  
00A0 ADCP1IE ADCP0IE  
AC4IE  
AC3IE  
AC2IE  
PWM6IE  
PWM5IE PWM4IE PWM3IE  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00BC  
00BE  
00C0  
00C4  
00C8  
00CE  
ADCP7IE  
IC1IP1  
IC2IP1  
ADCP6IE  
IC1IP0  
IC2IP0  
ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
INT0IP2  
INT0IP1  
INT0IP0  
4444  
4440  
4444  
0044  
U1RXIP2 U1RXIP1 U1RXIP0  
SPI1EIP2 SPI1EIP1 SPI1EIP0  
ADIP2 ADIP1 ADIP0  
MI2C1IP2 MI2C1IP1 MI2C1IP0  
T3IP2  
T3IP1  
T3IP0  
CNIP2  
CNIP1  
CNIP0  
U1TXIP2 U1TXIP1 U1TXIP0  
AC1IP2  
AC1IP1  
AC1IP0  
SI2C1IP2 SI2C1IP1 SI2C1IP0 4444  
INT1IP2  
INT1IP1  
INT1IP0  
0004  
4440  
4444  
T4IP2  
T4IP1  
T4IP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
T5IP2  
T5IP1  
T5IP0  
SPI2EIP2 SPI2EIP1 SPI2EIP0 0044  
IC4IP2  
IC4IP1  
IC4IP0  
0440  
0440  
0440  
0440  
0440  
4040  
0040  
MI2C2IP2 MI2C2IP1 MI2C2IP0  
SI2C2IP2 SI2C2IP1  
INT3IP2 INT3IP1  
SI2C2IP0  
INT3IP0  
INT4IP2  
QEI1IP2  
U2EIP2  
INT4IP1  
QEI1IP1  
U2EIP1  
INT4IP0  
QEI1IP0  
U2EIP0  
PSEMIP2 PSEMIP1 PSEMIP0  
U1EIP2 U1EIP1 U1EIP0  
QEI2IP2 QEI2IP1 QEI2IP0  
PSESMIP2 PSESMIP1 PSESMIP0  
ADCP12IP2 ADCP12IP1 ADCP12IP0  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-10: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES (CONTINUED)  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPC23  
00D2  
00D4  
00D6  
00D8  
00DA  
00DC  
00DE  
PWM2IP2 PWM2IP1 PWM2IP0  
PWM6IP2 PWM6IP1 PWM6IP0  
PWM1IP2 PWM1IP1 PWM1IP0  
PWM5IP2 PWM5IP1 PWM5IP0  
4400  
IPC24  
IPC25  
IPC26  
IPC27  
IPC28  
IPC29  
PWM4IP2 PWM4IP1 PWM4IP0  
PWM3IP2 PWM3IP1 PWM3IP0 4444  
AC2IP2  
AC2IP1  
AC2IP0  
AC4IP2  
AC4IP1  
AC4IP0  
AC3IP2  
AC3IP1  
AC3IP0  
4000  
0044  
4400  
ADCP1IP2 ADCP1IP1 ADCP1IP0  
ADCP5IP2 ADCP5IP1 ADCP5IP0  
ADCP0IP2 ADCP0IP1 ADCP0IP0  
ADCP4IP2 ADCP4IP1 ADCP4IP0  
ADCP3IP2 ADCP3IP1 ADCP3IP0  
ADCP7IP2 ADCP7IP1 ADCP7IP0  
ADCP2IP2 ADCP2IP1 ADCP2IP0 4444  
ADCP6IP2 ADCP6IP1 ADCP6IP0 0004  
INTTREG 00E0  
Legend:  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-11: TIMERS REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
0100  
0102  
0104  
0106  
Timer1 Register  
Period Register 1  
0000  
FFFF  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
PR1  
T1CON  
TMR2  
TON  
TSIDL  
TGATE TCKPS1 TCKPS0  
TSYNC  
TCS  
Timer2 Register  
TMR3HLD 0108  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
0114  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TMR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Timer4 Register  
TMR5HLD 0116  
Timer5 Holding Register (for 32-bit timer operations only)  
Timer5 Register  
TMR5  
PR4  
0118  
011A  
011C  
011E  
0120  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-12: INPUT CAPTURE REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
IC4BUF  
IC4CON  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
Input 4 Capture Register  
ICTMR  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI1  
ICI1  
ICI1  
ICI1  
ICI0  
ICI0  
ICI0  
ICI0  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM2  
ICM2  
ICM2  
ICM2  
ICM1  
ICM1  
ICM1  
ICM1  
ICM0  
ICM0  
ICM0  
ICM0  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-13: OUTPUT COMPARE REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON 0184  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCM2  
OCM2  
OCM2  
OCM2  
OCM1 OCM0  
OCM1 OCM0  
OCM1 OCM0  
OCM1 OCM0  
OC2RS  
OC2R  
0186  
0188  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON 018A  
OC3RS  
OC3R  
018C  
018E  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
OC3CON 0190  
OC4RS  
OC4R  
0192  
0194  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
OC4CON 0196  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-14: QEI1 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
QEI1CON  
01E0 CNTERR  
QEISIDL  
INDX UPDN QEIM2 QEIM1 QEIM0 SWPAB PCDOUT TQGATE TQCKPS1 TQCKPS0 POSRES TQCS UPDN_SRC  
0000  
0000  
0000  
FFFF  
DFLT1CON 01E2  
IMV1  
IMV0  
CEID  
QEOUT  
QECK2  
QECK1  
QECK0  
POS1CNT  
MAX1CNT  
01E4  
01E6  
Position Counter<15:0>  
Maximum Count<15:0>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-15: QEI2 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
QEI2CON  
01F0 CNTERR  
QEISIDL  
INDX UPDN QEIM2 QEIM1 QEIM0 SWPAB  
IMV1 IMV0 CEID QEOUT  
PCDOUT TQGATE TQCKPS1 TQCKPS0 POSRES TQCS UPDN_SRC 0000  
DFLT2CON 01F2  
POS2CNT 01F4  
MAX2CNT 01F6  
QECK2  
QECK1  
QECK0  
0000  
0000  
FFFF  
Position Counter<15:0>  
Maximum Count<15:0>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
 
TABLE 4-16: HIGH-SPEED PWM REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PTCON  
PTCON2  
PTPER  
0400  
0402  
0404  
PTEN  
PTSIDL  
SESTAT  
SEIEN  
EIPU  
SYNCPOL SYNCOEN  
SYNCEN SYNCSRC2 SYNCSRC1 SYNCSRC0 SEVTPS3 SEVTPS2 SEVTPS1 SEVTPS0  
0000  
0000  
FFF8  
0000  
0000  
0000  
0000  
FFF8  
0000  
0000  
PCLKDIV<2:0>  
PTPER<15:0>  
SEVTCMP 0406  
SEVTCMP<12:0>  
MDC  
040A  
040E  
0410  
0412  
MDC<15:0>  
STCON  
STCON2  
STPER  
SESTAT  
SEIEN  
EIPU  
SYNCPOL SYNCOEN  
SYNCEN SYNCSRC2 SYNCSRC1 SYNCSRC0 SEVTPS3 SEVTPS2 SEVTPS1 SEVTPS0  
PCLKDIV<2:0>  
STPER<15:0>  
SSEVTCMP 0414  
SSEVTCMP<15:3>  
CHOPCLK6 CHOPCLK5 CHOPCLK4 CHOPCLK3 CHOPCLK2 CHOPCLK1 CHOPCLK0  
CHOP  
041A CHPCLKEN  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-17: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON1 0420 FLTSTAT CLSTAT TRGSTAT FLTIEN  
IOCON1 0422 PENH PENL POLH POLL  
CLIEN  
TRGIEN  
PMOD0  
CLSRC0  
ITB  
MDCS  
DTC1  
DTC0  
DTCP  
MTBS  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
PMOD1  
OVRENH  
CLPOL  
OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0  
CLDAT1  
CLDAT0  
FLTPOL  
OSYNC  
FCLCON1 0424 IFLTMOD CLSRC4 CLSRC3 CLSRC2 CLSRC1  
CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0  
FLTMOD1 FLTMOD0 0000  
PDC1  
0426  
0428  
042A  
PDC1<15:0>  
PHASE1<15:0>  
DTR1<13:0>  
0000  
0000  
0000  
0000  
0000  
0000  
PHASE1  
DTR1  
ALTDTR1 042C  
SDC1 042E  
SPHASE1 0430  
TRIG1 0432  
TRGCON1 0434 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0  
STRIG1 0436  
ALTDTR1<13:0>  
SDC1<15:0>  
SPHASE1<15:0>  
TRGCMP<12:0>  
0000  
DTM  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000  
STRGCMP<12:0>  
PWMCAP<12:0>  
0000  
0000  
0000  
0000  
PWMCAP1 0438  
LEBCON1 043A PHR  
PHF  
PLR  
PLF  
FLTLEBEN CLLEBEN  
BCH  
BCL  
BPHH  
BPHL  
BPLH  
BPLL  
LEBDLY1 043C  
LEB<8:0>  
AUXCON1 043E HRPDIS HRDDIS  
Legend:  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
’. Reset values are shown in hexadecimal.  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
 
TABLE 4-18: HIGH-SPEED PWM GENERATOR 2 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON2 0440 FLTSTAT CLSTAT TRGSTAT FLTIEN  
IOCON2 0442 PENH PENL POLH POLL  
FCLCON2 0444 IFLTMOD CLSRC4 CLSRC3 CLSRC2  
CLIEN  
PMOD1  
CLSRC1  
TRGIEN  
PMOD0  
CLSRC0  
ITB  
MDCS  
DTC1  
DTC0  
DTCP  
MTBS  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
OVRENH  
CLPOL  
OVRENL OVRDAT1 OVRDAT0 FLTDAT1  
CLMOD FLTSRC4 FLTSRC3 FLTSRC2  
PDC2<15:0>  
PHASE2<15:0>  
DTR2<13:0>  
ALTDTR2<13:0>  
SDC2<15:0>  
SPHASE2<15:0>  
FLTDAT0  
CLDAT1  
CLDAT0  
FLTPOL  
OSYNC  
FLTSRC1 FLTSRC0  
FLTMOD1 FLTMOD0 0000  
PDC2  
0446  
0448  
044A  
0000  
0000  
0000  
0000  
0000  
0000  
PHASE2  
DTR2  
ALTDTR2 044C  
SDC2 044E  
SPHASE2 0450  
TRIG2 0452  
TRGCON2 0454 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0  
STRIG2 0456  
TRGCMP<12:0>  
0000  
DTM  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000  
STRGCMP<12:0>  
PWMCAP<12:0>  
0000  
0000  
0000  
0000  
PWMCAP2 0458  
LEBCON2 045A  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN CLLEBEN  
BCH  
BCL  
BPHH  
BPHL  
BPLH  
BPLL  
LEBDLY2  
045C  
LEB<8:0>  
AUXCON2 045E HRPDIS HRDDIS  
Legend:  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
’. Reset values are shown in hexadecimal.  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
TABLE 4-19: HIGH-SPEED PWM GENERATOR 3 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON3 0460 FLTSTAT CLSTAT TRGSTAT FLTIEN  
CLIEN  
PMOD1  
CLSRC1  
TRGIEN  
PMOD0  
CLSRC0  
ITB  
MDCS  
DTC1  
DTC0  
DTCP  
MTBS  
CLDAT1  
FLTSRC0  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
IOCON3  
FCLCON3  
PDC3  
0462  
PENH  
PENL  
POLH  
POLL  
OVRENH  
CLPOL  
OVRENL OVRDAT1 OVRDAT0 FLTDAT1  
CLMOD FLTSRC4 FLTSRC3 FLTSRC2  
PDC3<15:0>  
PHASE3<15:0>  
DTR3<13:0>  
ALTDTR3<13:0>  
SDC3<15:0>  
SPHASE3<15:0>  
FLTDAT0  
FLTSRC1  
CLDAT0  
FLTPOL  
OSYNC  
0464 IFLTMOD CLSRC4 CLSRC3 CLSRC2  
FLTMOD1 FLTMOD0 0000  
0466  
0468  
0000  
0000  
0000  
0000  
0000  
0000  
PHASE3  
DTR3  
046C  
046C  
046E  
0470  
0472  
ALTDTR3  
SDC3  
SPHASE3  
TRIG3  
TRGCMP<12:0>  
0000  
TRGCON3 0474 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0  
STRIG3 0476  
DTM  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000  
STRGCMP<12:0>  
PWMCAP<12:0>  
0000  
0000  
0000  
0000  
PWMCAP3 0478  
LEBCON3 047A  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN  
CLLEBEN  
LEB<8:0>  
BCH  
BCL  
BPHH  
BPHL  
BPLH  
BPLL  
LEBDLY3  
047C  
AUXCON3 047E HRPDIS HRDDIS  
Legend:  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
’. Reset values are shown in hexadecimal.  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
TABLE 4-20: HIGH-SPEED PWM GENERATOR 4 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON4 0480 FLTSTAT CLSTAT TRGSTAT FLTIEN  
IOCON4 0482 PENH PENL POLH POLL  
FCLCON4 0484 IFLTMOD CLSRC4 CLSRC3 CLSRC2  
CLIEN  
PMOD1  
CLSRC1  
TRGIEN  
PMOD0  
CLSRC0  
ITB  
MDCS  
DTC1  
DTC0  
DTCP  
MTBS  
CLDAT1  
FLTSRC0  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
OVRENH  
CLPOL  
OVRENL OVRDAT1 OVRDAT0 FLTDAT1  
CLMOD FLTSRC4 FLTSRC3 FLTSRC2  
PDC4<15:0>  
PHASE4<15:0>  
DTR4<13:0>  
ALTDTR4<13:0>  
SDC4<15:0>  
SPHASE4<15:0>  
FLTDAT0  
FLTSRC1  
CLDAT0  
FLTPOL  
OSYNC  
FLTMOD1 FLTMOD0  
PDC4  
0486  
0488  
048A  
048A  
048E  
PHASE4  
DTR4  
ALTDTR4  
SDC4  
SPHASE4 0490  
TRIG4 0492  
TRGCON4 0494 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0  
STRIG4 0496  
TRGCMP<12:0>  
DTM  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000  
STRGCMP<12:0>  
PWMCAP<12:0>  
0000  
0000  
0000  
0000  
PWMCAP4 0498  
LEBCON4 049A  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN  
CLLEBEN  
BCH  
BCL  
BPHH  
BPHL  
BPLH  
BPLL  
LEBDLY4  
049C  
LEB<8:0>  
AUXCON4 049E HRPDIS HRDDIS  
Legend:  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
’. Reset values are shown in hexadecimal.  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
TABLE 4-21: HIGH-SPEED PWM GENERATOR 5 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON5 04A0 FLTSTAT CLSTAT TRGSTAT FLTIEN  
IOCON5 04A2 PENH PENL POLH POLL  
FCLCON5 04A4 IFLTMOD CLSRC4 CLSRC3 CLSRC2  
CLIEN  
PMOD1  
CLSRC1  
TRGIEN  
PMOD0  
CLSRC0  
ITB  
MDCS  
DTC1  
DTC0  
DTCP  
MTBS  
CLDAT1  
FLTSRC0  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
OVRENH  
CLPOL  
OVRENL OVRDAT1 OVRDAT0 FLTDAT1  
CLMOD FLTSRC4 FLTSRC3 FLTSRC2  
PDC5<15:0>  
PHASE5<15:0>  
DTR5<13:0>  
ALTDTR5<13:0>  
SDC5<15:0>  
SPHASE5<15:0>  
FLTDAT0  
FLTSRC1  
CLDAT0  
FLTPOL  
OSYNC  
FLTMOD1 FLTMOD0  
PDC5  
04A6  
04A8  
04AA  
PHASE5  
DTR5  
ALTDTR5 04AA  
SDC5 04AE  
SPHASE5 04B0  
TRIG5 04B2  
TRGCON5 04B4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0  
STRIG5 04B6  
TRGCMP<12:0>  
DTM  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000  
STRGCMP<12:0>  
PWMCAP<12:0>  
0000  
0000  
0000  
0000  
PWMCAP5 04B8  
LEBCON5 04BA  
LEBDLY5 04BC  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN CLLEBEN  
BCH  
BCL  
BPHH  
BPHL  
BPLH  
BPLL  
LEB<8:0>  
AUXCON5 04BE HRPDIS HRDDIS  
Legend:  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
’. Reset values are shown in hexadecimal.  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
TABLE 4-22: HIGH-SPEED PWM GENERATOR 6 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON6 04C0 FLTSTAT CLSTAT TRGSTAT FLTIEN  
IOCON6 04C2 PENH PENL POLH POLL  
FCLCON6 04C4 IFLTMOD CLSRC4 CLSRC3 CLSRC2  
CLIEN  
PMOD1  
CLSRC1  
TRGIEN  
PMOD0  
CLSRC0  
ITB  
MDCS  
DTC1  
DTC0  
DTCP  
MTBS  
CLDAT1  
FLTSRC0  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
OVRENH  
CLPOL  
OVRENL OVRDAT1 OVRDAT0 FLTDAT1  
CLMOD FLTSRC4 FLTSRC3 FLTSRC2  
PDC6<15:0>  
PHASE6<15:0>  
DTR6<13:0>  
ALTDTR6<13:0>  
SDC6<15:0>  
SPHASE6<15:0>  
FLTDAT0  
FLTSRC1  
CLDAT0  
FLTPOL  
OSYNC  
FLTMOD0  
FLTMOD1  
PDC6  
04C6  
04C8  
04CA  
04CA  
04CE  
PHASE6  
DTR6  
ALTDTR6  
SDC6  
SPHASE6 04D0  
TRIG6 04D2  
TRGCON6 04D4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0  
STRIG6 04D6  
TRGCMP<12:0>  
DTM  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000  
STRGCMP<12:0>  
PWMCAP<12:0>  
0000  
0000  
0000  
0000  
PWMCAP6 04D8  
LEBCON6 04DA  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN  
CLLEBEN  
BCH  
BCL  
BPHH  
BPHL  
BPLH  
BPLL  
LEBDLY6  
04DC  
LEB<8:0>  
AUXCON6 04DE HRPDIS HRDDIS  
Legend:  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
’. Reset values are shown in hexadecimal.  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
TABLE 4-23: HIGH-SPEED PWM GENERATOR 7 REGISTER MAP (EXCLUDES dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES)  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON7 04E0 FLTSTAT CLSTAT TRGSTAT FLTIEN  
IOCON7 04E2 PENH PENL POLH POLL  
FCLCON7 04E4 IFLTMOD CLSRC4 CLSRC3 CLSRC2  
CLIEN  
PMOD1  
CLSRC1  
TRGIEN  
PMOD0  
CLSRC0  
ITB  
MDCS  
DTC1  
DTC0  
DTCP  
MTBS  
CLDAT1  
FLTSRC0  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
OVRENH  
CLPOL  
OVRENL OVRDAT1 OVRDAT0 FLTDAT1  
CLMOD FLTSRC4 FLTSRC3 FLTSRC2  
PDC7<15:0>  
PHASE7<15:0>  
DTR7<13:0>  
ALTDTR7<13:0>  
SDC7<15:0>  
SPHASE7<15:0>  
FLTDAT0  
FLTSRC1  
CLDAT0  
FLTPOL  
OSYNC  
FLTMOD1  
FLTMOD0 0000  
PDC7  
04E6  
04E8  
04EA  
04EA  
04EE  
0000  
0000  
0000  
0000  
0000  
0000  
PHASE7  
DTR7  
ALTDTR7  
SDC7  
SPHASE7 04F0  
TRIG7 04F2  
TRGCON7 04F4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0  
STRIG7 04F6  
TRGCMP<12:0>  
0000  
DTM  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000  
STRGCMP<12:0>  
PWMCAP<12:0>  
0000  
0000  
0000  
0000  
PWMCAP7 04F8  
LEBCON7 04FA  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN CLLEBEN  
BCH  
BCL  
BPHH  
BPHL  
BPLH  
BPLL  
LEBDLY7  
04FC  
LEB<8:0>  
AUXCON7 04FE HRPDIS HRDDIS  
Legend:  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
’. Reset values are shown in hexadecimal.  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
TABLE 4-24: HIGH-SPEED PWM GENERATOR 8 REGISTER MAP (EXCLUDES dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES)  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON8 0500 FLTSTAT CLSTAT TRGSTAT FLTIEN  
IOCON8 0502 PENH PENL POLH POLL  
FCLCON8 0504 IFLTMOD CLSRC4 CLSRC3 CLSRC2  
CLIEN  
PMOD1  
CLSRC1  
TRGIEN  
PMOD0  
CLSRC0  
ITB  
MDCS  
DTC1  
DTC0  
DTCP  
MTBS  
CLDAT1  
FLTSRC0  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
OVRENH  
CLPOL  
OVRENL OVRDAT1 OVRDAT0 FLTDAT1  
CLMOD FLTSRC4 FLTSRC3 FLTSRC2  
PDC8<15:0>  
PHASE8<15:0>  
DTR8<13:0>  
ALTDTR8<13:0>  
SDC8<15:0>  
SPHASE8<15:0>  
FLTDAT0  
FLTSRC1  
CLDAT0  
FLTPOL  
OSYNC  
FLTMOD1 FLTMOD0 0000  
PDC8  
0506  
0508  
050A  
050A  
050E  
0000  
0000  
0000  
0000  
0000  
0000  
PHASE8  
DTR8  
ALTDTR8  
SDC8  
SPHASE8 0510  
TRIG8 0512  
TRGCON8 0514 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0  
STRIG8 0516  
TRGCMP<12:0>  
0000  
DTM  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000  
STRGCMP<12:0>  
PWMCAP<12:0>  
0000  
0000  
0000  
0000  
PWMCAP8 0518  
LEBCON8 051A  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN  
CLLEBEN  
BCH  
BCL  
BPHH  
BPHL  
BPLH  
BPLL  
LEBDLY8  
051C  
LEB<8:0>  
AUXCON8 051E HRPDIS HRDDIS  
Legend:  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
’. Reset values are shown in hexadecimal.  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
TABLE 4-25: HIGH-SPEED PWM GENERATOR 9 REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON9 0520 FLTSTAT CLSTAT TRGSTAT FLTIEN  
IOCON9 0522 PENH PENL POLH POLL  
FCLCON9 0524 IFLTMOD CLSRC4 CLSRC3 CLSRC2  
CLIEN  
PMOD1  
CLSRC1  
TRGIEN  
PMOD0  
CLSRC0  
ITB  
MDCS  
DTC1  
DTC0  
DTCP  
MTBS  
CLDAT1  
FLTSRC0  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
OVRENH  
CLPOL  
OVRENL OVRDAT1 OVRDAT0 FLTDAT1  
CLMOD FLTSRC4 FLTSRC3 FLTSRC2  
PDC9<15:0>  
PHASE9<15:0>  
DTR9<13:0>  
ALTDTR9<13:0>  
SDC9<15:0>  
FLTDAT0  
FLTSRC1  
CLDAT0  
FLTPOL  
OSYNC  
FLTMOD1 FLTMOD0 0000  
PDC9  
0526  
0528  
052A  
052A  
052E  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
PHASE9  
DTR9  
ALTDTR9  
SDC9  
SPHASE9 0530  
TRIG9 0532  
TRGCON9 0534 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0  
STRIG9 0536  
SPHASE9<15:0>  
TRGCMP<15:0>  
DTM  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000  
STRGCMP<15:0>  
0000  
PWMCAP9 0538  
LEBCON9 053A  
PWMCAP<12:0>  
BPHL  
BPLH  
BPLL  
0000  
0000  
0000  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN  
CLLEBEN  
BCH  
BCL  
BPHH  
LEBDLY9  
053C  
LEB<8:0>  
AUXCON9 053E HRPDIS HRDDIS  
Legend:  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
’. Reset values are shown in hexadecimal.  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000  
x
= unknown value on Reset, — = unimplemented, read as ‘  
0
 
TABLE 4-26: I2C1 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV 0200  
I2C1TRN 0202  
I2C1BRG 0204  
I2C1CON 0206  
I2C1 Receive Register  
I2C1 Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
I2C1STAT 0208 ACKSTAT TRSTAT  
ADD10  
IWCOL  
I2C1ADD 020A  
I2C1MSK 020C  
I2C1 Address Register  
I2C1 Address Mask Register  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-27: I2C2 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C2RCV 0210  
I2C2TRN 0212  
I2C2BRG 0214  
I2C2CON 0216  
I2C2 Receive Register  
I2C2 Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
I2C2STAT 0218 ACKSTAT TRSTAT  
ADD10  
IWCOL  
I2C2ADD 021A  
I2C2MSK 021C  
I2C2 Address Register  
I2C2 Address Mask Register  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-28: UART1 REGISTER MAP  
SFR  
Addr.  
All  
Resets  
File Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UEN0  
WAKE  
LPBACK  
ABAUD URXINV  
RIDLE  
BRGH  
PERR  
PDSEL1 PDSEL0  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN UTXBF  
TRMT URXISEL1 URXISEL0 ADDEN  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
UART1 Transmit Register  
UART1 Receive Register  
Baud Rate Generator Prescaler  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-29: UART2 REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U2MODE  
U2STA  
0230 UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
WAKE  
LPBACK  
ABAUD URXINV  
RIDLE  
BRGH  
PERR  
PDSEL1 PDSEL0  
FERR OERR  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
0232 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
TRMT URXISEL1 URXISEL0 ADDEN  
URXDA  
U2TXREG 0234  
U2RXREG 0236  
UART2 Transmit Register  
UART2 Receive Register  
U2BRG  
0238  
Baud Rate Generator Prescaler  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-30: SPI1 REGISTER MAP  
SFR  
Addr.  
All  
Resets  
File Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE2  
SPRE1  
SPRE0  
SPITBF SPIRBF 0000  
DISSCK DISSDO MODE16  
PPRE1  
PPRE0 0000  
FRMEN SPIFSD FRMPOL  
FRMDLY  
0000  
0000  
SPI1 Transmit and Receive Buffer Register  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-31: SPI2 REGISTER MAP  
SFR  
Addr.  
All  
Resets  
File Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI2STAT  
SPI2CON1  
SPI2CON2  
SPI2BUF  
0260  
0262  
0264  
0268  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE2  
SPRE1  
SPRE0  
SPITBF SPIRBF 0000  
DISSCK DISSDO MODE16  
PPRE1  
PPRE0 0000  
FRMEN SPIFSD FRMPOL  
FRMDLY  
0000  
0000  
SPI2 Transmit and Receive Buffer Register  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-32: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON  
0300  
0302  
ADON  
ADSIDL  
SLOWCLK  
GSWTRG  
FORM  
EIE  
ORDER SEQSAMP ASYNCSAMP  
ADCS2  
ADCS1  
ADCS0  
0003  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
ADPCFG  
PCFG<15:0>  
ADPCFG2 0304  
PCFG<23:16>  
P3RDY  
ADSTAT  
ADBASE  
ADCPC0  
ADCPC1  
ADCPC2  
ADCPC3  
ADCPC4  
ADCPC5  
ADCPC6  
0306  
0308  
P12RDY  
P11RDY  
P10RDY  
P9RDY  
P8RDY  
P7RDY  
P6RDY  
P5RDY  
P4RDY  
P2RDY  
P1RDY  
P0RDY  
ADBASE<15:1>  
030A IRQEN1 PEND1 SWTRG1 TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0 SWTRG0  
030C IRQEN3 PEND3 SWTRG3 TRGSRC34 TRGSRC33 TRGSRC32 TRGSRC31 TRGSRC30 IRQEN2 PEND2 SWTRG2  
030E IRQEN5 PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 TRGSRC50 IRQEN4 PEND4 SWTRG4  
0310 IRQEN7 PEND7 SWTRG7 TRGSRC74 TRGSRC73 TRGSRC72 TRGSRC71 TRGSRC70 IRQEN6 PEND6 SWTRG6  
0312 IRQEN9 PEND9 SWTRG9 TRGSRC94 TRGSRC93 TRGSRC92 TRGSRC94 TRGSRC90 IRQEN8 PEND8 SWTRG8  
TRGSRC04 TRGSRC03 TRGSRC02 TRGSRC01 TRGSRC00  
TRGSRC24 TRGSRC23 TRGSRC22 TRGSRC21 TRGSRC20  
TRGSRC44 TRGSRC43 TRGSRC42 TRGSRC41 TRGSRC40  
TRGSRC64 TRGSRC63 TRGSRC62 TRGSRC61 TRGSRC640 0000  
TRGSRC84 TRGSRC83 TRGSRC82 TRGSRC81 TRGSRC80 0000  
0314 IRQEN11 PEND11 SWTRG11 TRGSRC114 TRGSRC113 TRGSRC112 TRGSRC111 TRGSRC110 IRQEN10 PEND10 SWTRG10 TRGSRC104 TRGSRC103 TRGSRC102 TRGSRC101 TRGSRC100 0000  
0316 IRQEN12 PEND12 SWTRG12 TRGSRC124 TRGSRC123 TRGSRC122 TRGSRC121 TRGSRC120 0000  
ADCBUF0 0340  
ADCBUF1 0342  
ADCBUF2 0344  
ADCBUF3 0346  
ADCBUF4 0348  
ADCBUF5 034A  
ADCBUF6 034C  
ADCBUF7 034E  
ADCBUF8 0350  
ADCBUF9 0352  
ADCBUF10 0354  
ADCBUF11 0356  
ADCBUF12 0358  
ADCBUF13 035A  
ADCBUF14 035C  
ADCBUF15 035E  
ADCBUF16 0360  
ADCBUF17 0362  
ADCBUF18 0364  
ADCBUF19 0366  
ADCBUF20 0368  
ADCBUF21 036A  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
ADC Data Buffer 16  
ADC Data Buffer 17  
ADC Data Buffer 18  
ADC Data Buffer 19  
ADC Data Buffer 20  
ADC Data Buffer 21  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-32: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY (CONTINUED)  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCBUF22 036C  
ADCBUF23 036E  
ADCBUF24 0370  
ADCBUF25 0372  
ADC Data Buffer 22  
ADC Data Buffer 23  
ADC Data Buffer 24  
ADC Data Buffer 25  
xxxx  
xxxx  
xxxx  
xxxx  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-33: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON  
0300  
0302  
0304  
0306  
0308  
ADON  
ADSIDL SLOWCLK  
GSWTRG  
FORM  
EIE  
PCFG<15:0>  
ORDER SEQSAMP ASYNCSAMP  
ADCS2  
ADCS1  
ADCS0  
0003  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
ADPCFG  
ADPCFG2  
ADSTAT  
PCFG<17:16>  
P12RDY  
P8RDY  
P7RDY  
P6RDY  
P5RDY  
P4RDY  
P3RDY  
P2RDY  
P1RDY  
P0RDY  
ADBASE  
ADCPC0  
ADCPC1  
ADCPC2  
ADCPC3  
ADCPC4  
ADCPC6  
ADCBUF0  
ADCBUF1  
ADCBUF2  
ADCBUF3  
ADCBUF4  
ADCBUF5  
ADCBUF6  
ADCBUF7  
ADCBUF8  
ADCBUF9  
ADBASE<15:1>  
030A IRQEN1 PEND1 SWTRG1 TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0 SWTRG0  
030C IRQEN3 PEND3 SWTRG3 TRGSRC34 TRGSRC33 TRGSRC32 TRGSRC31 TRGSRC30 IRQEN2 PEND2 SWTRG2  
030E IRQEN5 PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 TRGSRC50 IRQEN4 PEND4 SWTRG4  
0310 IRQEN7 PEND7 SWTRG7 TRGSRC74 TRGSRC73 TRGSRC72 TRGSRC71 TRGSRC70 IRQEN6 PEND6 SWTRG6  
TRGSRC04  
TRGSRC24  
TRGSRC44  
TRGSRC64  
TRGSRC84  
TRGSRC03 TRGSRC02 TRGSRC01 TRGSRC00  
TRGSRC23 TRGSRC22 TRGSRC21 TRGSRC20  
TRGSRC43 TRGSRC42 TRGSRC41 TRGSRC40  
TRGSRC63 TRGSRC62 TRGSRC61 TRGSRC640 0000  
TRGSRC83 TRGSRC82 TRGSRC81 TRGSRC80 0000  
0312  
0316  
0340  
0342  
0344  
0346  
0348  
034A  
034C  
034E  
0350  
0352  
IRQEN8 PEND8 SWTRG8  
IRQEN12 PEND12 SWTRG12 TRGSRC124  
ADC Data Buffer 0  
TRGSRC123 TRGSRC122 TRGSRC121 TRGSRC120 0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
ADC Data Buffer 16  
ADC Data Buffer 17  
ADC Data Buffer 24  
ADC Data Buffer 25  
ADCBUF10 0354  
ADCBUF11 0356  
ADCBUF12 0358  
ADCBUF13 035A  
ADCBUF14 035C  
ADCBUF15 035E  
ADCBUF16 0360  
ADCBUF17 0362  
ADCBUF24 0370  
ADCBUF25 0372  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-34: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS606 AND dsPIC33FJ64GS606 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON  
0300  
0302  
0306  
0308  
ADON  
ADSIDL  
SLOWCLK  
GSWTRG  
FORM  
EIE  
ORDER SEQSAMP ASYNCSAMP  
ADCS2  
ADCS1  
ADCS0  
0003  
0000  
0000  
0000  
0000  
0000  
0000  
ADPCFG  
ADSTAT  
PCFG<15:0>  
P12RDY  
P7RDY P6RDY  
P5RDY  
P4RDY  
P3RDY  
P2RDY  
P1RDY  
P0RDY  
ADBASE  
ADCPC0  
ADCPC1  
ADCPC2  
ADCPC3  
ADCPC6  
ADCBUF0  
ADCBUF1  
ADCBUF2  
ADCBUF3  
ADCBUF4  
ADCBUF5  
ADCBUF6  
ADCBUF7  
ADCBUF8  
ADCBUF9  
ADBASE<15:1>  
030A IRQEN1 PEND1 SWTRG1 TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0  
030C IRQEN3 PEND3 SWTRG3 TRGSRC34 TRGSRC33 TRGSRC32 TRGSRC31 TRGSRC30 IRQEN2 PEND2  
030E IRQEN5 PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 TRGSRC50 IRQEN4 PEND4  
0310 IRQEN7 PEND7 SWTRG7 TRGSRC74 TRGSRC73 TRGSRC72 TRGSRC71 TRGSRC70 IRQEN6 PEND6  
SWTRG0  
SWTRG2  
SWTRG4  
SWTRG6  
TRGSRC04 TRGSRC03 TRGSRC02 TRGSRC01 TRGSRC00  
TRGSRC24 TRGSRC23 TRGSRC22 TRGSRC21 TRGSRC20  
TRGSRC44 TRGSRC43 TRGSRC42 TRGSRC41 TRGSRC40  
TRGSRC64 TRGSRC63 TRGSRC62 TRGSRC61 TRGSRC640 0000  
0316  
0340  
0342  
0344  
0346  
0348  
034A  
034C  
034E  
0350  
0352  
IRQEN12 PEND12 SWTRG12 TRGSRC124 TRGSRC123 TRGSRC122 TRGSRC121 TRGSRC120 0000  
ADC Data Buffer 0  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADCBUF10 0354  
ADCBUF11 0356  
ADCBUF12 0358  
ADCBUF13 035A  
ADCBUF14 035C  
ADCBUF15 035E  
ADCBUF24 0370  
ADCBUF25 0372  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
ADC Data Buffer 24  
ADC Data Buffer 25  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-35: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON  
0300  
0302  
0306  
0308  
ADON  
ADSIDL SLOWCLK  
GSWTRG  
FORM  
EIE  
ORDER SEQSAMP ASYNCSAMP  
ADCS2  
ADCS1  
ADCS0  
0003  
0000  
0000  
0000  
0000  
0000  
0000  
ADPCFG  
ADSTAT  
PCFG<15:0>  
P12RDY  
P7RDY P6RDY  
P5RDY  
P4RDY  
P3RDY  
P2RDY  
P1RDY  
P0RDY  
ADBASE  
ADCPC0  
ADCPC1  
ADCPC2  
ADCPC3  
ADCBUF0  
ADCBUF1  
ADCBUF2  
ADCBUF3  
ADCBUF4  
ADCBUF5  
ADCBUF6  
ADCBUF7  
ADCBUF8  
ADCBUF9  
ADBASE<15:1>  
030A IRQEN1 PEND1 SWTRG1 TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0 SWTRG0  
030C IRQEN3 PEND3 SWTRG3 TRGSRC34 TRGSRC33 TRGSRC32 TRGSRC31 TRGSRC30 IRQEN2 PEND2 SWTRG2  
030E IRQEN5 PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 TRGSRC50 IRQEN4 PEND4 SWTRG4  
0310 IRQEN7 PEND7 SWTRG7 TRGSRC74 TRGSRC73 TRGSRC72 TRGSRC71 TRGSRC70 IRQEN6 PEND6 SWTRG6  
TRGSRC04  
TRGSRC24  
TRGSRC44  
TRGSRC64  
TRGSRC03 TRGSRC02 TRGSRC01 TRGSRC00  
TRGSRC23 TRGSRC22 TRGSRC21 TRGSRC20  
TRGSRC43 TRGSRC42 TRGSRC41 TRGSRC40  
TRGSRC63 TRGSRC62 TRGSRC61 TRGSRC640 0000  
0340  
0342  
0344  
0346  
0348  
034A  
034C  
034E  
0350  
0352  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
ADCBUF10 0354  
ADCBUF11 0356  
ADCBUF12 0358  
ADCBUF13 035A  
ADCBUF14 035C  
ADCBUF15 035E  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-36: DMA REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AMODE1 AMODE0  
MODE1  
MODE0  
DMA0CON 0380 CHEN  
DMA0REQ 0382 FORCE  
DMA0STA 0384  
SIZE  
DIR  
HALF  
NULLW  
0000  
IRQSEL6 IRQSEL5 IRQSEL4 IRQSEL3 IRQSEL2 IRQSEL1 IRQSEL0 007F  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
0000  
0000  
0000  
DMA0STB 0386  
DMA0PAD 0388  
DMA0CNT 038A  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
0000  
0000  
DMA1CON 038C CHEN  
DMA1REQ 038E FORCE  
DMA1STA 0390  
AMODE1 AMODE0  
MODE1  
MODE0  
IRQSEL6 IRQSEL5 IRQSEL4 IRQSEL3 IRQSEL2 IRQSEL1 IRQSEL0 007F  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
0000  
0000  
0000  
DMA1STB 0392  
DMA1PAD 0394  
DMA1CNT 0396  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
0000  
0000  
DMA2CON 0398 CHEN  
DMA2REQ 039A FORCE  
DMA2STA 039C  
AMODE1 AMODE0  
MODE1  
MODE0  
IRQSEL6 IRQSEL5 IRQSEL4 IRQSEL3 IRQSEL2 IRQSEL1 IRQSEL0 007F  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
0000  
0000  
0000  
DMA2STB 039E  
DMA2PAD 03A0  
DMA2CNT 03A2  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
0000  
0000  
DMA3CON 03A4 CHEN  
DMA3REQ 03A6 FORCE  
DMA3STA 03A8  
AMODE1 AMODE0  
MODE1  
MODE0  
IRQSEL6 IRQSEL5 IRQSEL4 IRQSEL3 IRQSEL2 IRQSEL1 IRQSEL0 007F  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
0000  
0000  
0000  
DMA3STB 03AA  
DMA3PAD 03AC  
DMA3CNT 03AE  
CNT<9:0>  
0000  
DMACS0  
DMACS1  
DSADR  
03E0  
03E2  
03E4  
PWCOL3 PWCOL2 PWCOL1 PWCOL0  
LSTCH3 LSTCH2 LSTCH1 LSTCH0  
XWCOL3 XWCOL2 XWCOL1 XWCOL0 0000  
PPST3  
PPST2  
PPST1  
PPST0  
0F00  
0000  
DSADR<15:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-37: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 OR 1  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1CTRL1  
C1CTRL2  
C1VEC  
0600  
0602  
0604  
0606  
0608  
060A  
060C  
CSIDL  
ABAT  
REQOP2  
REQOP1  
REQOP0 OPMODE2 OPMODE1 OPMODE0  
CANCAP  
DNCNT<4:0>  
ICODE2  
FSA2  
WIN  
0480  
0000  
0000  
0000  
0000  
0000  
0000  
FILHIT0  
ICODE6  
DMABS2  
DMABS1  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1  
ICODE5  
ICODE4  
FSA4  
FNRB4  
ICODE3  
FSA3  
ICODE1  
FSA1  
ICODE0  
FSA0  
C1FCTRL  
C1FIFO  
C1INTF  
C1INTE  
C1EC  
DMABS0  
FBP5  
TXBO  
FBP4  
TXBP  
FBP3  
RXBP  
FBP2  
TXWAR  
FBP1  
RXWAR  
FBP0  
EWARN  
FNRB5  
ERRIF  
ERRIE  
FNRB3  
FIFOIF  
FIFOIE  
FNRB2  
FNRB1  
RBIF  
FNRB0  
TBIF  
IVRIF  
IVRIE  
WAKIF  
WAKIE  
RBOVIF  
RBOVIE  
RBIE  
TBIE  
060E TERRCNT7 TERRCNT6 TERRCNT5 TERRCNT4 TERRCNT3 TERRCNT2 TERRCNT1 TERRCNT0 RERRCNT7 RERRCNT6 RERRCNT5 RERRCNT4 RERRCNT3 RERRCNT2 RERRCNT1 RERRCNT0 0000  
C1CFG1  
C1CFG2  
C1FEN1  
0610  
0612  
0614  
SJW1  
SJW0  
SAM  
BRP5  
BRP4  
BRP3  
BRP2  
BRP1  
BRP0  
0000  
0000  
FFFF  
0000  
0000  
WAKFIL  
SEG2PH2 SEG2PH1 SEG2PH0 SEG2PHTS  
FLTEN<15:0>  
SEG1PH2 SEG1PH1 SEG1PH0  
PRSEG2  
PRSEG1  
PRSEG0  
C1FMSKSEL1 0618  
F7MSK1  
F7MSK0  
F6MSK1  
F6MSK0  
F5MSK1  
F5MSK0  
F4MSK1  
F4MSK0  
F3MSK1  
F3MSK0  
F2MSK1  
F2MSK0  
F1MSK1  
F9MSK1  
F1MSK0  
F9MSK0  
F0MSK1  
F8MSK1  
F0MSK0  
F8MSK0  
C1FMSKSEL2 061A F15MSK1 F15MSK0 F14MSK1 F14MSK0  
F13MSK1  
F13MSK0  
F12MSK1 F12MSK1  
F11MSK1  
F11MSK0  
F10MSK1  
F10MSK0  
Legend: = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
x
TABLE 4-38: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0600-  
061E  
See definition when WIN = x  
C1RXFUL1  
C1RXFUL2  
C1RXOVF1  
C1RXOVF2  
0620  
0622  
0628  
062A  
RXFUL<15:0>  
RXFUL<31:16>  
RXOVF<15:0>  
RXOVF<31:16>  
0000  
0000  
0000  
0000  
C1TR01CON 0630 TXEN1 TXABT1 TXLARB1 TXERR1 TXREQ1 RTREN1 TX1PRI1 TX1PRI0 TXEN0 TXABT0 TXLARB0 TXERR0 TXREQ0 RTREN0 TX0PRI1 TX0PRI0 0000  
C1TR23CON 0632 TXEN3 TXABT3 TXLARB3 TXERR3 TXREQ3 RTREN3 TX3PRI1 TX3PRI0 TXEN2 TXABT2 TXLARB2 TXERR2 TXREQ2 RTREN2 TX2PRI1 TX2PRI0 0000  
C1TR45CON 0634 TXEN5 TXABT5 TXLARB5 TXERR5 TXREQ5 RTREN5 TX5PRI1 TX5PRI0 TXEN4 TXABT4 TXLARB4 TXERR4 TXREQ4 RTREN4 TX4PRI1 TX4PRI0 0000  
C1TR67CON 0636 TXEN7 TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7 TX7PRI1 TX7PRI0 TXEN6 TXABT6 TXLARB6 TXERR6 TXREQ6 RTREN6 TX6PRI1 TX6PRI0 0000  
C1RXD  
C1TXD  
0640  
0642  
ECAN1 Received Data Word Register  
ECAN1 Transmit Data Word Register  
xxxx  
xxxx  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-39: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0600-  
061E  
See definition when WIN = x  
C1BUFPNT1 0620 F3BP3  
C1BUFPNT2 0622 F7BP3  
F3BP2  
F7BP2  
F3BP1  
F7BP1  
F3BP0  
F7BP0  
F2BP3  
F6BP3  
F2BP2  
F6BP2  
F2BP1  
F6BP1  
F2BP0  
F6BP0  
F1BP3  
F5BP3  
F9BP3  
F13BP3  
SID2  
F1BP2  
F5BP2  
F9BP2  
F13BP2  
SID1  
F1BP1  
F5BP1  
F9BP1  
F13BP1  
SID0  
F1BP0  
F5BP0  
F9BP0  
F13BP0  
F0BP3  
F4BP3  
F8BP3  
F12BP3  
MIDE  
F0BP2  
F4BP2  
F8BP2  
F0BP1 F0BP0 0000  
F4BP1 F4BP0 0000  
F8BP1 F8BP0 0000  
C1BUFPNT3 0624 F11BP3 F11BP2 F11BP1 F11BP0 F10BP3 F10BP2 F10BP1 F10BP0  
C1BUFPNT4 0626 F15BP3 F15BP2 F15BP1 F15BP0 F14BP3 F14BP2 F14BP1 F14BP0  
F12BP2 F12BP1 F12BP0 0000  
C1RXM0SID 0630  
C1RXM0EID 0632  
C1RXM1SID 0634  
C1RXM1EID 0636  
C1RXM2SID 0638  
C1RXM2EID 063A  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID10  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID9  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID8  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID7  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID6  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID5  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID4  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
SID3  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID17  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
EID16  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
SID1  
SID1  
SID1  
SID1  
SID1  
SID1  
SID1  
SID1  
SID1  
SID1  
SID1  
SID1  
SID1  
SID1  
SID0  
SID0  
SID0  
SID0  
SID0  
SID0  
SID0  
SID0  
SID0  
SID0  
SID0  
SID0  
SID0  
SID0  
MIDE  
MIDE  
EID<15:0>  
SID2  
C1RXF0SID  
C1RXF0EID  
C1RXF1SID  
C1RXF1EID  
C1RXF2SID  
C1RXF2EID  
C1RXF3SID  
C1RXF3EID  
C1RXF4SID  
C1RXF4EID  
C1RXF5SID  
C1RXF5EID  
C1RXF6SID  
C1RXF6EID  
C1RXF7SID  
C1RXF7EID  
C1RXF8SID  
C1RXF8EID  
C1RXF9SID  
C1RXF9EID  
0640  
0642  
0644  
0646  
0648  
064A  
064C  
064E  
0650  
0652  
0654  
0656  
0658  
065A  
065C  
065E  
0660  
0662  
0664  
0666  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
C1RXF10SID 0668  
C1RXF10EID 066A  
C1RXF11SID 066C  
EID<15:0>  
SID2  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-39: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 (CONTINUED)  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1RXF11EID 066E  
C1RXF12SID 0670  
C1RXF12EID 0672  
C1RXF13SID 0674  
C1RXF13EID 0676  
C1RXF14SID 0678  
C1RXF14EID 067A  
C1RXF15SID 067C  
C1RXF15EID 067E  
EID<15:0>  
SID2  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
SID10  
SID10  
SID10  
SID10  
SID9  
SID9  
SID9  
SID9  
SID8  
SID8  
SID8  
SID8  
SID7  
SID7  
SID7  
SID7  
SID6  
SID6  
SID6  
SID6  
SID5  
SID5  
SID5  
SID5  
SID4  
SID4  
SID4  
SID4  
SID3  
SID3  
SID3  
SID3  
SID1  
SID1  
SID1  
SID1  
SID0  
SID0  
SID0  
SID0  
EXIDE  
EXIDE  
EXIDE  
EXIDE  
EID17  
EID17  
EID17  
EID17  
EID16  
EID16  
EID16  
EID16  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
SID2  
EID<15:0>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-40: ANALOG COMPARATOR CONTROL REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMPCON1  
CMPDAC1  
CMPCON2  
CMPDAC2  
CMPCON3  
CMPDAC3  
CMPCON4  
CMPDAC4  
0540  
0542  
0544  
0546  
0548  
054A  
054C  
054E  
CMPON  
CMPSIDL  
DACOE INSEL1 INSEL0 EXTREF  
CMPSTAT  
CMPPOL RANGE 0000  
-
CMREF<9:0>  
0000  
CMPPOL RANGE 0000  
0000  
CMPON  
CMPSIDL  
DACOE INSEL1 INSEL0 EXTREF  
CMPSTAT  
CMPSTAT  
CMPSTAT  
-
CMREF<9:0>  
CMPON  
CMPSIDL  
DACOE INSEL1 INSEL0 EXTREF  
CMPPOL RANGE 0000  
0000  
-
CMPSIDL  
CMREF<9:0>  
CMPON  
DACOE INSEL1 INSEL0 EXTREF  
CMPPOL RANGE 0000  
0000  
CMREF<9:0>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-41: PORTA REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
02C0  
TRISA<15:14>  
RA<15:14>  
TRISA<10:9>  
RA<10:9>  
TRISA<7:0>  
RA<7:0>  
C6FF  
xxxx  
0000  
0000  
PORTA 02C2  
LATA  
02C4  
02C6  
LATA<15:14>  
ODCA<15:14>  
LATA<10:9>  
ODCA<10:9>  
LATA<7:0>  
ODCA  
ODCA<5:4>  
ODCA<1:0>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-42: PORTA REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA 02C0  
PORTA 02C2  
TRISA<15:14>  
RA<15:14>  
TRISA<10:9>  
RA<10:9>  
C600  
xxxx  
0000  
0000  
LATA  
02C4  
LATA<15:14>  
ODCA<15:14>  
LATA<10:9>  
ODCA<10:9>  
ODCA 02C6  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-43: PORTB REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8  
02CA  
02CC  
TRISB<15:0>  
RB<15:0>  
FFFF  
xxxx  
0000  
LATB<15:0>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-44: PORTC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
PORTC  
LATC  
02D0  
02D2  
02D4  
TRISC<15:12>  
RC<15:12>  
TRISC<4:1>  
F01E  
xxxx  
0000  
RC<4:1>  
LATC<15:12>  
LATC<4:1>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
 
 
TABLE 4-45: PORTC REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
PORTC  
LATC  
02D0  
02D2  
02D4  
TRISC<15:12>  
RC<15:12>  
TRISC<2:1>  
F006  
xxxx  
0000  
RC<2:1>  
LATC<15:12>  
LATC<2:1>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-46: PORTC REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
PORTC  
LATC  
02D0  
02D2  
02D4  
TRISC<15:12>  
RC<15:12>  
F000  
xxxx  
0000  
LATC<15:12>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-47: PORTD REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISD  
PORTD  
LATD  
02D8  
02DA  
02DC  
02DE  
TRISD<15:0>  
RD<15:0>  
FFFF  
xxxx  
0000  
0000  
LATD<15:0>  
ODCD<15:0>  
ODCD  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-48: PORTD REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISD  
PORTD  
LATD  
02D8  
02DA  
02DC  
02DE  
TRISD<11:0>  
RD<11:0>  
0FFF  
xxxx  
0000  
0000  
LATD<11:0>  
ODCD<11:0>  
ODCD  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
 
 
TABLE 4-49: PORTE REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 1  
Bit 1  
Bit 1  
Bit 0  
TRISE  
PORTE  
LATE  
02E0  
02E2  
02E4  
02E6  
TRISE<9:0>  
RE<9:0>  
03FF  
xxxx  
0000  
0000  
LATE<9:0>  
ODCE  
ODCE<7:0>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-50: PORTE REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 0  
TRISE  
PORTE  
LATE  
02E0  
02E2  
02E4  
02E6  
TRISE<7:0>  
00FF  
xxxx  
0000  
0000  
RE<7:0>  
LATE<7:0>  
ODCE<7:0>  
ODCE  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-51: PORTF REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 0  
TRISF  
PORTF  
LATF  
02E8  
02EA  
02EC  
02EE  
TRISF<13:12>  
RF<13:12>  
TRISF<8:0>  
RF<8:0>  
LATF<8:0>  
30FF  
xxxx  
0000  
0000  
LATF<13:12>  
ODCF<13:12>  
ODCF  
ODCF<8:6>  
ODCF<3:1>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-52: PORTF REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 0  
TRISF  
PORTF  
LATF  
02E8  
02EA  
02EC  
02EE  
TRISF<8:0>  
RF<8:0>  
LATF<8:0>  
01FF  
xxxx  
0000  
0000  
ODCF  
ODCF<8:6>  
ODCF<3:1>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
 
 
TABLE 4-53: PORTF REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISF  
PORTF  
LATF  
02E8  
02EA  
02EC  
02EE  
TRISF<6:0>  
RF<6:0>  
007F  
xxxx  
0000  
0000  
LATF<6:0>  
ODCF  
ODCF6  
ODCF<3:1>  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-54: PORTG REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISG  
PORTG  
LATG  
02F0  
02F2  
02F4  
02F6  
TRISG<15:12  
TRISG<9:6>  
RG<9:6>  
TRISG<3:0>  
F3CF  
xxxx  
0000  
0000  
RG<15:12>  
LATG<15:12>  
ODCG<15:12>  
RG<3:0>  
LATG<3:0>  
ODCG<3:0>  
LATG<9:6>  
ODCG<9:6>  
ODCG  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-55: PORTG REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISG  
PORTG  
LATG  
02F0  
02F2  
02F4  
02F6  
TRISG<9:6>  
RG<9:6>  
TRISG<3:0>  
RG<3:0>  
03CF  
xxxx  
0000  
0000  
LATG<9:6>  
ODCG<9:6>  
LATG<3:0>  
ODCG<3:0>  
ODCG  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-56: PORTG REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISG  
PORTG  
LATG  
02F0  
02F2  
02F4  
02F6  
TRISG<9:6>  
RG<9:6>  
TRISG<3:2>  
03CC  
xxxx  
0000  
0000  
RG<3:2>  
LATG<3:2>  
ODCG<3:2>  
LATG<9:6>  
ODCG<9:6>  
ODCG  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
 
 
TABLE 4-57: SYSTEM CONTROL REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740 TRAPR IOPUWR  
NOSC1  
FRCDIV1  
VREGS  
NOSC0  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
OSWEN 0300(2)  
xxxx(1)  
OSCCON 0742  
ROI  
COSC2 COSC1 COSC0  
NOSC2  
CLKLOCK  
LOCK  
CLKDIV  
PLLFBD  
0744  
0746  
DOZE2 DOZE1 DOZE0 DOZEN FRCDIV2  
FRCDIV0 PLLPOST1 PLLPOST0  
PLLPRE4 PLLPRE3 PLLPRE2 PLLPRE1 PLLPRE0 0040  
PLLDIV<8:0>  
0030  
0000  
0000  
2300  
OSCTUN 0748  
TUN<5:0>  
REFOCON 074E ROON  
ROSSLP ROSEL RODIV3  
RODIV2  
RODIV1  
RODIV0  
ACLKCON 0750 ENAPLL APLLCK SELACLK  
APSTSCLR2 APSTSCLR1 APSTSCLR0 ASRCSEL FRCSEL  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
The RCON register Reset values are dependent on the type of Reset.  
The OSCCON register Reset values are dependent on the FOSCx Configuration bits and on the type of Reset.  
TABLE 4-58: NVM REGISTER MAP  
File  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NVMCON 0760  
NVMKEY 0766  
WR  
WREN  
WRERR  
ERASE  
NVMOP3 NVMOP2 NVMOP1 NVMOP0 0000(1)  
NVMKEY<7:0>  
0000  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: The Reset value shown is for POR only. The value on other Reset states is dependent on the state of the memory write or erase operations at the time of Reset.  
TABLE 4-59: PMD REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1 0770  
PMD2 0772  
PMD3 0774  
PMD4 0776  
T5MD  
T4MD  
T3MD  
T2MD  
T1MD  
IC4MD  
QEI1MD PWMMD  
IC1MD  
I2C1MD U2MD  
U1MD SPI2MD SPI1MD  
C1MD  
ADCMD  
OC1MD  
0000  
0000  
0000  
0000  
0000  
IC3MD  
CMPMD  
IC2MD  
QEI2MD  
OC4MD OC3MD OC2MD  
REFOMD  
I2C2MD  
PMD6 077A PWM8MD PWM7MD PWM6MD PWM5MD PWM4MD PWM3MD PWM2MD PWM1MD  
PMD7 077C CMP4MD CMP3MD CMP2MD CMP1MD  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
PWM9MD 0000  
 
 
 
TABLE 4-60: PMD REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1 0770  
PMD2 0772  
PMD3 0774  
PMD4 0776  
T5MD  
T4MD  
T3MD  
T2MD  
T1MD  
IC4MD  
QEI1MD PWMMD  
IC1MD  
I2C1MD U2MD  
U1MD SPI2MD SPI1MD  
ADCMD  
0000  
0000  
0000  
0000  
0000  
IC3MD  
CMPMD  
IC2MD  
QEI2MD  
OC4MD OC3MD OC2MD OC1MD  
REFOMD  
I2C2MD  
PMD6 077A PWM8MD PWM7MD PWM6MD PWM5MD PWM4MD PWM3MD PWM2MD PWM1MD  
PMD7 077C CMP4MD CMP3MD CMP2MD CMP1MD  
PWM9MD 0000  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-61: PMD REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES  
File  
Name Addr  
SFR  
All  
Bit 0  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Resets  
PMD1 0770  
PMD2 0772  
PMD3 0774  
PMD4 0776  
T5MD  
T4MD  
T3MD  
T2MD  
T1MD  
IC4MD  
QEI1MD  
IC3MD  
CMPMD  
PWMMD  
IC2MD  
IC1MD  
I2C1MD U2MD  
U1MD SPI2MD SPI1MD  
C1MD  
ADCMD  
0000  
0000  
0000  
0000  
0000  
0000  
QEI2MD  
OC4MD OC3MD OC2MD  
OC1MD  
REFOMD  
I2C2MD  
PMD6 077A PWM8MD PWM7MD PWM6MD PWM5MD PWM4MD PWM3MD PWM2MD PWM1MD  
PMD7 077C CMP4MD CMP3MD CMP2MD CMP1MD  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-62: PMD REGISTER MAP FOR dsPIC33FJ32GS608 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD6  
PMD7  
0770  
0772  
0774  
0776  
T5MD  
T4MD  
T3MD  
T2MD  
T1MD  
IC4MD  
QEI1MD  
IC3MD  
CMPMD  
PWMMD  
IC2MD  
IC1MD  
I2C1MD  
U2MD  
U1MD  
SPI2MD SPI1MD  
ADCMD  
0000  
0000  
0000  
0000  
0000  
0000  
QEI2MD  
OC4MD OC3MD OC2MD  
OC1MD  
REFOMD  
I2C2MD  
077A PWM8MD PWM7MD PWM6MD PWM5MD PWM4MD PWM3MD PWM2MD PWM1MD  
077C CMP4MD CMP3MD CMP2MD CMP1MD  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
 
TABLE 4-63: PMD REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD6  
PMD7  
0770  
0772  
0774  
0776  
077A  
077C  
T5MD  
T4MD  
T3MD  
T2MD  
T1MD  
IC4MD  
QEI1MD PWMMD  
IC1MD  
I2C1MD  
U2MD  
U1MD SPI2MD SPI1MD  
C1MD ADCMD 0000  
IC3MD  
CMPMD  
IC2MD  
QEI2MD  
OC4MD OC3MD OC2MD OC1MD 0000  
REFOMD  
I2C2MD  
0000  
0000  
0000  
0000  
PWM6MD PWM5MD PWM4MD PWM3MD PWM2MD PWM1MD  
CMP4MD CMP3MD CMP2MD CMP1MD  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-64: PMD REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD6  
PMD7  
0770  
0772  
0774  
0776  
077A  
077C  
T5MD  
T4MD  
T3MD  
T2MD  
T1MD  
IC4MD  
QEI1MD PWMMD  
IC1MD  
I2C1MD U2MD  
U1MD  
SPI2MD SPI1MD  
ADCMD 0000  
IC3MD  
CMPMD  
IC2MD  
QEI2MD  
OC4MD OC3MD OC2MD OC1MD  
0000  
0000  
0000  
0000  
0000  
REFOMD  
I2C2MD  
PWM6MD PWM5MD PWM4MD PWM3MD PWM2MD PWM1MD  
CMP4MD CMP3MD CMP2MD CMP1MD  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-65: PMD REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD6  
0770  
0772  
0774  
0776  
077A  
T5MD  
T4MD  
T3MD  
T2MD  
T1MD  
IC4MD  
QEI1MD  
IC3MD  
PWMMD  
IC2MD  
IC1MD  
I2C1MD  
U2MD  
U1MD SPI2MD SPI1MD  
ADCMD  
0000  
0000  
0000  
0000  
0000  
QEI2MD  
OC4MD OC3MD OC2MD OC1MD  
REFOMD  
I2C2MD  
PWM6MD PWM5MD PWM4MD PWM3MD PWM2MD PWM1MD  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
4.2.7  
SOFTWARE STACK  
4.3  
Instruction Addressing Modes  
In addition to its use as a Working register, the W15  
register in the dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 devices is also used  
as a Software Stack Pointer. The Stack Pointer always  
points to the first available free word and grows from  
lower to higher addresses. It predecrements for stack  
pops and post-increments for stack pushes, as shown  
in Figure 4-6. For a PC push during any CALLinstruc-  
tion, the MSb of the PC is zero-extended before the  
push, ensuring that the MSb is always clear.  
The addressing modes shown in Table 4-66 form the  
basis of the addressing modes optimized to support the  
specific features of individual instructions. The  
addressing modes provided in the MAC class of  
instructions differ from those in the other instruction  
types.  
4.3.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first  
8192 bytes of data memory (Near Data Space). Most  
file register instructions employ a Working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSb  
of the PC prior to the push.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
4.3.2  
MCU INSTRUCTIONS  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is  
compared with the value in SPLIM. If the contents of  
the Stack Pointer (W15) and the SPLIM register are  
equal and a push operation is performed, a stack error  
trap will not occur. The stack error trap will occur on a  
subsequent push operation. For example, to cause a  
stack error trap when the stack grows beyond address  
0x1800 in RAM, initialize the SPLIM with the value,  
0x17FE.  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
where Operand 1is always a Working register (that is,  
the addressing mode can only be register direct), which  
is referred to as Wb. Operand 2can be a W register,  
fetched from data memory, or a 5-bit literal. The result  
location can be either a W register or a data memory  
location. The following addressing modes are  
supported by MCU instructions:  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
• Register Direct  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-Bit or 10-Bit Literal  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions can support different subsets  
of these addressing modes.  
FIGURE 4-6:  
CALL STACK FRAME  
0x0000  
15  
0
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 99  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 4-66: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode  
File Register Direct  
Description  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the Effective Address (EA).  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
(Register Indexed)  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
4.3.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
4.3.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also referred  
to as MACinstructions, use a simplified set of addressing  
modes to allow the user application to effectively  
manipulate the Data Pointers through Register Indirect  
tables.  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
The two-source operand, prefetch registers must be  
members of the set: {W8, W9, W10, W11}. For data  
reads, W8 and W9 are always directed to the X RAGU,  
and W10 and W11 are always directed to the Y AGU.  
The Effective Addresses generated (before and after  
modification) must, therefore, be valid addresses within  
X data space for W8 and W9 and Y data space for W10  
and W11.  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA. How-  
ever, the 4-bit Wb (Register Offset) field is  
shared by both source and destination  
(but typically only used by one).  
Note:  
Register Indirect with Register Offset  
Addressing mode is available only for W9  
(in X space) and W11 (in Y space).  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
In summary, the following addressing modes are  
• Register Direct  
supported by the MACclass of instructions:  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-Bit Literal  
• Register Indirect  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
• 16-Bit Literal  
4.3.5  
OTHER INSTRUCTIONS  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
Besides the addressing modes outlined previously, some  
instructions use literal constants of various sizes. For  
example, BRA (branch) instructions use 16-bit signed  
literals to specify the branch destination directly, whereas  
the DISIinstruction uses a 14-bit unsigned literal field. In  
some instructions, such as ADD Acc, the source of an  
operand or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
DS7000591F-page 100  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
4.4.1  
START AND END ADDRESS  
4.4  
Modulo Addressing  
The Modulo Addressing scheme requires that a  
starting and ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 4-1).  
Modulo Addressing mode is a method used to provide  
an automated means to support circular data buffers  
using hardware. The objective is to remove the need  
for software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
Note:  
Y
Space Modulo Addressing EA  
calculations assume word-sized data  
(LSb of every EA is always clear).  
Modulo Addressing can operate in either data or program  
space (since the Data Pointer mechanism is essentially  
the same for both). One circular buffer can be supported  
in each of the X (which also provides the pointers into  
program space) and Y data spaces. Modulo Addressing  
can operate on any W Register Pointer. However, it is not  
advisable to use W14 or W15 for Modulo Addressing  
since these two registers are used as the Stack Frame  
Pointer and Stack Pointer, respectively.  
The length of a circular buffer is not directly specified. It is  
determined by the difference between the corresponding  
start and end addresses. The maximum possible length  
of the circular buffer is 32K words (64 Kbytes).  
4.4.2  
W ADDRESS REGISTER  
SELECTION  
In general, any particular circular buffer can be  
configured to operate in only one direction as there are  
certain restrictions on the buffer start address (for incre-  
menting buffers), or end address (for decrementing  
buffers), based upon the direction of the buffer.  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags as  
well as a W register field to specify the W Address  
registers. The XWM and YWM fields select the  
registers that will operate with Modulo Addressing:  
The only exception to the usage restrictions is for  
buffers that have a power-of-two length. As these  
buffers satisfy the start and end address criteria, they  
can operate in a bidirectional mode (that is, address  
boundary checks are performed on both the lower and  
upper address boundaries).  
• If XWM = 15, X RAGU and X WAGU Modulo  
Addressing is disabled.  
• If YWM = 15, Y AGU Modulo Addressing is disabled.  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 4-1). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The Y Address Space Pointer W register (YWM) to  
which Modulo Addressing is to be applied is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
‘15’ and the YMODEN bit is set at MODCON<14>.  
FIGURE 4-7:  
MODULO ADDRESSING OPERATION EXAMPLE  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100, W0  
Byte  
Address  
W0, XMODSRT  
#0x1163, W0  
W0, MODEND  
#0x8001, W0  
W0, MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000, W0  
#0x1110, W1  
DO  
MOV  
AGAIN, #0x31  
W0, [W1++]  
;fill the 50 buffer locations  
;fill the next location  
0x1163  
AGAIN: INC W0, W0  
;increment the fill value  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 Words  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 101  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
4.4.3  
MODULO ADDRESSING  
APPLICABILITY  
4.5.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. Address boundaries check for addresses  
equal to:  
Bit-Reversed Addressing mode is enabled in any of  
these situations:  
• BWMx bits (W register selection) in the MODCON  
register are any value other than ‘15’ (the stack  
cannot be accessed using Bit-Reversed  
Addressing)  
• Upper boundary addresses for incrementing buffers  
• Lower boundary addresses for decrementing buffers  
• The BREN bit is set in the XBREV register  
It is important to realize that the address boundaries  
check for addresses less than or greater than the upper  
(for incrementing buffers) and lower (for decrementing  
buffers) boundary addresses (not just equal to).  
Address changes can, therefore, jump beyond  
boundaries and still be adjusted correctly.  
• The addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment  
If the length of a bit-reversed buffer is M = 2N bytes,  
the last ‘N’ bits of the data buffer start address must  
be zeros.  
Note:  
The modulo corrected Effective Address  
is written back to the register only when  
Pre-Modify or Post-Modify Addressing  
mode is used to compute the Effective  
Address. When an address offset (such  
as [W7 + W2]) is used, Modulo Addressing  
correction is performed but the contents of  
the register remain unchanged.  
XB<14:0> is the Bit-Reversed Addressing modifier, or  
‘pivot point,’ which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
Note:  
All bit-reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
4.5  
Bit-Reversed Addressing  
When enabled, Bit-Reversed Addressing is executed  
only for Register Indirect with Pre-Increment or Post-  
Increment Addressing and word-sized data writes. It  
will not function for any other addressing mode or for  
byte-sized data and normal addresses are generated  
instead. When Bit-Reversed Addressing is active, the  
W Address Pointer is always added to the address  
modifier (XB) and the offset associated with the Regis-  
ter Indirect Addressing mode is ignored. In addition, as  
word-sized data is a requirement, the LSb of the EA is  
ignored (and always clear).  
Bit-Reversed Addressing mode is intended to simplify  
data re-ordering for radix-2 FFT algorithms. It is  
supported by the X AGU for data writes only.  
The modifier, which can be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. If an application attempts to do  
so, Bit-Reversed Addressing will assume  
priority when active for the X WAGU and X  
WAGU, and Modulo Addressing will be  
disabled. However, Modulo Addressing will  
continue to function in the X RAGU.  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, a write to the  
XBREV register should not be immediately followed by  
an indirect read operation using the W register that has  
been designated as the Bit-Reversed Pointer.  
DS7000591F-page 102  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 4-8:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4  
0
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-Word Bit-Reversed Buffer  
TABLE 4-67: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 103  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
4.6.1  
ADDRESSING PROGRAM SPACE  
4.6  
Interfacing Program and Data  
Memory Spaces  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices’ architecture  
uses a 24-bit-wide program space and a 16-bit-wide  
data space. The architecture is also a modified Harvard  
scheme, meaning that data can also be present in the  
program space. To use this data successfully, it must  
be accessed in a way that preserves the alignment of  
information in both spaces.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
Aside from normal execution, the dsPIC33FJ32GS406/  
606/608/610 and dsPIC33FJ64GS406/606/608/610  
architecture provides two methods by which program  
space can be accessed during operation:  
For remapping operations, the 8-bit Program Space  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated periodically. It also allows access  
to all bytes of the program word. The remapping  
method allows an application to access a large block of  
data on a read-only basis, which is ideal for look-ups  
from a large table of static data. The application can  
only access the least significant word of the program  
word.  
Table 4-68 and Figure 4-9 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word and D<15:0> refers to a data space word.  
TABLE 4-68: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
DS7000591F-page 104  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 4-9:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 Bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 Bits  
16 Bits  
24 Bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 Bits  
15 Bits  
23 Bits  
User/Configuration  
Space Select  
Byte Select  
Note 1: The Least Significant bit (LSb) of program space addresses is always fixed as ‘0’ to maintain word  
alignment of data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table Read operations are permitted in the  
configuration memory space.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 105  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
- In Byte mode, either the upper or lower byte  
of the lower program word is mapped to the  
lower byte of a data address. The upper byte  
is selected when Byte Select is ‘1’; the lower  
byte is selected when it is ‘0’.  
4.6.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDH and TBLWTH  
instructions are the only method to read or write the  
upper 8 bits of a program space word as data.  
TBLRDH (Table Read High):  
- In Word mode, this instruction maps the entire  
upper word of a program address (P<23:16>)  
to a data address. Note that D<15:8>, the  
‘phantom byte’, will always be ‘0’.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses. Pro-  
gram memory can thus be regarded as two 16-bit-wide  
word address spaces, residing side by side, each with  
the same address range. TBLRDLand TBLWTLaccess  
the space that contains the least significant data word.  
TBLRDHand TBLWTHaccess the space that contains the  
upper data byte.  
- In Byte mode, this instruction maps the upper  
or lower byte of the program word to D<7:0>  
of the data address, in the TBLRDL  
instruction. The data is always ‘0’ when  
the upper ‘phantom’ byte is selected  
(Byte Select = 1).  
Similarly, two table instructions, TBLWTHand TBLWTL,  
are used to write individual bytes or words to a program  
space address. The details of their operation are  
explained in Section 5.0 “Flash Program Memory”.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and  
configuration spaces. When TBLPAG<7> = 0, the table  
page is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
TBLRDL(Table Read Low):  
- In Word mode, this instruction maps the  
lower word of the program space location  
(P<15:0>) to a data address (D<15:0>).  
FIGURE 4-10:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B (Wn<0> = 0)  
TBLRDL.B (Wn<0> = 1)  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
DS7000591F-page 106  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.6.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access to stored  
constant data from the data space without the need to  
use special instructions (such as TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
Table Reads/Writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG  
functions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. By incrementing the PC by 2 for each  
program memory word, the lower 15 bits of data space  
addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
aREPEATloop, theMOVand MOV.Dinstructions require  
one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV and are executed inside a  
REPEAT loop, these instances require two instruction  
cycles in addition to the specified execution time of the  
instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
Data reads to this area add a cycle to the instruction  
being executed, since two program memory fetches  
are required.  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Any other iteration of the REPEAT loop will allow the  
instruction using PSV to access data, to execute in a  
single cycle.  
Although each data space address 8000h and higher  
maps directly into a corresponding program memory  
address (see Figure 4-11), only the lower 16 bits of the  
FIGURE 4-11:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space...  
0x8000  
PSV Area  
...while the lower 15 bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 107  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS7000591F-page 108  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
pin pairs: PGEC1/PGED1, PGEC2/PGED2 or PGEC3/  
PGED3), and three other lines for power (VDD), ground  
5.0  
FLASH PROGRAM MEMORY  
Note 1: This data sheet summarizes the features  
(VSS) and Master Clear (MCLR). This allows customers  
to manufacture boards with unprogrammed devices  
and then program the Digital Signal Controller (DSC)  
just before shipping the product. This also allows the  
most recent firmware or a custom firmware to be  
programmed.  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to “Flash Program-  
ming” (DS70191) in the “dsPIC33/PIC24  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com). The information in  
this data sheet supersedes the  
information in the FRM.  
RTSP is accomplished using TBLRD(Table Read) and  
TBLWT(Table Write) instructions. With RTSP, the user  
application can write program memory data, either in  
blocks or ‘rows’ of 64 instructions (192 bytes) at a time,  
or a single program memory word, and erase program  
memory in blocks or ‘pages’ of 512 instructions  
(1536 bytes) at a time.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
5.1  
Table Instructions and Flash  
Programming  
Regardless of the method used, all programming of  
Flash memory is done with the Table Read and Table  
Write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits<7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 5-1.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices contain  
internal Flash program memory for storing and execut-  
ing application code. The memory is readable, writable  
and erasable during normal operation over the entire  
VDD range.  
Flash memory can be programmed in two ways:  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
• In-Circuit Serial Programming™ (ICSP™)  
• Run-Time Self-Programming (RTSP)  
ICSP allows a dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 device to be serially  
programmed while in the end application circuit. This is  
done with two lines for programming clock and  
programming data (one of the alternate programming  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 Bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 Bits  
16 Bits  
User/Configuration  
Space Select  
Byte  
Select  
24-Bit EA  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 109  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
For example, if the device is operating at +125°C, the  
5.2  
RTSP Operation  
FRC accuracy will be ±2%. If the TUN<5:0> bits (see  
Register 9-4) are set to ‘b000000, the minimum row  
write time is equal to Equation 5-2.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 Flash program  
memory array is organized into rows of 64 instructions or  
192 bytes. RTSP allows the user application to erase a  
page of memory, which consists of eight rows  
(512 instructions) at a time, and to program one row or  
one word at a time. Table 27-12 shows typical erase and  
programming times. The 8-row erase pages and single  
row write rows are edge-aligned from the beginning of  
program memory, on boundaries of 1536 bytes and  
192 bytes, respectively.  
EQUATION 5-2:  
MINIMUM ROW WRITE  
TIME  
11064 Cycles  
7.37 MHz (1 + 0.02) (1 – 0.000938)  
TRW =  
= 1.473 ms  
The maximum row write time is equal to Equation 5-3.  
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers sequentially. The  
instruction words loaded must always be from a group  
of 64 boundary.  
EQUATION 5-3:  
MAXIMUM ROW WRITE  
TIME  
11064 Cycles  
7.37 MHz (1 – 0.02) (1 – 0.000938)  
TRW =  
= 1.533 ms  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register. A total  
of 64 TBLWTL and TBLWTH instructions are required  
to load the instructions.  
Setting the WR bit (NVMCON<15>) starts the  
operation and the WR bit is automatically cleared  
when the operation is finished.  
5.4  
Control Registers  
Two SFRs are used to read and write the program  
Flash memory: NVMCON and NVMKEY.  
All of the Table Write operations are single-word writes  
(two instruction cycles) because only the buffers are writ-  
ten. A programming cycle is required for programming  
each row.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
5.3  
Programming Operations  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user application must consecutively write 0x55 and  
0xAA to the NVMKEY register. Refer to Section 5.3  
“Programming Operations” for further details.  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. The processor stalls (waits) until the  
programming operation is finished.  
The programming time depends on the FRC accuracy  
(see Table 27-20) and the value of the FRC Oscillator  
Tuning register (see Register 9-4). Use the following  
formula to calculate the minimum and maximum values  
for the Row Write Time, Page Erase Time and Word  
Write Cycle Time parameters (see Table 27-12).  
EQUATION 5-1:  
PROGRAMMING TIME  
T
-------------------------------------------------------------------------------------------------------------------------  
7.37 MHz  FRC Accuracy%  FRC Tuning%  
DS70000591F-page 110  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
NVMOP3(2) NVMOP2(2)  
R/W-0(1)  
R/W-0(1)  
NVMOP1(2) NVMOP0(2)  
R/W-0(1)  
bit 7  
bit 0  
Legend:  
SO = Settable Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit(1)  
1= Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is  
cleared by hardware once operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit(1)  
1= Enables Flash program/erase operations  
0= Inhibits Flash program/erase operations  
WRERR: Write Sequence Error Flag bit(1)  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit(1)  
1= Performs the erase operation specified by the NVMOP<3:0> bits on the next WR command  
0= Performs the program operation specified by the NVMOP<3:0> bits on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(1,2)  
If ERASE = 1:  
1111= Memory bulk erase operation  
1101= Erases General Segment (GS)  
0011= No operation  
0010= Memory page erase operation  
0001= No operation  
0000= Erases a single Configuration register byte  
If ERASE = 0:  
1111= No operation  
1101= No operation  
0011= Memory word program operation  
0010= No operation  
0001= Memory row program operation  
0000= Programs a single Configuration register byte  
Note 1: These bits can only be reset on a Power-on Reset.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 111  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 5-2:  
NVMKEY: NONVOLATILE MEMORY KEY REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
W-0  
bit 7  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
NVMKEY<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
NVMKEY<7:0>: Key Register bits (write-only)  
DS70000591F-page 112  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 5-2).  
5.4.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
One row of program Flash memory can be  
programmed at a time. To achieve this, it is necessary  
to erase the 8-row erase page that contains the desired  
row. The general process is:  
a) Set the NVMOPx bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 0x55 to NVMKEY.  
c) Write 0xAA to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash  
memory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 5-1):  
a) Set the NVMOPx bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat Steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash memory.  
b) Write the starting address of the page to be  
erased into the TBLPAG and W registers.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
application must wait for the programming time until  
programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs, as shown in Example 5-3.  
c) Write 0x55 to NVMKEY.  
d) Write 0xAA to NVMKEY.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the  
duration of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY PAGE  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 113  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
EXAMPLE 5-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the  
; erase command is asserted  
DS70000591F-page 114  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Any active source of Reset will make the SYSRST  
signal active. On system Reset, some of the registers  
6.0  
RESETS  
Note 1: This data sheet summarizes the features  
associated with the CPU and peripherals are forced to  
a known Reset state and some are unaffected.  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Reset” (DS70192) in  
the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
The information in this data sheet  
supersedes the information in the FRM.  
Note:  
Refer to the specific peripheral section or  
Section 3.0 “CPU” of this data sheet for  
register Reset states.  
All types of device Reset sets a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1).  
A POR clears all the bits, except for the POR bit  
(RCON<0>), that are set. The user application can set  
or clear any bit at any time during code execution. The  
RCON bits only serve as status bits. Setting a particular  
Reset status bit in software does not cause a device  
Reset to occur.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset is meaningful.  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
• MCLR: Master Clear Pin Reset  
• SWR: Software RESETInstruction  
• WDTO: Watchdog Timer Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Condition Device Reset  
- Illegal Opcode Reset  
- Uninitialized W Register Reset  
- Security Reset  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 115  
 
 
 
 
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
Internal  
Regulator  
SYSRST  
VDD  
POR  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
DS70000591F-page 116  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
TRAPR  
IOPUWR  
VREGS  
bit 15  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or Uninitialized W register used as an  
Address Pointer caused a Reset  
0= An Illegal Opcode or Uninitialized W Reset has not occurred  
bit 13-9  
bit 8  
Unimplemented: Read as ‘0’  
VREGS: Voltage Regulator Standby During Sleep bit  
1= Voltage regulator is active during Sleep  
0= Voltage regulator goes into Standby mode during Sleep  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EXTR: External Reset Pin (MCLR) bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset Flag (Instruction) bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device has been in Idle mode  
0= Device has not been in Idle mode  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 117  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
A Warm Reset is the result of all the other Reset  
6.1  
System Reset  
sources, including the RESET instruction. On Warm  
Reset, the device will continue to operate from the  
current clock source as indicated by the Current  
Oscillator Selection (COSC<2:0>) bits in the Oscillator  
Control (OSCCON<14:12>) register.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 families of devices  
have two types of Reset:  
• Cold Reset  
• Warm Reset  
The device is kept in a Reset state until the system  
power supplies have stabilized at appropriate levels  
and the oscillator clock is ready. The sequence in  
which this occurs is described in Figure 6-2.  
A Cold Reset is the result of a Power-on Reset (POR)  
or a Brown-out Reset (BOR). On a Cold Reset, the  
FNOSCx Configuration bits in the FOSC Configuration  
register select the device clock source.  
TABLE 6-1:  
OSCILLATOR DELAY  
Oscillator  
Oscillator  
Oscillator Mode  
PLL Lock Time  
Total Delay  
Start-up Delay Start-up Timer  
(1)  
(1)  
FRC, FRCDIV16, FRCDIVN  
TOSCD  
TOSCD  
TOSCD  
TOSCD  
TOSCD  
(1)  
(1)  
(1)  
(3)  
(1,3)  
FRCPLL  
XT  
TLOCK  
TOSCD + TLOCK  
(2)  
(2)  
(1,2)  
TOST  
TOST  
TOSCD + TOST  
TOSCD + TOST  
(1,2)  
HS  
EC  
(1)  
(2)  
(2)  
(3)  
(1,2,3)  
XTPLL  
HSPLL  
ECPLL  
LPRC  
TOSCD  
TOSCD  
TOST  
TOST  
TLOCK  
TOSCD + TOST + TLOCK  
TOSCD + TOST + TLOCK  
(1)  
(3)  
(1,2,3)  
TLOCK  
(3)  
(3)  
TLOCK  
TLOCK  
(1)  
(1)  
TOSCD  
TOSCD  
Note 1: TOSCD = Oscillator start-up delay (1.1 s max. for FRC, 70 s max. for LPRC). Crystal oscillator start-up  
times vary with the crystal characteristics, load capacitance, etc.  
2: TOST = Oscillator Start-up Timer (OST) delay (1024 oscillator clock period). For example, TOST = 102.4 s  
for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.  
3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.  
DS70000591F-page 118  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 6-2:  
SYSTEM RESET TIMING  
VBOR  
VPOR  
VDD  
TPOR  
1
POR  
BOR  
TBOR  
2
3
TPWRT  
SYSRST  
4
Oscillator Clock  
TLOCK  
TOSCD  
TOST  
6
TFSCM  
FSCM  
5
Reset  
Device Status  
Run  
Time  
Note 1: POR: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until  
VDD crosses the VPOR threshold and the delay, TPOR, has elapsed.  
2: BOR: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR  
threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.  
3: PWRT Timer: The programmable Power-up Timer (PWRT) continues to hold the processor in Reset for a  
specific period of time (TPWRT) after a BOR. The delay, TPWRT, ensures that the system power supplies have  
stabilized at the appropriate level for full-speed operation. After the delay, TPWRT has elapsed and the SYSRST  
becomes inactive, which in turn, enables the selected oscillator to start generating clock cycles.  
4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in  
Table 6-1. Refer to Section 9.0 “Oscillator Configuration” for more information.  
5: When the oscillator clock is ready, the processor begins execution from location, 0x000000. The user application  
programs a GOTOinstruction at the Reset address, which redirects program execution to the appropriate start-up  
routine.  
6: If the Fail-Safe Clock Monitor (FSCM) is enabled, it begins to monitor the system clock when the system clock is  
ready and the delay, TFSCM, has elapsed.  
TABLE 6-2:  
Symbol  
OSCILLATOR DELAY  
Parameter Value  
Note: When the device exits the Reset  
condition (begins normal operation), the  
device operating parameters (voltage,  
frequency, temperature, etc.) must be  
within their operating ranges; otherwise,  
the device may not function correctly.  
The user application must ensure that  
the delay between the time power is first  
applied, and the time SYSRST becomes  
inactive, is long enough to get all  
operating parameters within specification.  
VPOR  
TPOR  
VBOR  
TBOR  
POR Threshold  
1.8V nominal  
POR Extension Time  
BOR Threshold  
30 s maximum  
2.5V nominal  
BOR Extension Time  
100 s maximum  
0-128 ms nominal  
TPWRT Programmable  
Power-up Time Delay  
TFSCM  
Fail-Safe Clock Monitor 900 s maximum  
Delay  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 119  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
VBOR threshold and the delay, TBOR, has elapsed. The  
delay, TBOR, ensures the voltage regulator output  
becomes stable.  
6.2  
Power-on Reset (POR)  
A Power-on Reset (POR) circuit ensures the device is  
reset from power-on. The POR circuit is active until  
VDD crosses the VPOR threshold and the delay, TPOR,  
has elapsed. The delay, TPOR, ensures the internal  
device bias circuits become stable.  
The Brown-out Reset (BOR) status bit in the Reset  
Control (RCON<1>) register is set to indicate the  
Brown-out Reset.  
The device will not run at full speed after a BOR as the  
VDD should rise to acceptable levels for full-speed  
operation. The PWRT provides a Power-up Time Delay  
(TPWRT) to ensure that the system power supplies have  
stabilized at the appropriate levels for full-speed  
operation before the SYSRST is released.  
The device supply voltage characteristics must meet  
the specified starting voltage and rise rate  
requirements to generate the POR. Refer to  
Section 27.0 “Electrical Characteristics” for details.  
The Power-on Reset (POR) status bit in the Reset  
Control (RCON<0>) register is set to indicate the  
Power-on Reset.  
The Power-up Timer delay (TPWRT) is programmed by  
the  
Power-on  
Reset  
Timer  
Value  
Select  
(FPWRT<2:0>) bits in the FPOR Configuration  
(FPOR<2:0>) register, which provides eight settings  
(from 0 ms to 128 ms). Refer to Section 24.0 “Special  
Features” for further details.  
6.3  
Brown-out Reset (BOR) and  
Power-up Timer (PWRT)  
The on-chip regulator has a Brown-out Reset (BOR)  
circuit that resets the device when the VDD is too low  
(VDD < VBOR) for proper device operation. The BOR  
circuit keeps the device in Reset until VDD crosses the  
Figure 6-3 shows the typical brown-out scenarios. The  
Reset delay (TBOR + TPWRT) is initiated each time VDD  
rises above the VBOR trip point  
FIGURE 6-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD Dips Before PWRT Expires  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
DS70000591F-page 120  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
6.4  
External Reset (EXTR)  
6.7  
Trap Conflict Reset  
The External Reset is generated by driving the MCLR  
pin low. The MCLR pin is a Schmitt Trigger input with  
an additional glitch filter. Reset pulses that are longer  
than the minimum pulse width will generate a Reset.  
Refer to Section 27.0 “Electrical Characteristics” for  
minimum pulse width specifications. The External  
Reset (MCLR) pin (EXTR) bit in the Reset Control  
(RCON) register is set to indicate the MCLR Reset.  
If a lower priority hard trap occurs while a higher  
priority trap is being processed, a hard Trap Conflict  
Reset occurs. The hard traps include exceptions of  
Priority Level 13 through Level 15, inclusive. The  
address error (Level 13) and oscillator error (Level 14)  
traps fall into this category.  
The Trap Reset (TRAPR) flag in the Reset Control  
(RCON<15>) register is set to indicate the Trap Conflict  
Reset. Refer to Section 7.0 “Interrupt Controller” for  
more information on Trap Conflict Resets.  
6.4.1  
EXTERNAL SUPERVISORY  
CIRCUIT  
6.8  
Illegal Condition Device Reset  
Many systems have external supervisory circuits that  
generate Reset signals to reset multiple devices in the  
system. This external Reset signal can be directly  
connected to the MCLR pin to reset the device when  
the rest of system is reset.  
An illegal condition device Reset occurs due to the  
following sources:  
• Illegal Opcode Reset  
• Uninitialized W Register Reset  
• Security Reset  
6.4.2  
INTERNAL SUPERVISORY CIRCUIT  
The Illegal Opcode or Uninitialized W Access Reset  
(IOPUWR) flag in the Reset Control (RCON<14>) register  
is set to indicate the illegal condition device Reset.  
When using the internal power supervisory circuit to  
reset the device, the External Reset pin (MCLR) should  
be tied directly or resistively to VDD. In this case, the  
MCLR pin will not be used to generate a Reset. The  
External Reset pin (MCLR) does not have an internal  
pull-up and must not be left unconnected.  
6.8.1  
ILLEGAL OPCODE RESET  
A device Reset is generated if the device attempts to  
execute an illegal opcode value that is fetched from  
program memory.  
6.5  
Software RESET Instruction (SWR)  
The Illegal Opcode Reset function can prevent the  
device from executing program memory sections that  
are used to store constant data. To take advantage of  
the Illegal Opcode Reset, use only the lower 16 bits of  
each program memory section to store the data values.  
The upper 8 bits should be programmed with 3Fh,  
which is an illegal opcode value.  
Whenever the RESET instruction is executed, the  
device will assert SYSRST, placing the device in a  
special Reset state. This Reset state will not  
re-initialize the clock. The clock source in effect prior to  
the RESETinstruction will remain. SYSRST is released  
at the next instruction cycle and the Reset vector fetch  
will commence.  
The Software Reset (SWR) flag (instruction) in the  
Reset Control (RCON<6>) register is set to indicate  
the Software Reset.  
6.8.2  
UNINITIALIZED W REGISTER RESET  
Any attempt to use the Uninitialized W register as an  
Address Pointer will reset the device. The W register  
array (with the exception of W15) is cleared during all  
Resets and is considered uninitialized until written to.  
6.6  
Watchdog Timer Time-out Reset  
(WDTO)  
6.8.3  
SECURITY RESET  
Whenever a Watchdog Timer Time-out Reset occurs,  
the device will asynchronously assert SYSRST. The  
clock source will remain unchanged. A WDT time-out  
during Sleep or Idle mode will wake-up the processor,  
but will not reset the processor.  
If a Program Flow Change (PFC) or Vector Flow  
Change (VFC) targets a restricted location in a  
protected segment (Boot and Secure Segment), that  
operation will cause a Security Reset.  
The PFC occurs when the Program Counter is reloaded  
as a result of a call, jump, computed jump, return, return  
from subroutine or other form of branch instruction.  
The Watchdog Timer Time-out (WDTO) flag in the  
Reset Control (RCON<4>) register is set to indicate  
the Watchdog Timer Reset. Refer to Section 24.4  
“Watchdog Timer (WDT)” for more information on  
the Watchdog Timer Reset.  
The VFC occurs when the Program Counter is  
reloaded with an interrupt or trap vector.  
Refer to Section 24.8 “Code Protection and  
CodeGuard™ Security” for more information on  
Security Reset.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 121  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Table 6-3 provides a summary of the Reset flag bit  
operation.  
6.9  
Using the RCON Status Bits  
The user application can read the Reset Control  
(RCON) register after any device Reset to determine  
the cause of the Reset.  
Note: The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
TABLE 6-3:  
Flag Bit  
RESET FLAG BIT OPERATION  
Set by:  
Cleared by:  
TRAPR (RCON<15>)  
IOPWR (RCON<14>)  
Trap Conflict Event  
POR, BOR  
POR, BOR  
Illegal Opcode or Uninitialized W register  
Access or Security Reset  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
MCLR Reset  
POR  
RESETInstruction  
WDT Time-out  
POR, BOR  
PWRSAVInstruction, CLRWDTInstruction,  
POR, BOR  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
PWRSAV #SLEEPInstruction  
PWRSAV #IDLEInstruction  
POR, BOR  
POR, BOR  
POR, BOR  
POR  
Note: All Reset flag bits can be set or cleared by user software.  
DS70000591F-page 122  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Interrupt vectors are prioritized in terms of their natural  
priority. This priority is linked to their position in the  
7.0  
INTERRUPT CONTROLLER  
Note 1: This data sheet summarizes the features of  
the dsPIC33FJ32GS406/606/608/610  
vector table. Lower addresses generally have a higher  
natural priority. For example, the interrupt associated  
with Vector 0 will take priority over interrupts at any  
other vector address.  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Interrupts (Part V)”  
(DS70597) in the “dsPIC33/PIC24 Family  
Reference Manual”, which is available  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices implement  
up to 71 unique interrupts and five non-maskable traps.  
These are summarized in Table 7-1.  
from  
the  
Microchip  
web  
site  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
(www.microchip.com). The information  
in this data sheet supersedes the  
information in the FRM.  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The AIVT supports debugging by providing a means to  
switch between an application and a support environ-  
ment without requiring the interrupt vectors to be  
reprogrammed. This feature also enables switching  
between applications for evaluation of different soft-  
ware algorithms at run time. If the AIVT is not needed,  
the AIVT should be programmed with the same  
addresses used in the IVT.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 interrupt controller  
reduces the numerous peripheral interrupt request  
signals to a single interrupt request signal to  
the  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 CPU. It has the  
following features:  
• Up to Eight Processor Exceptions and Software  
Traps  
7.2  
Reset Sequence  
• Seven User-Selectable Priority Levels  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset  
process. The dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 devices clear their  
registers in response to a Reset, which forces the PC to  
zero. The Digital Signal Controller (DSC) then begins  
program execution at location, 0x000000. A GOTO  
instruction at the Reset address can redirect program  
execution to the appropriate start-up routine.  
• Interrupt Vector Table (IVT) with up to 118 Vectors  
• A Unique Vector for each Interrupt or Exception  
Source  
• Fixed Priority within a Specified User Priority Level  
• Alternate Interrupt Vector Table (AIVT) for Debug  
Support  
• Fixed Interrupt Entry and Return Latencies  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 7-1.  
The IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors, consisting of  
eight nonmaskable trap vectors, plus up to 118 sources  
of interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit-wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 123  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 7-1:  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
(1)  
Interrupt Vector Table (IVT)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 7-1 for the list of implemented interrupt vectors.  
DS70000591F-page 124  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 7-1:  
INTERRUPT VECTORS  
Vector  
Number  
Interrupt  
IVT Address  
Request (IQR)  
AIVT Address  
Interrupt Source  
Highest Natural Order Priority  
0x000014 INT0 – External Interrupt 0  
IC1 – Input Capture 1  
8
9
0
1
0x000114  
0x000116  
0x000118  
0x00011A  
0x00011C  
0x00011E  
0x000120  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
0x000130  
0x000132  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000030  
0x000032  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
10  
11  
2
OC1 – Output Compare 1  
T1 – Timer1  
3
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29-31  
4
DMA0 – DMA Channel 0  
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
5
6
7
8
T3 – Timer3  
9
SPI1E – SPI1 Fault  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21-23  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC – ADC Group Convert Done  
DMA1 – DMA Channel 1  
Reserved  
SI2C1 – I2C1 Slave Event  
MI2C1 – I2C1 Master Event  
CMP1 – Analog Comparator 1 Interrupt  
CN – Input Change Notification Interrupt  
INT1 – External Interrupt 1  
Reserved  
0x00003E-  
0x000042  
0x00013E-  
0x000142  
32  
33  
24  
25  
0x000044  
0x000046  
0x000048  
0x00004A  
0x00004C  
0x00004E  
0x000050  
0x000052  
0x000054  
0x000056  
0x000058  
0x00005A  
0x00005C  
0x00005E  
0x000060  
0x000144  
0x000146  
0x000148  
0x00014A  
0x00014C  
0x00014E  
0x000150  
0x000152  
0x000154  
0x000156  
0x000158  
0x00015A  
0x00015C  
0x00015E  
0x000160  
DMA2 – DMA Channel 2  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
T4 – Timer4  
34  
26  
35  
27  
36  
28  
T5 – Timer5  
37  
29  
INT2 – External Interrupt 2  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
SPI2E – SPI2 Error  
38  
30  
39  
31  
40  
32  
41  
33  
SPI2 – SPI2 Transfer Done  
C1RX – ECAN1 Receive Data Ready  
C1 – ECAN1 Event  
42  
34  
43  
35  
44  
36  
DMA3 – DMA Channel 3  
IC3 – Input Capture 3  
IC4 – Input Capture 4  
Reserved  
45  
37  
46  
38  
47-56  
39-48  
0x000062-  
0x000074  
0x000162-  
0x000174  
57  
58  
49  
50  
0x000076  
0x000078  
0x000176  
0x000178  
SI2C2 – I2C2 Slave Events  
MI2C2 – I2C2 Master Events  
Reserved  
59-60  
51-52  
0x00007A-  
0x00007C  
0x00017A-  
0x00017C  
61  
62  
53  
54  
0x00007E  
0x000080  
0x00017E  
0x000180  
INT3 – External Interrupt 3  
INT4 – External Interrupt 4  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 125  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 7-1:  
INTERRUPT VECTORS (CONTINUED)  
Interrupt  
Request (IQR)  
Vector  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
63-64  
55-56  
0x000082-  
0x000084  
0x000182-  
0x000184  
Reserved  
65  
66  
57  
58  
0x000086  
0x000088  
0x000186  
0x000188  
PWM PSEM Special Event Match  
QEI1 – Position Counter Compare  
Reserved  
67-72  
59-64  
0x00008A-  
0x000094  
0x00018A-  
0x000194  
73  
74  
65  
66  
0x000096  
0x000098  
0x000196  
0x000198  
U1E – UART1 Error Interrupt  
U2E – UART2 Error Interrupt  
Reserved  
75-77  
67-69  
0x00009A-  
0x00009E  
0x00019A-  
0x00019E  
78  
79  
70  
71  
0x0000A0  
0x0000A2  
0x0000A4  
0x0000A6  
0x0000A8  
0x0000AA  
0x0001A0  
0x0001A2  
0x0001A4  
0x0001A6  
0x0001A8  
0x0001AA  
C1TX – ECAN1 Transmit Data Request  
Reserved  
80  
72  
Reserved  
81  
73  
PWM Secondary Special Event Match  
Reserved  
82  
74  
83  
75  
QEI2 – Position Counter Compare  
Reserved  
84-88  
76-80  
0x0000AC-  
0x0000B4  
0x0001AC-  
0x0001B4  
89  
90  
81  
82  
0x0000B6  
0x0000B8  
0x0000BA  
0x0000BC  
0x0000BE  
0x0001B6  
0x0001B8  
0x0001BA  
0x0001BC  
0x0001BE  
ADC Pair 8 Conversion Done  
ADC Pair 9 Conversion Done  
ADC Pair 10 Conversion Done  
ADC Pair 11 Conversion Done  
ADC Pair 12 Conversion Done  
Reserved  
91  
83  
92  
84  
93  
85  
94-101  
86-93  
0x0000C0-  
0x0000CE  
0x0001C0-  
0x0001CE  
102  
103  
94  
95  
0x0000D0  
0x0000D2  
0x0000D4  
0x0000D6  
0x0000D8  
0x0000DA  
0x0000DC  
0x0000DE  
0x0000E0  
0x0000E2  
0x0000E4  
0x0000E6  
0x0001D0  
0x0001D2  
0x0001D4  
0x0001D6  
0x0001D8  
0x0001DA  
0x0001DC  
0x0001DE  
0x0001E0  
0x00001E2  
0x0001E4  
0x0001E6  
PWM1 – PWM1 Interrupt  
PWM2 – PWM2 Interrupt  
PWM3 – PWM3 Interrupt  
PWM4 – PWM4 Interrupt  
PWM5 – PWM5 Interrupt  
PWM6 – PWM6 Interrupt  
PWM7– PWM7 Interrupt  
PWM8 – PWM8 Interrupt  
PWM9 – PWM9 Interrupt  
CMP2 – Analog Comparator 2  
CMP3 – Analog Comparator 3  
CMP4 – Analog Comparator 4  
Reserved  
104  
96  
105  
97  
106  
98  
107  
99  
108  
100  
101  
102  
103  
104  
105  
106-109  
109  
110  
111  
112  
113  
114-117  
0x0000E8-  
0x0000EE  
0x0001E8-  
0x0001EE  
118  
119  
120  
121  
122  
123  
124  
125  
110  
111  
112  
113  
114  
115  
116  
117  
0x0000F0  
0x0000F2  
0x0000F4  
0x0000F6  
0x0000F8  
0x0000FA  
0x0000FC  
0x0000FE  
0x0001F0  
0x0001F2  
0x0001F4  
0x0001F6  
0x0001F8  
0x0001FA  
0x0001FC  
0x0001FE  
ADC Pair 0 Convert Done  
ADC Pair 1 Convert Done  
ADC Pair 2 Convert Done  
ADC Pair 3 Convert Done  
ADC Pair 4 Convert Done  
ADC Pair 5 Convert Done  
ADC Pair 6 Convert Done  
ADC Pair 7 Convert Done  
Lowest Natural Order Priority  
DS70000591F-page 126  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
7.3.5  
INTTREG  
7.3  
Interrupt Control and Status  
Registers  
The INTTREG register contains the associated  
interrupt vector number and the new CPU Interrupt  
Priority Level, which are latched into the Vector Num-  
ber (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit  
fields in the INTTREG register. The new Interrupt  
Priority Level is the priority of the pending interrupt.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices implement  
44 registers for the interrupt controller:  
• INTCON1  
• INTCON2  
• IFSx  
• IECx  
• IPCx  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-1. For example, the INT0 (External  
Interrupt 0) is shown as having vector number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit is found in IEC0<0> and the  
INT0IP bits are found in the first position of IPC0  
(IPC0<2:0>).  
• INTTREG  
7.3.1  
INTCON1 AND INTCON2  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the  
Interrupt Nesting Disable (NSTDIS) bit as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
7.3.6  
STATUS/CONTROL REGISTERS  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers  
contain bits that control interrupt functionality.  
• The CPU STATUS Register, SR, contains the  
IPL<2:0> bits (SR<7:5>). These bits indicate the  
current CPU Interrupt Priority Level. The user can  
change the current CPU Priority Level by writing  
to the IPLx bits.  
7.3.2  
IFSx  
The IFSx registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
• The CORCON register contains the IPL3 bit,  
which together with IPL<2:0>, indicates the  
current CPU Priority Level. IPL3 is a read-only bit  
so that trap events cannot be masked by the user  
software.  
7.3.3  
IECx  
The IECx registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
All Interrupt registers are described in Register 7-1  
through Register 7-46 in the following pages.  
7.3.4  
IPCx  
The IPCx registers are used to set the Interrupt Priority  
Level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 127  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-1:  
SR: CPU STATUS REGISTER(1)  
R-0  
OA  
R-0  
OB  
R/C-0  
SA  
R/C-0  
SB  
R-0  
R/C-0  
SAB  
R-0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
bit 7  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts are disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 3-1.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT  
R-0  
R-0  
R-0  
DL2  
DL1  
DL0  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
Note 1: For complete register details, see Register 3-2.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS70000591F-page 128  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
NSTDIS  
OVAERR  
OVBERR  
COVAERR COVBERR  
OVATE  
OVBTE  
COVTE  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
SFTACERR  
DIV0ERR  
DMACERR MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by an overflow of Accumulator A  
0= Trap was not caused by an overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by an overflow of Accumulator B  
0= Trap was not caused by an overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit  
1= Trap was caused by a catastrophic overflow of Accumulator A  
0= Trap was not caused by a catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit  
1= Trap was caused by a catastrophic overflow of Accumulator B  
0= Trap was not caused by a catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap is disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap is disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on a catastrophic overflow of Accumulator A or B is enabled  
0= Trap is disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Arithmetic Error Status bit  
1= Math error trap was caused by a divide-by-zero  
0= Math error trap was not caused by a divide-by-zero  
bit 5  
DMACERR: DMA Controller Error Status bit  
1= DMA Controller error trap has occurred  
0= DMA Controller error trap has not occurred  
bit 4  
MATHERR: Arithmetic Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 129  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
DS70000591F-page 130  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ALTIVT  
DISI  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Uses Alternate Interrupt Vector Table  
0= Uses standard (default) Interrupt Vector Table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-5  
bit 4  
Unimplemented: Read as ‘0’  
INT4EP: External Interrupt 4 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 3  
bit 2  
bit 1  
bit 0  
INT3EP: External Interrupt 3 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 131  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
R/W-0  
R/W-0  
ADIF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
DMA1IF  
U1TXIF  
U1RXIF  
SPI1EIF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
R/W-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
DMA0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14  
DMA1IF: DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
ADIF: ADC Group Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
DMA0IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70000591F-page 132  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 133  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0  
U2TXIF  
bit 15  
R/W-0  
R/W-0  
INT2IF  
R/W-0  
T5IF  
R/W-0  
T4IF  
R/W-0  
OC4IF  
R/W-0  
OC3IF  
R/W-0  
U2RXIF  
DMA2IF  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
AC1IF  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 12  
bit 11  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
AC1IF: Analog Comparator 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70000591F-page 134  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)  
bit 1  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 135  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0  
IC4IF  
R/W-0  
IC3IF  
R/W-0  
R/W-0  
C1IF(1)  
R/W-0  
C1RXIF(1)  
R/W-0  
SPI2IF  
R/W-0  
DMA3IF  
SPI2EIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6  
Unimplemented: Read as ‘0’  
IC4IF: Input Capture Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
C1IF: ECAN1 Event Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
C1RXIF: ECAN1 External Event Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2EIF: SPI2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: Interrupts are disabled on devices without ECAN™ modules.  
DS70000591F-page 136  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
QEI1IF  
PSEMIF  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
INT4IF  
R/W-0  
INT3IF  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
MI2C2IF  
SI2C2IF  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
QEI1IF: QEI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 9  
PSEMIF: PWM Special Event Match Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8-7  
bit 6  
Unimplemented: Read as ‘0’  
INT4IF: External Interrupt 4 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
INT3IF: External Interrupt 3 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IF: I2C2 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
bit 0  
SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 137  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
R/W-0  
U-0  
QEI2IF  
PSESMIF  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
C1TXIF(1)  
U-0  
U-0  
U-0  
R/W-0  
U2EIF  
R/W-0  
U1EIF  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
QEI2IF: QEI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
PSESMIF: PWM Special Event Secondary Match Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8-7  
bit 6  
Unimplemented: Read as ‘0’  
C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5-3  
bit 2  
Unimplemented: Read as ‘0’  
U2EIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
U1EIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: Interrupts are disabled on devices without ECAN™ modules.  
DS70000591F-page 138  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PWM2IF  
PWM1IF  
ADCP12IF  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
ADCP11IF ADCP10IF  
ADCP9IF  
ADCP8IF  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
PWM2IF: PWM2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
PWM1IF: PWM1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP12IF: ADC Pair 12 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
ADCP11IF: ADC Pair 11 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
ADCP10IF: ADC Pair 10 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP9IF: ADC Pair 9 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP8IF: ADC Pair 8 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 139  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-11: IFS6: INTERRUPT FLAG STATUS REGISTER 6  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
AC4IF  
R/W-0  
AC3IF  
ADCP1IF  
ADCP0IF  
bit 15  
bit 8  
R/W-0  
AC2IF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWM9IF  
PWM8IF  
PWM7IF  
PWM6IF  
PWM5IF  
PWM4IF  
PWM3IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ADCP1IF: ADC Pair 1 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP0IF: ADC Pair 0 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
AC4IF: Analog Comparator 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
AC3IF: Analog Comparator 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
AC2IF: Analog Comparator 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
PWM9IF: PWM9 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
PWM8IF: PWM8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
PWM7IF: PWM7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
PWM6IF: PWM6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
PWM5IF: PWM5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
PWM4IF: PWM4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
PWM3IF: PWM3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70000591F-page 140  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-12: IFS7: INTERRUPT FLAG STATUS REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCP7IF  
ADCP6IF  
ADCP5IF  
ADCP4IF  
ADCP3IF  
ADCP2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
ADCP7IF: ADC Pair 7 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADCP6IF: ADC Pair 6 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP5IF: ADC Pair 5 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP4IF: ADC Pair 4 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP3IF: ADC Pair 3 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP2IF: ADC Pair 2 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 141  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
R/W-0  
R/W-0  
ADIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
DMA1IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPI1EIE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
R/W-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
DMA0IE  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
ADIE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1EIE: SPI1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4  
DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
DS70000591F-page 142  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 143  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
R/W-0  
U2TXIE  
U2RXIE  
INT2IE  
DMA2IE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CNIE  
R/W-0  
AC1IE  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 12  
bit 11  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3  
bit 2  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
AC1IE: Analog Comparator 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
DS70000591F-page 144  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)  
bit 1  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 145  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-15: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0  
IC4IE  
R/W-0  
IC3IE  
R/W-0  
R/W-0  
C1IE(1)  
R/W-0  
C1RXIE(1)  
R/W-0  
R/W-0  
DMA3IE  
SPI2IE  
SPI2EIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6  
Unimplemented: Read as ‘0’  
IC4IE: Input Capture Channel 4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
C1IE: ECAN1 Event Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI2EIE: SPI2 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: Interrupts are disabled on devices without ECAN™ modules.  
DS70000591F-page 146  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
QEI1IE  
PSEMIE  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
INT4IE  
INT3IE  
MI2C2IE  
SI2C2IE  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
QEI1IE: QEI1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 9  
PSEMIE: PWM Special Event Match Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8-7  
bit 6  
Unimplemented: Read as ‘0’  
INT4IE: External Interrupt 4 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
INT3IE: External Interrupt 3 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IE: I2C2 Master Events Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 1  
bit 0  
SI2C2IE: I2C2 Slave Events Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 147  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-17: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
R/W-0  
U-0  
QEI2IE  
PSESMIE  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
C1TXIE(1)  
U-0  
U-0  
U-0  
R/W-0  
U2EIE  
R/W-0  
U1EIE  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
QEI2IE: QEI2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
PSESMIE: PWM Special Event Secondary Match Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8-7  
bit 6  
Unimplemented: Read as ‘0’  
C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5-3  
bit 2  
Unimplemented: Read as ‘0’  
U2EIE: UART2 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 1  
U1EIE: UART1 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: Interrupts are disabled on devices without ECAN™ modules.  
DS70000591F-page 148  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-18: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PWM2IE  
PWM1IE  
ADCP12IE  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12-0  
PWM2IE: PWM2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
PWM1IE: PWM1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP12IE: ADC Pair 12 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 149  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-19: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
AC4IE  
R/W-0  
AC3IE  
ADCP1IE  
ADCP0IE  
bit 15  
bit 8  
R/W-0  
AC2IE  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWM6IE  
PWM5IE  
PWM4IE  
PWM3IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ADCP1IE: ADC Pair 1 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP0IE: ADC Pair 0 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
AC4IE: Analog Comparator 4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
bit 7  
AC3IE: Analog Comparator 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
AC2IE: Analog Comparator 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
PWM6IE: PWM6 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
bit 1  
bit 0  
PWM5IE: PWM5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
PWM4IE: PWM4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
PWM3IE: PWM3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
DS70000591F-page 150  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-20: IEC7: INTERRUPT ENABLE CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCP7IE  
ADCP6IE  
ADCP5IE  
ADCP4IE  
ADCP3IE  
ADCP2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
ADCP7IE: ADC Pair 7 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADCP6IE: ADC Pair 6 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP5IE: ADC Pair 5 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP4IE: ADC Pair 4 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP3IE: ADC Pair 3 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP2IE: ADC Pair 2 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 151  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-21: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
T1IP2  
R/W-0  
T1IP1  
R/W-0  
T1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC1IP2  
OC1IP1  
OC1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC1IP2  
R/W-0  
IC1IP1  
R/W-0  
IC1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT0IP2  
INT0IP1  
INT0IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS70000591F-page 152  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-22: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
T2IP2  
R/W-0  
T2IP1  
R/W-0  
T2IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC2IP2  
OC2IP1  
OC2IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC2IP2  
R/W-0  
IC2IP1  
R/W-0  
IC2IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA0IP2  
DMA0IP1  
DMA0IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 153  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-23: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U1RXIP2  
U1RXIP1  
U1RXIP0  
SPI1IP2  
SPI1IP1  
SPI1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T3IP2  
R/W-0  
T3IP1  
R/W-0  
T3IP0  
SPI1EIP2  
SPI1EIP1  
SPI1EIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS70000591F-page 154  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-24: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA1IP2  
DMA1IP1  
DMA1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
ADIP2  
R/W-0  
ADIP1  
R/W-0  
ADIP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U1TXIP2  
U1TXIP1  
U1TXIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADIP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 155  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-25: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
CNIP2  
R/W-0  
CNIP1  
R/W-0  
CNIP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
AC1IP2  
AC1IP1  
AC1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C1IP2  
MI2C1IP1  
MI2C1IP0  
SI2C1IP2  
SI2C1IP1  
SI2C1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
AC1IP<2:0>: Analog Comparator 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS70000591F-page 156  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-26: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT1IP2  
INT1IP1  
INT1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 157  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-27: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
T4IP2  
R/W-0  
T4IP1  
R/W-0  
T4IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC4IP2  
OC4IP1  
OC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC3IP2  
OC3IP1  
OC3IP0  
DMA2IP2  
DMA2IP1  
DMA2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T4IP<2:0>: Timer4 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS70000591F-page 158  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-28: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U2TXIP2  
U2TXIP1  
U2TXIP0  
U2RXIP2  
U2RXIP1  
U2RXIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T5IP2  
R/W-0  
T5IP1  
R/W-0  
T5IP0  
INT2IP2  
INT2IP1  
INT2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP<2:0>: Timer5 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 159  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-29: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
U-0  
R/W-1  
C1IP2(1)  
R/W-0  
C1IP1(1)  
R/W-0  
C1IP0(1)  
U-0  
R/W-1  
C1RXIP2(1)  
R/W-0  
R/W-0  
C1RXIP1(1) C1RXIP0(1)  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
SPI2IP2  
SPI2IP1  
SPI2IP0  
SPI2EIP2  
SPI2EIP1  
SPI2EIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C1IP<2:0>: ECAN1 Event Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI2IP<2:0>: SPI2 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
Note 1: Interrupts are disabled on devices without ECAN™ modules.  
DS70000591F-page 160  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-30: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
IC4IP2  
R/W-0  
IC4IP1  
R/W-0  
IC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC3IP2  
R/W-0  
IC3IP1  
R/W-0  
IC3IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA3IP2  
DMA3IP1  
DMA3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 161  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-31: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C2IP2  
MI2C2IP1  
MI2C2IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
SI2C2IP2  
SI2C2IP1  
SI2C2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70000591F-page 162  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-32: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT4IP2  
INT4IP1  
INT4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
INT3IP2  
INT3IP1  
INT3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
INT4IP<2:0>: External Interrupt 4 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT3IP<2:0>: External Interrupt 3 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 163  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-33: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
QEI1IP2  
QEI1IP1  
QEI1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PSEMIP2  
PSEMIP1  
PSEMIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
QEI1IP<2:0>: QEI1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PSEMIP<2:0>: PWM Special Event Match Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70000591F-page 164  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-34: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U2EIP2  
U2EIP1  
U2EIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1EIP2  
U1EIP1  
U1EIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
U2EIP<2:0>: UART2 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1EIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 165  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-35: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
C1TXIP2(1)  
R/W-0  
R/W-0  
C1TXIP1(1) C1TXIP0(1)  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: Interrupts are disabled on devices without ECAN™ modules.  
DS70000591F-page 166  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-36: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
QEI2IP2  
QEI2IP1  
QEI2IP0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PSESMIP2 PSESMIP1 PSESMIP0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
QEI2IP<2:0>: QEI2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11-7  
bit 6-4  
Unimplemented: Read as ‘0’  
PSESMIP<2:0>: PWM Special Event Secondary Match Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 167  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-37: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
ADCP9IP0  
bit 8  
ADCP10IP2 ADCP10IP1 ADCP10IP0  
ADCP9IP2  
ADCP9IP1  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
ADCP8IP2  
ADCP8IP1 ADCP8IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
ADCP10IP<2:0>: ADC Pair 10 Conversion Done Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
ADCP9IP<2:0>: ADC Pair 9 Conversion Done Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCP8IP<2:0>: ADC Pair 8 Conversion Done Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70000591F-page 168  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-38: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
ADCP12IP2 ADCP12IP1 ADCP12IP0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
ADCP12IP<2:0>: ADC Pair 12 Conversion Done Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 169  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-39: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
PWM2IP2  
PWM2IP1  
PWM2IP0  
PWM1IP2  
PWM1IP1  
PWM1IP0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
PWM2IP<2:0>: PWM2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
PWM1IP<2:0>: PWM1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
DS70000591F-page 170  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-40: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
PWM6IP2  
PWM6IP1  
PWM6IP0  
PWM5IP2  
PWM5IP1  
PWM5IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
PWM4IP2  
PWM4IP1  
PWM4IP0  
PWM3IP2  
PWM3IP1  
PWM3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
PWM6IP<2:0>: PWM6 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
PWM5IP<2:0>: PWM5 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PWM4IP<2:0>: PWM4 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
PWM3IP<2:0>: PWM3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 171  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-41: IPC25: INTERRUPT PRIORITY CONTROL REGISTER 25  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
AC2IP2  
AC2IP1  
AC2IP0  
PWM9IP2  
PWM9IP1  
PWM9IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
PWM8IP2  
PWM8IP1  
PWM8IP0  
PWM7IP2  
PWM7IP1  
PWM7IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
AC2IP<2:0>: Analog Comparator 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
PWM9IP<2:0>: PWM9 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PWM8IP<2:0>: PWM8 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
PWM7IP<2:0>: PWM7 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS70000591F-page 172  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-42: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
AC4IP2  
AC4IP1  
AC4IP0  
AC3IP2  
AC3IP1  
AC3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
AC4IP<2:0>: Analog Comparator 4 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
AC3IP<2:0>: Analog Comparator 3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 173  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-43: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
ADCP0IP0  
bit 8  
ADCP1IP2  
ADCP1IP1 ADCP1IP0  
ADCP0IP2  
ADCP0IP1  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
ADCP1IP<2:0>: ADC Pair 1 Conversion Done Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
ADCP0IP<2:0>: ADC Pair 0 Conversion Done Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
DS70000591F-page 174  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-44: IPC28: INTERRUPT PRIORITY CONTROL REGISTER 28  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
ADCP4IP0  
bit 8  
ADCP5IP2  
ADCP5IP1 ADCP5IP0  
ADCP4IP2  
ADCP4IP1  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
ADCP2IP0  
bit 0  
ADCP3IP2  
ADCP3IP1 ADCP3IP0  
ADCP2IP2  
ADCP2IP1  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
ADCP5IP<2:0>: ADC Pair 5 Conversion Done Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
ADCP4IP<2:0>: ADC Pair 4 Conversion Done Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCP3IP<2:0>: ADC Pair 3 Conversion Done Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ADCP2IP<2:0>: ADC Pair 2 Conversion Done Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 175  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-45: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
ADCP6IP0  
bit 0  
ADCP7IP2  
ADCP7IP1 ADCP7IP0  
ADCP6IP2  
ADCP6IP1  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
ADCP7IP<2:0>: ADC Pair 7 Conversion Done Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ADCP6IP<2:0>: ADC Pair 6 Conversion Done Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS70000591F-page 176  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 7-46: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
ILR3  
ILR2  
ILR1  
ILR0  
bit 15  
bit 8  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM6  
VECNUM5 VECNUM4 VECNUM3  
VECNUM2  
VECNUM1  
VECNUM0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
0111111= Interrupt vector pending is Number 135  
0000001= Interrupt vector pending is Number 9  
0000000= Interrupt vector pending is Number 8  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 177  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
7.4.3  
TRAP SERVICE ROUTINE  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
Complete the following steps to configure an interrupt  
source at initialization:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
The following steps outline the procedure to disable all  
user interrupts:  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources can be programmed  
to the same non-zero value.  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to Priority Level 7 by inclusive  
ORing the value, EOh, with SRL.  
To enable user interrupts, the POP instruction can be  
used to restore the previous SR value.  
Note: At a device Reset, the IPCx registers are  
initialized such that all user interrupt  
sources are assigned to Priority Level 4.  
Note:  
Only user interrupts with a priority level of  
7 or lower can be disabled. Trap sources  
(Level 8-Level 15) cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of Priority Levels 1-6 for a fixed  
period of time. Level 7 interrupt sources are not  
disabled by the DISI instruction.  
4. Enable the interrupt source by setting the  
interrupt enable control bit associated with the  
source in the appropriate IECx register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
The method used to declare an ISR and initialize the  
IVT with the correct vector address depends on the  
programming language (C or assembler) and the  
language development toolsuite used to develop the  
application.  
In general, the user application must clear the interrupt  
flag in the appropriate IFSx register for the source of  
interrupt that the ISR handles. Otherwise, program will  
re-enter the ISR immediately after exiting the routine. If  
the ISR is coded in assembly language, it must be  
terminated using a RETFIE instruction to unstack the  
saved PC value, SRL value and old CPU priority level.  
DS70000591F-page 178  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Direct Memory Access (DMA) is a very efficient  
mechanism of copying data between peripheral SFRs  
(e.g., the UART Receive register and Input Capture 1  
8.0  
DIRECT MEMORY ACCESS  
(DMA)  
buffer) and buffers, or variables stored in RAM, with  
Note 1: This data sheet summarizes the features  
minimal CPU intervention. The DMA Controller  
(DMAC) can automatically copy entire blocks of data  
without requiring the user software to read or write the  
peripheral Special Function Registers (SFRs) every  
time a peripheral interrupt occurs. The DMA Controller  
uses a dedicated bus for data transfers and, therefore,  
does not steal cycles from the code execution flow of  
the CPU. To exploit the DMA capability, the  
corresponding user buffers or variables must be  
located in DMA RAM.  
of the dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610  
family of devices. However, it is not  
intended to be a comprehensive reference  
source. To complement the information  
in this data sheet, refer to “Direct  
Memory Access (DMA)” (DS70182) in  
the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
The information in this data sheet  
supersedes the information in the FRM.  
Note:  
The DMA module is not available on  
dsIPC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406 devices.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The peripherals that can utilize DMA are listed in  
Table 8-1 along with their associated Interrupt Request  
(IRQ) numbers.  
TABLE 8-1:  
DMA CONTROLLER CHANNEL TO PERIPHERAL ASSOCIATIONS  
DMAxPAD Register  
Values to Read from  
Peripheral  
DMAxPAD Register  
Values to Write to  
Peripheral  
DMAxREQ Register  
IRQSEL<6:0> Bits  
Peripheral to DMA Association  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
0000000  
0000001  
0000101  
0100101  
0100110  
0000010  
0000010  
0000110  
0000110  
0011001  
0011001  
0011010  
0011010  
0000111  
0001000  
0011011  
0011100  
0001010  
0100001  
0001011  
0001100  
0011110  
0011111  
0100010  
1000110  
0x0140 (IC1BUF)  
IC2 – Input Capture 2  
0x0144 (IC2BUF)  
IC3 – Input Capture 3  
0x0148 (IC3BUF)  
IC4 – Input Capture 4  
0x014C (IC4BUF)  
OC1 – Output Compare 1 Data  
OC1 – Output Compare 1 Secondary Data  
OC2 – Output Compare 2 Data  
OC2 – Output Compare 2 Secondary Data  
OC3 – Output Compare 3 Data  
OC3 – Output Compare 3 Secondary Data  
OC4 – Output Compare 4 Data  
OC4 – Output Compare 4 Secondary Data  
TMR2 – Timer2  
0x0182 (OC1R)  
0x0180 (OC1RS)  
0x0188 (OC2R)  
0x0186 (OC2RS)  
0x018E (OC3R)  
0x018C (OC3RS)  
0x0194 (OC4R)  
0x0192 (OC4RS)  
TMR3 – Timer3  
TMR4 – Timer4  
TMR5 – Timer5  
SPI1 – Transfer Done  
0x0248 (SPI1BUF)  
0x0268 (SPI2BUF)  
0x0226 (U1RXREG)  
0x0248 (SPI1BUF)  
0x0268 (SPI2BUF)  
SPI2 – Transfer Done  
UART1RX – UART1 Receiver  
UART1TX – UART1 Transmitter  
UART2RX – UART2 Receiver  
UART2TX – UART2 Transmitter  
ECAN1 – RX Data Ready  
ECAN1 – TX Data Request  
0x0224 (U1TXREG)  
0x0236 (U2RXREG)  
0x0234 (U2TXREG)  
0x0640 (C1RXD)  
0x0642 (C1TXD)  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 179  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The DMA Controller features four identical data  
8.1  
DMAC Registers  
transfer channels. Each channel has its own set of  
control and status registers. Each DMA channel can be  
configured to copy data either from buffers stored in  
dual port DMA RAM to peripheral SFRs or from  
peripheral SFRs to buffers in DMA RAM.  
Each DMAC Channel x (x = 0, 1, 2 or 3) contains the  
following registers:  
• A 16-Bit DMA Channel Control Register  
(DMAxCON)  
• A 16-Bit DMA Channel IRQ Select Register  
(DMAxREQ)  
The DMA Controller supports the following features:  
• Word or byte-sized data transfers.  
• A 16-Bit DMA RAM Primary Start Address Offset  
Register (DMAxSTA)  
• Transfers from peripheral to DMA RAM or DMA  
RAM to peripheral  
• A 16-Bit DMA RAM Secondary Start Address  
Offset Register (DMAxSTB)  
• Indirect Addressing of DMA RAM locations with or  
without automatic post-increment  
• A 16-Bit DMA Peripheral Address Register  
(DMAxPAD)  
• Peripheral Indirect Addressing – In some  
peripherals, the DMA RAM read/write addresses  
may be partially derived from the peripheral  
• A 10-Bit DMA Transfer Count Register (DMAxCNT)  
An additional pair of status registers, DMACS0 and  
DMACS1, are common to all DMAC channels.  
• One-Shot Block Transfers – Terminating a DMA  
transfer after one block transfer  
• Continuous Block Transfers – Reloading the DMA  
RAM buffer start address after every block  
transfer is complete  
• Ping-Pong Mode – Switching between two DMA  
RAM start addresses between successive block  
transfers, thereby filling two buffers alternately  
• Automatic or manual initiation of block transfers  
For each DMA channel, a DMA interrupt request is  
generated when  
a
block transfer is complete.  
Alternatively, an interrupt can be generated when half of  
the block has been filled.  
FIGURE 8-1:  
TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS  
Peripheral Indirect Address  
DMA Controller  
DMA  
Ready  
Peripheral 3  
DMA  
Channels  
DMA RAM  
SRAM  
0
1
2
3
PORT 1 PORT 2  
CPU  
DMA  
SRAM X-Bus  
DMA DS Bus  
CPU Peripheral DS Bus  
CPU  
DMA  
CPU  
DMA  
Non-DMA  
Ready  
Peripheral  
DMA  
Ready  
Peripheral 2  
DMA  
Ready  
Peripheral 1  
CPU  
Note: For clarity, CPU and DMA address buses are not shown.  
DS70000591F-page 180  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 8-1:  
DMAxCON: DMA CHANNEL x CONTROL REGISTER  
R/W-0  
CHEN  
R/W-0  
SIZE  
R/W-0  
DIR  
R/W-0  
HALF  
R/W-0  
U-0  
U-0  
U-0  
NULLW  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMODE1  
AMODE0  
MODE1  
MODE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
CHEN: DMA Channel Enable bit  
1= Channel is enabled  
0= Channel is disabled  
SIZE: Data Transfer Size bit  
1= Byte  
0= Word  
DIR: Transfer Direction bit (source/destination bus select)  
1= Reads from DMA RAM address; writes to peripheral address  
0= Reads from peripheral address; writes to DMA RAM address  
HALF: Early Block Transfer Complete Interrupt Select bit  
1= Initiates block transfer complete interrupt when half of the data has been moved  
0= Initiates block transfer complete interrupt when all of the data has been moved  
NULLW: Null Data Peripheral Write Mode Select bit  
1= Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)  
0= Normal operation  
bit 10-6  
bit 5-4  
Unimplemented: Read as ‘0’  
AMODE<1:0>: DMA Channel Operating Mode Select bits  
11= Reserved  
10= Peripheral Indirect Addressing mode  
01= Register Indirect without Post-Increment mode  
00= Register Indirect with Post-Increment mode  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
MODE<1:0>: DMA Channel Operating Mode Select bits  
11= One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA RAM buffer)  
10= Continuous, Ping-Pong modes are enabled  
01= One-Shot, Ping-Pong modes are disabled  
00= Continuous, Ping-Pong modes are disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 181  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 8-2:  
DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER  
R/W-0  
FORCE(1)  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
IRQSEL6(2) IRQSEL5(2) IRQSEL4(2) IRQSEL3(2) IRQSEL2(2)  
IRQSEL1(2) IRQSEL0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FORCE: Force DMA Transfer bit(1)  
1= Forces a single DMA transfer (Manual mode)  
0= Automatic DMA transfer initiation by DMA request  
bit 14-7  
bit 6-0  
Unimplemented: Read as ‘0’  
IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits(2)  
0000000-1111111= DMAIRQ0-DMAIRQ127 are selected to be Channel DMAREQ  
Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced  
DMA transfer is complete.  
2: See Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.  
REGISTER 8-3:  
DMAxSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STA<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
STA<7:0>  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STA<15:0>: Primary DMA RAM Start Address bits (source or destination)  
DS70000591F-page 182  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 8-4:  
R/W-0  
DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
STB<15:8>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
STB<7:0>  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)  
REGISTER 8-5:  
DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PAD<15:8>(2)  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PAD<7:0>(2)  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PAD<15:0>: Peripheral Address Register bits(2)  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
2: See Table 8-1 for a complete list of peripheral addresses.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 183  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 8-6:  
DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CNT<9:8>(2)  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CNT<7:0>(2)  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
CNT<9:0>: DMA Transfer Count Register bits(2)  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
2: Number of DMA transfers = CNT<9:0> + 1.  
DS70000591F-page 184  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 8-7:  
DMACS0: DMA CONTROLLER STATUS REGISTER 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
PWCOL3  
PWCOL2  
PWCOL1  
PWCOL0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
XWCOL3  
XWCOL2  
XWCOL1  
XWCOL0  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
PWCOL3: Channel 3 Peripheral Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
bit 10  
bit 9  
bit 8  
PWCOL2: Channel 2 Peripheral Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
PWCOL1: Channel 1 Peripheral Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
PWCOL0: Channel 0 Peripheral Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
XWCOL3: Channel 3 DMA RAM Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
bit 2  
bit 1  
bit 0  
XWCOL2: Channel 2 DMA RAM Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
XWCOL1: Channel 1 DMA RAM Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
XWCOL0: Channel 0 DMA RAM Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 185  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 8-8:  
DMACS1: DMA CONTROLLER STATUS REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R-1  
R-1  
R-1  
R-1  
LSTCH3  
LSTCH2  
LSTCH1  
LSTCH0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
PPST3  
PPST2  
PPST1  
PPST0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
LSTCH<3:0>: Last DMA Channel Active bits  
1111= No DMA transfer has occurred since system Reset  
1110= Reserved  
0100= Reserved  
0011= Last data transfer was by DMA Channel 3  
0010= Last data transfer was by DMA Channel 2  
0001= Last data transfer was by DMA Channel 1  
0000= Last data transfer was by DMA Channel 0  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
PPST3: Channel 3 Ping-Pong Mode Status Flag bit  
1= DMA3STB register is selected  
0= DMA3STA register is selected  
bit 2  
bit 1  
bit 0  
PPST2: Channel 2 Ping-Pong Mode Status Flag bit  
1= DMA2STB register is selected  
0= DMA2STA register is selected  
PPST1: Channel 1 Ping-Pong Mode Status Flag bit  
1= DMA1STB register is selected  
0= DMA1STA register is selected  
PPST0: Channel 0 Ping-Pong Mode Status Flag bit  
1= DMA0STB register is selected  
0= DMA0STA register is selected  
DS70000591F-page 186  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 8-9:  
R-0  
DSADR: MOST RECENT DMA RAM ADDRESS REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<15:8>  
bit 15  
R-0  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 187  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 188  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The oscillator system provides:  
9.0  
OSCILLATOR  
• External and Internal Oscillator Options as Clock  
Sources  
CONFIGURATION  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to “Oscillator (Part IV)”  
(DS70307) in the “dsPIC33/PIC24  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com). The information  
in this data sheet supersedes the  
information in the FRM.  
• An On-Chip Phase-Locked Loop (PLL) to Scale  
the Internal Operating frequency to the Required  
System Clock Frequency  
• An Internal FRC Oscillator that can also be used  
with the PLL, thereby allowing Full-Speed Operation  
without any External Clock Generation Hardware  
• Clock Switching Between Various Clock Sources  
• Programmable Clock Postscaler for System  
Power Savings  
• A Fail-Safe Clock Monitor (FSCM) that Detects  
Clock Failure and takes Fail-Safe Measures  
• A Clock Control Register (OSCCON)  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Nonvolatile Configuration bits for Main Oscillator  
Selection  
• Auxiliary PLL for ADC and PWM  
A simplified diagram of the oscillator system is shown  
in Figure 9-1.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 189  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 9-1:  
OSCILLATOR SYSTEM DIAGRAM  
Primary Oscillator (POSC)  
POSCCLK  
DOZE<2:0>  
OSC1  
XT, HS, EC  
S2  
R(2)  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
S3  
(4)  
(4)  
F
CY  
PLL(1)  
S1/S3  
S1  
(1)  
FVCO  
OSC2  
POSCMD<1:0>  
To ADC and  
Auxiliary Clock  
Generator  
F
P
÷ 2  
FRCDIVN  
FRC  
Oscillator  
S7  
FOSC  
FRCDIV<2:0>  
FRCDIV16  
FRC  
TUN<5:0>  
S6  
S0  
÷ 16  
LPRC  
LPRC  
Oscillator  
S5  
Secondary Oscillator (SOSC)  
LPOSCEN  
SOSC  
SOSCO  
SOSCI  
S4  
Clock Fail  
S7  
Clock Switch  
NOSC<2:0>  
Reset  
Reference Clock Generation  
POSCCLK  
WDT, PWRT,  
FSCM  
FNOSC<2:0>  
Timer 1  
÷ N  
FOSC  
REFCLKO(3)  
ROSEL RODIV<3:0>  
Auxiliary Clock Generation  
FRCCLK  
(1)  
FVCO  
APLL(1)  
x16  
To PWM/ADC(1)  
POSCCLK  
ACLK  
÷ N  
ASRCSEL  
FRCSEL  
ENAPLL  
SELACLK  
APSTSCLR<2:0>  
Note 1: See Section 9.1.3 “PLL Configuration” and Section 9.2 “Auxiliary Clock Generation” for configuration restrictions.  
2: If the oscillator is used with XT or HS modes, an external parallel resistor with the value of 1 Mmust be connected.  
3: REFCLKO functionality is not available if the primary oscillator is used.  
4: The term, FP, refers to the clock source for all the peripherals, while FCY refers to the clock source for the CPU. Throughout this  
document, FP and FCY are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode  
is used in any ratio other than 1:1, which is the default.  
DS70000591F-page 190  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip Phase-  
Locked Loop (PLL) to provide a wide range of output  
frequencies for device operation. PLL configuration is  
described in Section 9.1.3 “PLL Configuration”.  
9.1  
CPU Clocking System  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices provide six  
system clock options:  
• Fast RC (FRC) Oscillator  
• FRC Oscillator with PLL  
The FRC frequency depends on the FRC accuracy  
(see Table 27-20) and the value of the FRC Oscillator  
Tuning register (see Register 9-4).  
• Primary (XT, HS, or EC) Oscillator  
• Primary Oscillator with PLL  
• Low-Power RC (LPRC) Oscillator  
• FRC Oscillator with Postscaler  
• Secondary (LP) Oscillator  
9.1.2  
SYSTEM CLOCK SELECTION  
The oscillator source used at a device Power-on Reset  
event is selected using Configuration bit settings. The  
Oscillator Configuration bit settings are located in the  
Configuration registers in the program memory. (Refer to  
Section 24.1 “Configuration Bits” for further details.)  
The Initial Oscillator Selection Configuration bits,  
FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscil-  
lator Mode Select Configuration bits, POSCMD<1:0>  
(FOSC<1:0>), select the oscillator source that is used at  
a Power-on Reset. The FRC primary oscillator is the  
default (unprogrammed) selection.  
9.1.1  
SYSTEM CLOCK SOURCES  
The Fast RC (FRC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. User software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> (CLKDIV<10:8>) bits.  
The primary oscillator can use one of the following as  
its clock source:  
The Configuration bits allow users to choose among  
12 different clock modes, shown in Table 9-1.  
• XT (Crystal): Crystals and ceramic resonators in  
the range of 3 MHz to 10 MHz. The crystal is  
connected to the OSC1 and OSC2 pins  
• HS (High-Speed Crystal): Crystals in the range of  
10 MHz to 50 MHz. The crystal is connected to  
the OSC1 and OSC2 pins  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected), FOSC, is divided by 2  
to generate the device instruction clock (FCY) and the  
peripheral clock time base (FP). FCY defines the  
operating speed of the device and speeds up to  
50 MIPS are supported by the device architecture.  
• EC (External Clock): The external clock signal is  
directly applied to the OSC1 pin  
Instruction execution speed or device operating  
frequency, FCY, is given by Equation 9-1.  
The secondary (LP) oscillator is designed for low power  
and uses a 32.768 kHz crystal or ceramic resonator.  
The LP oscillator uses the SOSCI and SOSCO pins.  
EQUATION 9-1:  
DEVICE OPERATING  
FREQUENCY  
The LPRC internal oscillator runs at a nominal  
frequency of 32.768 kHz. It is also used as a reference  
clock by the Watchdog Timer (WDT) and Fail-Safe  
Clock Monitor (FSCM).  
FCY = FOSC/2  
TABLE 9-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode Oscillator Source POSCMD<1:0> FNOSC<2:0> See Notes  
Fast RC Oscillator with Divide-by-N (FRCDIVN)  
Fast RC Oscillator with Divide-by-16 (FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Secondary Oscillator (SOSC)  
Internal  
Internal  
Internal  
Secondary  
Primary  
Primary  
Primary  
Primary  
Primary  
Primary  
Internal  
Internal  
xx  
xx  
xx  
xx  
10  
01  
00  
10  
01  
00  
xx  
xx  
111  
110  
101  
100  
011  
011  
011  
010  
010  
010  
001  
000  
1, 2  
1
1
Primary Oscillator (HS) with PLL (HSPLL)  
Primary Oscillator (XT) with PLL (XTPLL)  
Primary Oscillator (EC) with PLL (ECPLL)  
Primary Oscillator (HS)  
1
Primary Oscillator (XT)  
Primary Oscillator (EC)  
1
1
1
Fast RC Oscillator with PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 191  
 
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
For a primary oscillator or FRC oscillator, output ‘FIN’,  
the PLL output ‘FOSC’ is given by Equation 9-2.  
9.1.3  
PLL CONFIGURATION  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip PLL to obtain higher speeds  
of operation. The PLL provides significant flexibility in  
selecting the device operating speed. A block diagram  
of the PLL is shown in Figure 9-2.  
EQUATION 9-2:  
FOSC CALCULATION  
M
N1 * N2  
FOSC = FIN *  
(
)
The output of the primary oscillator or FRC, denoted as  
‘FIN’, is divided down by a prescale factor (N1) of 2,  
3, ... or 33 before being provided to the PLL’s Voltage  
Controlled Oscillator (VCO). The input to the VCO must  
be selected in the range of 0.8 MHz to 8 MHz. The  
prescale factor ‘N1’ is selected using the  
PLLPRE<4:0> bits (CLKDIV<4:0>).  
For example, suppose a 10 MHz crystal is being used  
with the selected oscillator mode of XT with PLL (see  
Equation 9-3).  
• If PLLPRE<4:0> = 0000, then N1 = 2. This yields  
a VCO input of 10/2 = 5 MHz, which is within the  
acceptable range of 0.8-8 MHz.  
• If PLLDIV<8:0> = 0x26, then M = 40. This yields a  
VCO output of 5 x 40 = 200 MHz, which is within  
the 100-200 MHz ranged needed.  
The PLL Feedback Divisor, selected using the  
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, ‘M’,  
by which the input to the VCO is multiplied. This factor  
must be selected such that the resulting VCO output  
frequency is in the range of 100 MHz to 200 MHz.  
• If PLLPOST<1:0> = 00, then N2 = 2. This pro-  
vides a FOSC of 200/2 = 100 MHz. The resultant  
device operating speed is 100/2 = 40 MIPS.  
The VCO output is further divided by a postscale factor,  
‘N2’. This factor is selected using the PLLPOST<1:0>  
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4 or 8, and  
must be selected such that the PLL output frequency  
(FOSC) is in the range of 12.5 MHz to 100 MHz, which  
generates device operating speeds of 6.25-50 MIPS.  
EQUATION 9-3:  
XT WITH PLL MODE  
EXAMPLE  
FOSC  
1
2
10000000 * 40  
FCY =  
=
= 50 MIPS  
(
)
2
2 * 2  
FIGURE 9-2:  
PLL BLOCK DIAGRAM  
FVCO  
0.8-8.0 MHz  
Here(1)  
12.5-100 MHz  
Here(1,2)  
100-200 MHz  
Here(1)  
Source (Crystal, External Clock  
or Internal RC)  
FOSC  
PLLPRE  
X
VCO  
PLLPOST  
PLLDIV  
N1  
Divide by  
2-33  
N2  
Divide by  
2, 4, 8  
M
Divide by  
2-513  
Note 1: This frequency range must be met at all times.  
2: This frequency range is not supported for all devices.  
DS70000591F-page 192  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
9.2  
Auxiliary Clock Generation  
9.3  
Reference Clock Generation  
The auxiliary clock generation is used for a peripherals  
that need to operate at a frequency unrelated to the  
system clock such as a PWM or ADC.  
The reference clock output logic provides the user with  
the ability to output a clock signal based on the system  
clock or the crystal oscillator on a device pin. The user  
application can specify a wide range of clock scaling  
prior to outputting the reference clock.  
The primary oscillator and internal FRC oscillator  
sources can be used with an auxiliary PLL to obtain the  
auxiliary clock. The auxiliary PLL has a fixed 16x  
multiplication factor.  
The auxiliary clock has the following configuration  
restrictions:  
• For proper PWM operation, auxiliary clock  
generation must be configured for 120 MHz (see  
Parameter OS56 in Table 27-18 in Section 27.0  
“Electrical Characteristics”). If a slower frequency  
is desired, the PWM Input Clock Prescaler (Divider)  
Select bits (PCLKDIV<2:0>) should be used.  
To achieve 1.04 ns PWM resolution, the auxiliary  
clock must use the 16x auxiliary PLL (APLL). All  
other clock sources will have a minimum PWM  
resolution of 8 ns.  
• If the primary PLL is used as a source for the  
auxiliary clock, the primary PLL should be config-  
ured up to a maximum operation of 30 MIPS or  
less.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 193  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
9.4  
Oscillator Control Registers  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1)  
U-0  
R-y  
R-y  
R-y  
U-0  
R/W-y  
NOSC2(2)  
R/W-y  
NOSC1(2)  
R/W-y  
NOSC0(2)  
COSC2  
COSC1  
COSC0  
bit 15  
bit 8  
R/W-0  
CLKLOCK  
bit 7  
U-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
U-0  
R/W-0  
LOCK  
OSWEN  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
y = Value set from Configuration bits on POR  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
111= Fast RC Oscillator (FRC) with Divide-by-n  
110= Fast RC Oscillator (FRC) with Divide-by-16  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator (XT, HS, EC) with PLL  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator (FRC) with PLL  
000= Fast RC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(2)  
111= Fast RC Oscillator (FRC) with Divide-by-n  
110= Fast RC Oscillator (FRC) with Divide-by-16  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator (XT, HS, EC) with PLL  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator (FRC) with PLL  
000= Fast RC Oscillator (FRC)  
bit 7  
CLKLOCK: Clock Lock Enable bit  
If Clock Switching is Enabled and FSCM is Disabled (FCKSM<1:0> (FOSC<7:6>) = 0b01):  
1= Clock switching is disabled, system clock source is locked  
0= Clock switching is enabled, system clock source can be modified by clock switching  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
bit 4  
Unimplemented: Read as ‘0’  
Note 1: Writes to this register require an unlock sequence. Refer to “Oscillator (Part IV)” (DS70307) in the  
“dsPIC33/PIC24 Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
DS70000591F-page 194  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1) (CONTINUED)  
bit 3  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
OSWEN: Oscillator Switch Enable bit  
1= Requests oscillator switch to the selection specified by the NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Writes to this register require an unlock sequence. Refer to “Oscillator (Part IV)” (DS70307) in the  
“dsPIC33/PIC24 Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 195  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 9-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-0  
DOZE2  
DOZE1  
DOZE0  
FRCDIV2  
FRCDIV1  
FRCDIV0  
bit 15  
bit 8  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLLPOST1  
bit 7  
PLLPOST0  
PLLPRE4  
PLLPRE3  
PLLPRE2  
PLLPRE1  
PLLPRE0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits  
111= FCY/128  
110= FCY/64  
101= FCY/32  
100= FCY/16  
011= FCY/8 (default)  
010= FCY/4  
001= FCY/2  
000= FCY/1  
bit 11  
DOZEN: Doze Mode Enable bit(1)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
111= FRC divide-by-256  
110= FRC divide-by-64  
101= FRC divide-by-32  
100= FRC divide-by-16  
011= FRC divide-by-8  
010= FRC divide-by-4  
001= FRC divide-by-2  
000= FRC divide-by-1 (default)  
bit 7-6  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
11= Output/8  
10= Reserved  
01= Output/4 (default)  
00= Output/2  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)  
00000= Input/2 (default)  
00001= Input/3  
11111= Input/33  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
DS70000591F-page 196  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 9-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PLLDIV8  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
000000000= 2  
000000001= 3  
000000010= 4  
000110000= 50 (default)  
111111111= 513  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 197  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 9-4:  
OSCTUN: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TUN<5:0>(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
011111= Center Frequency + 2.91% (7.584 MHz)  
011110= Center Frequency + 2.81% (7.577 MHz)  
000001= Center Frequency + 0.0938% (7.377 MHz)  
000000= Center Frequency (7.37 MHz nominal)  
111111= Center Frequency – 0.0938% (7.363 MHz)  
100001= Center Frequency – 2.91% (7.156 MHz)  
100000= Center Frequency – 3% (7.149 MHz)  
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the  
FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither  
characterized nor tested.  
DS70000591F-page 198  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 9-5:  
ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER  
R/W-0  
R-0  
R/W-1  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
ENAPLL  
APLLCK  
SELACLK  
APSTSCLR2 APSTSCLR1 APSTSCLR0  
bit 8  
bit 15  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ASRCSEL  
FRCSEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
ENAPLL: Auxiliary PLL Enable bit  
1= APLL is enabled  
0= APLL is disabled  
APLLCK: APLL Locked Status bit (read-only)  
1= Indicates that auxiliary PLL is in lock  
0= Indicates that auxiliary PLL is not in lock  
SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit  
1= Auxiliary oscillators provide the source clock for the auxiliary clock divider  
0= Primary PLL (FVCO) provides the source clock for the auxiliary clock divider  
bit 12-11  
bit 10-8  
Unimplemented: Read as ‘0’  
APSTSCLR<2:0>: Auxiliary Clock Output Divider bits  
111= Divided by 1  
110= Divided by 2  
101= Divided by 4  
100= Divided by 8  
011= Divided by 16  
010= Divided by 32  
001= Divided by 64  
000= Divided by 256  
bit 7  
ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit  
1= Primary oscillator is the clock source  
0= No clock input is selected  
bit 6  
FRCSEL: Select Reference Clock Source for Auxiliary PLL bit  
1= Selects FRC clock for auxiliary PLL  
0= Input clock source is determined by the ASRCSEL bit setting  
bit 5-0  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 199  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 9-6:  
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER  
R/W-0  
ROON  
U-0  
R/W-0  
R/W-0  
R/W-0  
RODIV3(1)  
R/W-0  
RODIV2(1)  
R/W-0  
RODIV1(1)  
R/W-0  
RODIV0(1)  
ROSSLP  
ROSEL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROON: Reference Oscillator Output Enable bit  
1= Reference oscillator output is enabled on the REFCLK0 pin  
0= Reference oscillator output is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ROSSLP: Reference Oscillator Run in Sleep bit  
1= Reference oscillator output continues to run in Sleep mode  
0= Reference oscillator output is disabled in Sleep mode  
bit 12  
ROSEL: Reference Oscillator Source Select bit  
1= Oscillator crystal is used as the reference clock  
0= System clock is used as the reference clock  
bit 11-8  
RODIV<3:0>: Reference Oscillator Divider bits(1)  
1111= Reference clock divided by 32,768  
1110= Reference clock divided by 16,384  
1101= Reference clock divided by 8,192  
1100= Reference clock divided by 4,096  
1011= Reference clock divided by 2,048  
1010= Reference clock divided by 1,024  
1001= Reference clock divided by 512  
1000= Reference clock divided by 256  
0111= Reference clock divided by 128  
0110= Reference clock divided by 64  
0101= Reference clock divided by 32  
0100= Reference clock divided by 16  
0011= Reference clock divided by 8  
0010= Reference clock divided by 4  
0001= Reference clock divided by 2  
0000= Reference clock  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.  
DS70000591F-page 200  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
2. If a valid clock switch has been initiated, the LOCK  
9.5  
Clock Switching Operation  
(OSCCON<5>) and the CF (OSCCON<3>) status  
Applications are free to switch among any of the four  
clock sources (primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects of this flexibility, dsPIC33FJ32GS406/606/608/  
610 and dsPIC33FJ64GS406/606/608/610 devices  
have a safeguard lock built into the switch process.  
bits are cleared.  
3. The new oscillator is turned on by the hardware if  
it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the new  
source is using the PLL, the hardware waits until a  
PLL lock is detected (LOCK = 1).  
Note:  
Primary oscillator mode has three different  
submodes (XT, HS and EC), which are  
determined by the POSCMD<1:0> Config-  
uration bits. While an application can  
switch to and from primary oscillator  
mode in software, it cannot switch among  
the different primary submodes without  
reprogramming the device.  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSCx  
bit values are transferred to the COSCx status bits.  
6. The old clock source is turned off at this time, with  
the exception of LPRC (if WDT or FSCM are  
enabled) or LP (if LPOSCEN remains set).  
9.5.1  
ENABLING CLOCK SWITCHING  
To enable clock switching, the FCKSM1 Configuration bit  
in the FOSC Configuration register must be programmed  
to ‘0’. (Refer to Section 24.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is unpro-  
grammed (‘1’), the clock switching function and Fail-Safe  
Clock Monitor function are disabled; this is the default  
setting.  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing-sensitive code should not be  
executed during this time.  
2: Direct clock switches between any pri-  
mary oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL modes.  
3: Refer to “Oscillator (Part IV)” (DS70307)  
in the “dsPIC33/PIC24 Family Reference  
Manual” for details.  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is  
disabled. However, the COSC bits (OSCCON<14:12>)  
reflect the clock source selected by the FNOSC<2:0>  
Configuration bits.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled; it is held at ‘0’ at all  
times.  
9.6  
Fail-Safe Clock Monitor (FSCM)  
9.5.2  
OSCILLATOR SWITCHING SEQUENCE  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
To perform a clock switch, the following basic sequence  
is required:  
1. If desired, read the COSCx bits (OSCCON<14:12>)  
to determine the current oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
In the event of an oscillator failure, the FSCM  
generates a clock failure trap event and switches the  
system clock over to the FRC oscillator. Then, the  
application program can either attempt to restart the  
oscillator or execute a controlled shutdown. The trap  
can be treated as a Warm Reset by simply loading the  
Reset address into the oscillator fail trap vector.  
3. Write the appropriate value to the NOSCx control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit (OSCCON<0>) to initiate the  
oscillator switch.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
1. The clock switching hardware compares the  
COSCx status bits with the new value of the  
NOSCx control bits. If they are the same, the clock  
switch is a redundant operation. In this case, the  
OSWEN bit is cleared automatically and the clock  
switch is aborted.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 201  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 202  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
10.2 Instruction-Based Power-Saving  
Modes  
10.0 POWER-SAVING FEATURES  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Watchdog Timer and  
Power-Saving Modes” (DS70196) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
web site (www.microchip.com). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
The devices have two special power-saving modes that  
are entered through the execution of a special PWRSAV  
instruction. Sleep mode stops clock operation and halts all  
code execution. Idle mode halts the CPU and code  
execution, but allows peripheral modules to continue  
operation. The assembler syntax of the PWRSAV  
instruction is shown in Example 10-1.  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to wake-up.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
10.2.1  
SLEEP MODE  
The following occurs in Sleep mode:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current.  
dsPIC33FJ64GS406/606/608/610 devices provide  
the ability to manage power consumption by selectively  
managing clocking to the CPU and the peripherals. In  
general, a lower clock frequency and a reduction in the  
number of circuits being clocked constitutes lower  
consumed power. Devices can manage power  
consumption in four different ways:  
• The Fail-Safe Clock Monitor does not operate,  
since the system clock source is disabled.  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
• Clock Frequency  
• Instruction-Based Sleep and Idle modes  
• Software Controlled Doze mode  
• Selective Peripheral Control in Software  
• Some device features or peripherals may continue  
to operate. This includes the items such as the  
Input Change Notification on the I/O ports or  
peripherals that use an external clock input.  
Combinations of these methods can be used to  
selectively tailor an application’s power consumption  
while still maintaining critical application features, such  
as timing-sensitive communications.  
• Any peripheral that requires the system clock  
source for its operation is disabled.  
The device will wake-up from Sleep mode on any of  
these events:  
10.1 Clock Frequency and Clock  
Switching  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
The devices allow a wide range of clock frequencies to  
be selected under application control. If the system  
clock configuration is not locked, users can choose  
low-power or high-precision oscillators by simply  
changing the NOSCx bits (OSCCON<10:8>). The  
process of changing a system clock during operation, as  
well as limitations to the process, are discussed in more  
detail in Section 9.0 “Oscillator Configuration”.  
• A WDT time-out  
On wake-up from Sleep mode, the processor restarts  
with the same clock source that was active when Sleep  
mode was entered.  
EXAMPLE 10-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 203  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible configura-  
tions, from 1:1 to 1:128, with 1:1 being the default  
setting.  
10.2.2  
IDLE MODE  
The following occur in Idle mode:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 10.5  
“Peripheral Module Disable”).  
Programs can use Doze mode to selectively reduce  
power consumption in event-driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU idles, waiting for something to invoke an  
interrupt routine. An automatic return to full-speed CPU  
operation on interrupts can be enabled by setting the  
ROI bit (CLKDIV<15>). By default, interrupt events  
have no effect on Doze mode operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device will wake-up from Idle mode on any of these  
events:  
• Any interrupt that is individually enabled  
• Any device Reset  
• A WDT time-out  
For example, suppose the device is operating at  
20 MIPS and the ECAN module has been configured  
for 500 kbps based on this device operating speed. If  
the device is placed in Doze mode with a clock  
frequency ratio of 1:4, the ECAN module continues to  
communicate at the required bit rate of 500 kbps, but  
the CPU now starts executing instructions at a  
frequency of 5 MIPS.  
On wake-up from Idle mode, the clock is reapplied to  
the CPU and instruction execution will begin (2-4 clock  
cycles later), starting with the instruction following the  
PWRSAVinstruction, or the first instruction in the ISR.  
10.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
10.4 PWM Power-Saving Features  
Any interrupt that coincides with the execution of a  
PWRSAV instruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
Typically, many applications need either a high-  
resolution duty cycle or phase offset (for fixed  
frequency operation) or a high-resolution PWM period  
for variable frequency modes of operation (such as  
Resonant mode). Very few applications require both  
high-resolution modes simultaneously.  
10.3 Doze Mode  
The preferred strategies for reducing power  
consumption are changing clock speed and invoking  
one of the power-saving modes. In some circumstances,  
this may not be practical. For example, it may be neces-  
sary for an application to maintain uninterrupted  
synchronous communication, even while it is doing noth-  
ing else. Reducing system clock speed can introduce  
communication errors, while using a power-saving mode  
can stop communications completely.  
The HRPDIS and the HRDDIS bits in the AUXCONx  
registers permit the user to disable the circuitry associ-  
ated with the high-resolution duty cycle and PWM  
period to reduce the operating current of the device.  
If the HRDDIS bit is set, the circuitry associated with  
the high-resolution duty cycle, phase offset and dead  
time for the respective PWM generator, is disabled. If  
the HRPDIS bit is set, the circuitry associated with the  
high-resolution PWM period for the respective PWM  
generator is disabled.  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed, while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
When the HRPDIS bit is set, the smallest unit of  
measure for the PWM period is 8.32 ns.  
If the HRDDIS bit is set, the smallest unit of measure  
for the PWM duty cycle, phase offset and dead time is  
8.32 ns.  
DS70000591F-page 204  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
10.5 Peripheral Module Disable  
Note:  
If a PMD bit is set, the corresponding  
module is disabled after a delay of one  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of one instruction  
cycle (assuming the module control regis-  
ters are already configured to enable  
module operation).  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled using the appropriate  
PMD control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers will have no effect and read  
values will be invalid.  
A peripheral module is enabled only if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC® DSC  
variant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 205  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1  
R/W-0  
T5MD  
R/W-0  
T4MD  
R/W-0  
T3MD  
R/W-0  
T2MD  
R/W-0  
T1MD  
R/W-0  
R/W-0  
PWMMD(1)  
U-0  
QEI1MD  
bit 15  
bit 8  
R/W-0  
R/W-0  
U2MD  
R/W-0  
U1MD  
R/W-0  
R/W-0  
U-0  
R/W-0  
C1MD  
R/W-0  
I2C1MD  
SPI2MD  
SPI1MD  
ADCMD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
T5MD: Timer5 Module Disable bit  
1= Timer5 module is disabled  
0= Timer5 module is enabled  
T4MD: Timer4 Module Disable bit  
1= Timer4 module is disabled  
0= Timer4 module is enabled  
T3MD: Timer3 Module Disable bit  
1= Timer3 module is disabled  
0= Timer3 module is enabled  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled  
0= Timer2 module is enabled  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled  
0= Timer1 module is enabled  
QEI1MD: QEI1 Module Disable bit  
1= QEI1 module is disabled  
0= QEI1 module is enabled  
PWMMD: PWM Module Disable bit(1)  
1= PWM module is disabled  
0= PWM module is enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled  
0= I2C1 module is enabled  
bit 6  
bit 5  
bit 4  
U2MD: UART2 Module Disable bit  
1= UART2 module is disabled  
0= UART2 module is enabled  
U1MD: UART1 Module Disable bit  
1= UART1 module is disabled  
0= UART1 module is enabled  
SPI2MD: SPI2 Module Disable bit  
1= SPI2 module is disabled  
0= SPI2 module is enabled  
Note 1: Once the PWM module is re-enabled (PWMMD is set to ‘1’ and then set to ‘0’), all PWM registers must be  
re-initialized.  
DS70000591F-page 206  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)  
bit 3  
SPI1MD: SPI1 Module Disable bit  
1= SPI1 module is disabled  
0= SPI1 module is enabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
C1MD: ECAN1 Module Disable bit  
1= ECAN1 module is disabled  
0= ECAN1 module is enabled  
bit 0  
ADCMD: ADC Module Disable bit  
1= ADC module is disabled  
0= ADC module is enabled  
Note 1: Once the PWM module is re-enabled (PWMMD is set to ‘1’ and then set to ‘0’), all PWM registers must be  
re-initialized.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 207  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IC4MD  
IC3MD  
IC2MD  
IC1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OC4MD  
OC3MD  
OC2MD  
OC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
IC4MD: Input Capture 4 Module Disable bit  
1= Input Capture 4 module is disabled  
0= Input Capture 4 module is enabled  
bit 19  
bit 9  
bit 8  
IC3MD: Input Capture 3 Module Disable bit  
1= Input Capture 3 module is disabled  
0= Input Capture 3 module is enabled  
IC2MD: Input Capture 2 Module Disable bit  
1= Input Capture 2 module is disabled  
0= Input Capture 2 module is enabled  
IC1MD: Input Capture 1 Module Disable bit  
1= Input Capture 1 module is disabled  
0= Input Capture 1 module is enabled  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
OC4MD: Output Compare 4 Module Disable bit  
1= Output Compare 4 module is disabled  
0= Output Compare 4 module is enabled  
bit 2  
bit 1  
bit 0  
OC3MD: Output Compare 3 Module Disable bit  
1= Output Compare 3 module is disabled  
0= Output Compare 3 module is enabled  
OC2MD: Output Compare 2 Module Disable bit  
1= Output Compare 2 module is disabled  
0= Output Compare 2 module is enabled  
OC1MD: Output Compare 1 Module Disable bit  
1= Output Compare 1 module is disabled  
0= Output Compare 1 module is enabled  
DS70000591F-page 208  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
CMPMD  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
QEI2MD  
I2C2MD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
CMPMD: Analog Comparator Module Disable bit  
1= Analog comparator module is disabled  
0= Analog comparator module is enabled  
bit 9-6  
bit 5  
Unimplemented: Read as ‘0’  
QEI2MD: QEI2 Module Disable bit  
1= QEI2 module is disabled  
0= QEI2 module is enabled  
bit 4-2  
bit 1  
Unimplemented: Read as ‘0’  
I2C2MD: I2C2 Module Disable bit  
1= I2C2 module is disabled  
0= I2C2 module is enabled  
bit 0  
Unimplemented: Read as ‘0’  
REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
REFOMD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
REFOMD: Reference Clock Generator Module Disable bit  
1= Reference clock generator module is disabled  
0= Reference clock generator module is enabled  
bit 2-0  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 209  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWM8MD  
PWM7MD  
PWM6MD  
PWM5MD  
PWM4MD  
PWM3MD  
PWM2MD  
PWM1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
PWM8MD: PWM Generator 8 Module Disable bit  
1= PWM Generator 8 module is disabled  
0= PWM Generator 8 module is enabled  
PWM7MD: PWM Generator 7 Module Disable bit  
1= PWM Generator 7 module is disabled  
0= PWM Generator 7 module is enabled  
PWM6MD: PWM Generator 6 Module Disable bit  
1= PWM Generator 6 module is disabled  
0= PWM Generator 6 module is enabled  
PWM5MD: PWM Generator 5 Module Disable bit  
1= PWM Generator 5 module is disabled  
0= PWM Generator 5 module is enabled  
PWM4MD: PWM Generator 4 Module Disable bit  
1= PWM Generator 4 module is disabled  
0= PWM Generator 4 module is enabled  
PWM3MD: PWM Generator 3 Module Disable bit  
1= PWM Generator 3 module is disabled  
0= PWM Generator 3 module is enabled  
PWM2MD: PWM Generator 2 Module Disable bit  
1= PWM Generator 2 module is disabled  
0= PWM Generator 2 module is enabled  
bit 8  
PWM1MD: PWM Generator 1 Module Disable bit  
1= PWM Generator 1 module is disabled  
0= PWM Generator 1 module is enabled  
bit 7-0  
Unimplemented: Read as ‘0’  
DS70000591F-page 210  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CMP4MD  
CMP3MD  
CMP2MD  
CMP1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PWM9MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
CMP4MD: Analog Comparator 4 Module Disable bit  
1= Analog Comparator 4 module is disabled  
0= Analog Comparator 4 module is enabled  
bit 10  
bit 9  
bit 8  
CMP3MD: Analog Comparator 3 Module Disable bit  
1= Analog Comparator 3 module is disabled  
0= Analog Comparator 3 module is enabled  
CMP2MD: Analog Comparator 2 Module Disable bit  
1= Analog Comparator 2 module is disabled  
0= Analog Comparator 2 module is enabled  
CMP1MD: Analog Comparator 1 Module Disable bit  
1= Analog Comparator 1 module is disabled  
0= Analog Comparator 1 module is enabled  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
PWM9MD: PWM Generator 9 Module Disable bit  
1= PWM Generator 9 module is disabled  
0= PWM Generator 9 module is enabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 211  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 212  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
11.0 I/O PORTS  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “I/O Ports” (DS70193) in  
the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the Micro-  
chip web site (www.microchip.com). The  
information in this data sheet supersedes  
the information in the FRM.  
a general purpose output pin is disabled. The I/O pin  
can be read, but the output driver for the parallel port bit  
is disabled. If a peripheral is enabled, but the peripheral  
is not actively driving a pin, that pin can be driven by a  
port.  
All port pins have three registers directly associated  
with their operation as digital I/O. The Data Direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx) read the latch.  
Writes to the latch write the latch. Reads from the port  
(PORTx) read the port pins, while writes to the port pins  
write the latch.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pin will read as zeros.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared among the peripherals and the  
parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs.  
11.1 Parallel I/O (PIO) Ports  
Generally a parallel I/O port that shares a pin with a  
peripheral is subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 11-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 213  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 11-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
0
Output Enable  
Output Data  
1
0
PIO Module  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
DS70000591F-page 214  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
11.2 Open-Drain Configuration  
11.4 I/O Port Write/Read Timing  
In addition to the PORTx, LATx and TRISx registers for  
data control, some digital only port pins can also be  
individually configured for either digital or open-drain  
output. This is controlled by the Open-Drain Control  
register, ODCx, associated with each port. Setting any  
of the bits configures the corresponding pin to act as an  
open-drain output.  
Oneinstructioncycleisrequiredbetweenaportdirection  
change or port write operation and a read operation of  
the same port. Typically, this instruction would be a NOP.  
An example is shown in Example 11-1.  
11.5 Input Change Notification (ICN)  
The Input Change Notification function of the I/O  
ports allows the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610 devices to gen-  
erate interrupt requests to the processor in response to  
a Change-of-State (COS) on selected input pins. This  
feature can detect input Change-of-States even in  
Sleep mode, when the clocks are disabled. Depending  
on the device pin count, up to 30 external signals (CNx  
pin) can be selected (enabled) for generating an  
interrupt request on a Change-of-State.  
The open-drain feature allows the generation of  
outputs higher than VDD (for example, 5V) on any  
desired 5V tolerant pins by using external pull-up  
resistors. The maximum open-drain voltage allowed is  
the same as the maximum VIH specification.  
Refer to Pin Diagramsfor the available pins and  
their functionality.  
11.3 Configuring Analog Port Pins  
Four control registers are associated with the Change  
Notification (CN) module. The CNEN1 and CNEN2  
registers contain the interrupt enable control bits for  
each of the CN input pins. Setting any of these bits  
enables an CN interrupt for the corresponding pins.  
The ADPCFG and TRISx registers control the  
operation of the Analog-to-Digital port pins. The port  
pins that are to function as analog inputs must have  
their corresponding TRISx bit set (input). If the TRISx  
bit is cleared (output), the digital output level (VOH or  
VOL) will be converted.  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source connected to the  
pin and eliminate the need for external resistors when  
the push button or keypad devices are connected. The  
pull-ups are enabled separately using the CNPU1 and  
CNPU2 registers, which contain the control bits for  
each of the CN pins. Setting any of the control bits  
enables the weak pull-ups for the corresponding pins.  
The ADPCFG and ADPCFG2 registers have a default  
value of 0x000; therefore, all pins that share ANx  
functions are analog (not digital) by default.  
When the PORTx register is read, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin defined as a  
digital input (including the ANx pins) can cause the  
input buffer to consume current that exceeds the  
device specifications.  
Note:  
Pull-ups on Change Notification pins  
should always be disabled when the port  
pin is configured as a digital output.  
EQUATION 11-1: PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
BTSS PORTB, #13  
; Next Instruction  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 215  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 216  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The unique features of Timer1 allow it to be used for  
Real-Time Clock (RTC) applications. A block diagram  
of Timer1 is shown in Figure 12-1.  
12.0 TIMER1  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Timers” (DS70205) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
web site (www.microchip.com). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
The Timer1 module can operate in one of the following  
modes:  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
• Asynchronous Counter mode  
In Timer and Gated Timer modes, the input clock is  
derived from the internal instruction cycle clock (FCY).  
In Synchronous and Asynchronous Counter modes,  
the input clock is derived from the external clock input  
at the T1CK pin.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Timer modes are determined by the following bits:  
• Timer Clock Source Control bit: TCS (T1CON<1>)  
• Timer Synchronization Control bit: TSYNC  
(T1CON<2>)  
• Timer Gate Control bit: TGATE (T1CON<6>)  
The Timer1 module is a 16-bit timer, which can serve  
as a time counter for the Real-Time Clock (RTC), or  
operate as a free-running interval timer/counter.  
The timer control bit settings for different operating  
modes are given in the Table 12-1.  
The Timer1 module has the following unique features  
over other timers:  
TABLE 12-1: TIMER MODE SETTINGS  
Mode  
TCS  
TGATE  
TSYNC  
• Can be operated from the low-power 32.767 kHz  
crystal oscillator available on the device.  
Timer  
0
0
1
0
1
x
x
x
1
• Can be operated in Asynchronous Counter mode  
from an external clock source.  
Gated Timer  
Synchronous  
Counter  
• The external clock input (T1CK) can optionally be  
synchronized to the internal device clock and the  
clock synchronization is performed after the  
prescaler.  
Asynchronous  
Counter  
1
x
0
FIGURE 12-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
Falling Edge  
Gate  
Sync  
1
Detect  
Set T1IF Flag  
0
10  
00  
FCY  
Prescaler  
(/n)  
TGATE  
Reset  
TMR1  
TCKPS<1:0>  
0
1
x1  
T1CK  
Equal  
Prescaler  
(/n)  
Comparator  
Sync  
TGATE  
TCS  
TSYNC  
TCKPS<1:0>  
PR1  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 217  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS1  
TCKPS0  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timer1 Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>:Timer1 Input Clock Prescale Select bits  
11 = 1:256  
10 = 1:64  
01 = 1:8  
00 = 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronizes external clock input  
0= Does not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from T1CK pin (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
DS70000591F-page 218  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Timer2 and Timer4 are Type B timers that offer the  
following major features:  
13.0 TIMER2/3/4/5 FEATURES  
Note 1: This data sheet summarizes the features  
• A Type B Timer can be Concatenated with a  
of the dsPIC33FJ32GS406/606/608/610  
Type C Timer to form a 32-Bit Timer  
and dsPIC33FJ64GS406/606/608/610  
• At Least One Type B Timer Has the Ability to  
Trigger an Analog-to-Digital Conversion  
• ExternalClockInput(TxCK)isAlwaysSynchronized  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
to the Internal Device Clock and the Clock  
sheet, refer to “Timers” (DS70205) in the  
Synchronization is Performed after the Prescaler  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
Figure 13-1 shows a block diagram of the Type B timer.  
web site (www.microchip.com). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
Timer3 and Timer5 are Type C timers that offer the  
following major features:  
• A Type C Timer can be Concatenated with a  
Type B Timer to form a 32-Bit Timer  
• External Clock Input (TxCK) is Always Synchronized  
to the Internal Device Clock and the Clock  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Synchronization is Performed before the Prescaler  
A block diagram of the Type C timer is shown in  
Figure 13-2.  
Note:  
TYPE B TIMER BLOCK DIAGRAM (x = 2, 4)  
Timer3 is not available on all devices.  
FIGURE 13-1:  
Falling Edge  
Detect  
Gate  
Sync  
1
Set TxIF Flag  
0
10  
00  
FCY  
Prescaler  
(/n)  
Reset  
TMRx  
TGATE  
TCKPS<1:0>  
Sync  
Prescaler  
(/n)  
x1  
Equal  
ADC SOC Trigger  
Comparator  
PRx  
TxCK  
TCKPS<1:0>  
TGATE  
TCS  
FIGURE 13-2:  
TYPE C TIMER BLOCK DIAGRAM (x = 3, 5)  
Gate  
Sync  
Falling Edge  
Detect  
1
0
Set TxIF Flag  
Prescaler  
(/n)  
10  
00  
FCY  
Reset  
TMRx  
Comparator  
PRx  
TGATE  
TCKPS<1:0>  
Prescaler  
(/n)  
Sync  
x1  
Equal  
TxCK  
TCKPS<1:0>  
TGATE  
TCS  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 219  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The Timer2/3/4/5 modules can operate in one of the  
following modes:  
When configured for 32-bit operation, only the Type B  
Timerx Control (TxCON) register bits are required for  
setup and control while the Type C Timer Control  
register bits are ignored (except the TSIDL bit).  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
For interrupt control, the combined 32-bit timer uses  
the interrupt enable, interrupt flag and interrupt priority  
control bits of the Type C timer. The interrupt control  
and status bits for the Type B timer are ignored  
during 32-bit timer operation.  
In Timer and Gated Timer modes, the input clock is  
derived from the internal instruction cycle clock (FCY).  
In Synchronous Counter mode, the input clock is  
derived from the external clock input at the TxCK pin.  
The timers that can be combined to form a 32-bit timer  
are listed in Table 13-2.  
The timer modes are determined by the following bits:  
• TCS (TxCON<1>): Timer Clock Source Control bit  
• TGATE (TxCON<6>): Timer Gate Control bit  
TABLE 13-2: 32-BIT TIMER  
Timer control bit settings for different operating modes  
are given in the Table 13-1.  
Type B Timer (lsw)  
Type C Timer (msw)  
Timer2  
TImer4  
Timer3  
Timer5  
TABLE 13-1: TIMER MODE SETTINGS  
A block diagram representation of the 32-bit timer  
module is shown in Figure 13-3. The 32-timer module  
can operate in one of the following modes:  
Mode  
TCS  
TGATE  
Timer  
0
0
1
0
1
x
Gated Timer  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
Synchronous Counter  
13.1 16-Bit Operation  
To configure the timer features for 32-bit operation:  
1. Set the T32 control bit.  
To configure any of the timers for individual 16-bit  
operation:  
2. Select the prescaler ratio for Timer2 using the  
TCKPS<1:0> bits.  
1. Clear the T32 bit corresponding to that timer.  
3. Set the Clock and Gating modes using the  
corresponding TCS and TGATE bits.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
4. Load the timer period value. PR3 contains the  
most significant word of the value, while PR2  
contains the least significant word.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value into the PRx  
register.  
5. If interrupts are required, set the interrupt enable  
bit, T3IE. Use the priority bits, T3IP<2:0>, to set  
the interrupt priority. While Timer2 controls the  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
timer, the interrupt appears as  
interrupt.  
a Timer3  
6. Set the TON bit.  
6. Set the corresponding TON bit.  
13.2 32-Bit Operation  
A 32-bit timer module can be formed by combining a  
Type B and a Type C 16-bit timer module. For 32-bit  
timer operation, the T32 control bit in the Type B Timer  
Control (TxCON<3>) register must be set. The Type C  
timer holds the most significant word (msw) and the  
Type B timer holds the least significant word (lsw)  
for 32-bit operation.  
DS70000591F-page 220  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 13-3:  
32-BIT TIMER BLOCK DIAGRAM  
Falling Edge  
Detect  
Gate  
Sync  
1
0
Set TyIF  
Flag  
PRy  
PRx  
Equal  
Reset  
TGATE  
Comparator  
Prescaler  
(/n)  
10  
00  
FCY  
lsw  
TMRx  
msw  
(1)  
(2)  
TMRy  
TCKPS<1:0>  
Sync  
Prescaler  
(/n)  
x1  
TxCK  
TMRyHLD  
TGATE  
TCS  
TCKPS<1:0>  
Data Bus <15:0>  
Note 1: Timerx is a Type B Timer (x = 2, 4).  
2: Timery is a Type C Timer (y = 3, 5).  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 221  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 13-1: TxCON: TIMERx CONTROL REGISTER (x = 2, 4)  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS1  
TCKPS0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timerx On bit  
When T32 = 1(in 32-Bit Timer mode):  
1= Starts 32-bit TMRx:TMRy timer pair  
0= Stops 32-bit TMRx:TMRy timer pair  
When T32 = 0(in 16-Bit Timer mode):  
1= Starts 16-bit timer  
0= Stops 16-bit timer  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timerx Stop in Idle Mode bit  
1= Discontinues timer operation when device enters Idle mode  
0= Continues timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
T32: 32-Bit Timerx Mode Select bit  
1= TMRx and TMRy form a 32-bit timer  
0= TMRx and TMRy form a separate 16-bit timer  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit  
1= External clock from TxCK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
DS70000591F-page 222  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 13-2: TyCON: TIMERy CONTROL REGISTER (y = 3, 5)  
R/W-0  
TON(2)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(2)  
R/W-0  
TCKPS1(2) TCKPS0(2)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timery On bit(2)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timery Stop in Idle Mode bit(1)  
1= Discontinues timer operation when device enters Idle mode  
0= Continues timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(2)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timery Input Clock Prescale Select bits(2)  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(2)  
1= External clock from TxCK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL  
bit must be cleared to operate the 32-bit timer in Idle mode.  
2: When the 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), these  
bits have no effect.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 223  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 224  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
• Simple Capture Event modes:  
14.0 INPUT CAPTURE  
- Capture timer value on every falling edge of  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Input Capture” (DS70198)  
in the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the Micro-  
chip web site (www.microchip.com). The  
information in this data sheet supersedes  
the information in the FRM.  
input at ICx pin  
- Capture timer value on every rising edge of  
input at ICx pin  
• Capture Timer Value on Every Edge (rising and  
falling)  
• Prescaler Capture Event modes:  
- Capture timer value on every 4th rising edge  
of input at ICx pin  
- Capture timer value on every 16th rising  
edge of input at ICx pin  
Each input capture channel can select one of the  
two 16-bit timers (Timer2 or Timer3) for the time  
base. The selected timer can use either an internal  
or external clock.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Other operational features include:  
• Device Wake-up from Capture Pin during CPU  
Sleep and Idle modes  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
• Interrupt on Input Capture Event  
• 4-Word FIFO Buffer for Capture Values  
The  
dsPIC33FJ32GS406/606/608/610  
and  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
dsPIC33FJ64GS406/606/608/610 devices support up  
to two input capture channels.  
• Use of Input Capture to provide Additional  
Sources of External Interrupts  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
at the ICx pin. The events that cause a capture event  
are listed below in three categories:  
FIGURE 14-1:  
INPUT CAPTURE x BLOCK DIAGRAM  
From 16-Bit Timers  
TMR2 TMR3  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
FIFO  
R/W  
Logic  
Edge Detection Logic  
and  
Clock Synchronizer  
Prescaler  
Counter  
(1, 4, 16)  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
Mode Select  
3
ICOV, ICBNE (ICxCON<4:3>)  
ICI<1:0>  
ICxBUF  
Interrupt  
Logic  
ICxCON  
System Bus  
Set Flag ICxIF  
(in IFSx Register)  
Note 1: An ‘x’ in a signal, register or bit name denotes the number of the input capture channel.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 225  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
14.1 Input Capture Registers  
REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1 TO 4)  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
R/W-0  
ICI1  
R/W-0  
ICI0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
ICM2  
R/W-0  
ICM1  
R/W-0  
ICM0  
ICTMR  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture x Stop in Idle Control bit  
1= Input capture module halts in CPU Idle mode  
0= Input capture module continues to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture x Timer Select bit  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture x Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture x Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture x Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode; rising edge  
detect only, all other control bits are not applicable  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling); ICI<1:0> bits do not control interrupt generation  
for this mode  
000= Input capture module is turned off  
DS70000591F-page 226  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The output compare module can select either Timer2 or  
Timer3 for its time base. The module compares the  
15.0 OUTPUT COMPARE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Output Compare”  
(DS70005157) in the “dsPIC33/PIC24  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com). The information  
in this data sheet supersedes the  
information in the FRM.  
value of the timer with the value of one or two Compare  
registers depending on the operating mode selected.  
The state of the output pin changes when the timer  
value matches the Compare register value. The output  
compare module generates either a single output  
pulse, or a sequence of output pulses, by changing the  
state of the output pin on the compare match events.  
The output compare module can also generate  
interrupts on compare match events.  
The output compare module has multiple operating  
modes:  
• Active-Low One-Shot mode  
• Active-High One-Shot mode  
Toggle mode  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Delayed One-Shot mode  
• Continuous Pulse mode  
• PWM mode without Fault Protection  
• PWM mode with Fault Protection  
FIGURE 15-1:  
OUTPUT COMPARE x MODULE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
Output Enable  
3
OCM<2:0>  
Mode Select  
OCFA  
Comparator  
0
OCTSEL  
1
1
0
16  
16  
TMR2  
Rollover Rollover  
TMR3  
TMR2 TMR3  
Note: An ‘x’ in a signal, register or bit name denotes the number of the output compare channels.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 227  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
application must disable the associated timer when  
writing to the Output Compare Control registers to  
Configure the Output Compare modes by setting the  
avoid malfunctions.  
15.1 Output Compare Modes  
appropriate Output Compare Mode (OCM<2:0>) bits in  
Note:  
See “Output Compare” (DS70005157)  
in the “dsPIC33/PIC24 Family Reference  
Manual” for OCxR and OCxRS register  
restrictions.  
the Output Compare Control (OCxCON<2:0>) register.  
Table 15-1 lists the different bit settings for the Output  
Compare modes. Figure 15-2 illustrates the output  
compare operation for various modes. The user  
TABLE 15-1: OUTPUT COMPARE MODES  
OCM<2:0>  
Mode  
Module Disabled  
OCx Pin Initial State  
OCx Interrupt Generation  
000  
001  
010  
011  
100  
101  
110  
Controlled by GPIO register  
Active-Low One-Shot  
Active-High One-Shot  
Toggle  
0
1
OCx rising edge  
OCx falling edge  
Current output is maintained OCx rising and falling edge  
Delayed One-Shot  
Continuous Pulse  
PWM without Fault Protection  
0
0
OCx falling edge  
OCx falling edge  
No interrupt  
0’ if OCxR is zero,  
1’ if OCxR is non-zero  
111  
PWM with Fault Protection  
0’ if OCxR is zero,  
OCFA falling edge for OC1 to OC4  
1’ if OCxR is non-zero  
FIGURE 15-2:  
OUTPUT COMPARE x OPERATION  
Output Compare  
Mode Enabled  
Timer is Reset on  
Period Match  
OCxRS  
OCxR  
TMRy  
Active-Low One-Shot  
(OCM = 001)  
Active-High One-Shot  
(OCM = 010)  
Toggle  
(OCM = 011)  
Delayed One-Shot  
(OCM = 100)  
Continuous Pulse  
(OCM = 101)  
PWM  
(OCM = 110or 111)  
DS70000591F-page 228  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1 TO 4)  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R-0, HC  
OCFLT  
R/W-0  
R/W-0  
OCM2  
R/W-0  
OCM1  
R/W-0  
OCM0  
OCTSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Output Compare x Stop in Idle Mode Control bit  
1= Output Compare x halts in CPU Idle mode  
0= Output Compare x continues to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in hardware only)  
0= No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)  
bit 3  
OCTSEL: Output Compare x Timer Select bit  
1= Timer3 is the clock source for Output Compare x  
0= Timer2 is the clock source for Output Compare x  
bit 2-0  
OCM<2:0>: Output Compare x Mode Select bits  
111= PWM mode on OCx, Fault pin is enabled  
110= PWM mode on OCx, Fault pin is disabled  
101= Initializes OCx pin low, generates continuous output pulses on OCx pin  
100= Initializes OCx pin low, generates single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initializes OCx pin high, compare event forces OCx pin low  
001= Initializes OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 229  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 230  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
• Dual Trigger from PWM to Analog-to-Digital  
Converter (ADC) per PWM Period  
16.0 HIGH-SPEED PWM  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “High-Speed PWM”  
(DS70000323) in the “dsPIC33/PIC24  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com). The information  
in this data sheet supersedes the  
information in the FRM.  
• PWMxL and PWMxH Output Pin Swapping  
• Independent PWM Frequency, Duty Cycle and  
Phase-Shift Changes  
• Current Compensation  
• Enhanced Leading-Edge Blanking (LEB) Functionality  
• PWM Capture Functionality  
Note:  
Duty cycle, dead-time, phase shift and  
frequency resolution is 8.32 ns in  
Center-Aligned PWM mode.  
Figure 16-1 conceptualizes the PWM module in a  
simplified block diagram. Figure 16-2 illustrates how  
the module hardware is partitioned for each PWM  
output pair for the Complementary PWM mode.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The PWM module contains nine PWM generators. The  
module has up to 18 PWM output pins: PWM1H/  
PWM1L through PWM9H/PWM9L. For complementary  
outputs, these 18 I/O pins are grouped into high/low  
pairs.  
The  
the  
high-speed  
dsPIC33FJ32GS406/606/608/610  
PWM  
module  
on  
and  
16.2 Feature Description  
dsPIC33FJ64GS406/606/608/610 devices supports a  
wide variety of PWM modes and output formats. This  
PWM module is ideal for power conversion  
applications, such as:  
The PWM module is designed for applications that  
require:  
• High-resolution at high PWM frequencies  
• The ability to drive Standard, Edge-Aligned,  
Center-Aligned Complementary mode and  
Push-Pull mode outputs  
• AC/DC Converters  
• DC/DC Converters  
• Power Factor Correction  
• Uninterruptible Power Supply (UPS)  
• Inverters  
• The ability to create multiphase PWM outputs  
For Center-Aligned mode, the duty cycle, period phase  
and dead-time resolutions will be 8.32 ns.  
• Battery Chargers  
Two common, medium power converter topologies are  
push-pull and half-bridge. These designs require the  
PWM output signal to be switched between alternate  
pins, as provided by the Push-Pull PWM mode.  
• Digital Lighting  
16.1 Features Overview  
The high-speed PWM module incorporates the  
following features:  
Phase-shifted PWM describes the situation where  
each PWM generator provides outputs, but the phase  
relationship between the generator outputs is  
specifiable and changeable.  
• Two Master Time Base modules  
• Up to Nine PWM Generators with up to 18 Outputs  
• Two PWM Outputs per PWM Generator  
• Individual Time Base and Duty Cycle for each  
PWM Output  
• Duty Cycle, Dead Time, Phase Shift and  
Frequency Resolution of 1.04 ns  
• Independent Fault and Current-Limit Inputs for  
Eight PWM Outputs  
Multiphase PWM is often used to improve DC/DC Con-  
verter load transient response, and reduce the size of  
output filter capacitors and inductors. Multiple DC/DC  
Converters are often operated in parallel, but  
phase-shifted in time. A single PWM output, operating at  
250 kHz, has a period of 4 s, but an array of four PWM  
channels, staggered by 1 s each, yields an effective  
switching frequency of 1 MHz. Multiphase PWM  
applications typically use a fixed-phase relationship.  
• Redundant Output  
• True Independent Output  
Variable phase PWM is useful in Zero Voltage  
Transition (ZVT) power converters. Here, the PWM  
duty cycle is always 50% and the power flow is  
controlled by varying the relative phase shift between  
the two PWM generators.  
• Center-Aligned PWM mode  
• Output Override Control  
• Chop mode (also known as Gated mode)  
• Special Event Trigger  
• Prescaler for Input Clock  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 231  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 16-1:  
HIGH-SPEED PWMx MODULE ARCHITECTURAL DIAGRAM  
SYNCIx  
Data Bus  
Primary and Secondary  
Master Time Base  
SYNCOx  
Synchronization Signal  
PWM1 Interrupt  
PWM1H  
PWM1L  
PWM  
Generator 1  
Fault, Current-Limit  
and Dead-Time Compensation  
Synchronization Signal  
PWM2 Interrupt  
PWM2H  
PWM2L  
PWM  
Generator 2  
Fault, Current-Limit  
and Dead-Time Compensation  
CPU  
PWM3 through PWM7  
Synchronization Signal  
PWM8 Interrupt  
PWM8H  
PWM8L  
PWM  
Generator 8  
Fault, Current-Limit  
and Dead-Time Compensation  
Synchronization Signal  
PWM9H  
PWM9L  
PWM9 Interrupt  
PWM  
Generator 9  
Primary Trigger  
Secondary Trigger  
Fault and  
Current-Limit  
ADC Module  
Special Event Trigger  
DS70000591F-page 232  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 16-2:  
SIMPLIFIED CONCEPTUAL BLOCK DIAGRAM OF THE HIGH-SPEED PWMx  
PTCON, PTCON2  
STCON, STCON2  
SYNCI1  
•  
SYNCI4  
Module Control and Timing  
SYNCO1  
SEVTCMP  
Comparator  
Special Event Compare Trigger  
PTPER  
Special Event  
Comparator  
Postscaler  
Special Event Trigger  
Master Time Base Counter  
PMTMR  
Clock  
Prescaler  
Primary Master Time Base  
SYNCO2  
Special Event Compare Trigger  
STPER  
SEVTCMP  
Special Event  
Postscaler  
Comparator  
Comparator  
Special Event Trigger  
Master Time Base Counter  
Clock  
SMTMR  
MDC  
Prescaler  
Secondary Master Time Base  
Master Duty Cycle Register  
PWM Generator 1  
PDCx  
MUX  
PWM Output Mode  
Comparator  
Control Logic  
PWMCAPx  
ADC Trigger  
User Override Logic  
Dead-  
Time  
Logic  
Pin  
Control  
Logic  
PTMRx  
PWM1H  
PWM1L  
Current-Limit  
Override Logic  
Comparator  
PHASEx  
SDCx  
Fault Override Logic  
TRIGx  
Secondary PWM  
MUX  
Fault and  
Current-Limit  
Logic  
Interrupt  
Logic  
Comparator  
FLTn(1)  
ADC Trigger  
Comparator  
STMRx  
STRIGx  
SPHASEx  
FCLCONx  
LEBCONx  
IOCONx  
ALTDTRx  
DTRx  
PWMCONx  
TRGCONx  
PWMxH  
PWMxL  
PWM Generator 2 – PWM Generator 9  
FLTn(1)  
DTCMPx  
Note 1: n = 1 through 23.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 233  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
16.3 Control Registers  
The following registers control the operation of the  
high-speed PWM module.  
PTCON: PWM Time Base Control Register  
PTCON2: PWM Clock Divider Select Register 2  
PTPER: PWM Primary Master Time Base Period Register(1,2)  
SEVTCMP: PWM Special Event Compare Register(1)  
STCON: PWM Secondary Master Time Base Control Register  
STCON2: PWM Secondary Clock Divider Select Register 2  
STPER: PWM Secondary Master Time Base Period Register  
SSEVTCMP: PWM Secondary Special Event Compare Register  
CHOP: PWM Chop Clock Generator Register(1)  
MDC: PWM Master Duty Cycle Register(1,2)  
PWMCONx: PWM Control x Register  
PDCx: PWM Generator Duty Cycle x Register(1,2,3)  
PHASEx: PWM Primary Phase-Shift x Register(1,2)  
DTRx: PWM Dead-Time x Register  
ALTDTRx: PWM Alternate Dead-Time x Register  
SDCx: PWM Secondary Duty Cycle x Register(1,2,3)  
SPHASEx: PWM Secondary Phase-Shift x Register(1,2)  
TRGCONx: PWM Trigger Control x Register  
IOCONx: PWM I/O Control x Register  
FCLCONx: PWM Fault Current-Limit Control x Register  
TRIGx: PWM Primary Trigger x Compare Value Register  
STRIGx: PWM Secondary Trigger x Compare Value Register(1)  
LEBCONx: Leading-Edge Blanking Control x Register  
LEBDLYx: Leading-Edge Blanking Delay x Register  
AUXCONx: PWM Auxiliary Control x Register  
PWMCAPx: Primary PWM Time Base Capture x Register  
DS70000591F-page 234  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER  
R/W-0  
PTEN  
U-0  
R/W-0  
HS/HC-0  
SESTAT  
R/W-0  
SEIEN  
R/W-0  
EIPU(1)  
R/W-0  
R/W-0  
PTSIDL  
SYNCPOL(1) SYNCOEN(1)  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SYNCEN(1) SYNCSRC2(1) SYNCSRC1(1) SYNCSRC0(1) SEVTPS3(1) SEVTPS2(1) SEVTPS1(1) SEVTPS0(1)  
bit 7 bit 0  
Legend:  
HC = Hardware Clearable bit HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PTEN: PWM Module Enable bit  
1= PWM module is enabled  
0= PWM module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PTSIDL: PWM Time Base Stop in Idle Mode bit  
1= PWM time base halts in CPU Idle mode  
0= PWM time base runs in CPU Idle mode  
bit 12  
bit 11  
bit 10  
bit 9  
SESTAT: Special Event Interrupt Status bit  
1= Special event interrupt is pending  
0= Special event interrupt is not pending  
SEIEN: Special Event Interrupt Enable bit  
1= Special event interrupt is enabled  
0= Special event interrupt is disabled  
EIPU: Enable Immediate Period Updates bit(1)  
1= Active Period register is updated immediately  
0= Active Period register updates occur on PWM cycle boundaries  
SYNCPOL: Synchronize Input and Output Polarity bit(1)  
1= SYNCIx/SYNCO1 polarity is inverted (active-low)  
0= SYNCIx/SYNCO1 is active-high  
bit 8  
SYNCOEN: Primary Time Base Synchronization Enable bit(1)  
1= SYNCO1 output is enabled  
0= SYNCO1 output is disabled  
bit 7  
SYNCEN: External Time Base Synchronization Enable bit(1)  
1= External synchronization of primary time base is enabled  
0= External synchronization of primary time base is disabled  
bit 6-4  
SYNCSRC<2:0>: Synchronous Source Selection bits(1)  
111= Reserved  
101= Reserved  
100= Reserved  
011= SYNCI4  
010= SYNCI3  
001= SYNCI2  
000= SYNCI1  
Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user  
application must program the Period register with a value that is slightly larger than the expected period of  
the external synchronization input signal.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 235  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)  
bit 3-0  
SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits(1)  
1111= 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event  
0001= 1:2 Postscaler generates Special Event Trigger on every second compare match event  
0000= 1:1 Postscaler generates Special Event Trigger on every compare match event  
Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user  
application must program the Period register with a value that is slightly larger than the expected period of  
the external synchronization input signal.  
DS70000591F-page 236  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 7  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PCLKDIV<2:0>(1)  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits(1)  
111= Reserved  
110= Divide-by-64, maximum PWM timing resolution  
101= Divide-by-32, maximum PWM timing resolution  
100= Divide-by-16, maximum PWM timing resolution  
011= Divide-by-8, maximum PWM timing resolution  
010= Divide-by-4, maximum PWM timing resolution  
001= Divide-by-2, maximum PWM timing resolution  
000= Divide-by-1, maximum PWM timing resolution (power-on default)  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
REGISTER 16-3: PTPER: PWM PRIMARY MASTER TIME BASE PERIOD REGISTER(1,2)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
PTPER<15:8>  
bit 15  
R/W-1  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
PTPER<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits  
Note 1: The PWM time base has a minimum value of 0x0010 and a maximum value of 0xFFF8.  
2: Any period value that is less than 0x0028 must have the Least Significant 3 bits set to ‘0’, thus yielding a  
period resolution at 8.32 ns (at fastest auxiliary clock rate).  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 237  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER(1)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
SEVTCMP<12:5>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
SEVTCMP<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
SEVTCMP<12:0>: Special Event Compare Count Value bits  
Unimplemented: Read as ‘0’  
Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SEVTCMP resolution is 8.32 ns.  
DS70000591F-page 238  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-5: STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER  
U-0  
U-0  
U-0  
HS/HC-0  
SESTAT  
R/W-0  
SEIEN  
R/W-0  
EIPU(1)  
R/W-0  
R/W-0  
SYNCPOL SYNCOEN  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SYNCEN  
SYNCSRC2 SYNCSRC1 SYNCSRC0  
SEVTPS3  
SEVTPS2  
SEVTPS1  
SEVTPS0  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
SESTAT: Special Event Interrupt Status bit  
1= Secondary special event interrupt is pending  
0= Secondary special event interrupt is not pending  
bit 11  
bit 10  
bit 9  
SEIEN: Special Event Interrupt Enable bit  
1= Secondary special event interrupt is enabled  
0= Secondary special event interrupt is disabled  
EIPU: Enable Immediate Period Updates bit(1)  
1= Active Secondary Period register is updated immediately  
0= Active Secondary Period register updates occur on PWM cycle boundaries  
SYNCPOL: Synchronize Input and Output Polarity bit  
1= SYNCIx/SYNCO2 polarity is inverted (active-low)  
0= SYNCIx/SYNCO2 polarity is active-high  
bit 8  
SYNCOEN: Secondary Master Time Base Synchronization Enable bit  
1= SYNCO2 output is enabled.  
0= SYNCO2 output is disabled  
bit 7  
SYNCEN: External Secondary Master Time Base Synchronization Enable bit  
1= External synchronization of secondary time base is enabled  
0= External synchronization of secondary time base is disabled  
bit 6-4  
SYNCSRC<2:0>: PWM Secondary Time Base Synchronization Source Selection bits  
111= Reserved  
101= Reserved  
100= Reserved  
011= SYNCI4  
010= SYNCI3  
001= SYNCI2  
000= SYNCI1  
bit 3-0  
SEVTPS<3:0>: PWM Secondary Special Event Trigger Output Postscaler Select bits  
1111= 1:16 Postcale  
0001= 1:2 Postcale  
0000= 1:1 Postscale  
Note 1: This bit only applies to the secondary master time base period.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 239  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-6: STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCLKDIV2(1) PCLKDIV1(1) PCLKDIV0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits(1)  
111= Reserved  
110= Divide-by-64, maximum PWM timing resolution  
101= Divide-by-32, maximum PWM timing resolution  
100= Divide-by-16, maximum PWM timing resolution  
011= Divide-by-8, maximum PWM timing resolution  
010= Divide-by-4, maximum PWM timing resolution  
001= Divide-by-2, maximum PWM timing resolution  
000= Divide-by-1, maximum PWM timing resolution (power-on default)  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
REGISTER 16-7: STPER: PWM SECONDARY MASTER TIME BASE PERIOD REGISTER  
R/W-1  
bit 15  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-0  
STPER<15:8>  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
STPER<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STPER<15:0>: Secondary Master Time Base (SMTMR) Period Value bits  
DS70000591F-page 240  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-8: SSEVTCMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSEVTCMP<12:5>  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
SSEVTCMP<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-3  
bit 2-0  
SSEVTCMP<12:0>: Special Event Compare Count Value bits  
Unimplemented: Read as ‘0’  
REGISTER 16-9: CHOP: PWM CHOP CLOCK GENERATOR REGISTER(1)  
R/W-0  
CHPCLKEN  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CHOPCLK6 CHOPCLK5  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
CHOPCLK4 CHOPCLK3 CHOPCLK2 CHOPCLK1 CHOPCLK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
CHPCLKEN: Enable Chop Clock Generator bit  
1= Chop clock generator is enabled  
0= Chop clock generator is disabled  
bit 14-10  
bit 9-3  
Unimplemented: Read as ‘0’  
CHOPCLK<6:0>: Chop Clock Divider bits  
Value in 8.32 ns increments. The frequency of the chop clock signal is given by the following  
expression:  
Chop Frequency = 1/(16.64 * (CHOPCLK<6:0> + 1) * Primary Master PWM Input Clock Period)  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: The chop clock generator operates with the primary PWM clock prescaler (PCLKDIV<2:0>) in the  
PTCON2 register (Register 16-2).  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 241  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-10: MDC: PWM MASTER DUTY CYCLE REGISTER(1,2)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
MDC<15:8>  
R/W-0  
R/W-0  
R/W-0  
MDC<7:0>  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
MDC<15:0>: PWM Master Duty Cycle Value bits  
Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009,  
while the maximum pulse width generated corresponds to a value of Period – 0x0009.  
2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 to 40 ns, depending on the mode of  
operation), the PWM duty cycle resolution will increase from 1 to 3 LSBs.  
DS70000591F-page 242  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-11: PWMCONx: PWM CONTROL x REGISTER  
HS/HC-0  
FLTSTAT(1)  
bit 15  
HS/HC-0  
CLSTAT(1)  
HS/HC-0  
R/W-0  
R/W-0  
CLIEN  
R/W-0  
R/W-0  
ITB(3)  
R/W-0  
MDCS(3)  
TRGSTAT  
FLTIEN  
TRGIEN  
bit 8  
R/W-0  
DTC1  
R/W-0  
DTC0  
R/W-0  
DTCP(4)  
U-0  
R/W-0  
MTBS  
R/W-0  
CAM(2,3,5)  
R/W-0  
XPRES(6)  
R/W-0  
IUE  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
bit 14  
bit 13  
FLTSTAT: Fault Interrupt Status bit(1)  
1= Fault interrupt is pending  
0= No Fault interrupt is pending  
This bit is cleared by setting FLTIEN = 0.  
CLSTAT: Current-Limit Interrupt Status bit(1)  
1= Current-limit interrupt is pending  
0= No current-limit interrupt is pending  
This bit is cleared by setting CLIEN = 0.  
TRGSTAT: Trigger Interrupt Status bit  
1= Trigger interrupt is pending  
0= No trigger interrupt is pending  
This bit is cleared by setting TRGIEN = 0.  
bit 12  
bit 11  
bit 10  
bit 9  
FLTIEN: Fault Interrupt Enable bit  
1= Fault interrupt is enabled  
0= Fault interrupt is disabled and FLTSTAT bit is cleared  
CLIEN: Current-Limit Interrupt Enable bit  
1= Current-limit interrupt is enabled  
0= Current-limit interrupt is disabled and CLSTAT bit is cleared  
TRGIEN: Trigger Interrupt Enable bit  
1= A trigger event generates an interrupt request  
0= Trigger event interrupts are disabled and TRGSTAT bit is cleared  
ITB: Independent Time Base Mode bit(3)  
1= PHASEx/SPHASEx registers provide time base period for this PWM generator  
0= PTPER register provides timing for this PWM generator  
bit 8  
MDCS: Master Duty Cycle Register Select bit(3)  
1= MDC register provides duty cycle information for this PWM generator  
0= PDCx and SDCx registers provide duty cycle information for this PWM generator  
Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.  
2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the  
CAM bit is ignored.  
3: These bits should not be changed after the PWM is enabled by setting PTEN (PTCON<15>) = 1.  
4: For DTCP to be effective, DTC<1:0> must be set to ‘11’; otherwise, DTCP is ignored.  
5: Center-Aligned mode ignores the Least Significant 3 bits of the Duty Cycle, Phase and Dead-Time  
registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to  
the fastest clock.  
6: Configure CLMOD (FCLCONX<8>) = 0and ITB (PWMCONx<9>) = 1to operate in External Period  
Reset mode.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 243  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-11: PWMCONx: PWM CONTROL x REGISTER (CONTINUED)  
bit 7-6  
DTC<1:0>: Dead-Time Control bits  
11= Dead-Time Compensation mode  
10= Dead-time function is disabled  
01= Negative dead time is actively applied for Complementary Output mode  
00= Positive dead time is actively applied for all output modes  
bit 5  
DTCP: Dead-Time Compensation Polarity bit(4)  
1= If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened;  
If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened  
0= If DTCMPx = 0, PWMxH is shortened and PWMLx is lengthened;  
If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
MTBS: Master Time Base Select bit  
1= PWM generator uses the secondary master time base for synchronization and the clock source for  
the PWM generation logic (if secondary time base is available)  
0= PWM generator uses the primary master time base for synchronization and the clock source for  
the PWM generation logic  
bit 2  
bit 1  
CAM: Center-Aligned Mode Enable bit(2,3,5)  
1= Center-Aligned mode is enabled  
0= Edge-Aligned mode is enabled  
XPRES: External PWM Reset Control bit(6)  
1= Current-limit source resets the time base for this PWM generator if it is in Independent Time  
Base mode  
0= External pins do not affect PWM time base  
bit 0  
IUE: Immediate Update Enable bit  
1= Updates to the active MDC/PDCx/SDCx registers are immediate  
0= Updates to the active PDCx registers are synchronized to the PWM time base  
Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.  
2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the  
CAM bit is ignored.  
3: These bits should not be changed after the PWM is enabled by setting PTEN (PTCON<15>) = 1.  
4: For DTCP to be effective, DTC<1:0> must be set to ‘11’; otherwise, DTCP is ignored.  
5: Center-Aligned mode ignores the Least Significant 3 bits of the Duty Cycle, Phase and Dead-Time  
registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to  
the fastest clock.  
6: Configure CLMOD (FCLCONX<8>) = 0and ITB (PWMCONx<9>) = 1to operate in External Period  
Reset mode.  
DS70000591F-page 244  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-12: PDCx: PWM GENERATOR DUTY CYCLE x REGISTER(1,2,3)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PDCx<15:8>  
R/W-0  
R/W-0  
R/W-0  
PDCx<7:0>  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDCx<15:0>: PWM Generator # Duty Cycle Value bits  
Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary,  
Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and  
PWMxL.  
2: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009,  
while the maximum pulse width generated corresponds to a value of Period – 0x0009.  
3: As the duty cycle gets closer to 0% or 100% of the PWM period (0 to 40 ns, depending on the mode of  
operation), PWM duty cycle resolution will increase from 1 to 3 LSBs.  
REGISTER 16-13: SDCx: PWM SECONDARY DUTY CYCLE x REGISTER(1,2,3)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SDCx<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
SDCx<7:0>  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
SDCx<15:0>: Secondary Duty Cycle bits for PWMxL Output Pin  
Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the  
SDCx register controls the PWMxL duty cycle.  
2: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009,  
while the maximum pulse width generated corresponds to a value of Period – 0x0009.  
3: As the duty cycle gets closer to 0% or 100% of the PWM period (0 to 40 ns, depending on the mode of  
operation), PWM duty cycle resolution will increase from 1 to 3 LSBs.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 245  
 
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-14: PHASEx: PWM PRIMARY PHASE-SHIFT x REGISTER(1,2)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PHASEx<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PHASEx<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PHASEx<15:0>: PWM Phase-Shift Value or Independent Time Base Period for the PWM Generator bits  
Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<10:8> = 00, 01or 10),  
PHASEx<15:0> = Phase-Shift Value for PWMxH and PWMxL outputs.  
• True Independent Output mode (IOCONx<10:8> = 11), PHASEx<15:0> = Phase-Shift Value for  
PWMxH only.  
• The PHASEx/SPHASEx registers provide the phase shift with respect to the master time base;  
therefore, the valid range is 0x0000 through period.  
2: If PWMCONx<9> = 1, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<10:8> = 00, 01or 10),  
PHASEx<15:0> = Independent Time Base Period Value for PWMxH and PWMxL.  
• True Independent Output mode (IOCONx<10:8> = 11). PHASEx<15:0> = Independent Time Base  
Period Value for PWMxH only.  
• When the PHASEx/SPHASEx registers provide the local period, the valid range is 0x0000 through  
0xFFF8.  
DS70000591F-page 246  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-15: SPHASEx: PWM SECONDARY PHASE-SHIFT x REGISTER(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
SPHASEx<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
SPHASEx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
SPHASEx<15:0>: Secondary Phase Offset bits for PWMxL Output Pin bits (used in Independent  
PWM mode only)  
Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<10:8> = 00, 01or 10),  
SPHASEx<15:0> = Not Used.  
• True Independent Output mode (IOCONx<10:8> = 11), PHASEx<15:0> = Phase-Shift Value for  
PWMxL only.  
• The PHASEx/SPHASEx registers provide the phase shift with respect to the master time base;  
therefore, the valid range is 0x0000 through period.  
2: If PWMCONx<9> = 1, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<10:8> = 00, 01or 10),  
SPHASEx<15:0> = Not Used.  
• True Independent Output mode (IOCONx<10:8> = 11). PHASEx<15:0> = Independent Time Base  
Period Value for PWMxL only.  
• When the PHASEx/SPHASEx registers provide the local period, the valid range of values is  
0x0010-0xFFF8.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 247  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-16: DTRx: PWM DEAD-TIME x REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
DTRx<13:8>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DTRx<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-0  
Unimplemented: Read as ‘0’  
DTRx<13:0>: Unsigned 14-Bit Value for PWMx Dead-Time Unit bits  
REGISTER 16-17: ALTDTRx: PWM ALTERNATE DEAD-TIME x REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALTDTRx<13:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALTDTRx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-0  
Unimplemented: Read as ‘0’  
ALTDTRx<13:0>: Unsigned 14-Bit Value for PWMx Dead-Time Unit bits  
DS70000591F-page 248  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-18: TRGCONx: PWM TRIGGER CONTROL x REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
TRGDIV3  
TRGDIV2  
TRGDIV1  
TRGDIV0  
bit 15  
bit 8  
R/W-0  
DTM(1)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-12  
TRGDIV<3:0>: Trigger # Output Divider bits  
1111= Trigger output for every 16th trigger event  
1110= Trigger output for every 15th trigger event  
1101= Trigger output for every 14th trigger event  
1100= Trigger output for every 13th trigger event  
1011= Trigger output for every 12th trigger event  
1010= Trigger output for every 11th trigger event  
1001= Trigger output for every 10th trigger event  
1000= Trigger output for every 9th trigger event  
0111= Trigger output for every 8th trigger event  
0110= Trigger output for every 7th trigger event  
0101= Trigger output for every 6th trigger event  
0100= Trigger output for every 5th trigger event  
0011= Trigger output for every 4th trigger event  
0010= Trigger output for every 3rd trigger event  
0001= Trigger output for every 2nd trigger event  
0000= Trigger output for every trigger event  
bit 11-8  
bit 7  
Unimplemented: Read as ‘0’  
DTM: Dual Trigger Mode bit(1)  
1= Secondary trigger event is combined with the primary trigger event to create the PWM trigger  
0= Secondary trigger event is not combined with the primary trigger event to create the PWM trigger;  
two separate PWM triggers are generated  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-0  
TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits  
111111= Waits 63 PWM cycles before generating the first trigger event after the module is enabled  
000010= Waits 2 PWM cycles before generating the first trigger event after the module is enabled  
000001= Waits 1 PWM cycle before generating the first trigger event after the module is enabled  
000000= Waits 0 PWM cycles before generating the first trigger event after the module is enabled  
Note 1: The secondary PWM generator cannot generate PWM trigger interrupts.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 249  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
aa  
REGISTER 16-19: IOCONx: PWM I/O CONTROL x REGISTER  
R/W-0  
PENH  
R/W-0  
PENL  
R/W-0  
POLH  
R/W-0  
POLL  
R/W-0  
PMOD1(1)  
R/W-0  
PMOD0(1)  
R/W-0  
R/W-0  
OVRENH  
OVRENL  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLDAT0(2)  
R/W-0  
SWAP  
R/W-0  
OVRDAT1  
OVRDAT0  
FLTDAT1(2) FLTDAT0(2) CLDAT1(2)  
OSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
PENH: PWMxH Output Pin Ownership bit  
1= PWM module controls PWMxH pin  
0= GPIO module controls PWMxH pin  
bit 14  
PENL: PWMxL Output Pin Ownership bit  
1= PWM module controls PWMxL pin  
0= GPIO module controls PWMxL pin  
bit 13  
POLH: PWMxH Output Pin Polarity bit  
1= PWMxH pin is active-low  
0= PWMxH pin is active-high  
bit 12  
POLL: PWMxL Output Pin Polarity bit  
1= PWMxL pin is active-low  
0= PWMxL pin is active-high  
bit 11-10  
PMOD<1:0>: PWM # I/O Pin Mode bits(1)  
11= PWM I/O pin pair is in the True Independent Output mode  
10= PWM I/O pin pair is in the Push-Pull Output mode  
01= PWM I/O pin pair is in the Redundant Output mode  
00= PWM I/O pin pair is in the Complementary Output mode  
bit 9  
OVRENH: Override Enable for PWMxH Pin bit  
1= OVRDAT<1> provides data for output on PWMxH pin  
0= PWM generator provides data for output on PWMxH pin  
bit 8  
OVRENL: Override Enable for PWMxL Pin bit  
1= OVRDAT<0> provides data for output on PWMxL pin  
0= PWM generator provides data for output on PWMxL pin  
bit 7-6  
bit 5-4  
OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits  
If OVERENH = 1, OVRDAT<1> provides data for PWMxH  
If OVERENL = 1, OVRDAT<0> provides data for PWMxL  
FLTDAT<1:0>: State for PWMxH and PWMxL Pins if FLTMOD is Enabled bits(2)  
IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:  
If Fault is active, then FLTDAT<1> provides the state for PWMxH.  
If Fault is active, then FLTDAT<0> provides the state for PWMxL.  
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:  
If current-limit is active, then FLTDAT<1> provides the state for PWMxH.  
If Fault is active, then FLTDAT<0> provides the state for PWMxL.  
Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).  
2: State represents the active/inactive state of the PWM depending on the POLH and POLL bit settings.  
DS70000591F-page 250  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-19: IOCONx: PWM I/O CONTROL x REGISTER (CONTINUED)  
bit 3-2  
CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMOD is Enabled bits(2)  
IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:  
If current-limit is active, then CLDAT<1> provides the state for PWMxH.  
If current-limit is active, then CLDAT<0> provides the state for PWMxL.  
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:  
CLDAT<1:0> is ignored.  
bit 1  
bit 0  
SWAP: SWAP PWMxH and PWMxL Pins bit  
1= PWMxH output signal is connected to the PWMxL pin; PWMxL output signal is connected to the  
PWMxH pin  
0= PWMxH and PWMxL pins are mapped to their respective pins  
OSYNC: Output Override Synchronization bit  
1= Output overrides, via the OVRDAT<1:0> bits, are synchronized to the PWM time base  
0= Output overrides, via the OVDDAT<1:0> bits, occur on next CPU clock boundary  
Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).  
2: State represents the active/inactive state of the PWM depending on the POLH and POLL bit settings.  
REGISTER 16-20: TRIGx: PWM PRIMARY TRIGGER x COMPARE VALUE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
TRGCMP<12:5>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
TRGCMP<4:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
TRGCMP<12:0>: Trigger Compare Value bits  
When the primary PWM functions in the local time base, this register contains the compare values  
that can trigger the ADC module.  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 251  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL x REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IFLTMOD  
CLSRC4(2,3) CLSRC3(2,3) CLSRC2(2,3) CLSRC1(2,3) CLSRC0(2,3)  
CLPOL(1)  
CLMOD  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLTSRC4(2,3) FLTSRC3(2,3) FLTSRC2(2,3) FLTSRC1(2,3) FLTSRC0(2,3) FLTPOL(1)  
FLTMOD1  
FLTMOD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
IFLTMOD: Independent Fault Mode Enable bit  
1= Independent Fault mode: Current-limit input maps FLTDAT<1> to PWMxH output and Fault input  
maps FLTDAT<0> to PWMxL output. The CLDAT<1:0> bits are not used for override functions.  
0= Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL  
outputs. The PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs.  
bit 14-10  
CLSRC<4:0>: Current-Limit Control Signal Source Select for PWM Generator # bits(2,3)  
These bits also specify the source for the Dead-Time Compensation input signal, DTCMPx.  
11111= Reserved  
11110= Fault 23  
11101= Fault 22  
11100= Fault 21  
11011= Fault 20  
11010= Fault 19  
11001= Fault 18  
11000= Fault 17  
10111= Fault 16  
10110= Fault 15  
10101= Fault 14  
10100= Fault 13  
10011= Fault 12  
10010= Fault 11  
10001= Fault 10  
10000= Fault 9  
01111= Fault 8  
01110= Fault 7  
01101= Fault 6  
01100= Fault 5  
01011= Fault 4  
01010= Fault 3  
01001= Fault 2  
01000= Fault 1  
00111= Reserved  
00110= Reserved  
00101= Reserved  
00100= Reserved  
00011= Analog Comparator 4  
00010= Analog Comparator 3  
00001= Analog Comparator 2  
00000= Analog Comparator 1  
Note 1: These bits should be changed only when PTEN (PTCON<15>) = 0.  
2: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode  
(CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused  
Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.  
3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode  
(FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused  
current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.  
DS70000591F-page 252  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL x REGISTER (CONTINUED)  
bit 9  
CLPOL: Current-Limit Polarity for PWM Generator # bit(1)  
1= The selected current-limit source is active-low  
0= The selected current-limit source is active-high  
bit 8  
CLMOD: Current-Limit Mode Enable for PWM Generator # bit  
1= Current-Limit mode is enabled  
0= Current-Limit mode is disabled  
bit 7-3  
FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits(2,3)  
11111= Reserved  
11110= Fault 23  
11101= Fault 22  
11100= Fault 21  
11011= Fault 20  
11010= Fault 19  
11001= Fault 18  
11000= Fault 17  
10111= Fault 16  
10110= Fault 15  
10101= Fault 14  
10100= Fault 13  
10011= Fault 12  
10010= Fault 11  
10001= Fault 10  
10000= Fault 9  
01111= Fault 8  
01110= Fault 7  
01101= Fault 6  
01100= Fault 5  
01011= Fault 4  
01010= Fault 3  
01001= Fault 2  
01000= Fault 1  
00111= Reserved  
00110= Reserved  
00101= Reserved  
00100= Reserved  
00011= Analog Comparator 4  
00010= Analog Comparator 3  
00001= Analog Comparator 2  
00000= Analog Comparator 1  
bit 2  
FLTPOL: Fault Polarity for PWM Generator # bit(1)  
1= The selected Fault source is active-low  
0= The selected Fault source is active-high  
bit 1-0  
FLTMOD<1:0>: Fault Mode for PWM Generator # bits  
11= Fault input is disabled  
10= Reserved  
01= The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)  
00= The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)  
Note 1: These bits should be changed only when PTEN (PTCON<15>) = 0.  
2: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode  
(CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused  
Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.  
3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode  
(FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused  
current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 253  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-22: STRIGx: PWM SECONDARY TRIGGER x COMPARE VALUE REGISTER(1)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STRGCMP<12:5>  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
STRGCMP<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
STRGCMP<12:0>: PWM Secondary Trigger Compare Value bits  
When the secondary PWM functions in a local time base, this register contains the compare values  
that can trigger the ADC module.  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: STRIGx cannot generate the PWM trigger interrupts.  
DS70000591F-page 254  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-23: LEBCONx: LEADING-EDGE BLANKING CONTROL x REGISTER  
R/W-0  
PHR  
R/W-0  
PHF  
R/W-0  
PLR  
R/W-0  
PLF  
R/W-0  
R/W-0  
U-0  
U-0  
FLTLEBEN  
CLLEBEN  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
BCH(1)  
R/W-0  
BCL(1)  
R/W-0  
BPHH  
R/W-0  
BPHL  
R/W-0  
BPLH  
R/W-0  
BPLL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
PHR: PWMxH Rising Edge Trigger Enable bit  
1= Rising edge of PWMxH will trigger Leading-Edge Blanking counter  
0= Leading-Edge Blanking ignores rising edge of PWMxH  
PHF: PWMxH Falling Edge Trigger Enable bit  
1= Falling edge of PWMxH will trigger Leading-Edge Blanking counter  
0= Leading-Edge Blanking ignores falling edge of PWMxH  
PLR: PWMxL Rising Edge Trigger Enable bit  
1= Rising edge of PWMxL will trigger Leading-Edge Blanking counter  
0= Leading-Edge Blanking ignores rising edge of PWMxL  
PLF: PWMxL Falling Edge Trigger Enable bit  
1= Falling edge of PWMxL will trigger Leading-Edge Blanking counter  
0= Leading-Edge Blanking ignores falling edge of PWMxL  
FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit  
1= Leading-Edge Blanking is applied to selected Fault input  
0= Leading-Edge Blanking is not applied to selected Fault input  
CLLEBEN: Current-Limit Leading-Edge Blanking Enable bit  
1= Leading-Edge Blanking is applied to selected current-limit input  
0= Leading-Edge Blanking is not applied to selected current-limit input  
bit 9-6  
bit 5  
Unimplemented: Read as ‘0’  
BCH: Blanking in Selected Blanking Signal High Enable bit(1)  
1= State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high  
0= No blanking when selected blanking signal is high  
bit 4  
bit 3  
bit 2  
BCL: Blanking in Selected Blanking Signal Low Enable bit(1)  
1= State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low  
0= No blanking when selected blanking signal is low  
BPHH: Blanking in PWMxH High Enable bit  
1= State blanking (of current-limit and/or Fault input signals) when PWMxH output is high  
0= No blanking when PWMxH output is high  
BPHL: Blanking in PWMxH Low Enable bit  
1= State blanking (of current-limit and/or Fault input signals) when PWMxH output is low  
0= No blanking when PWMxH output is low  
Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 255  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-23: LEBCONx: LEADING-EDGE BLANKING CONTROL x REGISTER (CONTINUED)  
bit 1  
BPLH: Blanking in PWMxL High Enable bit  
1= State blanking (of current-limit and/or Fault input signals) when PWMxL output is high  
0= No blanking when PWMxL output is high  
bit 0  
BPLL: Blanking in PWMxL Low Enable bit  
1= State blanking (of current-limit and/or Fault input signals) when PWMxL output is low  
0= No blanking when PWMxL output is low  
Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.  
DS70000591F-page 256  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-24: LEBDLYx: LEADING-EDGE BLANKING DELAY x REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
LEB<8:5>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
LEB<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-3  
Unimplemented: Read as ‘0’  
LEB<8:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits  
The value is in 8.32 ns increments.  
bit 2-0  
Unimplemented: Read as ‘0’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 257  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-25: AUXCONx: PWM AUXILIARY CONTROL x REGISTER  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
HRPDIS  
HRDDIS  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
bit 8  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN  
CHOPLEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
HRPDIS: High-Resolution PWM Period Disable bit  
1= High-resolution PWM period is disabled to reduce power consumption  
0= High-resolution PWM period is enabled  
HRDDIS: High-Resolution PWM Duty Cycle Disable bit  
1= High-resolution PWM duty cycle is disabled to reduce power consumption  
0= High-resolution PWM duty cycle is enabled  
bit 13-12  
bit 11-8  
Unimplemented: Read as ‘0’  
BLANKSEL<3:0>: PWM State Blank Source Select bits  
The selected state blank signal will block the current limit and/or Fault input signals (if enabled via the  
BCH and BCL bits in the LEBCONx register).  
1001= PWM9H is selected as state blank source  
1000= PWM8H is selected as state blank source  
0111= PWM7H is selected as state blank source  
0110= PWM6H is selected as state blank source  
0101= PWM5H is selected as state blank source  
0100= PWM4H is selected as state blank source  
0011= PWM3H is selected as state blank source  
0010= PWM2H is selected as state blank source  
0001= PWM1H is selected as state blank source  
0000= 1’b0(no state blanking)  
bit 7-6  
bit 5-2  
Unimplemented: Read as ‘0’  
CHOPSEL<3:0>: PWM Chop Clock Source Select bits  
The selected signal will enable and disable (CHOPx) the selected PWM outputs.  
1001= PWM9H is selected as chop clock source  
1000= PWM8H is selected as chop clock source  
0111= PWM7H is selected as chop clock source  
0110= PWM6H is selected as chop clock source  
0101= PWM5H is selected as chop clock source  
0100= PWM4H is selected as chop clock source  
0011= PWM3H is selected as chop clock source  
0010= PWM2H is selected as chop clock source  
0001= PWM1H is selected as chop clock source  
0000= Chop clock generator is selected as the chop clock source  
bit 1  
bit 0  
CHOPHEN: PWMxH Output Chopping Enable bit  
1= PWMxH chopping function is enabled  
0= PWMxH chopping function is disabled  
CHOPLEN: PWMxL Output Chopping Enable bit  
1= PWMxL chopping function is enabled  
0= PWMxL chopping function is disabled  
DS70000591F-page 258  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 16-26: PWMCAPx: PRIMARY PWM TIME BASE CAPTURE x REGISTER  
R-0  
bit 15  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PWMCAP<12:5>(1,2,3,4)  
bit 8  
bit 0  
R-0  
R-0  
R-0  
U-0  
U-0  
U-0  
PWMCAP<4:0>(1,2,3,4)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
PWMCAP<12:0>: Captured PWM Time Base Value bits(1,2,3,4)  
The value in this register represents the captured PWM time base value when a leading edge is  
detected on the current-limit input.  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: The capture feature is only available on the primary output (PWMxH).  
2: This feature is active only after LEB processing on the current-limit input signal is complete.  
3: The minimum capture resolution is 8.32 ns.  
4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to ‘0’.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 259  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 260  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
This chapter describes the Quadrature Encoder Inter-  
17.0 QUADRATURE ENCODER  
face (QEI) module and associated operational modes.  
INTERFACE (QEI) MODULE  
The QEI module provides the interface to incremental  
encoders for obtaining mechanical position data.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Quadrature Encoder  
Interface (QEI)” (DS70208) in the  
dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
web site (www.microchip.com). The infor-  
mation in this data sheet supersedes  
the information in the FRM.  
The operational features of the QEI include:  
• Three Input Channels for Two Phase Signals and  
Index Pulse  
• 16-Bit Up/Down Position Counter  
• Count Direction Status  
• Position Measurement (x2 and x4) mode  
• Programmable Digital Noise Filters on Inputs  
• Alternate 16-Bit Timer/Counter mode  
• Quadrature Encoder Interface Interrupts  
These operating modes are determined by setting the  
appropriate bits, QEIM<2:0> in (QEIxCON<10:8>).  
Figure 17-1 depicts the Quadrature Encoder Interface  
block diagram.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Note:  
An ‘x’ used in the names of pins, control/  
status bits and registers denotes  
particular QEI module number (x = 1 or 2).  
a
FIGURE 17-1:  
QUADRATURE ENCODER INTERFACE x BLOCK DIAGRAM (x = 1 OR 2)  
TQCKPS<1:0>  
TQCS  
Sleep Input  
2
TCY  
0
1
Synchronize  
Detect  
Prescaler  
1, 8, 64, 256  
1
0
QEIM<2:0>  
QExIF  
Event  
Flag  
D
Q
TQGATE  
CK  
Q
16-Bit Up/Down Counter  
(POSxCNT)  
2
Programmable  
Digital Filter  
QEAx(1)  
Reset  
Equal  
Quadrature  
Encoder  
Interface Logic  
UPDN_SRC  
Comparator/  
Zero-Detect  
QEIxCON<11>  
0
1
3
QEIM<2:0>  
Mode Select  
Max Count Register  
(MAXxCNT)  
Programmable  
Digital Filter  
QEBx(1)  
INDXx(1)  
Programmable  
Digital Filter  
Note 1: The QEI1 module can be connected to the QEA1/QEB1/INDX1  
or AQEA1/AQEB1/AINDX1 pins, which are controlled by clearing  
or setting the ALTQIO bit in the FPOR Configuration register. See  
Section 24.0 “Special Features” for more information.  
PCDOUT  
3
Existing Pin Logic  
0
UPDNx  
Up/Down  
1
2009-2014 Microchip Technology Inc.  
DS70000591F-page 261  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 17-1: QEIxCON: QEIx CONTROL REGISTER (x = 1 or 2)  
R/W-0  
CNTERR(1)  
bit 15  
U-0  
R/W-0  
R-0  
R/W-0  
UPDN(2)  
R/W-0  
R/W-0  
R/W-0  
QEISIDL  
INDX  
QEIM2  
QEIM1  
QEIM0  
bit 8  
R/W-0  
SWPAB  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TQCS  
R/W-0  
UPDN_SRC(5)  
bit 0  
PCDOUT  
TQGATE  
TQCKPS1(3) TQCKPS0(3) POSRES(4)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
CNTERR: Count Error Status Flag bit(1)  
1= Position count error has occurred  
0= No position count error has occurred  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
QEISIDL: QEIx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
INDX: Index Pin State Status bit (read-only)  
1= Index pin is high  
0= Index pin is low  
bit 11  
UPDN: Position Counter Direction Status bit(2)  
1= Position counter direction is positive (+)  
0= Position counter direction is negative (-)  
bit 10-8  
QEIM<2:0>: Quadrature Encoder Interface Mode Select bits  
111= Quadrature Encoder Interface is enabled (x4 mode) with the position counter reset by the match  
(MAXxCNT)  
110= Quadrature Encoder Interface is enabled (x4 mode) with the Index Pulse Reset of the position  
counter  
101= Quadrature Encoder Interface is enabled (x2 mode) with the position counter reset by the match  
(MAXxCNT)  
100= Quadrature Encoder Interface is enabled (x2 mode) with the Index Pulse Reset of the position  
counter  
011= Unused (module disabled)  
010= Unused (module disabled)  
001= Starts 16-bit timer  
000= Quadrature Encoder Interface/timer off  
bit 7  
bit 6  
SWPAB: Phase A and Phase B Input Swap Select bit  
1= Phase A and Phase B inputs are swapped  
0= Phase A and Phase B inputs are not swapped  
PCDOUT: Position Counter Direction State Output Enable bit  
1= Position counter direction status output is enabled (QEI logic controls state of I/O pin)  
0= Position counter direction status output is disabled (normal I/O pin operation)  
Note 1: CNTERR flag only applies when QEIM<2:0> = 110or 100.  
2: Read-only bit when QEIM<2:0> = 1xx; read/write bit when QEIM<2:0> = 001.  
3: Prescaler utilized for 16-Bit Timer mode only.  
4: This bit applies only when QEIM<2:0> = 100or 110.  
5: When configured for QEI mode, this control bit is a ‘don’t care’.  
DS70000591F-page 262  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 17-1: QEIxCON: QEIx CONTROL REGISTER (x = 1 or 2) (CONTINUED)  
bit 5  
TQGATE: Timer Gated Time Accumulation Enable bit  
1= Timer gated time accumulation is enabled  
0= Timer gated time accumulation is disabled  
bit 4-3  
TQCKPS<1:0>: Timer Input Clock Prescale Select bits(3)  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 2  
bit 1  
bit 0  
POSRES: Position Counter Reset Enable bit(4)  
1= Index pulse resets the position counter  
0= Index pulse does not reset the position counter  
TQCS: Timer Clock Source Select bit  
1= External clock from pin, QEAx (on the rising edge)  
0= Internal clock (TCY)  
UPDN_SRC: Position Counter Direction Selection Control bit(5)  
1= QEBx pin state defines the position counter direction  
0= Control/status bit, UPDN (QEIxCON<11>), defines the timer counter (POSxCNT) direction  
Note 1: CNTERR flag only applies when QEIM<2:0> = 110or 100.  
2: Read-only bit when QEIM<2:0> = 1xx; read/write bit when QEIM<2:0> = 001.  
3: Prescaler utilized for 16-Bit Timer mode only.  
4: This bit applies only when QEIM<2:0> = 100or 110.  
5: When configured for QEI mode, this control bit is a ‘don’t care’.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 263  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 17-2: DFLTxCON: DIGITAL FILTER x CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IMV1  
R/W-0  
IMV0  
R/W-0  
CEID  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
QEOUT  
QECK2  
QECK1  
QECK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
IMV<1:0>: Index Match Value bits  
These bits allow the user application to specify the state of the QEAx and QEBx input pins during an  
index pulse when the POSxCNT register is to be reset.  
In x4 Quadrature Count Mode:  
IMV1 = Required state of Phase B input signal for match on index pulse  
IMV0 = Required state of Phase A input signal for match on index pulse  
In x2 Quadrature Count Mode:  
IMV1 = Selects phase input signal for index state match (0= Phase A, 1= Phase B)  
IMV0 = Required state of the selected phase input signal for match on index pulse  
bit 8  
CEID: Count Error Interrupt Disable bit  
1= Interrupts due to count errors are disabled  
0= Interrupts due to count errors are enabled  
bit 7  
QEOUT: QEAx/QEBx/INDXx Pin Digital Filter Output Enable bit  
1= Digital filter outputs are enabled  
0= Digital filter outputs are disabled (normal pin operation)  
bit 6-4  
QECK<2:0>: QEAx/QEBx/INDXx Digital Filter Clock Divide Select Bits  
111= 1:256 clock divide  
110= 1:128 clock divide  
101= 1:64 clock divide  
100= 1:32 clock divide  
011= 1:16 clock divide  
010= 1:4 clock divide  
001= 1:2 clock divide  
000= 1:1 clock divide  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70000591F-page 264  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The Serial Peripheral Interface (SPI) module is a  
18.0 SERIAL PERIPHERAL  
synchronous serial interface useful for communicating  
INTERFACE (SPI)  
with other peripheral or microcontroller devices. These  
peripheral devices can be serial EEPROMs, shift  
Note 1: This data sheet summarizes the features  
registers, display drivers, Analog-to-Digital Converters  
of the dsPIC33FJ32GS406/606/608/610  
and so on. The SPI module is compatible with the  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
Motorola® SPI and SIOP modules.  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Serial Peripheral  
Interface (SPI)” (DS70005185) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
web site (www.microchip.com). The  
information in this data sheet supersedes  
the information in the FRM.  
The SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates status conditions.  
The serial interface consists of these four pins:  
• SDIx (Serial Data Input)  
• SDOx (Serial Data Output)  
• SCKx (Shift Clock Input Or Output)  
• SSx (Active-Low Slave Select)  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
In Master mode operation, SCK is a clock output; in  
Slave mode, it is a clock input.  
FIGURE 18-1:  
SPIx MODULE BLOCK DIAGRAM  
SCKx  
1:1/4/16/64  
Primary  
Prescaler  
1:1 to 1:8  
Secondary  
Prescaler  
FCY  
(1)  
SSx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB  
SPIxTXB  
SPIxBUF  
Read SPIxBUF  
Write SPIxBUF  
16  
Internal Data Bus  
Note 1: The SPI1 module can be connected to the SS1 or ASS1 pins, which are controlled by clearing or setting the  
ALTSS1 bit in the FPOR Configuration register. See Section 24.0 “Special Features” for more information.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 265  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: SPIx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: SPIx Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded; the user software has not read the  
previous data in the SPIxBUF register  
0= No overflow has occurred  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit has not yet started, SPIxTXB is full  
0= Transmit has started, SPIxTXB is empty. Automatically set in hardware when CPU writes the  
SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module  
transfers data from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive is complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty. Automatically set in hardware when SPIx transfers  
data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the  
SPIxBUF location, reading SPIxRXB.  
DS70000591F-page 266  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 18-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(3)  
R/W-0  
CKP  
R/W-0  
R/W-0  
SPRE2(2)  
R/W-0  
SPRE1(2)  
R/W-0  
SPRE0(2)  
R/W-0  
PPRE1(2)  
R/W-0  
PPRE0(2)  
MSTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx Pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled; pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx Pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data is sampled at the end of data output time  
0= Input data is sampled at the middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)(3)  
1= SSx pin is used for Slave mode  
0= SSx pin is not used by module; pin is controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: Do not set both primary and secondary prescalers to a value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 267  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 18-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2  
SPRE<2:0>: Secondary Prescale bits (Master mode)(2)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)(2)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: Do not set both primary and secondary prescalers to a value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
DS70000591F-page 268  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support is enabled (SSx pin is used as Frame Sync pulse input/output)  
0= Framed SPIx support is disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame Sync pulse input (slave)  
0= Frame Sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame Sync pulse is active-high  
0= Frame Sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame Sync pulse coincides with first bit clock  
0= Frame Sync pulse precedes first bit clock  
bit 0  
Unimplemented: This bit must not be set to ‘1’ by the user application  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 269  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 270  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
19.1 Operating Modes  
19.0 INTER-INTEGRATED CIRCUIT  
2
(I C™)  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7-bit and 10-bit addressing.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Inter-Integrated Cir-  
cuit™ (I2C™)” (DS70000195) in the  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
The following types of I2C operation are supported:  
• I2C slave operation with 7-bit addressing  
• I2C slave operation with 10-bit addressing  
• I2C master operation with 7-bit or 10-bit addressing  
“dsPIC33/PIC24  
Family  
Reference  
Manual”, which is available from the Micro-  
chip web site (www.microchip.com). The  
information in this data sheet supersedes  
the information in the FRM.  
For details about the communication sequence in each  
of these modes, refer to the “dsPIC33/PIC24 Family  
Reference Manual”. Please see the Microchip web site  
(www.microchip.com) for the latest “dsPIC33/PIC24  
Family Reference Manual” sections.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
2
19.2 I C Registers  
I2CxCON and I2CxSTAT are control and status  
registers, respectively. The I2CxCON register is  
readable and writable. The lower six bits of I2CxSTAT  
are read-only. The remaining bits of the I2CSTAT are  
read/write:  
The Inter-Integrated Circuit (I2C) module provides  
complete hardware support for both Slave and  
Multi-Master modes of the I2C serial communication  
standard with a 16-bit interface.  
• I2CxRSR is the shift register used for shifting data  
internal to the module and the user application  
has no access to it.  
The I2C module has a 2-pin interface:  
• I2CxRCV is the receive buffer and the register to  
which data bytes are written or from which data  
bytes are read.  
• The SCLx pin is clock.  
• The SDAx pin is data.  
The I2C module offers the following key features:  
• I2C Interface Supporting Both Master and Slave  
modes of Operation  
• I2C Slave mode Supports 7-Bit and  
10-Bit Addressing  
• I2C Master mode Supports 7-Bit and  
10-Bit Addressing  
• I2C Port allows Bidirectional Transfers Between  
Master and Slaves  
• Serial Clock Synchronization for I2C Port can be  
used as a Handshake Mechanism to Suspend  
and Resume Serial Transfer (SCLREL control)  
• I2CxTRN is the transmit register to which bytes  
are written during a transmit operation.  
• The I2CxADD register holds the slave address.  
• A status bit, ADD10, indicates 10-Bit Addressing  
mode.  
• The I2CxBRG acts as the Baud Rate Generator  
(BRG) reload value.  
In receive operations, I2CxRSR and I2CxRCV together  
form a double-buffered receiver. When I2CxRSR  
receives a complete byte, it is transferred to I2CxRCV  
and an interrupt pulse is generated.  
• I2C Supports Multi-Master Operation, Detects Bus  
Collision and Arbitrates Accordingly  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 271  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 19-1:  
I2Cx BLOCK DIAGRAM (X = 1 or 2)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSb  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSb  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS70000591F-page 272  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1, HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0, HC R/W-0, HC  
ACKEN RCEN  
R/W-0, HC  
PEN  
R/W-0, HC  
RSEN  
R/W-0, HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module; all I2C pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: I2Cx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Releases SCLx clock  
0= Holds SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware is clear  
at beginning of slave transmission. Hardware is clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware is clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses are Acknowledged  
0= IPMI mode is disabled  
A10M: 10-Bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control is disabled  
0= Slew rate control is enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enables I/O pin thresholds compliant with SMBus specification  
0= Disables SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C™ slave)  
1= Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for  
reception)  
0= General call address is disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with the SCLREL bit.  
1= Enables software or receives clock stretching  
0= Disables software or receives clock stretching  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 273  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that is transmitted when the software initiates an Acknowledge sequence.  
1= Sends NACK during Acknowledge  
0= Sends ACK during Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (when operating as I2C master, applicable during master  
receive)  
1= Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit.  
Hardware clears at the end of the master Acknowledge sequence.  
0= Acknowledge sequence is not in progress  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clears at the end of the eighth bit of the master receive  
data byte.  
0= Receive sequence is not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiates Stop condition on SDAx and SCLx pins. Hardware clears at the end of the master Stop  
sequence.  
0= Stop condition is not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clears at the end of the  
master Repeated Start sequence.  
0= Repeated Start condition is not in progress  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiates Start condition on SDAx and SCLx pins. Hardware clears at the end of the master Start  
sequence.  
0= Start condition is not in progress  
DS70000591F-page 274  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0, HSC  
ACKSTAT  
R-0, HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0, HSC  
BCL  
R-0, HSC  
GCSTAT  
R-0, HSC  
ADD10  
bit 15  
bit 8  
R/C-0, HS  
IWCOL  
R/C-0, HS  
I2COV  
R-0, HSC  
D_A  
R/C-0, HSC R/C-0, HSC  
R-0, HSC  
R_W  
R-0, HSC  
RBF  
R-0, HSC  
TBF  
P
S
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit (when operating as I2C™ master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware is set or clear at the end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware is set when the address matches the general call address. Hardware is clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware is set at the match of the 2nd byte of matched 10-bit address. Hardware is clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write to the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was a device address  
Hardware is clear at a device address match. Hardware is set by reception of a slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 275  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware is set or clear after reception of an I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive is complete, I2CxRCV is full  
0= Receive is not complete, I2CxRCV is empty  
Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads  
I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit is complete, I2CxTRN is empty  
Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of the data transmission.  
DS70000591F-page 276  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK<9:8>  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
AMSK<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSK<9:0>: Mask for Address bit x Select bits  
1= Enables masking for bit x of incoming message address; bit match is not required in this position  
0= Disables masking for bit x; bit match is required in this position  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 277  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 278  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The primary features of the UARTx module are:  
20.0 UNIVERSAL ASYNCHRONOUS  
• Full-Duplex, 8-Bit or 9-Bit Data Transmission  
through the UxTX and UxRX Pins  
• Even, Odd or No Parity Options (for 8-bit data)  
RECEIVER TRANSMITTER  
(UART)  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “UART” (DS70188) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
web site (www.microchip.com). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
• One or Two Stop bits  
• Hardware Flow Control Option with UxCTS and  
UxRTS Pins  
• Fully Integrated Baud Rate Generator with 16-Bit  
Prescaler  
• Baud Rates Ranging from 10 Mbps to 38 bps at  
40 MIPS  
• Baud Rates Ranging from 12.5 Mbps to 47 bps at  
50 MIPS  
• 4-Deep, First-In First-Out (FIFO) Transmit Data  
Buffer  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-Bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
• A Separate Interrupt for all UART Error Conditions  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Support for Automatic Baud Rate Detection  
• IrDA Encoder and Decoder Logic  
• 16x Baud Clock Output for IrDA® Support  
• Support for DMA  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules  
available in the dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 device families. The  
UART is a full-duplex, asynchronous system that can  
communicate with peripheral devices, such as  
personal computers, LIN/JS2602, RS-232 and RS-485  
interfaces. The module also supports a hardware flow  
control option with the UxCTS and UxRTS pins and  
also includes an IrDA encoder and decoder.  
A simplified block diagram of the UART module is  
shown in Figure 20-1. The UART module consists of  
these key hardware elements:  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
FIGURE 20-1:  
SIMPLIFIED UARTx BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
Hardware Flow Control  
UARTx Receiver  
UxRTS/BCLK  
UxCTS  
UxRX  
UxTX  
UARTx Transmitter  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 279  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 20-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
UEN1  
R/W-0  
UEN0  
RTSMD  
bit 15  
bit 8  
R/W-0, HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL1  
PDSEL0  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches, UARTx power consumption is  
minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: UARTx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA encoder and decoder are enabled  
0= IrDA encoder and decoder are disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin is in Simplex mode  
0= UxRTS pin is in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
UEN<1:0>: UARTx Pin Enable bits  
11= UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin is controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins are controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt is generated on falling edge, bit is cleared  
in hardware on following rising edge  
0= No wake-up is enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enables Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enables baud rate measurement on the next character – requires reception of a Sync field (55h)  
before other data; cleared in hardware upon completion  
0= Baud rate measurement is disabled or completed  
Note 1: Refer to “UART” (DS70188) in the “dsPIC33/PIC24 Family Reference Manual” for information on  
enabling the UART module for receive or transmit operation. That section of the manual is available on the  
Microchip web site: www.microchip.com.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS70000591F-page 280  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 4  
URXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: Refer to “UART” (DS70188) in the “dsPIC33/PIC24 Family Reference Manual” for information on  
enabling the UART module for receive or transmit operation. That section of the manual is available on the  
Microchip web site: www.microchip.com.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 281  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0, HC  
UTXBRK  
R/W-0  
UTXEN(1)  
R-0  
R-1  
UTXISEL1  
UTXINV  
UTXISEL0  
UTXBF  
TRMT  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL1  
URXISEL0  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15,13  
UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result,  
the transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at  
least one character open in the transmit buffer)  
bit 14  
UTXINV: UARTx Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle state is ‘0’  
0= UxTX Idle state is ‘1’  
If IREN = 1:  
1= IrDA® encoded UxTX Idle state is ‘1’  
0= IrDA encoded UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: UARTx Transmit Break bit  
1= Sends Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop  
bit; cleared by hardware upon completion  
0= Sync Break transmission is disabled or has completed  
bit 10  
UTXEN: UARTx Transmit Enable bit(1)  
1= Transmit is enabled, UxTX pin is controlled by UARTx  
0= Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is  
controlled by the port  
bit 9  
UTXBF: UARTx Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full; at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits  
11= Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer; receive buffer has one or more characters  
Note 1: Refer to “UART” (DS70188) in the “dsPIC33/PIC24 Family Reference Manual” for information on  
enabling the UART module for transmit operation. That section of the manual is available on the Microchip  
web site: www.microchip.com.  
DS70000591F-page 282  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect  
0= Address Detect mode is disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (the character at the top of the receive  
FIFO)  
0= Parity error has not been detected  
bit 2  
bit 1  
bit 0  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (the character at the top of the receive  
FIFO)  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit (clear/read-only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed; clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the UxRSR to the empty state  
URXDA: UARTx Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Refer to “UART” (DS70188) in the “dsPIC33/PIC24 Family Reference Manual” for information on  
enabling the UART module for transmit operation. That section of the manual is available on the Microchip  
web site: www.microchip.com.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 283  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 284  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
• Programmable Wake-up Functionality with  
Integrated Low-Pass Filter  
• Programmable Loopback mode Supports  
21.0 ENHANCED CAN (ECAN™)  
MODULE  
Self-Test Operation  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “ECAN™” (DS70185) in the  
dsPIC33/PIC24 Family Reference Manual,  
which is available from the Microchip web  
site (www.microchip.com). The information  
in this data sheet supersedes the  
information in the FRM.  
• Signaling via Interrupt Capabilities for all CAN  
Receiver and Transmitter Error States  
• Programmable Clock Source  
• Programmable Link to Input Capture module  
(IC2 for CAN1) for Time-Stamping and Network  
Synchronization  
• Low-Power Sleep and Idle mode  
The CAN bus module consists of a protocol engine and  
message buffering/control. The CAN protocol engine  
handles all functions for receiving and transmitting  
messages on the CAN bus. Messages are transmitted  
by first loading the appropriate data registers. Status  
and errors can be checked by reading the appropriate  
registers. Any message detected on the CAN bus is  
checked for errors and then matched against filters to  
see if it should be received and stored in one of the  
receive registers.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
21.1 Overview  
21.2 Frame Types  
The CAN module transmits various types of frames  
which include data messages, or remote transmission  
requests initiated by the user, as other frames that are  
automatically generated for control purposes. The  
following frame types are supported:  
The Enhanced Controller Area Network (ECAN™)  
module is a serial interface, useful for communicating with  
other ECAN modules or microcontroller devices. This  
interface/protocol was designed to allow communications  
within noisy environments. The dsPIC33FJ64GS606/  
608/610 devices contain one ECAN module.  
• Standard Data Frame: A standard data frame is  
generated by a node when the node wishes to  
transmit data. It includes an 11-bit Standard Identifier  
(SID), but not an 18-bit Extended Identifier (EID).  
The ECAN module is a communication controller imple-  
menting the CAN 2.0 A/B protocol, as defined in the  
BOSCH CAN specification. The module supports  
CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B  
Active versions of the protocol. The module implementa-  
tion is a full CAN system. The CAN specification is not  
covered within this data sheet. The reader can refer to  
the BOSCH CAN specification for further details.  
• Extended Data Frame: An extended data frame is  
similar to a standard data frame, but includes an  
Extended Identifier as well.  
• Remote Frame: It is possible for a destination  
node to request the data from the source. For this  
purpose, the destination node sends a remote  
frame with an identifier that matches the identifier  
of the required data frame. The appropriate data  
source node sends a data frame as a response to  
this remote request.  
The module features are as follows:  
• Implementation of the CAN Protocol, CAN 1.2,  
CAN 2.0A and CAN 2.0B  
• Standard and Extended Data Frames  
• 0-8 Bytes Data Length  
• Programmable Bit Rate, up to 1 Mbit/sec  
• Automatic Response to Remote Transmission  
Requests  
• Error Frame: An error frame is generated by any  
node that detects a bus error. An error frame con-  
sists of two fields: an error flag field and an error  
delimiter field.  
• Up to 8 Transmit Buffers with Application-Specified  
Prioritization and Abort Capability (each buffer can  
contain up to 8 bytes of data)  
• Up to 32 Receive Buffers (each buffer can contain  
up to 8 bytes of data)  
• Up to 16 Full (Standard/Extended Identifier)  
Acceptance Filters  
• Three Full Acceptance Filter Masks  
• DeviceNet™ Addressing Support  
• Overload Frame: An overload frame can be gen-  
erated by a node as a result of two conditions.  
First, the node detects a dominant bit during inter-  
frame space which is an illegal condition. Second,  
due to internal conditions, the node is not yet able  
to start reception of the next message. A node  
can generate a maximum of 2 sequential overload  
frames to delay the start of the next message.  
• Interframe Space: Interframe space separates a  
proceeding frame (of whatever type) from a  
following data or remote frame.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 285  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 21-1:  
ECANx MODULE BLOCK DIAGRAM  
RxF15 Filter  
RxF14 Filter  
RxF13 Filter  
RxF12 Filter  
RxF11 Filter  
RxF10 Filter  
RxF9 Filter  
RxF8 Filter  
RxF7 Filter  
RxF6 Filter  
RxF5 Filter  
RxF4 Filter  
RxF3 Filter  
RxF2 Filter  
RxF1 Filter  
RxF0 Filter  
DMA Controller  
TRB7 TX/RX Buffer Control Register  
TRB6 TX/RX Buffer Control Register  
TRB5 TX/RX Buffer Control Register  
TRB4 TX/RX Buffer Control Register  
TRB3 TX/RX Buffer Control Register  
TRB2 TX/RX Buffer Control Register  
TRB1 TX/RX Buffer Control Register  
TRB0 TX/RX Buffer Control Register  
RxM2 Mask  
RxM1 Mask  
RxM0 Mask  
Transmit Byte  
Sequencer  
Message Assembly  
Buffer  
Control  
Configuration  
Logic  
CPU  
Bus  
ECAN Protocol  
Engine  
Interrupts  
C1Tx  
C1Rx  
DS70000591F-page 286  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The module can be programmed to apply a low-pass  
21.3 Modes of Operation  
filter function to the CxRX input line while the module or  
The ECAN™ module can operate in one of several  
the CPU is in Sleep mode. The WAKFIL bit  
operation modes selected by the user. These modes  
(CxCFG2<14>) enables or disables the filter.  
include:  
Note:  
Typically, if the ECAN module is allowed to  
transmit in a particular mode of operation,  
and a transmission is requested immedi-  
ately after the ECAN module has been  
placed in that mode of operation, the  
module waits for 11 consecutive recessive  
bits on the bus before starting transmission.  
If the user switches to Disable mode within  
this 11-bit period, then this transmission is  
aborted and the corresponding TXABTmn  
bit is set and the TXREQmn bit is cleared.  
• Initialization mode  
• Disable mode  
• Normal Operation mode  
• Listen Only mode  
• Listen All Messages mode  
• Loopback mode  
Modes are requested by setting the REQOP<2:0> bits  
(CxCTRL1<10:8>). Entry into a mode is Acknowledged  
by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>).  
The module does not change the mode and the  
OPMODE bits until a change in mode is acceptable,  
generally during bus Idle time, which is defined as at least  
11 consecutive recessive bits.  
21.3.3  
NORMAL OPERATION MODE  
Normal Operation mode is selected when  
REQOP<2:0> = 000. In this mode, the module is  
activated and the I/O pins assume the CAN bus  
functions. The module transmits and receives CAN bus  
messages via the CxTX and CxRX pins.  
21.3.1  
INITIALIZATION MODE  
In the Initialization mode, the module does not transmit  
or receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The user application has  
access to Configuration registers that are access  
restricted in other modes. The module protects the user  
from accidentally violating the CAN protocol through  
programming errors. All registers which control the  
configuration of the module cannot be modified while  
the module is on-line. The ECAN module is not allowed  
to enter the Configuration mode while a transmission is  
taking place. The Configuration mode serves as a lock  
to protect the following registers:  
21.3.4  
LISTEN ONLY MODE  
If the Listen Only mode is activated, the module on the  
CAN bus is passive. The transmitter buffers revert to  
the port I/O function. The receive pins remain inputs.  
For the receiver, no error flags or Acknowledge signals  
are sent. The error counters are deactivated in this  
state. The Listen Only mode can be used for detecting  
the baud rate on the CAN bus. To use this, it is neces-  
sary that there are at least two further nodes that  
communicate with each other.  
• All Module Control Registers  
• Baud Rate and Interrupt Configuration Registers  
• Bus Timing Registers  
• Identifier Acceptance Filter Registers  
• Identifier Acceptance Mask Registers  
21.3.5  
LISTEN ALL MESSAGES MODE  
The module can be set to ignore all errors and receive  
any message. The Listen All Messages mode is acti-  
vated by setting REQOP<2:0> = 111. In this mode, the  
data, which is in the message assembly buffer until the  
time an error occurred, is copied in the receive buffer  
and can be read via the CPU interface.  
21.3.2  
DISABLE MODE  
In Disable mode, the module does not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts  
remain and the error counters retains their value.  
21.3.6  
LOOPBACK MODE  
If the Loopback mode is activated, the module con-  
nects the internal transmit signal to the internal receive  
signal at the module boundary. The transmit and  
receive pins revert to their port I/O function.  
If the REQOP<2:0> bits (CxCTRL1<10:8>) = 001, the  
module enters the Module Disable mode. If the module  
is active, the module waits for 11 recessive bits on the  
CAN bus, detects that condition as an Idle bus, then  
accepts the module disable command. When the  
OPMODE<2:0> bits (CxCTRL1<7:5>) = 001, that  
indicates whether the module successfully went into  
Module Disable mode. The I/O pins revert to normal  
I/O function when the module is in the Module Disable  
mode.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 287  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-1: CxCTRL1: ECANx CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
CSIDL  
R/W-0  
ABAT  
r-0  
r
R/W-1  
R/W-0  
R/W-0  
REQOP2  
REQOP1  
REQOP0  
bit 15  
bit 8  
R-1  
R-0  
R-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
WIN  
OPMODE2  
OPMODE1 OPMODE0  
CANCAP  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: ECANx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
ABAT: Abort All Pending Transmissions bit  
1= Signals all transmit buffers to abort transmission  
0= Module will clear this bit when all transmissions are aborted  
bit 11  
Reserved: Do not use  
bit 10-8  
REQOP<2:0>: Request Operation Mode bits  
111= Sets Listen All Messages mode  
110= Reserved  
101= Reserved  
100= Sets Configuration mode  
011= Sets Listen Only Mode  
010= Sets Loopback mode  
001= Sets Disable mode  
000= Sets Normal Operation mode  
bit 7-5  
OPMODE<2:0>: Operation Mode bits  
111= Module is in Listen All Messages mode  
110= Reserved  
101= Reserved  
100= Module is in Configuration mode  
011= Module is in Listen Only mode  
010= Module is in Loopback mode  
001= Module is in Disable mode  
000= Module is in Normal Operation mode  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CANCAP: ECAN Message Receive Timer Capture Event Enable bit  
1= Enables input capture based on ECAN message receive  
0= Disables ECAN capture  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
WIN: SFR Map Window Select bit  
1= Uses filter window  
0= Uses buffer window  
DS70000591F-page 288  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-2: CxCTRL2: ECANx CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DNCNT<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DNCNT<4:0>: DeviceNet™ Filter Bit Number bits  
10010-11111= Invalid selection  
10001= Compares up to Data Byte 3, bit 6 with EID<17>  
00001= Compares up to Data Byte 1, bit 7 with EID<0>  
00000= Does not compare data bytes  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 289  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1  
FILHIT0  
bit 15  
bit 8  
U-0  
R-1  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ICODE6  
ICODE5  
ICODE4  
ICODE3  
ICODE2  
ICODE1  
ICODE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Number bits  
10000-11111= Reserved  
01111= Filter 15  
00001= Filter 1  
00000= Filter 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
ICODE<6:0>: Interrupt Flag Code bits  
1000101-1111111= Reserved  
1000100= FIFO almost full interrupt  
1000011= Receiver overflow interrupt  
1000010= Wake-up interrupt  
1000001= Error interrupt  
1000000= No interrupt  
0010000-0111111= Reserved  
0001111= RB15 buffer interrupt  
0001001= RB9 buffer interrupt  
0001000= RB8 buffer interrupt  
0000111= TRB7 buffer interrupt  
0000110= TRB6 buffer interrupt  
0000101= TRB5 buffer interrupt  
0000100= TRB4 buffer interrupt  
0000011= TRB3 buffer interrupt  
0000010= TRB2 buffer interrupt  
0000001= TRB1 buffer interrupt  
0000000= TRB0 Buffer interrupt  
DS70000591F-page 290  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DMABS2  
DMABS1  
DMABS0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
FSA4(1)  
R/W-0  
FSA3(1)  
R/W-0  
FSA2(1)  
R/W-0  
FSA1(1)  
R/W-0  
FSA0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-13  
DMABS<2:0>: DMA Buffer Size bits  
111= Reserved  
110= 32 buffers in DMA RAM  
101= 24 buffers in DMA RAM  
100= 16 buffers in DMA RAM  
011= 12 buffers in DMA RAM  
010= 8 buffers in DMA RAM  
001= 6 buffers in DMA RAM  
000= 4 buffers in DMA RAM  
bit 12-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FSA<4:0>: FIFO Area Starts with Buffer bits(1)  
11111= Reads Buffer RB31  
11110= Reads Buffer RB30  
00001= TX/RX Buffer TRB1  
00000= TX/RX Buffer TRB0  
Note 1: FSA<4:0> bits are used to specify the start of the FIFO within the buffer area.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 291  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FBP5  
FBP4  
FBP3  
FBP2  
FBP1  
FBP0  
bit 15  
bit 8  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FNRB5  
FNRB4  
FNRB3  
FNRB2  
FNRB1  
FNRB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FBP<5:0>: FIFO Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
000001= TRB1 buffer  
000000= TRB0 buffer  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FNRB<5:0>: FIFO Next Read Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
000001= TRB1 buffer  
000000= TRB0 buffer  
DS70000591F-page 292  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TXBO  
TXBP  
RXBP  
TXWAR  
RXWAR  
EWARN  
bit 15  
bit 8  
R/C-0  
IVRIF  
R/C-0  
R/C-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
RBIF  
R/C-0  
TBIF  
WAKIF  
ERRIF  
FIFOIF  
RBOVIF  
bit 7  
bit 0  
Legend:  
C = Writable, but only ‘0’ can be written to clear the bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
TXBO: Transmitter in Error State Bus Off bit  
1= Transmitter is in Bus Off state  
0= Transmitter is not in Bus Off state  
bit 12  
bit 11  
bit 10  
bit 9  
TXBP: Transmitter in Error State Bus Passive bit  
1= Transmitter is in Bus Passive state  
0= Transmitter is not in Bus Passive state  
RXBP: Receiver in Error State Bus Passive bit  
1= Receiver is in Bus Passive state  
0= Receiver is not in Bus Passive state  
TXWAR: Transmitter in Error State Warning bit  
1= Transmitter is in Error Warning state  
0= Transmitter is not in Error Warning state  
RXWAR: Receiver in Error State Warning bit  
1= Receiver is in Error Warning state  
0= Receiver is not in Error Warning state  
bit 8  
EWARN: Transmitter or Receiver in Error State Warning bit  
1= Transmitter or receiver is in Error Warning state  
0= Transmitter or receiver is not in Error Warning state  
bit 7  
IVRIF: Invalid Message Received Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
WAKIF: Bus Wake-up Activity Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8> register bits)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
FIFOIF: FIFO Almost Full Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
RBOVIF: RX Buffer Overflow Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 293  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)  
bit 1  
RBIF: RX Buffer Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
TBIF: TX Buffer Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70000591F-page 294  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-7: CxINTE: ECANx INTERRUPT ENABLE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IVRIE  
R/W-0  
R/W-0  
ERRIE  
U-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
TBIE  
WAKIE  
FIFOIE  
RBOVIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
IVRIE: Invalid Message Received Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
bit 5  
WAKIE: Bus Wake-up Activity Interrupt Flag bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ERRIE: Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
FIFOIE: FIFO Almost Full Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
bit 1  
bit 0  
RBOVIE: RX Buffer Overflow Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
RBIE: RX Buffer Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
TBIE: TX Buffer Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 295  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-8: CxEC: ECANx TRANSMIT/RECEIVE ERROR COUNT REGISTER  
R-0  
TERRCNT7 TERRCNT6 TERRCNT5 TERRCNT4 TERRCNT3 TERRCNT2 TERRCNT1 TERRCNT0  
bit 15 bit 8  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RERRCNT7 RERRCNT6 RERRCNT5 RERRCNT4 RERRCNT3 RERRCNT2 RERRCNT1 RERRCNT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
TERRCNT<7:0>: Transmit Error Count bits  
RERRCNT<7:0>: Receive Error Count bits  
REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
SJW1  
R/W-0  
SJW0  
R/W-0  
BRP5  
R/W-0  
BRP4  
R/W-0  
BRP3  
R/W-0  
BRP2  
R/W-0  
BRP1  
R/W-0  
BRP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SJW<1:0>: Synchronization Jump Width bits  
11= Length is 4 x TQ  
10= Length is 3 x TQ  
01= Length is 2 x TQ  
00= Length is 1 x TQ  
bit 5-0  
BRP<5:0>: Baud Rate Prescaler bits  
11 1111= TQ = 2 x 64 x 1/FCAN  
00 0010= TQ = 2 x 3 x 1/FCAN  
00 0001= TQ = 2 x 2 x 1/FCAN  
00 0000= TQ = 2 x 1 x 1/FCAN  
DS70000591F-page 296  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2  
U-0  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WAKFIL  
SEG2PH2  
SEG2PH1  
SEG2PH0  
bit 15  
bit 8  
R/W-x  
R/W-x  
SAM  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SEG2PHTS  
SEG1PH2  
SEG1PH1  
SEG1PH0  
PRSEG2  
PRSEG1  
PRSEG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
WAKFIL: Select ECAN Bus Line Filter for Wake-up bit  
1= Uses ECAN bus line filter for wake-up  
0= ECAN bus line filter is not used for wake-up  
bit 13-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SEG2PH<2:0>: Phase Segment 2 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of SEG1PHx bits or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the ECAN Bus Line bit  
1= Bus line is sampled three times at the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
SEG1PH<2:0>: Phase Segment 1 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
bit 2-0  
PRSEG<2:0>: Propagation Time Segment bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 297  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTEN15  
FLTEN14  
FLTEN13  
FLTEN12  
FLTEN11  
FLTEN10  
FLTEN9  
FLTEN8  
bit 15  
bit 8  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTEN7  
FLTEN6  
FLTEN5  
FLTEN4  
FLTEN3  
FLTEN2  
FLTEN1  
FLTEN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
FLTEN<15:0>: Enable Filter n to Accept Messages bits  
1= Enables Filter n  
0= Disables Filter n  
REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1  
R/W-0  
F3BP3  
R/W-0  
F3BP2  
R/W-0  
F3BP1  
R/W-0  
F3BP0  
R/W-0  
F2BP3  
R/W-0  
F2BP2  
R/W-0  
F2BP1  
R/W-0  
F2BP0  
bit 15  
bit 8  
R/W-0  
F1BP3  
R/W-0  
F1BP2  
R/W-0  
F1BP1  
R/W-0  
F1BP0  
R/W-0  
F0BP3  
R/W-0  
F0BP2  
R/W-0  
F0BP1  
R/W-0  
F0BP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F3BP<3:0>: RX Buffer Mask for Filter 3 bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F2BP<3:0>: RX Buffer Mask for Filter 2 bits (same values as bits<15:12>)  
F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bits<15:12>)  
F0BP<3:0>: RX Buffer Mask for Filter 0 bits (same values as bits<15:12>)  
DS70000591F-page 298  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2  
R/W-0  
F7BP3  
R/W-0  
F7BP2  
R/W-0  
F7BP1  
R/W-0  
F7BP0  
R/W-0  
F6BP3  
R/W-0  
F6BP2  
R/W-0  
F6BP1  
R/W-0  
F6BP0  
bit 15  
bit 8  
R/W-0  
F5BP3  
R/W-0  
F5BP2  
R/W-0  
F5BP1  
R/W-0  
F5BP0  
R/W-0  
F4BP3  
R/W-0  
F4BP2  
R/W-0  
F4BP1  
R/W-0  
F4BP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F7BP<3:0>: RX Buffer Mask for Filter 7 bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)  
F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits<15:12>)  
F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits<15:12>)  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 299  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F11BP3  
F11BP2  
F11BP1  
F11BP0  
F10BP3  
F10BP2  
F10BP1  
F10BP0  
bit 15  
bit 8  
R/W-0  
F9BP3  
R/W-0  
F9BP2  
R/W-0  
F9BP1  
R/W-0  
F9BP0  
R/W-0  
F8BP3  
R/W-0  
F8BP2  
R/W-0  
F8BP1  
R/W-0  
F8BP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F11BP<3:0>: RX Buffer Mask for Filter 11 bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bits<15:12>)  
F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bits<15:12>)  
F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits<15:12>)  
DS70000591F-page 300  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F15BP3  
F15BP2  
F15BP1  
F15BP0  
F14BP3  
F14BP2  
F14BP1  
F14BP0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F13BP3  
F13BP2  
F13BP1  
F13BP0  
F12BP3  
F12BP2  
F12BP1  
F12BP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F15BP<3:0>: RX Buffer Mask for Filter 15 bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bits<15:12>)  
F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bits<15:12>)  
F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits<15:12>)  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 301  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER  
REGISTER (n = 0-15)  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
EXIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Message address bit, SIDx, must be ‘1’ to match filter  
0= Message address bit, SIDx, must be ‘0’ to match filter  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
EXIDE: Extended Identifier Enable bit  
If MIDE = 1, then:  
1= Matches only messages with Extended Identifier addresses  
0= Matches only messages with Standard Identifier addresses  
If MIDE = 0, then:  
Ignores EXIDE bit.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Message address bit, EIDx, must be ‘1’ to match filter  
0= Message address bit, EIDx, must be ‘0’ to match filter  
DS70000591F-page 302  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER  
REGISTER (n = 0-15)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID<15:8>  
bit 15  
R/W-x  
bit 7  
bit 8  
R/W-x  
bit 0  
R/W-x  
EID<7:0>  
R/W-x  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Message address bit, EIDx, must be ‘1’ to match filter  
0= Message address bit, EIDx, must be ‘0’ to match filter  
REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F7MSK1  
F7MSK0  
F6MSK1  
F6MSK0  
F5MSK1  
F5MSK0  
F4MSK1  
F4MSK0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F3MSK1  
F3MSK0  
F2MSK1  
F2MSK0  
F1MSK1  
F1MSK0  
F0MSK1  
F0MSK1  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
F7MSK<1:0>: Mask Source for Filter 7 bits  
11= Reserved  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 13-12  
bit 11-10  
bit 9-8  
F6MSK<1:0>: Mask Source for Filter 6 bits (same values as bits<15:14>)  
F5MSK<1:0>: Mask Source for Filter 5 bits (same values as bits<15:14>)  
F4MSK<1:0>: Mask Source for Filter 4 bits (same values as bits<15:14>)  
F3MSK<1:0>: Mask Source for Filter 3 bits (same values as bits<15:14>)  
F2MSK<1:0>: Mask Source for Filter 2 bits (same values as bits<15:14>)  
F1MSK<1:0>: Mask Source for Filter 1 bits (same values as bits<15:14>)  
F0MSK<1:0>: Mask Source for Filter 0 bits (same values as bits<15:14>)  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 303  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F15MSK1  
F15MSK0  
F14MSK1  
F14MSK0  
F13MSK1  
F13MSK0  
F12MSK1  
F12MSK0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F11MSK1  
F11MSK0  
F10MSK1  
F10MSK0  
F9MSK1  
F9MSK0  
F8MSK1  
F8MSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
F15MSK<1:0>: Mask Source for Filter 15 bits  
11= Reserved  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 13-12  
bit 11-10  
bit 9-8  
F14MSK<1:0>: Mask Source for Filter 14 bits (same values as bits<15:14>)  
F13MSK<1:0>: Mask Source for Filter 13 bits (same values as bits<15:14>)  
F12MSK<1:0>: Mask Source for Filter 12 bits (same values as bits<15:14>)  
F11MSK<1:0>: Mask Source for Filter 11 bits (same values as bits<15:14>)  
F10MSK<1:0>: Mask Source for Filter 10 bits (same values as bits<15:14>)  
F9MSK<1:0>: Mask Source for Filter 9 bits (same values as bits<15:14>)  
F8MSK<1:0>: Mask Source for Filter 8 bits (same values as bits<15:14>)  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
DS70000591F-page 304  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-20: CxRXMnSID: ECANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER  
REGISTER (n = 0-2)  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
MIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Includes bit, SIDx, in filter comparison  
0= SIDx bit is don’t care in filter comparison  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
MIDE: Identifier Receive Mode bit  
1= Matches only message types (standard or extended address) that correspond to EXIDE bit in filter  
0= Matches either standard or extended address message if filters match  
(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Includes bit, EIDx, in filter comparison  
0= EIDx bit is don’t care in filter comparison  
REGISTER 21-21: CxRXMnEID: ECANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER  
REGISTER (n = 0-2)  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 15  
bit 8  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Includes bit, EIDx, in filter comparison  
0= EIDx bit is don’t care in filter comparison  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 305  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL15  
RXFUL14  
RXFUL13  
RXFUL12  
RXFUL11  
RXFUL10  
RXFUL9  
RXFUL8  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL7  
RXFUL6  
RXFUL5  
RXFUL4  
RXFUL3  
RXFUL2  
RXFUL1  
RXFUL0  
bit 7  
bit 0  
Legend:  
C = Writeable, but only ‘0’ can be written to clear the bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL<15:0>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty  
REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL24  
bit 8  
RXFUL31  
RXFUL30  
RXFUL29  
RXFUL28  
RXFUL27  
RXFUL26  
RXFUL25  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL23  
RXFUL22  
RXFUL21  
RXFUL20  
RXFUL19  
RXFUL18  
RXFUL17  
RXFUL16  
bit 7  
bit 0  
Legend:  
C = Writeable, but only ‘0’ can be written to clear the bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL<31:16>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty  
DS70000591F-page 306  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-24: CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1  
R/C-0  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
bit 8  
R/C-0  
RXOVF<15:8>  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF<7:0>  
bit 7  
bit 0  
Legend:  
C = Writeable, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
RXOVF<15:0>: Receive Buffer n Overflow bits  
1= Module attempted to write to a full buffer (set by module)  
0= No overflow condition  
REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
bit 8  
RXOVF<31:24>  
bit 15  
R/C-0  
bit 7  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
bit 0  
RXOVF<23:16>  
Legend:  
C = Writeable, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
RXOVF<31:16>: Receive Buffer n Overflow bits  
1= Module attempted to write to a full buffer (set by module)  
0= No overflow condition  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 307  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 21-26: CxTRmnCON:  
ECANx TX/RX BUFFER mn CONTROL REGISTER  
(m = 0, 2, 4, 6; n = 1, 3, 5, 7)  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENn  
TXABTn  
TXLARBn  
TXERRn  
TXREQn  
RTRENn  
TXnPRI1  
TXnPRI0  
bit 15  
bit 8  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENm  
TXABTm(1) TXLARBm(1) TXERRm(1) TXREQm  
RTRENm  
TXmPRI1  
TXmPRI0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
See Definition for bits<7:0>, Controls Buffer n  
TXENm: TX/RX Buffer Selection bit  
1= Buffer TRBn is a transmit buffer  
0= Buffer TRBn is a receive buffer  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
TXABTm: Message Aborted bit(1)  
1= Message was aborted  
0= Message completed transmission successfully  
TXLARBm: Message Lost Arbitration bit(1)  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERRm: Error Detected During Transmission bit(1)  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQm: Message Send request bit  
1= Requests that a message be sent; the bit automatically clears when the message is successfully sent  
0= Clears the bit to ‘0’; while set, requests a message abort  
RTRENm: Auto-Remote Transmit Enable bit  
1= When a remote transmit is received, TXREQm will be set  
0= When a remote transmit is received, TXREQm will be unaffected  
TXmPRI<1:0>: Message Transmission Priority bits  
11= Highest message priority  
10= High intermediate message priority  
01= Low intermediate message priority  
00= Lowest message priority  
Note 1: This bit is cleared when TXREQm is set.  
Note:  
The buffers, SID, EID, DLC, Data Field, and Receive Status registers are located in DMA RAM.  
DS70000591F-page 308  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
21.4 ECANx Message Buffers  
ECANx message buffers are part of DMA RAM memory.  
They are not ECAN Special Function Registers. The  
user application must directly write into the DMA RAM  
area that is configured for ECANx message buffers. The  
location and size of the buffer area is defined by the user  
application.  
BUFFER 21-1:  
ECANx MESSAGE BUFFER WORD 0  
U-0  
U-0  
U-0  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
bit 15  
bit 8  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
SRR  
R/W-x  
IDE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SID<10:0>: Standard Identifier bits  
SRR: Substitute Remote Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 0  
IDE: Extended Identifier bit  
1= Message will transmit the Extended Identifier  
0= Message will transmit the Standard Identifier  
BUFFER 21-2:  
ECANx MESSAGE BUFFER WORD 1  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
EID<17:14>  
bit 15  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
EID<13:6>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
EID<17:6>: Extended Identifier bits  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 309  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
(
BUFFER 21-3:  
ECANx MESSAGE BUFFER WORD 2  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
R/W-x  
RTR  
R/W-x  
RB1  
bit 15  
bit 8  
U-x  
U-x  
U-x  
R/W-x  
RB0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
EID<5:0>: Extended Identifier bits  
RTR: Remote Transmission Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 8  
RB1: Reserved Bit 1  
User must set this bit to ‘0’ per ECAN™ protocol.  
Unimplemented: Read as ‘0’  
bit 7-5  
bit 4  
RB0: Reserved Bit 0  
User must set this bit to ‘0’ per ECAN protocol.  
DLC<3:0>: Data Length Code bits  
bit 3-0  
BUFFER 21-4:  
ECANx MESSAGE BUFFER WORD 3  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
Byte 1  
bit 15  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
Byte 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 1<15:8>: ECANx Message Byte 1  
Byte 0<7:0>: ECANx Message Byte 0  
DS70000591F-page 310  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
BUFFER 21-5:  
R/W-x  
ECANx MESSAGE BUFFER WORD 4  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
Byte 3  
Byte 2  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 3<15:8>: ECANx Message Byte 3  
Byte 2<7:0>: ECANx Message Byte 2  
BUFFER 21-6:  
ECANx MESSAGE BUFFER WORD 5  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
Byte 5  
bit 15  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 4  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 5<15:8>: ECANx Message Byte 5  
Byte 4<7:0>: ECANx Message Byte 4  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 311  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
BUFFER 21-7:  
ECANx MESSAGE BUFFER WORD 6  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
Byte 7  
Byte 6  
bit 15  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 7<15:8>: ECANx Message Byte 7  
Byte 6<7:0>: ECANx Message Byte 6  
BUFFER 21-8:  
ECANx MESSAGE BUFFER WORD 7  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
FILHIT<4:0>(1)  
R/W-x  
R/W-x  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Code bits(1)  
Encodes number of filter that resulted in writing this buffer.  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: Only written by module for receive buffers, unused for transmit buffers.  
DS70000591F-page 312  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
22.2 Module Description  
22.0 HIGH-SPEED, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
This ADC module is designed for applications that  
require low latency between the request for conversion  
and the resultant output data. Typical applications  
include:  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to “High-Speed  
10-Bit ADC” (DS70000321) in the  
“dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
The information in this data sheet  
supersedes the information in the FRM.  
• AC/DC Power Supplies  
• DC/DC Converters  
• Power Factor Correction (PFC)  
This ADC works with the High-Speed PWM module in  
power control applications that require high-frequency  
control loops. This module can Sample-and-Convert  
two analog inputs in a 0.5 microsecond when two SARs  
are used. This small conversion delay reduces the  
“phase lag” between measurement and control system  
response.  
Up to five inputs may be sampled at a time (four inputs  
from the dedicated Sample-and-Hold circuits and one  
from the shared Sample-and-Hold circuit). If multiple  
inputs request conversion, the ADC will convert them in  
a sequential manner, starting with the lowest order  
input.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
This ADC design provides each pair of analog inputs  
(AN1, AN0), (AN3, AN2),..., the ability to specify its own  
trigger source out of a maximum of sixteen different  
trigger sources. This capability allows this ADC to  
Sample-and-Convert analog inputs that are associated  
with PWM generators operating on independent time  
bases.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices provide  
high-speed successive approximation Analog-to-Digital  
conversions to support applications, such as AC/DC and  
DC/DC power converters.  
22.1 Features Overview  
The user application typically requires synchronization  
between analog data sampling and PWM output to the  
application circuit. The very high-speed operation of  
this ADC module allows “data on demand”.  
The ADC module incorporates the following features:  
• 10-Bit Resolution  
• Unipolar Inputs  
In addition, several hardware features have been  
added to the peripheral interface to improve real-time  
performance in a typical DSP-based application.  
• Up to Two Successive Approximation Registers  
(SARs)  
• Up to 24 External Input Channels  
• Two Internal Analog Inputs  
• Result Alignment Options  
• Automated Sampling  
• Dedicated Result Register for each Analog Input  
• ±1 LSB Accuracy at 3.3V  
• External Conversion Start Control  
• Two Internal Inputs to Monitor the INTREF and  
EXTREF Input Signals  
• Single Supply Operation  
• 4 Msps Conversion Rate at 3.3V (devices with  
two SARs)  
Block diagrams of the ADC module for the family  
devices are shown in Figure 22-1 through Figure 22-4.  
• 2 Msps Conversion Rate at 3.3V (devices with  
one SAR)  
• Low-Power CMOS Technology  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 313  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The ADC module uses the following control and status  
registers:  
22.3 Module Functionality  
The High-Speed, 10-Bit ADC is designed to support  
power conversion applications when used with the  
ADCON: ADC Control Register  
ADSTAT: ADC Status Register  
ADBASE: ADC Base Register(1,2)  
High-Speed PWM module. The ADC may have one or  
two SAR modules, depending on the device variant. If  
two SARs are present on a device, two conversions  
can be processed at a time, yielding 4 Msps conversion  
rate. If only one SAR is present on a device, only one  
conversion can be processed at a time, yielding 2 Msps  
conversion rate. The High-Speed, 10-Bit ADC produces  
two 10-bit conversion results in a 0.5 microsecond.  
ADPCFG: ADC Port Configuration Register  
ADPCFG2: ADC Port Configuration Register 2  
ADCPC0: ADC Convert Pair Control Register 0  
ADCPC1: ADC Convert Pair Control Register 1  
ADCPC2: ADC Convert Pair Control Register 2  
ADCPC3: ADC Convert Pair Control Register 3  
ADCPC4: ADC Convert Pair Control Register 4  
ADCPC5: ADC Convert Pair Control Register 5  
ADCPC6: ADC Convert Pair Control Register 6(2)  
The ADC module supports up to 24 external analog  
inputs and two internal analog inputs. To monitor  
reference voltage, two internal inputs, AN24 and AN25,  
are connected to EXTREF and INTREF, respectively.  
The analog reference voltage is defined as the device  
supply voltage (AVDD/AVSS).  
The ADCON register controls the operation of the  
ADC module. The ADSTAT register displays the  
status of the conversion processes. The ADPCFG  
registers configure the port pins as analog inputs or  
as digital I/O. The ADCPCx registers control the  
triggering of the ADC conversions. See Register 22-1  
through Register 22-12 for detailed bit configurations.  
Note:  
A unique feature of the ADC module is its  
ability to sample inputs in an asynchronous  
manner.  
Individual  
Sample-and-Hold  
circuits can be triggered independently of  
each other.  
DS70000591F-page 314  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 22-1:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406  
DEVICES WITH ONE SAR  
Even Numbered Inputs with Dedicated  
Sample-and-Hold (S&H) Circuits  
AN0  
AN2  
Sixteen  
16-Bit  
Registers  
SAR  
Core  
AN4  
AN6  
AN1  
AN3  
AN5  
Shared Sample-and-Hold  
AN7  
AN8  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 315  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 22-2:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS606 AND dsPIC33FJ64GS606  
DEVICES WITH TWO SARs  
Even Numbered Inputs with Dedicated  
Sample-and-Hold (S&H) Circuits  
AN0  
AN2  
Nine  
16-Bit  
Registers  
SAR  
Core  
AN4  
AN6  
AN8  
Even Numbered Inputs  
with Shared S&H  
AN10  
AN12  
AN14  
AN24(1)  
(EXTREF)  
Odd Numbered Inputs  
with Shared S&H  
AN1  
Nine  
SAR  
16-Bit  
Core  
AN3  
AN5  
Registers  
AN7  
AN9  
AN11  
AN13  
AN15  
AN25(2)  
(INTREF)  
Note 1: AN24 (EXTREF) is an internal analog input. To measure the voltage at AN24 (EXTREF), an analog comparator must be enabled  
and EXTREF must be selected as the comparator reference.  
2: AN25 (INTREF) is an internal analog input and is not available on a pin.  
DS70000591F-page 316  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 22-3:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608  
DEVICES WITH TWO SARs  
Even Numbered Inputs with Dedicated  
Sample-and-Hold (S&H) Circuits  
AN0  
AN2  
AN4  
Ten  
SAR  
Core  
16-Bit  
Registers  
AN6  
Even Numbered Inputs  
with Shared S&H  
AN8  
AN10  
AN12  
AN14  
AN16  
AN24(1)  
(EXTREF)  
Odd Numbered Inputs  
with Shared S&H  
AN1  
Ten  
SAR  
Core  
16-Bit  
AN3  
AN5  
Registers  
AN7  
AN9  
AN11  
AN13  
AN15  
AN17  
AN25(2)  
(INTREF)  
Note 1: AN24 (EXTREF) is an internal analog input. To measure the voltage at AN24 (EXTREF), an analog comparator must be  
enabled and EXTREF must be selected as the comparator reference.  
2: AN25 (INTREF) is an internal analog input and is not available on a pin.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 317  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 22-4:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610  
DEVICES WITH TWO SARs  
Even Numbered Inputs with Dedicated  
Sample-and-Hold (S&H) Circuits  
AN0  
AN2  
AN4  
AN6  
Thirteen  
SAR  
Core  
16-Bit  
Registers  
Even Numbered Inputs  
with Shared S&H  
AN8  
AN10  
AN12  
AN14  
AN16  
AN18  
AN20  
AN22  
AN24(1)  
(EXTREF)  
AN1  
Odd Numbered Inputs  
with Shared S&H  
Thirteen  
SAR  
Core  
16-Bit  
AN3  
Registers  
AN5  
AN7  
AN9  
AN11  
AN13  
AN15  
AN17  
AN19  
AN21  
AN23  
AN25(2)  
(INTREF)  
Note 1: AN24 (EXTREF) is an internal analog input. To measure the voltage at AN24 (EXTREF), an analog comparator must  
be enabled and EXTREF must be selected as the comparator reference.  
2: AN25 (INTREF) is an internal analog input and is not available on a pin.  
DS70000591F-page 318  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-1: ADCON: ADC CONTROL REGISTER  
R/W-0  
ADON  
U-0  
R/W-0  
R/W-0  
SLOWCLK(1)  
U-0  
R/W-0  
U-0  
R/W-0  
FORM(1)  
ADSIDL  
GSWTRG  
bit 15  
bit 8  
R/W-0  
EIE(1)  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
ADCS2(1)  
R/W-1  
ADCS1(1)  
R/W-1  
ADCS0(1)  
bit 0  
ORDER(1,2) SEQSAMP(1,2) ASYNCSAMP(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADON: ADC Module Operating Mode bit  
1= ADC module is operating  
0= ADC module is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: ADC Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SLOWCLK: Enable the Slow Clock Divider bit(1)  
1= ADC is clocked by the auxiliary PLL (ACLK)  
0= ADC is clock by the primary PLL (FVCO)  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
GSWTRG: Global Software Trigger bit  
When this bit is set by the user, it will trigger conversions if selected by the TRGSRCx<4:0> bits in the  
ADCPCx registers. This bit must be cleared by the user prior to initiating another global trigger (i.e., this  
bit is not auto-clearing).  
bit 9  
bit 8  
Unimplemented: Read as ‘0’  
FORM: Data Output Format bit(1)  
1= Fractional (DOUT = dddd dddd dd00 0000)  
0= Integer (DOUT = 0000 00dd dddd dddd)  
bit 7  
bit 6  
bit 5  
EIE: Early Interrupt Enable bit(1)  
1= Interrupt is generated after first conversion is completed  
0= Interrupt is generated after second conversion is completed  
ORDER: Conversion Order bit(1,2)  
1= Odd numbered analog input is converted first, followed by conversion of even numbered input  
0= Even numbered analog input is converted first, followed by conversion of odd numbered input  
SEQSAMP: Sequential S&H Sampling Enable bit(1,2)  
1= Shared Sample-and-Hold (S&H) circuit is sampled at the start of the second conversion if  
ORDER = 0. If ORDER = 1, then the shared S&H is sampled at the start of the first conversion.  
0= Shared S&H is sampled at the same time the dedicated S&H is sampled if the shared S&H is not cur-  
rently busy with an existing conversion process. If the shared S&H is busy at the time the dedicated  
S&H is sampled, then the shared S&H will sample at the start of the new conversion cycle.  
Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).  
2: This control bit is only active on devices that have one SAR.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 319  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-1: ADCON: ADC CONTROL REGISTER (CONTINUED)  
bit 4  
ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit(1)  
1= The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger  
pulse is detected  
0= The dedicated S&H starts sampling when the trigger event is detected and completes the sampling  
process in two ADC clock cycles  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ADCS<2:0>: Analog-to-Digital Conversion Clock Divider Select bits(1)  
111= FADC/8  
110= FADC/7  
101= FADC/6  
100= FADC/5  
011= FADC/4 (default)  
010= FADC/3  
001= FADC/2  
000= FADC/1  
Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).  
2: This control bit is only active on devices that have one SAR.  
DS70000591F-page 320  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-2: ADSTAT: ADC STATUS REGISTER  
U-0  
U-0  
U-0  
R/C-0, HS  
P12RDY(1)  
R/C-0, HS  
P11RDY(1)  
R/C-0, HS  
P10RDY(1)  
R/C-0, HS  
P9RDY(1)  
R/C-0, HS  
P8RDY(1)  
bit 15  
bit 8  
R/C-0, HS  
P7RDY(1)  
R/C-0, HS  
P6RDY(1)  
R/C-0, HS  
P5RDY(1)  
R/C-0, HS  
P4RDY(1)  
R/C-0, HS  
P3RDY(1)  
R/C-0, HS  
P2RDY(1)  
R/C-0, HS  
P1RDY(1)  
R/C-0, HS  
P0RDY(1)  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS - Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15-13  
bit 6  
Unimplemented: Read as ‘0’  
P12RDY: Conversion Data for Pair 12 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P11RDY: Conversion Data for Pair 11 Ready bit(1)  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P10RDY: Conversion Data for Pair 10 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P9RDY: Conversion Data for Pair 9 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P8RDY: Conversion Data for Pair 8 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P7RDY: Conversion Data for Pair 7 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P6RDY: Conversion Data for Pair 6 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P5RDY: Conversion Data for Pair 5 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P4RDY: Conversion Data for Pair 4 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P3RDY: Conversion Data for Pair 3 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P2RDY: Conversion Data for Pair 2 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P1RDY: Conversion Data for Pair 1 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P0RDY: Conversion Data for Pair 0 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
Note 1: Not all PxRDY bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3 and Figure 22-4  
for the available analog inputs.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 321  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-3: ADBASE: ADC BASE REGISTER(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADBASE<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
ADBASE<7:1>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
ADBASE<15:1>: ADC Base Address bits  
This register contains the base address of the user’s ADC Interrupt Service Routine jump table. This  
register, when read, contains the sum of the ADBASE register contents and the encoded value of the  
PxRDY status bits.  
The encoder logic provides the bit number of the highest priority PxRDY bits where P0RDY is the  
highest priority and P6RDY is the lowest priority.  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: The encoding results are shifted left two bits so bits 1-0 of the result are always zero.  
2: As an alternative to using the ADBASE register, the ADCP0-ADCP12 ADC pair conversion complete  
interrupts can be used to invoke Analog-to-Digital conversion completion routines for individual ADC input  
pairs.  
DS70000591F-page 322  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-4: ADPCFG: ADC PORT CONFIGURATION REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG<15:8>(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG<7:0>(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PCFG<15:0>: ADC Port Configuration Control bits(1)  
1= Port pin in Digital mode, port read input is enabled; Analog-to-Digital input multiplexer is  
connected to AVSS  
0= Port pin in Analog mode, port read input is disabled; Analog-to-Digital samples the pin voltage  
Note 1: Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3 and Figure 22-4  
for the available analog inputs (PCFGx = ANx, where x = 0-15).  
REGISTER 22-5: ADPCFG2: ADC PORT CONFIGURATION REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
PCFG<23:16>(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
PCFG<23:16>: ADC Port Configuration Control bits(1)  
1= Port pin in Digital mode, port read input is enabled; Analog-to-Digital input multiplexer is  
connected to AVSS  
0= Port pin in Analog mode, port read input is disabled; Analog-to-Digital samples the pin voltage  
Note 1: Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3 and Figure 22-4  
for the available analog inputs (PCFGx = ANx, where x can be 0 through 15).  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 323  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-6: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN1  
PEND1  
SWTRG1  
TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN0  
PEND0  
SWTRG0  
TRGSRC04 TRGSRC03 TRGSRC02 TRGSRC01 TRGSRC00  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
IRQEN1: Interrupt Request Enable 1 bit  
1= Enables IRQ generation when requested conversion of Channels AN3 and AN2 is completed  
0= IRQ is not generated  
PEND1: Pending Conversion Status 1 bit  
1= Conversion of Channels AN3 and AN2 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG1: Software Trigger 1 bit  
1= Starts conversion of AN3 and AN2 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND1 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
DS70000591F-page 324  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-6: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)  
bit 12-8  
TRGSRC1<4:0>: Trigger 1 Source Selection bits  
Selects trigger source for conversion of Analog Channels AN3 and AN2.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger is selected  
10101= PWM Generator 8 secondary trigger is selected  
10100= PWM Generator 7 secondary trigger is selected  
10011= PWM Generator 6 secondary trigger is selected  
10010= PWM Generator 5 secondary trigger is selected  
10001= PWM Generator 4 secondary trigger is selected  
10000= PWM Generator 3 secondary trigger is selected  
01111= PWM Generator 2 secondary trigger is selected  
01110= PWM Generator 1 secondary trigger is selected  
01101= PWM secondary Special Event Trigger is selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger is selected  
01010= PWM Generator 7 primary trigger is selected  
01001= PWM Generator 6 primary trigger is selected  
01000= PWM Generator 5 primary trigger is selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger is selected  
00101= PWM Generator 2 primary trigger is selected  
00100= PWM Generator 1 primary trigger is selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger is selected  
00001= Individual software trigger is selected  
00000= No conversion is enabled  
bit 7  
bit 6  
bit 5  
IRQEN0: Interrupt Request Enable 0 bit  
1= Enables IRQ generation when requested conversion of Channels AN1 and AN0 is completed  
0= IRQ is not generated  
PEND0: Pending Conversion Status 0 bit  
1= Conversion of Channels AN1 and AN0 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG0: Software Trigger 0 bit  
1= Starts conversion of AN1 and AN0 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND0 bit is set.  
0= Conversion has not started.  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 325  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-6: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)  
bit 4-0  
TRGSRC0<4:0>: Trigger 0 Source Selection bits  
Selects trigger source for conversion of Analog Channels AN1 and AN0.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger is selected  
10101= PWM Generator 8 secondary trigger is selected  
10100= PWM Generator 7 secondary trigger is selected  
10011= PWM Generator 6 secondary trigger is selected  
10010= PWM Generator 5 secondary trigger is selected  
10001= PWM Generator 4 secondary trigger is selected  
10000= PWM Generator 3 secondary trigger is selected  
01111= PWM Generator 2 secondary trigger is selected  
01110= PWM Generator 1 secondary trigger is selected  
01101= PWM secondary Special Event Trigger is selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger is selected  
01010= PWM Generator 7 primary trigger is selected  
01001= PWM Generator 6 primary trigger is selected  
01000= PWM Generator 5 primary trigger is selected  
00111= PWM Generator 4 primary trigger is selected  
00110= PWM Generator 3 primary trigger is selected  
00101= PWM Generator 2 primary trigger is selected  
00100= PWM Generator 1 primary trigger is selected  
00011= PWM Special Event Trigger is selected  
00010= Global software trigger is selected  
00001= Individual software trigger is selected  
00000= No conversion is enabled  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
DS70000591F-page 326  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-7: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN3  
PEND3  
SWTRG3  
TRGSRC34 TRGSRC33 TRGSRC32 TRGSRC31 TRGSRC30  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN2  
PEND2  
SWTRG2  
TRGSRC24 TRGSRC23 TRGSRC22 TRGSRC21 TRGSRC20  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
bit 14  
bit 13  
IRQEN3: Interrupt Request Enable 3 bit  
1= Enables IRQ generation when requested conversion of Channels AN7 and AN6 is completed  
0= IRQ is not generated  
PEND3: Pending Conversion Status 3 bit  
1= Conversion of Channels AN7 and AN6 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG3: Software Trigger 3 bit  
1= Starts conversion of AN7 and AN6 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND3 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 327  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-7: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)  
bit 12-8  
TRGSRC3<4:0>: Trigger 3 Source Selection bits  
Selects trigger source for conversion of analog channels AN7 and AN6.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger is selected  
10101= PWM Generator 8 secondary trigger is selected  
10100= PWM Generator 7 secondary trigger is selected  
10011= PWM Generator 6 secondary trigger is selected  
10010= PWM Generator 5 secondary trigger is selected  
10001= PWM Generator 4 secondary trigger is selected  
10000= PWM Generator 3 secondary trigger is selected  
01111= PWM Generator 2 secondary trigger is selected  
01110= PWM Generator 1 secondary trigger is selected  
01101= PWM secondary Special Event Trigger is selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger is selected  
01010= PWM Generator 7 primary trigger is selected  
01001= PWM Generator 6 primary trigger is selected  
01000= PWM Generator 5 primary trigger is selected  
00111= PWM Generator 4 primary trigger is selected  
00110= PWM Generator 3 primary trigger is selected  
00101= PWM Generator 2 primary trigger is selected  
00100= PWM Generator 1 primary trigger is selected  
00011= PWM Special Event Trigger is selected  
00010= Global software trigger is selected  
00001= Individual software trigger is selected  
00000= No conversion is enabled  
bit 7  
bit 6  
bit 5  
IRQEN2: Interrupt Request Enable 2 bit  
1= Enables IRQ generation when requested conversion of Channels AN5 and AN4 is completed  
0= IRQ is not generated  
PEND2: Pending Conversion Status 2 bit  
1= Conversion of Channels AN5 and AN4 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG2: Software Trigger 2 bit  
1= Starts conversion of AN5 and AN4 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND2 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
DS70000591F-page 328  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-7: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)  
bit 4-0  
TRGSRC2<4:0>: Trigger 2 Source Selection bits  
Selects trigger source for conversion of Analog Channels AN5 and AN4.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger is selected  
10101= PWM Generator 8 secondary trigger is selected  
10100= PWM Generator 7 secondary trigger is selected  
10011= PWM Generator 6 secondary trigger is selected  
10010= PWM Generator 5 secondary trigger is selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger is selected  
01111= PWM Generator 2 secondary trigger is selected  
01110= PWM Generator 1 secondary trigger is selected  
01101= PWM secondary Special Event Trigger is selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger is selected  
01010= PWM Generator 7 primary trigger is selected  
01001= PWM Generator 6 primary trigger is selected  
01000= PWM Generator 5 primary trigger is selected  
00111= PWM Generator 4 primary trigger is selected  
00110= PWM Generator 3 primary trigger is selected  
00101= PWM Generator 2 primary trigger is selected  
00100= PWM Generator 1 primary trigger is selected  
00011= PWM Special Event Trigger is selected  
00010= Global software trigger is selected  
00001= Individual software trigger is selected  
00000= No conversion is enabled  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 329  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-8: ADCPC2: ADC CONVERT PAIR CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN5  
PEND5  
SWTRG5  
TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 TRGSRC50  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN4  
PEND4  
SWTRG4  
TRGSRC44 TRGSRC43 TRGSRC42 TRGSRC41 TRGSRC40  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
IRQEN5: Interrupt Request Enable 5 bit  
1= Enables IRQ generation when requested conversion of Channels AN11 and AN10 is completed  
0= IRQ is not generated  
PEND5: Pending Conversion Status 5 bit  
1= Conversion of Channels AN11 and AN10 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG5: Software Trigger 5 bit  
1= Starts conversion of AN11 and AN10 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND5 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
DS70000591F-page 330  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-8: ADCPC2: ADC CONVERT PAIR CONTROL REGISTER 2 (CONTINUED)  
bit 12-8  
TRGSRC5<4:0>: Trigger 5 Source Selection bits  
Selects trigger source for conversion of Analog Channels AN11 and AN10.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger selected  
10101= PWM Generator 8 secondary trigger selected  
10100= PWM Generator 7 secondary trigger selected  
10011= PWM Generator 6 secondary trigger selected  
10010= PWM Generator 5 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
01110= PWM Generator 1 secondary trigger selected  
01101= PWM secondary Special Event Trigger selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger selected  
01010= PWM Generator 7 primary trigger selected  
01001= PWM Generator 6 primary trigger selected  
01000= PWM Generator 5 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00100= PWM Generator 1 primary trigger selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger selected  
00001= Individual software trigger selected  
00000= No conversion is enabled  
bit 7  
bit 6  
bit 5  
IRQEN4: Interrupt Request Enable 4 bit  
1= Enables IRQ generation when requested conversion of Channels AN9 and AN8 is completed  
0= IRQ is not generated  
PEND4: Pending Conversion Status 4 bit  
1= Conversion of Channels AN9 and AN8 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG4: Software Trigger 4 bit  
1= Starts conversion of AN9 and AN8 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND4 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 331  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-8: ADCPC2: ADC CONVERT PAIR CONTROL REGISTER 2 (CONTINUED)  
bit 4-0  
TRGSRC4<4:0>: Trigger 4 Source Selection bits  
Selects trigger source for conversion of Analog Channels AN9 and AN8.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger selected  
10101= PWM Generator 8 secondary trigger selected  
10100= PWM Generator 7 secondary trigger selected  
10011= PWM Generator 6 secondary trigger selected  
10010= PWM Generator 5 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
01110= PWM Generator 1 secondary trigger selected  
01101= PWM secondary Special Event Trigger selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger selected  
01010= PWM Generator 7 primary trigger selected  
01001= PWM Generator 6 primary trigger selected  
01000= PWM Generator 5 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00100= PWM Generator 1 primary trigger selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger selected  
00001= Individual software trigger selected  
00000= No conversion is enabled  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
DS70000591F-page 332  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-9: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN7  
PEND7  
SWTRG7  
TRGSRC74 TRGSRC73 TRGSRC72 TRGSRC71 TRGSRC70  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN6  
PEND6  
SWTRG6  
TRGSRC64 TRGSRC63 TRGSRC62 TRGSRC61 TRGSRC60  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
IRQEN7: Interrupt Request Enable 7 bit  
1= Enables IRQ generation when requested conversion of Channels AN15 and AN14 is completed  
0= IRQ is not generated  
PEND7: Pending Conversion Status 7 bit  
1= Conversion of Channels AN15 and AN14 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG7: Software Trigger 7 bit  
1= Starts conversion of AN15 and AN14 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND7 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 333  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-9: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3 (CONTINUED)  
bit 12-8  
TRGSRC7<4:0>: Trigger 7 Source Selection bits  
Selects trigger source for conversion of Analog Channels AN15 and 14.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger selected  
10101= PWM Generator 8 secondary trigger selected  
10100= PWM Generator 7 secondary trigger selected  
10011= PWM Generator 6 secondary trigger selected  
10010= PWM Generator 5 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
01110= PWM Generator 1 secondary trigger selected  
01101= PWM secondary Special Event Trigger selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger selected  
01010= PWM Generator 7 primary trigger selected  
01001= PWM Generator 6 primary trigger selected  
01000= PWM Generator 5 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00100= PWM Generator 1 primary trigger selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger selected  
00001= Individual software trigger selected  
00000= No conversion is enabled  
bit 7  
bit 6  
bit 5  
IRQEN6: Interrupt Request Enable 6 bit  
1= Enables IRQ generation when requested conversion of Channels AN13 and AN12 is completed  
0= IRQ is not generated  
PEND6: Pending Conversion Status 6 bit  
1= Conversion of Channels AN13 and AN12 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG6: Software Trigger 6 bit  
1= Starts conversion of AN13 and AN12 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND6 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
DS70000591F-page 334  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-9: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3 (CONTINUED)  
bit 4-0  
TRGSRC6<4:0>: Trigger 6 Source Selection bits  
Selects trigger source for conversion of Analog Channels AN13 and AN12.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger selected  
10101= PWM Generator 8 secondary trigger selected  
10100= PWM Generator 7 secondary trigger selected  
10011= PWM Generator 6 secondary trigger selected  
10010= PWM Generator 5 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
01110= PWM Generator 1 secondary trigger selected  
01101= PWM secondary Special Event Trigger selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger selected  
01010= PWM Generator 7 primary trigger selected  
01001= PWM Generator 6 primary trigger selected  
01000= PWM Generator 5 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00100= PWM Generator 1 primary trigger selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger selected  
00001= Individual software trigger selected  
00000= No conversion is enabled  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 335  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-10: ADCPC4: ADC CONVERT PAIR CONTROL REGISTER 4  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN9  
PEND9  
SWTRG9  
TRGSRC94 TRGSRC93 TRGSRC92 TRGSRC91 TRGSRC90  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN8  
PEND8  
SWTRG8  
TRGSRC84 TRGSRC83 TRGSRC82 TRGSRC81 TRGSRC80  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
IRQEN9: Interrupt Request Enable 9 bit  
1= Enable IRQ generation when requested conversion of channels AN19 and AN18 is completed  
0= IRQ is not generated  
PEND9: Pending Conversion Status 9 bit  
1= Conversion of channels AN19 and AN18 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG9: Software Trigger 9 bit  
1= Starts conversion of AN19 and AN18 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND9 bit is set.  
0= Conversion is not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
DS70000591F-page 336  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-10: ADCPC4: ADC CONVERT PAIR CONTROL REGISTER 4 (CONTINUED)  
bit 12-8  
TRGSRC9<4:0>: Trigger 9 Source Selection bits  
Selects trigger source for conversion of analog channels AN19 and AN18.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger selected  
10101= PWM Generator 8 secondary trigger selected  
10100= PWM Generator 7 secondary trigger selected  
10011= PWM Generator 6 secondary trigger selected  
10010= PWM Generator 5 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
01110= PWM Generator 1 secondary trigger selected  
01101= PWM secondary Special Event Trigger selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger selected  
01010= PWM Generator 7 primary trigger selected  
01001= PWM Generator 6 primary trigger selected  
01000= PWM Generator 5 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00100= PWM Generator 1 primary trigger selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger selected  
00001= Individual software trigger selected  
00000= No conversion is enabled  
bit 7  
bit 6  
bit 5  
IRQEN8: Interrupt Request Enable 8 bit  
1= Enables IRQ generation when requested conversion of Channels AN17 and AN16 is completed  
0= IRQ is not generated  
PEND8: Pending Conversion Status 8 bit  
1= Conversion of Channels AN17 and AN16 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG8: Software Trigger 8 bit  
1= Starts conversion of AN17 and AN16 (if selected by TRGSRC bits)(1)  
This bit is automatically cleared by hardware when the PEND8 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 337  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-10: ADCPC4: ADC CONVERT PAIR CONTROL REGISTER 4 (CONTINUED)  
bit 4-0  
TRGSRC8<4:0>: Trigger 8 Source Selection bits  
Selects trigger source for conversion of Analog Channels AN17 and AN16.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger selected  
10101= PWM Generator 8 secondary trigger selected  
10100= PWM Generator 7 secondary trigger selected  
10011= PWM Generator 6 secondary trigger selected  
10010= PWM Generator 5 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
01110= PWM Generator 1 secondary trigger selected  
01101= PWM secondary Special Event Trigger selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger selected  
01010= PWM Generator 7 primary trigger selected  
01001= PWM Generator 6 primary trigger selected  
01000= PWM Generator 5 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00100= PWM Generator 1 primary trigger selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger selected  
00001= Individual software trigger selected  
00000= No conversion is enabled  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
DS70000591F-page 338  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-11: ADCPC5: ADC CONVERT PAIR CONTROL REGISTER 5  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN11  
PEND11  
SWTRG11 TRGSRC114 TRGSRC113 TRGSRC112 TRGSRC111 TRGSRC110  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN10  
PEND10  
SWTRG10 TRGSRC104 TRGSRC103 TRGSRC102 TRGSRC101 TRGSRC100  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
IRQEN11: Interrupt Request Enable 11 bit  
1= Enables IRQ generation when requested conversion of Channels AN23 and AN22 is completed  
0= IRQ is not generated  
PEND11: Pending Conversion Status 11 bit  
1= Conversion of Channels AN23 and AN22 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG11: Software Trigger 11 bit  
1= Starts conversion of AN23 and AN22 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND11 bit is set.  
0= Conversion is not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 339  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-11: ADCPC5: ADC CONVERT PAIR CONTROL REGISTER 5 (CONTINUED)  
bit 12-8  
TRGSRC11<4:0>: Trigger 11 Source Selection bits  
Selects trigger source for conversion of analog channels AN23 and AN22.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger selected  
10101= PWM Generator 8 secondary trigger selected  
10100= PWM Generator 7 secondary trigger selected  
10011= PWM Generator 6 secondary trigger selected  
10010= PWM Generator 5 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
01110= PWM Generator 1 secondary trigger selected  
01101= PWM secondary Special Event Trigger selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger selected  
01010= PWM Generator 7 primary trigger selected  
01001= PWM Generator 6 primary trigger selected  
01000= PWM Generator 5 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00100= PWM Generator 1 primary trigger selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger selected  
00001= Individual software trigger selected  
00000= No conversion is enabled  
bit 7  
bit 6  
bit 5  
IRQEN10: Interrupt Request Enable 10 bit  
1= Enables IRQ generation when requested conversion of Channels AN21 and AN20 is completed  
0= IRQ is not generated  
PEND10: Pending Conversion Status 10 bit  
1= Conversion of Channels AN21 and AN20 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG10: Software Trigger 10 bit  
1= Starts conversion of AN21 and AN20 (if selected by the TRGSRCx<4:0> bits)(1)  
This bit is automatically cleared by hardware when the PEND10 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
DS70000591F-page 340  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-11: ADCPC5: ADC CONVERT PAIR CONTROL REGISTER 5 (CONTINUED)  
bit 4-0  
TRGSRC10<4:0>: Trigger 10 Source Selection bits  
Selects trigger source for conversion of analog channels AN21 and AN20.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger selected  
10101= PWM Generator 8 secondary trigger selected  
10100= PWM Generator 7 secondary trigger selected  
10011= PWM Generator 6 secondary trigger selected  
10010= PWM Generator 5 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
01110= PWM Generator 1 secondary trigger selected  
01101= PWM secondary Special Event Trigger selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger selected  
01010= PWM Generator 7 primary trigger selected  
01001= PWM Generator 6 primary trigger selected  
01000= PWM Generator 5 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00100= PWM Generator 1 primary trigger selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger selected  
00001= Individual software trigger selected  
00000= No conversion enabled  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 341  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-12: ADCPC6: ADC CONVERT PAIR CONTROL REGISTER 6(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN12  
PEND12  
SWTRG12 TRGSRC124 TRGSRC123 TRGSRC122 TRGSRC121 TRGSRC120  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
IRQEN12: Interrupt Request Enable 12 bit  
1= Enables IRQ generation when requested conversion of Channels AN25 and AN24 is completed  
0= IRQ is not generated  
bit 6  
bit 5  
PEND12: Pending Conversion Status 12 bit  
1= Conversion of Channels AN25 and AN24 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG12: Software Trigger 12 bit  
1= Starts conversion of AN25 (INTREF) and AN24 (EXTREF) if selected by the TRGSRCx<4:0> bits(1)  
This bit is automatically cleared by hardware when the PEND12 bit is set.  
0= Conversion has not started  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2: This register is not available on dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices.  
DS70000591F-page 342  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 22-12: ADCPC6: ADC CONVERT PAIR CONTROL REGISTER 6(2) (CONTINUED)  
bit 4-0  
TRGSRC12<4:0>: Trigger 12 Source Selection bits  
Selects trigger source for conversion of analog channels AN25 and AN24.  
11111= Timer2 period match  
11110= PWM Generator 8 current-limit ADC trigger  
11101= PWM Generator 7 current-limit ADC trigger  
11100= PWM Generator 6 current-limit ADC trigger  
11011= PWM Generator 5 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= PWM Generator 9 secondary trigger selected  
10101= PWM Generator 8 secondary trigger selected  
10100= PWM Generator 7 secondary trigger selected  
10011= PWM Generator 6 secondary trigger selected  
10010= PWM Generator 5 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
01110= PWM Generator 1 secondary trigger selected  
01101= PWM secondary Special Event Trigger selected  
01100= Timer1 period match  
01011= PWM Generator 8 primary trigger selected  
01010= PWM Generator 7 primary trigger selected  
01001= PWM Generator 6 primary trigger selected  
01000= PWM Generator 5 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00100= PWM Generator 1 primary trigger selected  
00011= PWM Special Event Trigger selected  
00010= Global software trigger selected  
00001= Individual software trigger selected  
00000= No conversion is enabled  
Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to ‘1’. If other  
conversions are in progress, the conversion is performed when the conversion resources are available.  
2: This register is not available on dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 343  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 344  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
• 10-Bit DAC for each Analog Comparator  
• Programmable Output Polarity  
• Interrupt Generation Capability  
23.0 HIGH-SPEED ANALOG  
COMPARATOR  
Note 1: This data sheet summarizes the features of  
the dsPIC33FJ32GS406/606/608/610  
• DACOUT Pin to provide DAC Output  
• DAC has Three Ranges of Operation:  
- AVDD/2  
- Internal Reference (INTREF)  
- External Reference (EXTREF)  
• ADC Sample-and-Convert Trigger Capability  
• Disable Capability reduces Power Consumption  
• Functional Support for PWM module:  
- PWM duty cycle control  
and dsPIC33FJ64GS406/606/608/610  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “High-Speed Analog  
Comparator”  
(DS70296)  
in  
the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
web site (www.microchip.com). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
- PWM period control  
- PWM Fault detect  
23.2 Module Description  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Figure 23-1 shows a functional block diagram of one  
analog comparator from the SMPS comparator  
module. The analog comparator provides high-speed  
operation with a typical delay of 20 ns. The comparator  
has a typical offset voltage of ±5 mV. The negative  
input of the comparator is always connected to the  
DAC circuit. The positive input of the comparator is  
connected to an analog multiplexer that selects the  
desired source pin.  
The dsPIC33F Switch Mode Power Supply (SMPS)  
comparator module monitors current and/or voltage  
transients that may be too fast for the CPU and ADC to  
capture.  
The analog comparator input pins are typically shared  
with pins used by the Analog-to-Digital Converter  
(ADC) module. Both the comparator and the ADC can  
use the same pins at the same time. This capability  
enables a user to measure an input voltage with the  
ADC and detect voltage transients with the  
comparator.  
23.1 Features Overview  
The SMPS comparator module offers the following  
major features:  
• 16 Selectable Comparator Inputs  
• Up to Four Analog Comparators  
FIGURE 23-1:  
HIGH-SPEED ANALOG COMPARATOR x MODULE BLOCK DIAGRAM  
INSEL<1:0>  
CMPxA*  
CMPxB*  
CMPxC*  
CMPxD*  
Trigger to PWM  
Status  
M
U
X
0
1
CMPx*  
Pulse  
Generator  
Glitch Filter  
DACOUT  
RANGE  
CMPPOL  
AVDD/2  
M
U
X
(1)  
Interrupt  
Request  
INTREF  
DAC  
AVSS  
10  
CMREF  
DACOE  
(1)  
EXTREF  
*
x = 1, 2, 3 and 4  
Note 1: Refer to Parameters DA01 and DA08 in the DAC Module Specifications (Table 27-43) for details.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 345  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
23.3 Module Applications  
23.5 Interaction with I/O Buffers  
This module provides a means for the SMPS dsPIC®  
DSC devices to monitor voltage and currents in a  
power conversion application. The ability to detect  
transient conditions and stimulate the dsPIC DSC  
processor and/or peripherals, without requiring the  
processor and ADC to constantly monitor voltages or  
currents, frees the dsPIC DSC to perform other tasks.  
If the comparator module is enabled and a pin has  
been selected as the source for the comparator, then  
the chosen I/O pad must disable the digital input buffer  
associated with the pad to prevent excessive currents  
in the digital buffer due to analog input voltages.  
23.6 Digital Logic  
The CMPCONx register (see Register 23-1) provides  
the control logic that configures the comparator  
module. The digital logic provides a glitch filter for the  
comparator output to mask transient signals in less  
than two instruction cycles. In Sleep or Idle mode, the  
glitch filter is bypassed to enable an asynchronous  
path from the comparator to the interrupt controller.  
This asynchronous path can be used to wake-up the  
processor from Sleep or Idle mode.  
The comparator module has a high-speed comparator  
and an associated 10-bit DAC that provides a pro-  
grammable reference voltage to the inverting input of  
the comparator. The polarity of the comparator output  
is user-programmable. The output of the module can  
be used in the following modes:  
• Generate an Interrupt  
• Trigger an ADC Sample-and-Convert Process  
• Truncate the PWM Signal (current limit)  
• Truncate the PWM Period (current minimum)  
• Disable the PWM Outputs (Fault latch)  
The comparator can be disabled while in Idle mode if  
the CMPSIDL bit is set. If a device has multiple  
comparators, if any CMPSIDL bit is set, then the entire  
group of comparators will be disabled while in Idle  
mode. This behavior reduces complexity in the design  
of the clock control logic for this module.  
The output of the comparator module may be used in  
multiple modes at the same time, such as: 1) generate  
an interrupt, 2) have the ADC take a sample and con-  
vert it, and 3) truncate the PWM output in response to  
a voltage being detected beyond its expected value.  
The digital logic also provides a one TCY width pulse  
generator for triggering the ADC and generating  
interrupt requests.  
The comparator module can also be used to wake-up  
the system from Sleep or Idle mode when the analog  
input voltage exceeds the programmed threshold  
voltage.  
The CMPDACx (see Register 23-2) register provides  
the digital input value to the reference DAC.  
If the module is disabled, the DAC and comparator are  
disabled to reduce power consumption.  
23.4 DAC  
23.7 Comparator Input Range  
The range of the DAC is controlled via an analog  
multiplexer that selects either AVDD/2, an internal ref-  
erence source, INTREF, or an external reference  
source, EXTREF. The full range of the DAC (AVDD/2)  
will typically be used when the chosen input source pin  
is shared with the ADC. The reduced range option  
(INTREF) will likely be used when monitoring current  
levels using a current sense resistor. Usually, the  
measured voltages in such applications are small  
(<1.25V); therefore the option of using a reduced  
reference range for the comparator extends the  
available DAC resolution in these applications. The  
use of an external reference enables the user to  
The comparator has  
a limitation for the input  
Common-Mode Range (CMR) of (AVDD – 1.5V),  
typical. This means that both inputs should not exceed  
this range. As long as one of the inputs is within the  
Common-Mode Range, the comparator output will be  
correct. However, any input exceeding the CMR  
limitation will cause the comparator input to be  
saturated.  
If both inputs exceed the CMR, the comparator output  
will be indeterminate.  
23.8 DAC Output Range  
connect to  
application.  
a reference that better suits their  
The DAC has a limitation for the maximum reference  
voltage input of (AVDD – 1.6) volts. An external  
reference voltage input should not exceed this value or  
the reference DAC output will become indeterminate.  
DACOUT, shown in Figure 23-1, can only be  
associated with a single comparator at a given time.  
Note:  
It should be ensured in software that  
multiple DACOE bits are not set. The  
output on the DACOUT pin will be indeter-  
minate if multiple comparators enable the  
DAC output.  
23.9 Comparator Registers  
The comparator module is controlled by the following  
registers:  
CMPCONx: Comparator Control x Register  
CMPDACx: Comparator DAC Control x Register  
DS70000591F-page 346  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 23-1: CMPCONx: COMPARATOR CONTROL x REGISTER  
R/W-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CMPON  
CMPSIDL  
DACOE  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
INSEL1  
INSEL0  
EXTREF  
CMPSTAT  
CMPPOL  
RANGE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CMPON: Comparator Operating Mode bit  
1= Comparator module is enabled  
0= Comparator module is disabled (reduces power consumption)  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CMPSIDL: Comparator Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode.  
0= Continues module operation in Idle mode  
If a device has multiple comparators, any CMPSIDL bit set to ‘1’ disables ALL comparators while in  
Idle mode.  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
DACOE: DAC Output Enable  
1= DAC analog voltage is output to the DACOUT pin(1)  
0= DAC analog voltage is not connected to the DACOUT pin  
bit 7-6  
bit 5  
INSEL<1:0>: Input Source Select for Comparator bits  
11= Selects CMPxD input pin  
10= Selects CMPxC input pin  
01= Selects CMPxB input pin  
00= Selects CMPxA input pin  
EXTREF: Enable External Reference bit  
1= External source provides reference to DAC (maximum DAC voltage determined by external  
voltage source)  
0= Internal reference sources provide reference to DAC (maximum DAC voltage determined by  
RANGE bit setting)  
bit 4  
bit 3  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
CMPSTAT: Current State of Comparator Output Including CMPPOL Selection bit  
Unimplemented: Read as ‘0’  
CMPPOL: Comparator Output Polarity Control bit  
1= Output is inverted  
0= Output is non-inverted  
bit 0  
RANGE: Selects DAC Output Voltage Range bit  
1= High Range: Max DAC Value = AVDD/2, 1.65V at 3.3V AVDD  
0= Low Range: Max DAC Value = INTREF  
Note 1: DACOUT can be associated only with a single comparator at any given time. The software must ensure  
that multiple comparators do not enable the DAC output by setting their respective DACOE bit.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 347  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
REGISTER 23-2: CMPDACx: COMPARATOR DAC CONTROL x REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CMREF<9:8>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CMREF<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
CMREF<9:0>: Comparator Reference Voltage Select bits  
1111111111= (CMREF * INTREF/1024) or (CMREF * (AVDD/2)/1024) volts depending on the  
RANGE bit or (CMREF * EXTREF/1024) if EXTREF is set  
0000000000= 0.0 volts  
DS70000591F-page 348  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
24.1 Configuration Bits  
24.0 SPECIAL FEATURES  
The  
dsPIC33FJ32GS406/606/608/610  
and  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
the “dsPIC33/PIC24 Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
“dsPIC33/PIC24 Family Reference Man-  
ual” sections. The information in this  
data sheet supersedes the information  
in the FRM.  
dsPIC33FJ64GS406/606/608/610 devices provide  
non-volatile memory implementations for device  
Configuration bits. Refer to “Device Configuration”  
(DS70194) in the “dsPIC33/PIC24 Family Reference  
Manual” for more information on this implementation.  
The Configuration bits can be programmed (read  
as ‘0’), or left unprogrammed (read as ‘1’), to select  
various device configurations. These bits are mapped  
starting at program memory location 0xF80000.  
The individual Configuration bit descriptions for the  
Configuration registers are shown in Table 24-2.  
Note that address, 0xF80000, is beyond the user pro-  
gram memory space. It belongs to the configuration  
memory space (0x800000-0xFFFFFF), which can only  
be accessed using Table Reads and Table Writes.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
To prevent inadvertent configuration changes during  
code execution, all programmable Configuration bits  
are write-once. After a bit is initially programmed during  
a power cycle, it cannot be written again. Changing a  
device configuration requires that power to the device  
be cycled.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices include  
several features intended to maximize application  
flexibility and reliability, and minimize cost through  
elimination of external components. These are:  
The device Configuration register map is shown in  
Table 24-1.  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection and CodeGuard™ Security  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Emulation  
• Brown-out Reset (BOR)  
TABLE 24-1: DEVICE CONFIGURATION REGISTER MAP  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0xF80000 FBS  
BSS<2:0>  
BWRP  
0xF80002 RESERVED  
0xF80004 FGS  
GSS<1:0>  
FNOSC<2:0>  
GWRP  
0xF80006 FOSCSEL  
0xF80008 FOSC  
0xF8000A FWDT  
0xF8000C FPOR  
0xF8000E FICD  
0xF80010 FCMP  
IESO  
FCKSM<1:0>  
OSCIOFNC POSCMD<1:0>  
WDTPOST<3:0>  
FWDTEN  
Reserved(1) Reserved(1)  
WINDIS  
ALTQIO  
WDTPRE  
ALTSS1  
JTAGEN  
CMPPOL1(2)  
FPWRT<2:0>  
ICS<1:0>  
HYST1<1:0>(2)  
CMPPOL0(2) HYST0<1:0>(2)  
Legend: — = unimplemented bit, read as ‘0’.  
Note 1: These bits are reserved for use by development tools and must be programmed as ‘1’.  
2: These bits are reserved on dsPIC33FJXXXGS406 devices and always read as ‘1’.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 349  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 24-2: dsPIC33F CONFIGURATION BITS DESCRIPTION  
Bit Field  
BWRP  
Register  
RTSP Effect  
Description  
FBS  
Immediate Boot Segment Program Flash Write Protection bit  
1= Boot segment can be written  
0= Boot segment is write-protected  
BSS<2:0>  
FBS  
Immediate Boot Segment Program Flash Code Protection Size bits  
X11= No boot program Flash segment  
Boot Space is 256 Instruction Words (except interrupt vectors):  
110= Standard security; boot program Flash segment ends at  
0x0003FE  
010= High security; boot program Flash segment ends at  
0x0003FE  
Boot Space is 768 Instruction Words (except interrupt vectors):  
101= Standard security; boot program Flash segment ends at  
0x0007FE  
001= High security; boot program Flash segment ends at  
0x0007FE  
Boot Space is 1792 Instruction Words (except interrupt vectors):  
100= Standard security; boot program Flash segment ends at  
0x000FFE  
000= High security; boot program Flash segment ends at  
0x000FFE  
GSS<1:0>  
FGS  
Immediate General Segment Code-Protect bits  
11= User program memory is not code-protected  
10= Standard security  
0x= High security  
GWRP  
IESO  
FGS  
Immediate General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
FOSCSEL  
Immediate Two-Speed Oscillator Start-up Enable bit  
1= Start-up device with FRC, then automatically switch to the user  
selected oscillator source when ready  
0= Start-up device with user selected oscillator source  
FNOSC<2:0>  
FOSCSEL If clock switch Initial Oscillator Source Selection bits  
is enabled,  
RTSP effect  
is on any  
111= Internal Fast RC (FRC) Oscillator with Postscaler  
110= Internal Fast RC (FRC) Oscillator with Divide-by-16  
101= LPRC Oscillator  
device Reset;  
otherwise,  
immediate  
100= Secondary (LP) Oscillator  
011= Primary (XT, HS, EC) Oscillator with PLL  
010= Primary (XT, HS, EC) Oscillator  
001= Internal Fast RC (FRC) Oscillator with PLL  
000= FRC Oscillator  
FCKSM<1:0>  
FOSC  
Immediate Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
OSCIOFNC  
FOSC  
FOSC  
Immediate OSC2 Pin Function bit (except in XT and HS modes)  
1= OSC2 is the clock output  
0= OSC2 is the general purpose digital I/O pin  
POSCMD<1:0>  
Immediate Primary Oscillator Mode Select bits  
11= Primary Oscillator is disabled  
10= HS Crystal Oscillator mode  
01= XT Crystal Oscillator mode  
00= EC (External Clock) mode  
DS70000591F-page 350  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 24-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
FWDTEN  
Register  
RTSP Effect  
Description  
FWDT  
Immediate Watchdog Timer Enable bit  
1= Watchdog Timer is always enabled (LPRC oscillator cannot be  
disabled; clearing the SWDTEN bit in the RCON register will  
have no effect)  
0= Watchdog Timer is enabled/disabled by user software (LPRC can  
be disabled by clearing the SWDTEN bit in the RCON register)  
WINDIS  
FWDT  
FWDT  
FWDT  
Immediate Watchdog Timer Window Enable bit  
1= Watchdog Timer in Non-Window mode  
0= Watchdog Timer in Window mode  
WDTPRE  
Immediate Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
WDTPOST<3:0>  
Immediate Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
0001= 1:2  
0000= 1:1  
FPWRT<2:0>  
FPOR  
Immediate Power-on Reset Timer Value Select bits  
111= PWRT = 128 ms  
110= PWRT = 64 ms  
101= PWRT = 32 ms  
100= PWRT = 16 ms  
011= PWRT = 8 ms  
010= PWRT = 4 ms  
001= PWRT = 2 ms  
000= PWRT = Disabled  
JTAGEN  
ICS<1:0>  
FICD  
FICD  
Immediate JTAG Enable bit  
1= JTAG is enabled  
0= JTAG is disabled  
Immediate ICD Communication Channel Select Enable bits  
11= Communicate on PGEC1 and PGED1  
10= Communicate on PGEC2 and PGED2  
01= Communicate on PGEC3 and PGED3  
00= Reserved, do not use  
ALTQIO  
FPOR  
FPOR  
FCMP  
FCMP  
Immediate Enable Alternate QEI1 Pin bit  
1= QEA1, QEB1 and INDX1 are selected as inputs to QEI1  
0= AQEA1, AQEB1 and AINDX1 are selected as inputs to QEI1  
ALTSS1  
Immediate Enable Alternate SS1 pin bit  
1= ASS1 is selected as the I/O pin for SPI1  
0= SS1 is selected as the I/O pin for SPI1  
CMPPOL0  
HYST0<1:0>  
Immediate Comparator Hysteresis Polarity bit (for even numbered comparators)  
1= Hysteresis is applied to falling edge  
0= Hysteresis is applied to rising edge  
Immediate Comparator Hysteresis Select bits  
11= 45 mV hysteresis  
10= 30 mV hysteresis  
01= 15 mV hysteresis  
00= No hysteresis  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 351  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 24-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Register  
RTSP Effect  
Description  
CMPPOL1  
FCMP  
Immediate Comparator Hysteresis Polarity bit (for odd numbered comparators)  
1= Hysteresis is applied to falling edge  
0= Hysteresis is applied to rising edge  
HYST1<1:0>  
FCMP  
Immediate Comparator Hysteresis Select bits  
11= 45 mV hysteresis  
10= 30 mV hysteresis  
01= 15 mV hysteresis  
00= No hysteresis  
DS70000591F-page 352  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
24.2 On-Chip Voltage Regulator  
24.3 Brown-out Reset (BOR)  
The  
dsPIC33FJ32GS406/606/608/610  
and  
The Brown-out Reset (BOR) module is based on an  
internal voltage reference circuit. The main purpose of  
the BOR module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (for  
example, missing portions of the AC cycle waveform  
due to bad power transmission lines, or voltage sags  
due to excessive current draw when a large inductive  
load is turned on).  
dsPIC33FJ64GS406/606/608/610 devices power  
their core digital logic at a nominal 2.5V. This can create  
a conflict for designs that are required to operate at a  
higher typical voltage, such as 3.3V. To simplify system  
design, all devices in the dsPIC33FJ32GS406/606/608/  
610 and dsPIC33FJ64GS406/606/608/610 families  
incorporate an on-chip regulator that allows the device to  
run its core logic from VDD.  
The regulator provides power to the core from the other  
VDD pins. When the regulator is enabled, a low-ESR  
(less than 5 ohms) capacitor (such as tantalum or  
ceramic) must be connected to the VCAP pin  
(Figure 24-1). This helps to maintain the stability of the  
regulator. The recommended value for the filter  
capacitor is provided in Table 27-13, located in  
Section 27.1 “DC Characteristics”.  
A BOR generates a Reset pulse, which resets the  
device. The BOR selects the clock source based on the  
device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>).  
If an oscillator mode is selected, the BOR activates the  
Oscillator Start-up Timer (OST). The system clock is  
held until OST expires. If the PLL is used, the clock is  
held until the LOCK bit (OSCCON<5>) is ‘1’.  
Note:  
It is important for the low-ESR capacitor to  
be placed as close as possible to the VCAP  
pin.  
Concurrently, the Power-up Timer (PWRT) Time-out  
(TPWRT) is applied before the internal Reset is  
released. If TPWRT = 0and a crystal oscillator is being  
used, then a nominal delay of TFSCM = 100 is applied.  
The total delay in this case is TFSCM.  
On a POR, it takes approximately 20 s for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
The BOR status bit (RCON<1>) is set to indicate that a  
BOR has occurred. The BOR circuit continues to  
operate while in Sleep or Idle modes and resets the  
device should VDD fall below the BOR threshold  
voltage.  
FIGURE 24-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
REGULATOR(1,2,3)  
24.4 Watchdog Timer (WDT)  
For  
dsPIC33FJ32GS406/606/608/610  
and  
3.3V  
dsPIC33FJ64GS406/606/608/610 devices, the WDT  
is driven by the LPRC oscillator. When the WDT is  
enabled, the clock source is also enabled.  
dsPIC33F  
VDD  
24.4.1  
PRESCALER/POSTSCALER  
VCAP  
VSS  
The nominal WDT clock source from LPRC is  
32.767 kHz. This feeds a prescaler that can be config-  
ured for either 5-bit (divide-by-32) or 7-bit (divide-by-128)  
operation. The prescaler is set by the WDTPRE Config-  
uration bit. With a 32.767 kHz input, the prescaler yields  
a nominal WDT Time-out (TWDT) period of 1 ms in 5-bit  
mode or 4 ms in 7-bit mode.  
CEFC  
Note 1: These are typical operating voltages. Refer  
to Table 27-13 located in Section 27.1 “DC  
Characteristics” for the full operating  
ranges of VDD.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>), which allow the  
selection of 16 settings, from 1:1 to 1:32,768. Using the  
prescaler and postscaler, time-out periods, ranging  
from 1 ms to 131 seconds, can be achieved.  
2: It is important for the low-ESR capacitor to  
be placed as close as possible to the VCAP  
pin.  
3: Typical VCAP pin voltage = 2.5V when  
VDD VDDMIN.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 353  
 
 
 
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
24.4.3  
ENABLING WDT  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register.  
When the FWDTEN Configuration bit is set, the WDT is  
always enabled.  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSCx bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN  
control bit is cleared on any device Reset. The software  
WDT option allows the user application to enable the  
WDT for critical code segments and disable the WDT  
during non-critical segments for maximum power  
savings.  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
Note:  
If the WINDIS bit (FWDT<6>) is cleared,  
the CLRWDTinstruction should be executed  
by the application software only during the  
last 1/4 of the WDT period. This CLRWDT  
window can be determined by using a timer.  
If a CLRWDTinstruction is executed before  
this window, a WDT Reset occurs.  
24.4.2  
SLEEP AND IDLE MODES  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the WDT will wake the device and code execution will  
continue from where the PWRSAV instruction was  
executed. The corresponding SLEEP or IDLE bits  
(RCON<3:2>) will need to be cleared in software after  
the device wakes up.  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
FIGURE 24-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
Sleep/Idle  
WDTPOST<3:0>  
WDTPRE  
SWDTEN  
FWDTEN  
WDT  
Wake-up  
1
RS  
RS  
Prescaler  
Postscaler  
(Divide-by-N2)  
(Divide-by-N1)  
LPRC Clock  
WDT  
Reset  
0
WDT Window Select  
WINDIS  
CLRWDTInstruction  
DS70000591F-page 354  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
24.5 JTAG Interface  
24.7 In-Circuit Debugger  
The  
dsPIC33FJ32GS406/606/608/610  
and  
When MPLAB® ICD 3 is selected as a debugger, the in-  
circuit debugging functionality is enabled. This function  
allows simple debugging functions when used with  
MPLAB X IDE. Debugging functionality is controlled  
through the EMUCx (Emulation/Debug Clock) and  
EMUDx (Emulation/Debug Data) pin functions.  
dsPIC33FJ64GS406/606/608/610 devices implement  
a JTAG interface, which supports boundary scan  
device testing. Detailed information on this interface  
will be provided in future revisions of the document.  
24.6  
In-Circuit Serial Programming  
Any of the three pairs of debugging clock/data pins can  
be used:  
The  
dsPIC33FJ32GS406/606/608/610  
and  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
dsPIC33FJ64GS406/606/608/610  
family  
Digital  
Signal Controllers (DSCs) can be serially programmed  
while in the end application circuit. This is done with  
two lines for clock and data and three other lines for  
power, ground and the programming sequence. Serial  
programming allows customers to manufacture boards  
with unprogrammed devices and then program the  
Digital Signal Controller just before shipping the  
product. Serial programming also allows the most  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS, PGECx, PGEDx and the EMUDx/  
EMUCx pin pair. In addition, when the feature is  
enabled, some of the resources are not available for  
general use. These resources include the first 80 bytes  
of data RAM and two I/O pins.  
recent firmware or  
a
custom firmware to be  
programmed. Refer to the “dsPIC33F/PIC24H Flash  
Programming Specification” (DS70152) for details  
about In-Circuit Serial Programming™ (ICSP™).  
Any of the three pairs of programming clock/data pins  
can be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 355  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
The code protection features are controlled by the  
Configuration registers: FBS and FGS.  
24.8 Code Protection and  
CodeGuard™ Security  
Secure segment and RAM protection is not imple-  
mented in dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 devices.  
The  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices offer the  
intermediate implementation of CodeGuard™ Security.  
CodeGuard Security enables multiple parties to securely  
share resources (memory, interrupts and peripherals) on  
a single chip. This feature helps protect individual  
Intellectual Property in collaborative system designs.  
Note:  
Refer to “CodeGuard™ Security”  
(DS70199) in the “dsPIC33/PIC24 Family  
Reference Manual” for further information  
on usage, configuration and operation of  
CodeGuard Security.  
When coupled with software encryption libraries,  
CodeGuard Security can be used to securely update  
Flash even when multiple IPs reside on a single chip.  
TABLE 24-3: CODE FLASH SECURITY SEGMENT SIZES FOR 64-KBYTE DEVICES  
BSS<2:0> = x11, 0K  
BSS<2:0> = x10, 1K  
BSS<2:0> = x01, 4K  
BSS<2:0> = x00, 8K  
000000h  
VS = 256 IW  
000000h  
VS = 256 IW  
000000h  
VS = 256 IW  
000000h  
VS = 256 IW  
0001FEh  
0001FEh  
0001FEh  
0001FEh  
000200h  
0007FEh  
000200h  
000200h  
000200h  
BS = 768 IW  
BS = 3840 IW  
BS = 7936 IW  
000800h  
001FFEh  
002000h  
003FFEh  
004000h  
GS = 21760 IW  
00ABFEh  
GS = 20992 IW  
00ABFEh  
GS = 17920 IW  
00ABFEh  
GS = 13824 IW  
00ABFEh  
TABLE 24-4: CODE FLASH SECURITY SEGMENT SIZES FOR 32-KBYTE DEVICES  
BSS<2:0> = x11, 0K  
BSS<2:0> = x10, 1K  
BSS<2:0> = x01, 4K  
BSS<2:0> = x00, 8K  
000000h  
VS = 256 IW  
000000h  
000000h  
VS = 256 IW  
000000h  
VS = 256 IW  
VS = 256 IW  
0001FEh  
0001FEh  
0001FEh  
0001FEh  
000200h  
000200h  
000200h  
000200h  
BS = 768 IW  
BS = 3840 IW  
BS = 7936 IW  
0007FEh  
000800h  
001FFEh  
002000h  
003FFEh  
004000h  
0057FEh  
GS = 11008 IW  
0057FEh  
GS = 10240 IW  
0057FEh  
GS = 7168 IW  
0057FEh  
GS = 3072 IW  
00ABFEh  
00ABFEh  
00ABFEh  
00ABFEh  
DS70000591F-page 356  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
25.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
devices. It is not intended to be  
a
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33/PIC24 Family  
Reference Manual”. Please see the  
Microchip web site (www.microchip.com) for  
the latest “dsPIC33F/PIC24H Family  
The literal instructions that involve data movement can  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by ‘k’)  
Reference Manual”  
sections. The  
information in this data sheet supersedes  
the information in the FRM.  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The dsPIC33F instruction set is identical to that of the  
dsPIC30F.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
• The second source operand, which is a literal  
value  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions can use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The accumulator (A or B) to be used (required  
operand)  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write-back destination  
• DSP operations  
• Control operations  
Table 25-1 shows the general symbols used in  
describing the instructions.  
The other DSP instructions do not involve any  
multiplication and can include:  
The dsPIC33F instruction set summary in Table 25-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
• The accumulator to be used (required)  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The amount of shift specified by a W register,  
‘Wn’, or a literal value  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
The control instructions can use some of the following  
operands:  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
• A program memory address  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
• The mode of the Table Read and Table Write  
instructions  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value, ‘f’  
• The destination, which could be either the file  
register, ‘f’, or the W0 register, which is denoted  
as ‘WREG’  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 357  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Most instructions are  
a
single word. Certain  
(unconditional/computed branch), indirect CALL/GOTO,  
all Table Reads and Writes, and RETURN/RETFIE  
instructions, which are single-word instructions but take  
two or three cycles. Certain instructions that involve  
skipping over the subsequent instruction require either  
two or three cycles if the skip is performed, depending  
on whether the instruction being skipped is a single-word  
or two-word instruction. Moreover, double-word moves  
require two cycles.  
double-word instructions are designed to provide all the  
required information in these 48 bits. In the second  
word, the 8 MSbs are ‘0’s. If this second word is  
executed as an instruction (by itself), it will execute as  
a NOP.  
The double-word instructions execute in two instruction  
cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
Program Counter is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles with the additional instruction cycle(s)  
executed as a NOP. Notable exceptions are the BRA  
Note:  
For more details on the instruction set,  
refer to the “16-bit MCU and DSC  
Programmer’s  
Reference  
Manual”  
(DS70157).  
TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means “literal defined by text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator Write-Back Destination Address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word-addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSb must be ‘0’  
Field does not require an entry, can be blank  
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor Working register pair (Direct Addressing)  
DS70000591F-page 358  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wm*Wm  
Wm*Wn  
Multiplicand and Multiplier Working register pair for Square instructions   
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Multiplicand and Multiplier Working register pair for DSP instructions   
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 Working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 Destination Working registers {W0...W15}  
One of 16 Source Working registers {W0...W15}  
W0 (Working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register   
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X Data Space Prefetch Address register for DSP instructions  
{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,  
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,  
[W9 + W12], none}  
Wxd  
Wy  
X Data Space Prefetch Destination register for DSP instructions {W4...W7}  
Y Data Space Prefetch Address register for DSP instructions  
{[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,  
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,  
[W11 + W12], none}  
Wyd  
Y Data Space Prefetch Destination register for DSP instructions {W4...W7}  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 359  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 25-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-Bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
AND  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
Wd = Wb + lit5 + (C)  
1
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
Wd = Wb .AND. Ws  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater Than or Equal  
Branch if Unsigned Greater Than or Equal  
Branch if Greater Than  
Branch if Unsigned Greater Than  
Branch if Less Than or Equal  
Branch if Unsigned Less Than or Equal  
Branch if Less Than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less Than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A Overflow  
Branch if Accumulator B Overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A Saturated  
Branch if Accumulator B Saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
1
None  
Ws,Wb  
1
None  
DS70000591F-page 360  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
9
BTG  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
Bit Toggle f  
1
1
1
1
1
None  
None  
None  
BTG  
Bit Toggle Ws  
10  
11  
12  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
BTSC  
BTSS  
BTSS  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
1
1
1
1
None  
None  
None  
(2 or 3)  
BTSS  
BTST  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
Bit Test Ws to Z  
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Z
C
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
C
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
None  
Wn  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
WREG = 0x0000  
Ws = 0x0000  
None  
CLR  
Ws  
None  
CLR  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
CLRWDT  
COM  
f
COM  
COM  
CP  
f,WREG  
Ws,Wd  
f
WREG = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if   
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = Decimal Adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f – 1  
DEC  
Wd = Ws – 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f – 2  
Wd = Ws – 2  
Disable Interrupts for k Instruction Cycles  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 361  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-Bit Integer Divide  
Signed 32/16-Bit Integer Divide  
Unsigned 16/16-Bit Integer Divide  
Unsigned 32/16-Bit Integer Divide  
Signed 16/16-Bit Fractional Divide  
Do code to PC + Expr, lit14 + 1 times  
Do code to PC + Expr, (Wn) + 1 times  
Euclidean Distance (no accumulate)  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Wm,Wn  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to Address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to Indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
None  
None  
None  
None  
None  
None  
None  
None  
None  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-Bit Literal to Wn  
Move 8-Bit Literal to Wn  
Move Wn to f  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Prefetch and Store Accumulator  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70000591F-page 362  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
MPY  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply Wm by Wn to Accumulator  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square Wm to Accumulator  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd -(Multiply Wm by Wn) to Accumulator  
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
OA,OB,OAB,  
SA,SB,SAB  
49  
50  
MPY.N  
MSC  
MPY.N  
MSC  
1
1
1
1
None  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, Multiply and Subtract from Accumulator  
AWB  
OA,OB,OAB,  
SA,SB,SAB  
51  
MUL  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns + 1) to Top-of-Stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
2
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software Device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
#lit10,Wn  
Return with Literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
2009-2014 Microchip Technology Inc.  
DS70000591F-page 363  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
RRNC  
SAC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = Sign-Extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUBB  
SUBB  
f
f = f – WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
Wn = Wn – lit10  
Wd = Wb – Ws  
Wd = Wb – lit5  
73  
SUBB  
f = f – WREG – (C)  
WREG = f – WREG – (C)  
f,WREG  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
74  
75  
SUBR  
f,WREG  
WREG = WREG – f  
Wd = Ws – Wb  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wd = lit5 – Wb  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
f
f = WREG – f – (C)  
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
Wb,Ws,Wd  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Wb,#lit5,Wd  
Wn  
Wd = lit5 – Wb – (C)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
None  
None  
None  
None  
None  
None  
None  
N,Z  
76  
SWAP  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Wn  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
Wd = Wb .XOR. Ws  
N,Z  
XOR  
Wd = Wb .XOR. lit5  
N,Z  
83  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C,Z,N  
DS70000591F-page 364  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
26.1 MPLAB X Integrated Development  
Environment Software  
26.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers (MCU) and dsPIC® digital  
signal controllers (DSC) are supported with a full range  
of software and hardware development tools:  
The MPLAB X IDE is a single, unified graphical user  
interface for Microchip and third-party software, and  
hardware development tool that runs on Windows®,  
Linux and Mac OS® X. Based on the NetBeans IDE,  
MPLAB X IDE is an entirely new IDE with a host of free  
software components and plug-ins for high-  
performance application development and debugging.  
Moving between tools and upgrading from software  
simulators to hardware debugging and programming  
tools is simple with the seamless user interface.  
• Integrated Development Environment  
- MPLAB® X IDE Software  
• Compilers/Assemblers/Linkers  
- MPLAB XC Compiler  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
With complete project management, visual call graphs,  
a configurable watch window and a feature-rich editor  
that includes code completion and context menus,  
MPLAB X IDE is flexible and friendly enough for new  
users. With the ability to support multiple tools on  
multiple projects with simultaneous debugging, MPLAB  
X IDE is also suitable for the needs of experienced  
users.  
• Simulators  
- MPLAB X SIM Software Simulator  
• Emulators  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers/Programmers  
- MPLAB ICD 3  
Feature-Rich Editor:  
- PICkit™ 3  
• Color syntax highlighting  
• Device Programmers  
- MPLAB PM3 Device Programmer  
• Smart code completion makes suggestions and  
provides hints as you type  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits and Starter Kits  
• Automatic code formatting based on user-defined  
rules  
• Third-party development tools  
• Live parsing  
User-Friendly, Customizable Interface:  
• Fully customizable interface: toolbars, toolbar  
buttons, windows, window placement, etc.  
• Call graph window  
Project-Based Workspaces:  
• Multiple projects  
• Multiple tools  
• Multiple configurations  
• Simultaneous debugging sessions  
File History and Bug Tracking:  
• Local file history feature  
• Built-in support for Bugzilla issue tracker  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 365  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
26.2 MPLAB XC Compilers  
26.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB XC Compilers are complete ANSI C  
compilers for all of Microchip’s 8, 16 and 32-bit MCU  
and DSC devices. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use. MPLAB XC Compilers run on Windows,  
Linux or MAC OS X.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
debug information that is optimized to the MPLAB X  
IDE.  
The free MPLAB XC Compiler editions support all  
devices and commands, with no time or memory  
restrictions, and offer sufficient code optimization for  
most applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
MPLAB XC Compilers include an assembler, linker and  
utilities. The assembler generates relocatable object  
files that can then be archived or linked with other  
relocatable object files and archives to create an exe-  
cutable file. MPLAB XC Compiler uses the assembler  
to produce its object file. Notable features of the  
assembler include:  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
26.5 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command-line interface  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC DSC devices. MPLAB XC Compiler  
uses the assembler to produce its object file. The  
assembler generates relocatable object files that can  
then be archived or linked with other relocatable object  
files and archives to create an executable file. Notable  
features of the assembler include:  
• Rich directive set  
• Flexible macro language  
• MPLAB X IDE compatibility  
26.3 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command-line interface  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code, and COFF files for  
debugging.  
• Rich directive set  
• Flexible macro language  
• MPLAB X IDE compatibility  
The MPASM Assembler features include:  
• Integration into MPLAB X IDE projects  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multipurpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS7000591F-page 366  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
26.6 MPLAB X SIM Software Simulator  
26.8 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB X SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB ICD 3 In-Circuit Debugger System is  
Microchip’s most cost-effective, high-speed hardware  
debugger/programmer for Microchip Flash DSC and  
MCU devices. It debugs and programs PIC Flash  
microcontrollers and dsPIC DSCs with the powerful,  
yet easy-to-use graphical user interface of the MPLAB  
IDE.  
The MPLAB ICD 3 In-Circuit Debugger probe is  
connected to the design engineer’s PC using a high-  
speed USB 2.0 interface and is connected to the target  
with a connector compatible with the MPLAB ICD 2 or  
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3  
supports all MPLAB ICD 2 headers.  
The MPLAB X SIM Software Simulator fully supports  
symbolic debugging using the MPLAB XC Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
26.9 PICkit 3 In-Circuit Debugger/  
Programmer  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC and dsPIC Flash microcontrollers at a most  
affordable price point using the powerful graphical user  
interface of the MPLAB IDE. The MPLAB PICkit 3 is  
connected to the design engineer’s PC using a full-  
speed USB interface and can be connected to the  
target via a Microchip debug (RJ-11) connector (com-  
patible with MPLAB ICD 3 and MPLAB REAL ICE). The  
connector uses two device I/O pins and the Reset line  
to implement in-circuit debugging and In-Circuit Serial  
Programming™ (ICSP™).  
26.7 MPLAB REAL ICE In-Circuit  
Emulator System  
The MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs all 8, 16 and 32-bit MCU, and DSC devices  
with the easy-to-use, powerful graphical user interface of  
the MPLAB X IDE.  
The emulator is connected to the design engineer’s  
PC using a high-speed USB 2.0 interface and is  
connected to the target with either a connector  
compatible with in-circuit debugger systems (RJ-11)  
or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
26.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages, and a mod-  
ular, detachable socket assembly to support various  
package types. The ICSP cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices, and incorporates an MMC card for file  
storage and data applications.  
The emulator is field upgradable through future firmware  
downloads in MPLAB X IDE. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, logic  
probes, a ruggedized probe interface and long (up to  
three meters) interconnection cables.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 367  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
26.11 Demonstration/Development  
Boards, Evaluation Kits and  
Starter Kits  
26.12 Third-Party Development Tools  
Microchip also offers a great collection of tools from  
third-party vendors. These tools are carefully selected  
to offer good value and unique functionality.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully  
functional systems. Most boards include prototyping  
areas for adding custom circuitry and provide applica-  
tion firmware and source code for examination and  
modification.  
• Device Programmers and Gang Programmers  
from companies, such as SoftLog and CCS  
• Software Tools from companies, such as Gimpel  
and Trace Systems  
• Protocol Analyzers from companies, such as  
Saleae and Total Phase  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
• Demonstration Boards from companies, such as  
MikroElektronika, Digilent® and Olimex  
• Embedded Ethernet Solutions from companies,  
such as EZ Web Lynx, WIZnet and IPLogika®  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™  
demonstration/development board series of circuits,  
Microchip has a line of evaluation kits and demonstra-  
®
tion software for analog filter design, KEELOQ security  
ICs, CAN, IrDA®, PowerSmart battery management,  
SEEVAL® evaluation system, Sigma-Delta ADC, flow  
rate sensing, plus many more.  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS7000591F-page 368  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
27.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
electrical characteristics. Additional information will be provided in future revisions of this document as it becomes  
available.  
Absolute maximum ratings for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family are  
listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional  
operation of the device at these or any other conditions above the parameters indicated in the operation listings of this  
specification is not implied.  
(1)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(3) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(3) .................................................. -0.3V to +5.6V  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(3)......................................... -0.3V to (VDD + 0.3V)  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum current sourced/sunk by any 4x I/O pin..................................................................................................15 mA  
Maximum current sourced/sunk by any 8x I/O pin..................................................................................................25 mA  
Maximum current sourced/sunk by any 16x I/O pin................................................................................................45 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of the device maximum power dissipation (see Table 27-2).  
3: See the Pin Diagramssection for 5V tolerant pins.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 369  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
27.1 DC Characteristics  
TABLE 27-1: OPERATING MIPS vs. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
Characteristic  
dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610  
3.0-3.6V(1)  
3.0-3.6V(1)  
-40°C to +85°C  
-40°C to +125°C  
40  
40  
Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. See  
Parameter BO10 in Table 27-11 for the BOR values.  
TABLE 27-2: THERMAL OPERATING CONDITIONS  
Rating  
Industrial Temperature Devices  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Extended Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+140  
+125  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 27-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)  
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)  
Package Thermal Resistance, 80-Pin TQFP (12x12x1 mm)  
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)  
Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm)  
JA  
JA  
JA  
JA  
JA  
28  
39  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
53.1  
43  
43  
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
DS70000591F-page 370  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
Operating Voltage  
DC10  
DC12  
DC16  
VDD  
Supply Voltage(4)  
RAM Data Retention Voltage(2)  
3.0  
1.8  
3.6  
V
V
V
Industrial and extended  
VDR  
VPOR  
VDD Start Voltage  
to Ensure Internal  
VSS  
Power-on Reset Signal  
DC17  
SVDD  
VDD Rise Rate(3)  
0.03  
V/ms 0-3.0V in 0.1s  
to Ensure Internal  
Power-on Reset Signal  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: This is the limit to which VDD may be lowered without losing RAM data.  
3: These parameters are characterized but not tested in manufacturing.  
4: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. See  
Parameter BO10 in Table 27-11 for the BOR values.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 371  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(2)  
DC20d  
DC20a  
DC20b  
DC20c  
DC21d  
DC21a  
DC21b  
DC21c  
DC22d  
DC22a  
DC22b  
DC22c  
DC23d  
DC23a  
DC23b  
DC23c  
DC24d  
DC24a  
DC24b  
DC24c  
DC25d  
DC25a  
DC25b  
DC25c  
21  
21  
21  
22  
28  
28  
28  
29  
35  
35  
35  
36  
49  
49  
49  
50  
66  
66  
66  
67  
153  
154  
155  
156  
30  
30  
30  
30  
40  
40  
40  
40  
45  
45  
45  
45  
60  
60  
60  
60  
75  
75  
75  
75  
170  
170  
170  
170  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
10 MIPS  
(See Note 2)  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
+25°C  
+85°C  
+125°C  
-40°C  
16 MIPS  
(See Notes 2 and 3)  
+25°C  
+85°C  
+125°C  
-40°C  
20 MIPS  
(See Notes 2 and 3)  
+25°C  
+85°C  
+125°C  
-40°C  
30 MIPS  
(See Notes 2 and 3)  
+25°C  
+85°C  
+125°C  
-40°C  
40 MIPS  
(See Note 2)  
40 MIPS  
+25°C  
+85°C  
+125°C  
(See Notes 2 and 3), except PWM is  
operating at maximum speed  
(PTCON2 = 0x0000)  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDD measurements are as follows:  
• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from  
rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are all ‘0’s)  
• CPU executing while(1)statement  
• JTAG disabled  
3: These parameters are characterized but not tested in manufacturing.  
DS70000591F-page 372  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(2)  
DC26d  
DC26a  
DC26b  
DC26c  
DC27d  
DC27a  
DC27b  
DC27c  
DC28d  
DC28a  
DC28b  
DC28c  
122  
123  
124  
125  
107  
108  
109  
110  
88  
135  
135  
135  
135  
120  
120  
120  
120  
100  
100  
100  
100  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
40 MIPS  
(See Notes 2 and 3), except PWM is  
operating at 1/2 speed  
3.3V  
3.3V  
3.3V  
(PTCON2 = 0x0001))  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
(See Notes 2 and 3), except PWM is  
operating at 1/4 speed  
(PTCON2 = 0x0002))  
40 MIPS  
89  
+25°C  
+85°C  
+125°C  
(See Notes 2 and 3), except PWM is  
operating at 1/8 speed  
89  
(PTCON2 = 0x0003)  
89  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDD measurements are as follows:  
• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from  
rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are all ‘0’s)  
• CPU executing while(1)statement  
• JTAG disabled  
3: These parameters are characterized but not tested in manufacturing.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 373  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Idle Current (IIDLE): Core Off, Clock On Base Current(2)  
DC40d  
DC40a  
DC40b  
DC40c  
DC41d  
DC41a  
DC41b  
DC41c  
DC42d  
DC42a  
DC42b  
DC42c  
DC43d  
DC43a  
DC43b  
DC43c  
DC44d  
DC44a  
DC44b  
DC44c  
8
15  
15  
15  
15  
20  
20  
20  
20  
25  
25  
25  
25  
30  
30  
30  
30  
40  
40  
40  
40  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
9
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS  
16 MIPS(3)  
20 MIPS(3)  
30 MIPS(3)  
40 MIPS  
9
10  
11  
11  
11  
12  
14  
14  
14  
15  
20  
20  
21  
22  
29  
29  
30  
31  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: Base Idle current (IIDLE) is measured as follows:  
CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with  
external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
CLKO is configured as an I/O input pin in the Configuration Word  
All I/O pins are configured as inputs and pulled to VSS  
MCLR = VDD, WDT and FSCM are disabled  
No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are  
all ‘0’s)  
JTAG is disabled  
3: These parameters are characterized but not tested in manufacturing.  
DS70000591F-page 374  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Power-Down Current (IPD)(2,4)  
DC60d  
DC60a  
DC60b  
DC60c  
DC61d  
DC61a  
DC61b  
DC61c  
50  
50  
200  
600  
8
500  
500  
500  
1000  
13  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
Base Power-Down Current  
10  
12  
13  
15  
+25°C  
+85°C  
+125°C  
(3)  
Watchdog Timer Current: IWDT  
20  
25  
Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.  
2: IPD (Sleep) current is measured as follows:  
CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with  
external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
CLKO is configured as an I/O input pin in the Configuration Word  
All I/O pins are configured as inputs and pulled to VSS  
MCLR = VDD, WDT and FSCM are disabled  
All peripheral modules are disabled (all PMDx bits are all ‘1’s)  
The VREGS bit (RCON<8>) = 0(i.e., core regulator is set to standby while the device is in Sleep  
mode)  
JTAG disabled  
3: The current is the additional current consumed when the WDT module is enabled. This current should  
be added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 375  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Doze  
Ratio  
Parameter No.  
Typical(1)  
Max  
Units  
Conditions  
Doze Current (IDOZE)(2)  
DC73a  
45  
40  
40  
43  
38  
38  
42  
37  
37  
41  
36  
36  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DC73f  
-40°C  
+25°C  
+85°C  
+125°C  
3.3V  
40 MIPS  
40 MIPS  
40 MIPS  
40 MIPS  
DC73g  
DC70a  
DC70f  
1:64  
1:128  
1:2  
3.3V  
3.3V  
3.3V  
DC70g  
DC71a  
DC71f  
1:64  
1:128  
1:2  
DC71g  
DC72a  
DC72f  
1:64  
1:128  
DC72g  
Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.  
2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDOZE measurements are as follows:  
Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square  
wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
CLKO is configured as an I/O input pin in the Configuration Word  
All I/O pins are configured as inputs and pulled to VSS  
MCLR = VDD, WDT and FSCM are disabled  
CPU, SRAM, program memory and data memory are operational  
No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are  
all ‘0’s)  
CPU executing while(1)statement  
JTAG disabled  
DS70000591F-page 376  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Input Low Voltage  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
DI10  
I/O Pins  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
DI15  
DI16  
DI18  
DI19  
MCLR  
I/O Pins with OSC1 or SOSCI  
I/O Pins with SDAx, SCLx  
I/O Pins with SDAx, SCLx  
Input High Voltage  
SMBus disabled  
SMBus enabled  
VIH  
DI20  
DI21  
I/O Pins Non 5V Tolerant(4)  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
I/O Pins 5V Tolerant(4)  
DI28  
DI29  
SDAx, SCLx  
SDAx, SCLx  
0.7 VDD  
2.1  
5.5  
5.5  
V
V
SMBus disabled  
SMBus enabled  
ICNPU  
IIL  
CNx Pull-up Current  
DI30  
DI50  
250  
A VDD = 3.3V, VPIN = VSS  
Input Leakage Current(2,3,4)  
I/O Pins with:  
4x Driver Pins: RA0-RA7, RA14,  
RA15, RB0-RB15(10), RC1-RC4,  
RC12-RC14, RD0-RD2,  
±2  
A VSS VPIN VDD,  
Pin at high-impedance  
RD8-RD12, RD14, RD15, RE8,  
RE9, RF0-RF8, RF12, RF13,  
RG0-RG3, RG6-RG9, RG14, RG15  
8x Driver Pins: RC15  
±4  
±8  
A VSS VPIN VDD,  
Pin at high-impedance  
16x Driver Pins: RA9, RA10,  
RD3-RD7, RD13, RE0-RE7,  
RG12, RG13  
A VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSC1  
±2  
±2  
A VSS VPIN VDD  
A VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See the Pin Diagramssection for the list of 5V tolerant I/O pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: VIH source > (VDD + 0.3) for non-5V tolerant pins only.  
7: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any  
“positive” input injection current.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted,  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
10: RB11 has also been tested up to ±8 µA test limits.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 377  
 
 
 
 
 
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
IICL  
Input Low Injection Current  
DI60a  
0
-5(3,5,8) mA All pins except VDD, VSS,  
AVDD, AVSS, MCLR,  
VCAP, SOSCI, SOSCO  
and RB11  
IICH  
Input High Injection Current  
DI60b  
DI60c  
0
+5(6,7,8) mA All pins except VDD, VSS,  
AVDD, AVSS, MCLR,  
VCAP, SOSCI, SOSCO,  
RB11 and digital 5V  
tolerant designated  
pins(3)  
IICT  
Total Input Injection Current  
(sum of all I/O and control pins)  
-20(9)  
+20(9)  
mA Absolute instantaneous  
sum of all ± input  
injection currents from all  
I/O pins  
(| IICL + | IICH |)  IICT  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See the Pin Diagramssection for the list of 5V tolerant I/O pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: VIH source > (VDD + 0.3) for non-5V tolerant pins only.  
7: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any  
“positive” input injection current.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted,  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
10: RB11 has also been tested up to ±8 µA test limits.  
DS70000591F-page 378  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Output Low Voltage  
Min.  
Typ. Max. Units  
Conditions  
VOL  
DO10  
I/O Pins:  
4x Sink Driver Pins – RA0-RA7,  
RA14, RA15, RB0-RB15,  
0.4  
V
IOL 6 mA, VDD = 3.3V  
(See Note 1)  
RC1-RC4, RC12-RC14, RD0-RD2,  
RD8-RD12, RD14, RD15, RE8,  
RE9, RF0-RF8, RF12, RF13,  
RG0-RG3, RG6-RG9, RG14, RG15  
Output Low Voltage  
I/O Pins:  
8x Sink Driver Pin – RC15  
0.4  
0.4  
V
V
IOL 10 mA, VDD = 3.3V  
(See Note 1)  
Output Low Voltage  
I/O Pins:  
16x Sink Driver Pins – RA9, RA10,  
RD3-RD7, RD13, RE0-RE7,  
RG12, RG13  
IOL 18 mA, VDD = 3.3V  
(See Note 1)  
VOH  
Output High Voltage  
DO20  
I/O Pins:  
2.4  
V
IOH -6 mA, VDD = 3.3V  
(See Note 1)  
4x Sink Driver Pins – RA0-RA7,  
RA14, RA15, RB0-RB15,  
RC1-RC4, RC12-RC14, RD0-RD2,  
RD8-RD12, RD14, RD15, RE8,  
RE9, RF0-RF8, RF12, RF13,  
RG0-RG3, RG6-RG9, RG14, RG15  
Output High Voltage  
I/O Pins:  
8x Sink Driver Pin – RC15  
2.4  
2.4  
V
V
IOH -10 mA, VDD = 3.3V  
(See Note 1)  
Output High Voltage  
I/O Pins:  
16x Sink Driver Pins – RA9, RA10,  
RD3-RD7, RD13, RE0-RE7,  
RG12, RG13  
IOH -18 mA, VDD = 3.3V  
(See Note 1)  
Note 1: Parameters are characterized, but not tested.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 379  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.  
Typ. Max. Units  
Conditions  
VOH1  
Output High Voltage  
DO20A  
I/O Pins:  
1.5  
2.0  
3.0  
V
V
V
IOH -12 mA, VDD = 3.3V  
(See Note 1)  
4x Sink Driver Pins – RA0-RA7,  
RA14, RA15, RB0-RB15,  
RC1-RC4, RC12-RC14, RD0-RD2,  
RD8-RD12, RD14, RD15, RE8,  
RE9, RF0-RF8, RF12, RF13,  
RG0-RG3, RG6-RG9, RG14, RG15  
IOH -11 mA, VDD = 3.3V  
(See Note 1)  
IOH -3 mA, VDD = 3.3V  
(See Note 1)  
Output High Voltage  
I/O Pins:  
8x Sink Driver Pin – RC15  
1.5  
2.0  
3.0  
V
V
V
IOH -16 mA, VDD = 3.3V  
(See Note 1)  
IOH -12 mA, VDD = 3.3V  
(See Note 1)  
IOH -4 mA, VDD = 3.3V  
(See Note 1)  
Output High Voltage  
I/O Pins:  
16x Sink Driver Pins – RA9, RA10,  
RD3-RD7, RD13, RE0-RE7,  
RG12, RG13  
1.5  
2.0  
3.0  
V
V
V
IOH -30 mA, VDD = 3.3V  
(See Note 1)  
IOH -25 mA, VDD = 3.3V  
(See Note 1)  
IOH -8 mA, VDD = 3.3V  
(See Note 1)  
Note 1: Parameters are characterized, but not tested.  
TABLE 27-11: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)  
Standard Operating Conditions: 3.0V to 3.6V(3)  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min(1) Typ  
2.6  
Max  
Units  
Conditions  
See Note 2  
BO10  
VBOR  
BOR Event on VDD Transition  
High-to-Low  
2.95  
V
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
2: The device will operate as normal until the VDDMIN threshold is reached.  
3: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.  
DS70000591F-page 380  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10,000  
VMIN  
E/W -40C to +125C  
VPR  
VDD for Read  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
VMIN  
20  
10  
3.6  
V
VMIN = Minimum operating  
voltage  
D134  
D135  
TRETD  
IDDP  
Year Provided no other specifications  
are violated, -40C to +125C  
Supply Current during  
Programming  
mA  
D136a TRW  
D136b TRW  
D137a TPE  
D137b TPE  
D138a TWW  
D138b TWW  
Row Write Time  
1.488  
1.473  
22.7  
22.4  
47.7  
47.3  
1.518  
1.533  
23.1  
23.3  
48.7  
49.2  
ms TRW = 11064 FRC cycles,  
TA = +85°C (See Note 2)  
Row Write Time  
ms TRW = 11064 FRC cycles,  
TA = +125°C (See Note 2)  
Page Erase Time  
Page Erase Time  
Word Write Cycle Time  
Word Write Cycle Time  
ms TPE = 168517 FRC cycles,  
TA = +85°C (See Note 2)  
ms TPE = 168517 FRC cycles,  
TA = +125°C (See Note 2)  
µs TWW = 355 FRC cycles,  
TA = +85°C (See Note 2)  
µs TWW = 355 FRC cycles,  
TA = +125°C (See Note 2)  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111(for Min.), TUN<5:0> = b'100000(for Max.).  
This parameter depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator  
Tuning register (see Register 9-4). For complete details on calculating the minimum and maximum time,  
see Section 5.3 “Programming Operations”.  
TABLE 27-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value(1)  
22  
µF  
Capacitor must be low  
series resistance  
(< 0.5 Ohms)  
Note 1: Typical VCAP voltage = 2.5 volts when VDD VDDMIN.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 381  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
27.2 AC Characteristics and Timing Parameters  
This section defines dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 AC characteristics and  
timing parameters.  
TABLE 27-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Section 27.0 “Electrical  
Characteristics”.  
FIGURE 27-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 27-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
No.  
DO50 COSCO  
OSC2 Pin  
15  
pF  
In XT and HS modes, when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O Pins and OSC2  
SCLx, SDAx  
50  
pF  
pF  
EC mode  
In I2C™ mode  
400  
DS70000591F-page 382  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS31 OS31  
OS25  
OS41  
OS40  
TABLE 27-16: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symb  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency  
(external clocks allowed only  
in EC and ECPLL modes)  
DC  
40  
MHz EC  
Oscillator Crystal Frequency  
3.5  
10  
10  
33  
40  
MHz XT  
kHz SOSC  
MHz HS  
OS20  
OS25  
OS30  
TOSC  
TCY  
TOSC = 1/FOSC  
Instruction Cycle Time(2)  
12.5  
25  
DC  
DC  
ns  
ns  
TosL, External Clock in (OSC1)  
TosH High or Low Time  
0.375 x TOSC  
0.625 x TOSC  
ns  
EC  
EC  
OS31  
TosR, External Clock in (OSC1)  
TosF Rise or Fall Time  
20  
ns  
OS40  
OS41  
OS41  
TckR CLKO Rise Time(3)  
14  
5.2  
5.2  
16  
18  
ns  
ns  
TckF  
GM  
CLKO Fall Time(3)  
External Oscillator  
Transconductance  
mA/V VDD = 3.3V,  
TA = +25ºC  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type, under standard operating conditions,  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “Min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“Max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 383  
 
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range  
0.8  
8
MHz ECPLL, XTPLL modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency  
100  
200  
MHz  
mS  
OS52  
OS53  
TLOCK  
DCLK  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)(2)  
0.9  
-3  
1.5  
0.5  
3.1  
3
%
Measured over a 100 ms  
period  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested in manufacturing.  
2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is  
based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time  
bases or communication clocks, use this formula:  
DCLK  
Peripheral Clock Jitter = -----------------------------------------------------------------------  
FOSC  
-------------------------------------------------------------  
Peripheral Bit Rate Clock  
For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCK) is 2 MHz.  
DCLK  
3%  
3%  
4
SPI SCK Jitter = -----------------------------  
=
---------  
=
------- = 0.75%  
16  
32 MHz  
-------------------  
2 MHz  
TABLE 27-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS56  
FHPOUT On-Chip, 16x PLL CCO  
Frequency  
112  
118  
120  
MHz  
OS57  
OS58  
FHPIN  
On-Chip, 16x PLL Phase  
Detector Input Frequency  
7.0  
7.37  
7.5  
10  
MHz  
µs  
TSU  
Frequency Generator Lock  
Time  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested in manufacturing.  
DS70000591F-page 384  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-19: AC CHARACTERISTICS: INTERNAL FRC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for Extended  
Param  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
No.  
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1)  
F20a  
F20b  
FRC  
FRC  
-1  
-2  
+1  
+2  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
Note 1: Frequency calibrated at +25°C and 3.3V. The TUN<5:0> bits can be used to compensate for temperature  
drift.  
TABLE 27-20: AC CHARACTERISTICS: INTERNAL LPRC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1)  
F21a  
F21b  
LPRC  
LPRC  
-40  
-50  
+40  
+50  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
Note 1: Change of LPRC frequency as VDD changes.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 385  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-3:  
I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
Old Value  
New Value  
DO31  
DO32  
Note: Refer to Figure 27-1 for load conditions.  
TABLE 27-21: I/O TIMING REQUIREMENTS  
AC CHARACTERISTICS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
DO31  
TIOR  
Port Output Rise Time  
4x Source Driver Pins – RA0-RA7,  
RA14, RA15, RB0-RB15, RC1-RC4,  
RC12-RC14, RD0-RD2, RD8-RD12,  
RD14, RD15, RE8, RE9, RF0-RF8,  
RF12, RF13, RG0-RG3, RG6-RG9,  
RG14, RG15  
10  
25  
ns  
Refer to Figure 27-1  
for test conditions  
8x Source Driver Pins – RC15  
8
6
20  
15  
ns  
ns  
16x Source Driver Pins – RE0-RE7,  
RG12, RG13  
DO32  
TIOF  
Port Output Fall Time  
4x Source Driver Pins – RA0-RA7,  
RA14, RA15, RB0-RB15, RC1-RC4,  
RC12-RC14, RD0-RD2, RD8-RD12,  
RD14, RD15, RE8, RE9, RF0-RF8,  
RF12, RF13, RG0-RG3, RG6-RG9,  
RG14, RG15  
10  
25  
ns  
Refer to Figure 27-1  
for test conditions  
8x Source Driver Pins – RC15  
8
6
20  
15  
ns  
ns  
16x Source Driver Pins – RE0-RE7,  
RG12, RG13  
DI35  
DI40  
TINP  
INTx Pin High or Low Time (input)  
CNx High or Low Time (input)  
20  
2
ns  
TRBP  
TCY  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
DS70000591F-page 386  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
SY12  
VDD  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 27-1 for load conditions.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 387  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10  
SY11  
TMCL  
MCLR Pulse Width (low)  
Power-up Timer Period  
2
s  
-40°C to +85°C  
TPWRT  
2
4
ms  
-40°C to +85°C,  
User programmable  
8
16  
32  
64  
128  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay  
3
10  
30  
s  
s  
-40°C to +85°C  
I/O High-Impedance from 0.68  
MCLR Low or Watchdog  
Timer Reset  
0.72  
1.2  
SY20  
TWDT1  
TOST  
Watchdog Timer Time-out  
Period  
ms  
See Section 24.4 “Watchdog  
Timer (WDT)” and LPRC  
Parameter F21a (Table 27-20)  
SY30  
Oscillator Start-up Time  
1024 TOSC  
TOSC = OSC1 period  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
DS70000591F-page 388  
2009-2014 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-5:  
TIMER1/2/3 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
TMRx  
Tx10  
Tx11  
Tx15  
Tx20  
OS60  
Note: Refer to Figure 27-1 for load conditions.  
TABLE 27-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TA10 TTXH  
T1CK High Time Synchronous,  
no Prescaler  
TCY + 20  
ns Must also meet  
Parameter TA15,  
N = Prescale value  
Synchronous,  
with Prescaler  
(TCY + 20)/N  
ns  
(1, 8, 64, 256)  
ns  
Asynchronous  
20  
TA11  
TTXL  
T1CK Low Time Synchronous,  
no Prescaler  
(TCY + 20)  
ns Must also meet  
Parameter TA15,  
N = Prescale value  
(1, 8, 64, 256)  
Synchronous,  
with Prescaler  
(TCY + 20)/N  
ns  
Asynchronous  
20  
ns  
ns  
TA15 TTXP  
T1CK Input  
Period  
Synchronous,  
no Prescaler  
2 TCY + 40  
Synchronous,  
with Prescaler  
Greater of:  
40 ns or  
N = Prescale value  
(1, 8, 64, 256)  
(2 TCY + 40)/N  
Asynchronous  
40  
ns  
OS60 Ft1  
SOSCI/T1CK Oscillator Input  
Frequency Range (oscillator  
enabled by setting bit, TCS  
(T1CON<1>))  
DC  
50  
kHz  
TA20 TCKEXTMRL Delay from External T1CK Clock 0.75 TCY + 40  
Edge to Timer Increment  
1.75 TCY + 40  
Note 1: Timer1 is a Type A.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 389  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-24: TIMER2/4 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TB10 TtxH  
TB11 TtxL  
TB15 TtxP  
TxCK High Synchronous  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
Must also meet  
Parameter TB15,  
N = Prescale value  
(1, 8, 64, 256)  
Time  
mode  
TxCK Low Synchronous  
Time mode  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
Must also meet  
Parameter TB15,  
N = Prescale value  
(1, 8, 64, 256)  
TxCK Input Synchronous  
Period mode  
Greater of:  
40 or  
(2 TCY + 40)/N  
ns  
ns  
N = Prescale value  
(1, 8, 64, 256)  
TB20 TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer  
0.75 TCY + 40  
1.75 TCY + 40  
Increment  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
TABLE 27-25: TIMER3/5 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TC10  
TC11  
TC15  
TC20  
TtxH  
TtxL  
TtxP  
TxCK High Synchronous  
Time  
TCY + 20  
ns Must also meet  
Parameter TC15  
TxCK Low Synchronous  
Time  
TCY + 20  
2 TCY + 40  
ns Must also meet  
Parameter TC15  
TxCK Input Synchronous,  
ns  
Period  
with Prescaler  
TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer  
0.75 TCY + 40  
1.75 TCY + 40  
ns  
Increment  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
DS70000591F-page 390  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-6:  
INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 27-1 for load conditions.  
TABLE 27-26: INPUT CAPTURE x TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(TCY + 40)/N  
N = Prescale value  
(1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 27-7:  
OUTPUT COMPARE x (OCx) MODULE TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC11  
OC10  
Note: Refer to Figure 27-1 for load conditions.  
TABLE 27-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Note 1: These parameters are characterized but not tested in manufacturing.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 391  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-8:  
OUTPUT COMPARE x/PWMx MODULE TIMING CHARACTERISTICS  
OC20  
OCFA  
OCx  
OC15  
Active  
Tri-State  
TABLE 27-28: SIMPLE OCx/PWMx MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
TCY + 20  
ns  
OC20  
TFLT  
Fault Input Pulse Width  
TCY + 20  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70000591F-page 392  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-9:  
HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS  
MP30  
FLTx  
MP20  
PWMx  
FIGURE 27-10:  
HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS  
MP11 MP10  
PWMx  
Note: Refer to Figure 27-1 for load conditions.  
TABLE 27-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
DTC<1:0> = 10  
ACLK = 120 MHz  
MP10  
MP11  
MP20  
TFPWM  
TRPWM  
TFD  
PWMx Output Fall Time  
PWMx Output Rise Time  
2.5  
2.5  
15  
ns  
ns  
ns  
Fault Input to PWMx  
I/O Change  
MP30  
TFH  
Minimum PWMx Fault Pulse  
Width  
8
ns  
ns  
MP31  
MP32  
TPDLY  
ACLK  
Tap Delay  
1.04  
PWMx Input Clock  
120  
MHz See Note 2  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: This parameter is a maximum allowed input clock for the PWM module.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 393  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-30: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Master  
Transmit Only  
(Half-Duplex)  
Master  
Slave  
Maximum  
Data Rate  
Transmit/Receive Transmit/Receive  
(Full-Duplex)  
CKE  
CKP  
SMP  
(Full-Duplex)  
15 MHz  
10 MHz  
10 MHz  
15 MHz  
11 MHz  
15 MHz  
11 MHz  
Table 27-31  
0,1  
1
0,1  
0,1  
0,1  
0
0,1  
1
Table 27-32  
Table 27-33  
0
1
Table 27-34  
Table 27-35  
Table 27-36  
Table 27-37  
1
0
1
1
0
0
1
0
0
0
0
FIGURE 27-11:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING  
CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
MSb  
Bit 14 - - - - - -1  
LSb  
SDOx  
SP30, SP31  
SP30, SP31  
Note: Refer to Figure 27-1 for load conditions.  
FIGURE 27-12:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING  
CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
MSb  
Bit 14 - - - - - -1  
LSb  
SDOx  
SP30, SP31  
Note: Refer to Figure 27-1 for load conditions.  
DS70000591F-page 394  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-31: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP20  
Maximum SCKx Frequency  
SCKx Output Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SCKx Output Rise Time  
30  
6
20  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, SDOx Data Output Setup to  
TdiV2scL  
First SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 395  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-13:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING  
CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
MSb  
Bit 14 - - - - - -1  
SP30, SP31  
LSb  
SDOx  
SDIx  
SP40  
MSb In  
SP41  
Bit 14 - - - -1  
LSb In  
Note: Refer to Figure 27-1 for load conditions.  
TABLE 27-32: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP20  
Maximum SCKx Frequency  
SCKx Output Fall Time  
10  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Output Rise Time  
30  
30  
30  
6
20  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70000591F-page 396  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-14:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING  
CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
LSb  
MSb  
SDOx  
SDIx  
SP30, SP31  
MSb In  
SP40 SP41  
Note: Refer to Figure 27-1 for load conditions.  
SP30, SP31  
LSb In  
Bit 14 - - - -1  
TABLE 27-33: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
Maximum SCKx Frequency  
10  
MHz -40ºC to +125ºC and  
see Note 3  
SP20  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Fall Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SCKx Output Rise Time  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO31  
and Note 4  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 397  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-15:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
SP73  
MSb  
Bit 14 - - - - - -1  
LSb  
SDOx  
SDIx  
SP30, SP31  
SP51  
MSb In  
SP41  
Bit 14 - - - -1  
LSb In  
SP40  
Note: Refer to Figure 27-1 for load conditions.  
DS70000591F-page 398  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-34: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock, generated by the master, must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 399  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-16:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP72  
SP73  
SP70  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
SP52  
MSb  
LSb  
SDOx  
SDIx  
Bit 14 - - - - - -1  
SP51  
SP30, SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 27-1 for load conditions.  
DS70000591F-page 400  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-35: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock, generated by the master, must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 401  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-17:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
SP35  
SDOX  
SDIX  
Bit 14 - - - - - -1  
LSb  
MSb  
SP51  
SP30, SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 27-1 for load conditions.  
DS70000591F-page 402  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-36: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SCKx Input Rise Time  
6
20  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
120  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
TssH2doZ SSx to SDOx Output  
10  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock, generated by the master, must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 403  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-18:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP73  
SP72  
SP72  
SP73  
SCKX  
(CKP = 1)  
SP35  
SDOX  
SDIX  
MSb  
Bit 14 - - - - - -1  
LSb  
SP51  
SP30, SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 27-1 for load conditions.  
DS70000591F-page 404  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-37: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SCKx Input Rise Time  
6
20  
50  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
120  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
TssH2doZ SSx to SDOx Output  
10  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock, generated by the master, must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 405  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-19:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Start  
Condition  
Stop  
Condition  
Note: Refer to Figure 27-1 for load conditions.  
FIGURE 27-20:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 27-1 for load conditions.  
DS70000591F-page 406  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-38: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
ns  
1 MHz mode(2) TCY/2 (BRG + 1)  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
250  
100  
40  
0
TSU:DAT Data Input  
Setup Time  
THD:DAT Data Input  
Hold Time  
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period, the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
0.5  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
IM50  
IM51  
CB  
Bus Capacitive Loading  
Pulse Gobbler Delay  
400  
390  
TPGD  
65  
See Note 3  
Note 1: BRG is the value of the I2C™ Baud Rate Generator. Refer to “Inter-Integrated Circuit™ (I2C™)”  
(DS70000195) in the “dsPIC33/PIC24 Family Reference Manual”.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
3: Typical value for this parameter is 130 ns.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 407  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-21:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 27-22:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS33  
IS31  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
DS70000591F-page 408  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-39: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
4.7  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
s  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
s  
s  
IS11  
THI:SCL Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1 MHz mode(1)  
0.6  
s  
Device must operate at a  
minimum of 10 MHz  
0.5  
300  
300  
100  
1000  
300  
300  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 409  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-40: 10-BIT, HIGH-SPEED ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V and 3.6V(2)  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
AVDD  
Characteristic  
Module VDD Supply  
Module VSS Supply  
Min  
Typ  
Max  
Units  
Conditions  
Device Supply  
AD01  
Greater of:  
VDD – 0.3  
or 3.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
AD02  
AVSS  
Vss – 0.3  
VSS + 0.3  
Analog Input  
AD10  
AD11  
AD12  
AD13  
VINH-VINL Full-Scale Input Span  
VSS  
AVSS  
VDD  
AVDD  
V
V
VIN  
IAD  
Absolute Input Voltage  
Operating Current  
Leakage Current  
8
mA  
±0.6  
A VINL = AVSS = 0V,  
AVDD = 3.3V,  
Source Impedance = 100  
AD17  
RIN  
Recommended Impedance  
of Analog Voltage Source  
100  
DC Accuracy  
10 data bits  
AD20 Nr  
AD21A INL  
Resolution  
bits  
Integral Nonlinearity  
> -2  
> -1  
> -5  
> -3  
±0.5  
±0.5  
±2.0  
±0.75  
< 2  
< 1  
< 5  
< 3  
LSb VINL = AVSS = 0V,  
AVDD = 3.3V  
AD22A DNL  
AD23A GERR  
AD24A EOFF  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = 0V,  
AVDD = 3.3V  
LSb VINL = AVSS = 0V,  
AVDD = 3.3V  
Offset Error  
LSb VINL = AVSS = VSS = 0V,  
AVDD = VDD = 3.3V  
AD25  
Monotonicity(1)  
Guaranteed  
Dynamic Performance  
AD30 THD  
Total Harmonic Distortion  
-73  
58  
dB  
dB  
AD31 SINAD  
Signal to Noise and  
Distortion  
AD32 SFDR  
Spurious Free Dynamic  
Range  
-73  
dB  
AD33  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
1
MHz  
bits  
AD34 ENOB  
9.4  
Note 1: The Analog-to-Digital conversion result never decreases with an increase in the input voltage and has no  
missing codes.  
2: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.  
DS70000591F-page 410  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-41: 10-BIT, HIGH-SPEED ADC MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V(2)  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Clock Parameters  
AD50b TAD  
ADC Clock Period  
35.8  
ns  
Conversion Rate  
AD55b tCONV  
AD56b FCNV  
Conversion Time  
14 TAD  
Throughput Rate  
Devices with Single SAR  
Devices with Dual SARs  
2.0  
4.0  
Msps  
Msps  
Timing Parameters  
1.0  
AD63b tDPU  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(1)  
10  
s  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Overall functional device operation at VBOR < VDD < VDDMIN is guaranteed but not characterized. All  
device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN.  
FIGURE 27-23:  
ANALOG-TO-DIGITAL CONVERSION TIMING PER INPUT  
TCONV  
Trigger Pulse  
ADC Clock  
TAD  
ADC Data  
ADBUFx  
CONV  
9
8
2
1
0
Old Data  
New Data  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 411  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-42: COMPARATOR MODULE SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
AC and DC CHARACTERISTICS  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
Symbol Characteristic  
No.  
Min  
Typ  
Max  
Units  
Comments  
CM10 VIOFF  
CM11 VICM  
Input Offset Voltage  
±5  
±15  
mV  
V
Input Common-Mode  
Voltage Range(1)  
0
AVDD – 1.5  
CM12 VGAIN  
CM13 CMRR  
Open-Loop Gain(1)  
90  
70  
db  
db  
Common-Mode  
Rejection Ratio(1)  
CM14 TRESP  
Large Signal Response  
20  
30  
ns  
V+ input step of 100 mv while  
V- input held at AVDD/2. Delay  
measured from analog input pin  
to PWM output pin.  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
TABLE 27-43: DAC MODULE SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
AC and DC CHARACTERISTICS  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
. No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
DA01 EXTREF External Reference Voltage(1)  
DA08 INTREF Internal Reference Voltage(1)  
0
AVDD – 1.6  
1.41  
V
V
1.25  
1.32  
DA02 CVRES  
DA03 INL  
Resolution  
10 data bits  
±1.0  
bits  
Integral Nonlinearity Error  
AVDD = 3.3V,  
DACREF = (AVDD/2)V  
DA04 DNL  
DA05 EOFF  
DA06 EG  
Differential Nonlinearity Error  
Offset Error  
±0.8  
±2.0  
±2.0  
LSB  
LSB  
LSB  
Gain Error  
Settling Time(1)  
DA07 TSET  
650  
nsec Measured when range = 1  
(high range) and  
CMREF<9:0> transitions  
from 0x1FF to 0x300.  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
DS70000591F-page 412  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-44: DAC OUTPUT BUFFER SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
No.  
Symbol Characteristic  
Min  
Typ  
Max  
Units  
Comments  
DA10  
RLOAD  
CLOAD  
IOUT  
Resistive Output Load  
Impedance  
3K  
DA11  
DA12  
DA13  
DA14  
Output Load  
Capacitance  
20  
300  
35  
pF  
Output Current Drive  
Strength  
200  
400  
A Sink and source  
VRANGE Full Output Drive  
Strength Voltage Range  
AVSS + 250 mV  
AVSS + 50 mV  
AVDD – 900 mV  
AVDD – 500 mV  
V
V
VLRANGE Output Drive Voltage  
Range at Reduced  
Current Drive of 50 A  
DA15  
IDD  
Current Consumed when  
Module is Enabled,  
High-Power Mode  
1.3 x IOUT  
A Module will always  
consume this current  
even if no load is  
connected to the  
output  
DA16  
ROUTON Output Impedance when  
Module is Enabled  
500  
FIGURE 27-24:  
QEA/QEB INPUT CHARACTERISTICS  
TQ36  
QEA  
(input)  
TQ30  
TQ31  
TQ35  
QEB  
(input)  
TQ40  
TQ41  
TQ31  
TQ30  
TQ35  
QEB  
Internal  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 413  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-45: QUADRATURE DECODER TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Typ(2)  
Max  
Units  
Conditions  
TQ30  
TQUL  
Quadrature Input Low Time  
Quadrature Input High Time  
Quadrature Input Period  
Quadrature Phase Period  
6 TCY  
6 TCY  
ns  
ns  
ns  
ns  
ns  
TQ31  
TQ35  
TQ36  
TQ40  
TQUH  
TQUIN  
TQUP  
TQUFL  
12 TCY  
3 TCY  
Filter Time to Recognize Low,  
with Digital Filter  
3 * N * TCY  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 3)  
TQ41  
TQUFH  
Filter Time to Recognize High,  
with Digital Filter  
3 * N * TCY  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 3)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to “Quadrature Encoder Interface (QEI)”  
(DS70208) in the “dsPIC33/PIC24 Family Reference Manual”.  
FIGURE 27-25:  
QEI MODULE INDEX PULSE TIMING CHARACTERISTICS  
QEA  
(input)  
QEB  
(input)  
Ungated  
Index  
TQ50  
TQ51  
Index Internal  
TQ55  
Position Counter  
Reset  
DS70000591F-page 414  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 27-46: QEI INDEX PULSE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
TQ50  
TqIL  
Filter Time to Recognize Low,  
with Digital Filter  
3 * N * TCY  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
TQ51  
TQ55  
TqiH  
Filter Time to Recognize High,  
with Digital Filter  
3 * N * TCY  
3 TCY  
ns  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
Tqidxr  
Index Pulse Recognized to Position  
Counter Reset (ungated index)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Alignment of index pulses to QEA and QEB is shown for Position Counter Reset timing only. Shown for  
forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but  
index pulse recognition occurs on the falling edge.  
FIGURE 27-26:  
TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS  
QEB  
TQ10  
TQ11  
TQ15  
TQ20  
POSCNT  
TABLE 27-47: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TQ10 TtQH  
TQ11 TtQL  
TQ15 TtQP  
TQCK High Time Synchronous,  
with Prescaler  
TCY + 20  
ns  
Must also meet  
Parameter TQ15  
TQCK Low Time  
Synchronous,  
with Prescaler  
TCY + 20  
ns  
ns  
Must also meet  
Parameter TQ15  
TQCP Input  
Period  
Synchronous, 2 * TCY + 40  
with Prescaler  
TQ20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: These parameters are characterized but not tested in manufacturing.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 415  
 
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
FIGURE 27-27:  
ECAN™ MODULE I/O TIMING CHARACTERISTICS  
CxTx Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CA20  
CxRx Pin  
(input)  
TABLE 27-48: ECAN™ MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
CA10  
CA11  
CA20  
TioF  
TioR  
Tcwf  
Port Output Fall Time  
Port Output Rise Time  
ns  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Pulse Width to Trigger  
CAN Wake-up Filter  
120  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 27-49: DMA READ/WRITE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
DM1  
DMA Read/Write Cycle Time  
1 TCY  
ns  
DS70000591F-page 416  
2009-2014 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
28.0 50 MIPS ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
electrical characteristics for devices operating at 50 MIPS.  
Specifications are identical to those shown in Section 27.0 “Electrical Characteristics”, with the exception of the  
parameters listed in this section.  
Absolute maximum ratings for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 50 MIPS  
devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability.  
Functional operation of the device at these or any other conditions above the parameters indicated in the operation  
listings of this specification is not implied.  
(1)  
Absolute Maximum Ratings  
Ambient temperature under bias...............................................................................................................-40°C to +85°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(2) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(2) .................................................. -0.3V to +5.6V  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(2)......................................... -0.3V to (VDD + 0.3V)  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum current sourced/sunk by any 4x I/O pin..................................................................................................15 mA  
Maximum current sourced/sunk by any 8x I/O pin..................................................................................................25 mA  
Maximum current sourced/sunk by any 16x I/O pin................................................................................................45 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: See the Pin Diagramssection for 5V tolerant pins.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 417  
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
28.1 DC Characteristics  
TABLE 28-1: OPERATING MIPS vs. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
Characteristic  
dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610  
3.0-3.6V(1)  
-40°C to +85°C  
50  
Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. See  
Parameter BO10 in Table 27-11 for the BOR values.  
TABLE 28-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(1)  
MDC29d  
MDC29a  
MDC29b  
85  
85  
85  
100  
100  
100  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
3.3V  
50 MIPS  
Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDD measurements are as follows:  
• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from  
rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are  
zeroed)  
• CPU executing while(1)statement  
• JTAG is disabled  
DS70000591F-page 418  
2009-2014 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 28-3: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Parameter  
Typical  
No.  
Max  
Units  
Conditions  
Idle Current (IIDLE): Core Off Clock On Base Current(1)  
MDC45d  
MDC45a  
MDC45b  
40  
40  
40  
50  
50  
50  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
3.3V  
50 MIPS  
Note 1: Base Idle current (IIDLE) is measured as follows:  
CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with  
external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
CLKO is configured as an I/O input pin in the Configuration Word  
All I/O pins are configured as inputs and pulled to VSS  
MCLR = VDD, WDT and FSCM are disabled  
No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits  
are ‘0’s)  
JTAG is disabled  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 419  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE 28-4: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Doze  
Ratio  
Parameter No.  
Typical  
Max  
Units  
Conditions  
Doze Current (IDOZE)(1)  
MDC74a  
49  
43  
43  
47  
41  
41  
46  
40  
40  
70  
70  
70  
70  
70  
70  
70  
70  
70  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
MDC74f  
-40°C  
+25°C  
+85°C  
3.3V  
50 MIPS  
50 MIPS  
50 MIPS  
MDC74g  
MDC75a  
MDC75f  
1:64  
1:128  
1:2  
3.3V  
3.3V  
MDC75g  
MDC76a  
MDC76f  
1:64  
1:128  
MDC76g  
Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDOZE measurements are as follows:  
Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square  
wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
CLKO is configured as an I/O input pin in the Configuration Word  
All I/O pins are configured as inputs and pulled to VSS  
MCLR = VDD, WDT and FSCM are disabled  
CPU, SRAM, program memory and data memory are operational  
No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits  
are ‘0’s)  
CPU executing while(1)statement  
JTAG is disabled  
DS70000591F-page 420  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
28.2 AC Characteristics and Timing Parameters  
This section defines the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 AC characteristics  
and timing parameters for 50 MIPS devices.  
TABLE 28-5: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symb  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
MOS10 FIN  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
50  
MHz EC  
Oscillator Crystal Frequency  
3.5  
10  
10  
33  
50  
MHz XT  
kHz SOSC  
MHz HS  
MOS20 TOSC  
MOS25 TCY  
TOSC = 1/FOSC  
Instruction Cycle Time(2)  
10  
20  
DC  
DC  
ns  
ns  
MOS30 TosL, External Clock in (OSC1)  
TosH High or Low Time  
0.375 x TOSC  
0.625 x TOSC  
ns  
EC  
EC  
MOS31 TosR, External Clock in (OSC1)  
TosF Rise or Fall Time  
20  
ns  
MOS40 TckR CLKO Rise Time(3)  
14  
5.2  
5.2  
16  
18  
ns  
ns  
MOS41 TckF  
MOS41 GM  
CLKO Fall Time(3)  
External Oscillator  
Transconductance  
mA/V VDD = 3.3V,  
TA = +25ºC  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 421  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 422  
2009-2014 Microchip Technology Inc.  
29.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS  
Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes  
only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating  
range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
FIGURE 29-1:  
VOH – 4x DRIVER PINS  
FIGURE 29-3:  
VOH – 16x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
Absolute Maximum  
3V  
Absolute Maximum  
FIGURE 29-2:  
VOH – 8x DRIVER PINS  
3.6V  
3.3V  
Absolute Maximum  
3V  
 
 
FIGURE 29-4:  
VOL – 4x DRIVER PINS  
FIGURE 29-6:  
VOL – 16x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
Absolute Maximum  
Absolute Maximum  
FIGURE 29-5:  
VOL – 8x DRIVER PINS  
3.6V  
3.3V  
3V  
Absolute Maximum  
FIGURE 29-7:  
TYPICAL IPD CURRENT @ VDD = 3.3V  
FIGURE 29-9:  
TYPICAL IIDLE CURRENT @ VDD = 3.3V  
40  
35  
30  
25  
20  
15  
10  
5
0
10  
20  
30  
40  
50  
MIPS  
Temperature (Celsius)  
FIGURE 29-8:  
TYPICAL IDD CURRENT @ VDD = 3.3V  
FIGURE 29-10:  
TYPICAL FRC FREQUENCY @ VDD = 3.3V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
10  
20  
30  
40  
50  
MIPS  
Temperature (Celsius)  
 
FIGURE 29-11:  
TYPICAL LPRC FREQUENCY @ VDD = 3.3V  
FIGURE 29-12:  
TYPICAL INTREF @ VDD = 3.3V  
Temperature (Celsius)  
Temperature (Celsius)  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
30.0 PACKAGING INFORMATION  
30.1 Package Marking Information  
64-Lead QFN (9x9x0.9mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
33FJ32GS  
406-I/MR  
e
3
YYWWNNN  
1210017  
64-Lead TQFP (10x10x1mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJ  
32GS406  
-I/PT  
e
3
1210017  
80-Lead TQFP (12x12x1mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
33FJ32GS608  
e
3
-I/PT  
1210017  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
*
)
e
3
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 427  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
30.1 Package Marking Information (Continued)  
100-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
dsPIC33FJ64  
GS608-I/PT  
e
3
1210017  
100-Lead TQFP (14x14x1mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
33FJ32GS610  
-I/PF  
e
3
1210017  
DS70000591F-page 428  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
30.2 Package Details  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 429  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70000591F-page 430  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 431  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
D1/2  
D
NOTE 2  
E1/2  
A
B
E1  
E
A
A
SEE DETAIL 1  
4X N/4 TIPS  
N
1
3
0.20 C A-B D  
2
4X  
NOTE 1  
0.20 H A-B D  
TOP VIEW  
A2  
A
0.05  
C
SEATING  
PLANE  
A1  
C A-B D  
64 X b  
0.08  
0.08 C  
e
SIDE VIEW  
Microchip Technology Drawing C04-085C Sheet 1 of 2  
DS70000591F-page 432  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
H
c
E
T
L
(L1)  
X=A—B OR D  
X
SECTION A-A  
e/2  
DETAIL 1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
64  
0.50 BSC  
-
1.00  
-
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
N
e
A
-
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
Foot Length  
0.60  
Footprint  
Foot Angle  
L1  
I
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
Overall Length  
E
D
E1  
D1  
c
b
D
E
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
-
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0.09  
0.17  
11°  
0.20  
0.27  
13°  
0.22  
12°  
12°  
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-085C Sheet 2 of 2  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 433  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70000591F-page 434  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇꢙ#ꢁꢁꢇꢛꢛꢇ$ꢎꢑꢓꢈ%  
& ꢋꢄ' 4ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢎꢅꢋ5ꢅꢔꢇꢄ$ꢈꢅ+ꢂꢃꢔ")ꢄꢎꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢑꢂꢋꢈꢊꢋꢌꢂꢎꢄ ꢅꢋ5ꢅꢔꢂꢃꢔꢄꢖꢎꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢎ366+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢎꢁꢋꢊ(6ꢎꢅꢋ5ꢅꢔꢂꢃꢔ  
D
D1  
E
e
E1  
N
b
NOTE 1  
123  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
7ꢃꢂ'"  
ꢑꢙ88ꢙꢑ/ꢗ/ꢘꢖ  
ꢐꢂ(ꢇꢃ"ꢂꢊꢃꢄ8ꢂ(ꢂ'"  
ꢑꢙ9  
M
ꢒꢁꢛ0  
ꢒꢁꢒ0  
ꢒꢁꢓ0  
9:ꢑ  
ꢚꢒ  
ꢒꢁ0ꢒꢄ2ꢖ,  
M
ꢀꢁꢒꢒ  
M
ꢑꢕ;  
9#(*ꢇꢈꢄꢊ&ꢄ8ꢇꢅ$"  
8ꢇꢅ$ꢄ ꢂ'ꢋꢌ  
:!ꢇꢈꢅꢆꢆꢄ<ꢇꢂꢔꢌ'  
ꢑꢊꢆ$ꢇ$ꢄ ꢅꢋ5ꢅꢔꢇꢄꢗꢌꢂꢋ5ꢃꢇ""  
ꢖ'ꢅꢃ$ꢊ&&ꢄꢄ  
4ꢊꢊ'ꢄ8ꢇꢃꢔ'ꢌ  
9
ꢕꢍ  
ꢕꢀ  
8
ꢀꢁꢍꢒ  
ꢀꢁꢒ0  
ꢒꢁꢀ0  
ꢒꢁꢜ0  
ꢒꢁ>ꢒ  
4ꢊꢊ'ꢎꢈꢂꢃ'  
4ꢊꢊ'ꢄꢕꢃꢔꢆꢇ  
8ꢀ  
ꢀꢁꢒꢒꢄꢘ/4  
ꢏꢁ0ꢝ  
ꢒꢝ  
ꢜꢝ  
:!ꢇꢈꢅꢆꢆꢄ@ꢂ$'ꢌ  
:!ꢇꢈꢅꢆꢆꢄ8ꢇꢃꢔ'ꢌ  
/
/ꢀ  
ꢐꢀ  
ꢀꢓꢁꢒꢒꢄ2ꢖ,  
ꢀꢓꢁꢒꢒꢄ2ꢖ,  
ꢀꢍꢁꢒꢒꢄ2ꢖ,  
ꢀꢍꢁꢒꢒꢄ2ꢖ,  
M
ꢑꢊꢆ$ꢇ$ꢄ ꢅꢋ5ꢅꢔꢇꢄ@ꢂ$'ꢌ  
ꢑꢊꢆ$ꢇ$ꢄ ꢅꢋ5ꢅꢔꢇꢄ8ꢇꢃꢔ'ꢌ  
8ꢇꢅ$ꢄꢗꢌꢂꢋ5ꢃꢇ""  
8ꢇꢅ$ꢄ@ꢂ$'ꢌ  
ꢑꢊꢆ$ꢄꢐꢈꢅ&'ꢄꢕꢃꢔꢆꢇꢄ  
ꢑꢊꢆ$ꢄꢐꢈꢅ&'ꢄꢕꢃꢔꢆꢇꢄ2ꢊ''ꢊ(  
ꢒꢁꢒꢛ  
ꢒꢁꢀꢜ  
ꢀꢀꢝ  
ꢒꢁꢍꢒ  
ꢒꢁꢍꢜ  
ꢀꢏꢝ  
*
ꢒꢁꢍꢍ  
ꢀꢍꢝ  
ꢀꢍꢝ  
ꢀꢀꢝ  
ꢀꢏꢝ  
& ꢋꢄꢊ'  
ꢀꢁ  ꢂꢃꢄꢀꢄ!ꢂ"#ꢅꢆꢄꢂꢃ$ꢇ%ꢄ&ꢇꢅ'#ꢈꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉ)ꢄ*#'ꢄ(#"'ꢄ*ꢇꢄꢆꢊꢋꢅ'ꢇ$ꢄ+ꢂ'ꢌꢂꢃꢄ'ꢌꢇꢄꢌꢅ'ꢋꢌꢇ$ꢄꢅꢈꢇꢅꢁ  
ꢍꢁ ,ꢌꢅ(&ꢇꢈ"ꢄꢅ'ꢄꢋꢊꢈꢃꢇꢈ"ꢄꢅꢈꢇꢄꢊꢎ'ꢂꢊꢃꢅꢆ-ꢄ"ꢂ.ꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉꢁ  
ꢏꢁ ꢐꢂ(ꢇꢃ"ꢂꢊꢃ"ꢄꢐꢀꢄꢅꢃ$ꢄ/ꢀꢄ$ꢊꢄꢃꢊ'ꢄꢂꢃꢋꢆ#$ꢇꢄ(ꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢎꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢁꢄꢑꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢎꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢄ"ꢌꢅꢆꢆꢄꢃꢊ'ꢄꢇ%ꢋꢇꢇ$ꢄꢒꢁꢍ0ꢄ((ꢄꢎꢇꢈꢄ"ꢂ$ꢇꢁ  
ꢓꢁ ꢐꢂ(ꢇꢃ"ꢂꢊꢃꢂꢃꢔꢄꢅꢃ$ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢂꢃꢔꢄꢎꢇꢈꢄꢕꢖꢑ/ꢄ1ꢀꢓꢁ0ꢑꢁ  
2ꢖ,3 2ꢅ"ꢂꢋꢄꢐꢂ(ꢇꢃ"ꢂꢊꢃꢁꢄꢗꢌꢇꢊꢈꢇ'ꢂꢋꢅꢆꢆꢉꢄꢇ%ꢅꢋ'ꢄ!ꢅꢆ#ꢇꢄ"ꢌꢊ+ꢃꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ"ꢁ  
ꢘ/43 ꢘꢇ&ꢇꢈꢇꢃꢋꢇꢄꢐꢂ(ꢇꢃ"ꢂꢊꢃ)ꢄ#"#ꢅꢆꢆꢉꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ)ꢄ&ꢊꢈꢄꢂꢃ&ꢊꢈ(ꢅ'ꢂꢊꢃꢄꢎ#ꢈꢎꢊ"ꢇ"ꢄꢊꢃꢆꢉꢁ  
ꢑꢂꢋꢈꢊꢋꢌꢂꢎ ꢋꢌꢃꢊꢆꢊꢔꢉ ꢐꢈꢅ+ꢂꢃꢔ ,ꢒꢓꢞꢒꢛꢍ2  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 435  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70000591F-page 436  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
ꢘꢁꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇꢙ#ꢁꢁꢇꢛꢛꢇ$ꢎꢑꢓꢈ%  
& ꢋꢄ' 4ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢎꢅꢋ5ꢅꢔꢇꢄ$ꢈꢅ+ꢂꢃꢔ")ꢄꢎꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢑꢂꢋꢈꢊꢋꢌꢂꢎꢄ ꢅꢋ5ꢅꢔꢂꢃꢔꢄꢖꢎꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢎ366+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢎꢁꢋꢊ(6ꢎꢅꢋ5ꢅꢔꢂꢃꢔ  
D
D1  
e
E
E1  
N
b
123  
NOTE 2  
NOTE 1  
c
α
A
φ
L
A1  
β
A2  
L1  
7ꢃꢂ'"  
ꢐꢂ(ꢇꢃ"ꢂꢊꢃꢄ8ꢂ(ꢂ'"  
ꢑꢙ88ꢙꢑ/ꢗ/ꢘꢖ  
9:ꢑ  
ꢑꢙ9  
ꢑꢕ;  
9#(*ꢇꢈꢄꢊ&ꢄ8ꢇꢅ$"  
8ꢇꢅ$ꢄ ꢂ'ꢋꢌ  
:!ꢇꢈꢅꢆꢆꢄ<ꢇꢂꢔꢌ'  
9
ꢀꢒꢒ  
ꢒꢁꢓꢒꢄ2ꢖ,  
M
M
ꢀꢁꢍꢒ  
ꢀꢁꢒ0  
ꢒꢁꢀ0  
ꢒꢁꢜ0  
ꢑꢊꢆ$ꢇ$ꢄ ꢅꢋ5ꢅꢔꢇꢄꢗꢌꢂꢋ5ꢃꢇ""  
ꢖ'ꢅꢃ$ꢊ&&ꢄꢄ  
4ꢊꢊ'ꢄ8ꢇꢃꢔ'ꢌ  
ꢕꢍ  
ꢕꢀ  
8
ꢒꢁꢛ0  
ꢒꢁꢒ0  
ꢒꢁꢓ0  
ꢀꢁꢒꢒ  
M
ꢒꢁ>ꢒ  
4ꢊꢊ'ꢎꢈꢂꢃ'  
4ꢊꢊ'ꢄꢕꢃꢔꢆꢇ  
8ꢀ  
ꢀꢁꢒꢒꢄꢘ/4  
ꢏꢁ0ꢝ  
ꢒꢝ  
ꢜꢝ  
:!ꢇꢈꢅꢆꢆꢄ@ꢂ$'ꢌ  
:!ꢇꢈꢅꢆꢆꢄ8ꢇꢃꢔ'ꢌ  
/
/ꢀ  
ꢐꢀ  
ꢀꢓꢁꢒꢒꢄ2ꢖ,  
ꢀꢓꢁꢒꢒꢄ2ꢖ,  
ꢀꢍꢁꢒꢒꢄ2ꢖ,  
ꢀꢍꢁꢒꢒꢄ2ꢖ,  
M
ꢑꢊꢆ$ꢇ$ꢄ ꢅꢋ5ꢅꢔꢇꢄ@ꢂ$'ꢌ  
ꢑꢊꢆ$ꢇ$ꢄ ꢅꢋ5ꢅꢔꢇꢄ8ꢇꢃꢔ'ꢌ  
8ꢇꢅ$ꢄꢗꢌꢂꢋ5ꢃꢇ""  
8ꢇꢅ$ꢄ@ꢂ$'ꢌ  
ꢑꢊꢆ$ꢄꢐꢈꢅ&'ꢄꢕꢃꢔꢆꢇꢄ  
ꢑꢊꢆ$ꢄꢐꢈꢅ&'ꢄꢕꢃꢔꢆꢇꢄ2ꢊ''ꢊ(  
ꢒꢁꢒꢛ  
ꢒꢁꢀꢏ  
ꢀꢀꢝ  
ꢒꢁꢍꢒ  
ꢒꢁꢍꢏ  
ꢀꢏꢝ  
*
ꢒꢁꢀꢚ  
ꢀꢍꢝ  
ꢀꢍꢝ  
ꢀꢀꢝ  
ꢀꢏꢝ  
& ꢋꢄꢊ'  
ꢀꢁ  ꢂꢃꢄꢀꢄ!ꢂ"#ꢅꢆꢄꢂꢃ$ꢇ%ꢄ&ꢇꢅ'#ꢈꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉ)ꢄ*#'ꢄ(#"'ꢄ*ꢇꢄꢆꢊꢋꢅ'ꢇ$ꢄ+ꢂ'ꢌꢂꢃꢄ'ꢌꢇꢄꢌꢅ'ꢋꢌꢇ$ꢄꢅꢈꢇꢅꢁ  
ꢍꢁ ,ꢌꢅ(&ꢇꢈ"ꢄꢅ'ꢄꢋꢊꢈꢃꢇꢈ"ꢄꢅꢈꢇꢄꢊꢎ'ꢂꢊꢃꢅꢆ-ꢄ"ꢂ.ꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉꢁ  
ꢏꢁ ꢐꢂ(ꢇꢃ"ꢂꢊꢃ"ꢄꢐꢀꢄꢅꢃ$ꢄ/ꢀꢄ$ꢊꢄꢃꢊ'ꢄꢂꢃꢋꢆ#$ꢇꢄ(ꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢎꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢁꢄꢑꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢎꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢄ"ꢌꢅꢆꢆꢄꢃꢊ'ꢄꢇ%ꢋꢇꢇ$ꢄꢒꢁꢍ0ꢄ((ꢄꢎꢇꢈꢄ"ꢂ$ꢇꢁ  
ꢓꢁ ꢐꢂ(ꢇꢃ"ꢂꢊꢃꢂꢃꢔꢄꢅꢃ$ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢂꢃꢔꢄꢎꢇꢈꢄꢕꢖꢑ/ꢄ1ꢀꢓꢁ0ꢑꢁ  
2ꢖ,3 2ꢅ"ꢂꢋꢄꢐꢂ(ꢇꢃ"ꢂꢊꢃꢁꢄꢗꢌꢇꢊꢈꢇ'ꢂꢋꢅꢆꢆꢉꢄꢇ%ꢅꢋ'ꢄ!ꢅꢆ#ꢇꢄ"ꢌꢊ+ꢃꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ"ꢁ  
ꢘ/43 ꢘꢇ&ꢇꢈꢇꢃꢋꢇꢄꢐꢂ(ꢇꢃ"ꢂꢊꢃ)ꢄ#"#ꢅꢆꢆꢉꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ)ꢄ&ꢊꢈꢄꢂꢃ&ꢊꢈ(ꢅ'ꢂꢊꢃꢄꢎ#ꢈꢎꢊ"ꢇ"ꢄꢊꢃꢆꢉꢁ  
ꢑꢂꢋꢈꢊꢋꢌꢂꢎ ꢋꢌꢃꢊꢆꢊꢔꢉ ꢐꢈꢅ+ꢂꢃꢔ ,ꢒꢓꢞꢀꢒꢒ2  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 437  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70000591F-page 438  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
ꢘꢁꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢓꢗꢇMꢇꢘ(ꢚꢘ(ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇꢙ#ꢁꢁꢇꢛꢛꢇ$ꢎꢑꢓꢈ%  
& ꢋꢄ' 4ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢎꢅꢋ5ꢅꢔꢇꢄ$ꢈꢅ+ꢂꢃꢔ")ꢄꢎꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢑꢂꢋꢈꢊꢋꢌꢂꢎꢄ ꢅꢋ5ꢅꢔꢂꢃꢔꢄꢖꢎꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢎ366+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢎꢁꢋꢊ(6ꢎꢅꢋ5ꢅꢔꢂꢃꢔ  
D
D1  
e
E1  
E
b
N
α
NOTE 1  
1 23  
NOTE 2  
A
φ
c
A2  
A1  
β
L1  
L
7ꢃꢂ'"  
ꢐꢂ(ꢇꢃ"ꢂꢊꢃꢄ8ꢂ(ꢂ'"  
ꢑꢙ88ꢙꢑ/ꢗ/ꢘꢖ  
9:ꢑ  
ꢑꢙ9  
ꢑꢕ;  
9#(*ꢇꢈꢄꢊ&ꢄ8ꢇꢅ$"  
8ꢇꢅ$ꢄ ꢂ'ꢋꢌ  
:!ꢇꢈꢅꢆꢆꢄ<ꢇꢂꢔꢌ'  
9
ꢀꢒꢒ  
ꢒꢁ0ꢒꢄ2ꢖ,  
M
M
ꢀꢁꢍꢒ  
ꢀꢁꢒ0  
ꢒꢁꢀ0  
ꢒꢁꢜ0  
ꢑꢊꢆ$ꢇ$ꢄ ꢅꢋ5ꢅꢔꢇꢄꢗꢌꢂꢋ5ꢃꢇ""  
ꢖ'ꢅꢃ$ꢊ&&ꢄꢄ  
4ꢊꢊ'ꢄ8ꢇꢃꢔ'ꢌ  
ꢕꢍ  
ꢕꢀ  
8
ꢒꢁꢛ0  
ꢒꢁꢒ0  
ꢒꢁꢓ0  
ꢀꢁꢒꢒ  
M
ꢒꢁ>ꢒ  
4ꢊꢊ'ꢎꢈꢂꢃ'  
4ꢊꢊ'ꢄꢕꢃꢔꢆꢇ  
8ꢀ  
ꢀꢁꢒꢒꢄꢘ/4  
ꢏꢁ0ꢝ  
ꢒꢝ  
ꢜꢝ  
:!ꢇꢈꢅꢆꢆꢄ@ꢂ$'ꢌ  
:!ꢇꢈꢅꢆꢆꢄ8ꢇꢃꢔ'ꢌ  
/
/ꢀ  
ꢐꢀ  
ꢀ>ꢁꢒꢒꢄ2ꢖ,  
ꢀ>ꢁꢒꢒꢄ2ꢖ,  
ꢀꢓꢁꢒꢒꢄ2ꢖ,  
ꢀꢓꢁꢒꢒꢄ2ꢖ,  
M
ꢑꢊꢆ$ꢇ$ꢄ ꢅꢋ5ꢅꢔꢇꢄ@ꢂ$'ꢌ  
ꢑꢊꢆ$ꢇ$ꢄ ꢅꢋ5ꢅꢔꢇꢄ8ꢇꢃꢔ'ꢌ  
8ꢇꢅ$ꢄꢗꢌꢂꢋ5ꢃꢇ""  
8ꢇꢅ$ꢄ@ꢂ$'ꢌ  
ꢑꢊꢆ$ꢄꢐꢈꢅ&'ꢄꢕꢃꢔꢆꢇꢄ  
ꢑꢊꢆ$ꢄꢐꢈꢅ&'ꢄꢕꢃꢔꢆꢇꢄ2ꢊ''ꢊ(  
ꢒꢁꢒꢛ  
ꢒꢁꢀꢜ  
ꢀꢀꢝ  
ꢒꢁꢍꢒ  
ꢒꢁꢍꢜ  
ꢀꢏꢝ  
*
ꢒꢁꢍꢍ  
ꢀꢍꢝ  
ꢀꢍꢝ  
ꢀꢀꢝ  
ꢀꢏꢝ  
& ꢋꢄꢊ'  
ꢀꢁ  ꢂꢃꢄꢀꢄ!ꢂ"#ꢅꢆꢄꢂꢃ$ꢇ%ꢄ&ꢇꢅ'#ꢈꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉ)ꢄ*#'ꢄ(#"'ꢄ*ꢇꢄꢆꢊꢋꢅ'ꢇ$ꢄ+ꢂ'ꢌꢂꢃꢄ'ꢌꢇꢄꢌꢅ'ꢋꢌꢇ$ꢄꢅꢈꢇꢅꢁ  
ꢍꢁ ,ꢌꢅ(&ꢇꢈ"ꢄꢅ'ꢄꢋꢊꢈꢃꢇꢈ"ꢄꢅꢈꢇꢄꢊꢎ'ꢂꢊꢃꢅꢆ-ꢄ"ꢂ.ꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉꢁ  
ꢏꢁ ꢐꢂ(ꢇꢃ"ꢂꢊꢃ"ꢄꢐꢀꢄꢅꢃ$ꢄ/ꢀꢄ$ꢊꢄꢃꢊ'ꢄꢂꢃꢋꢆ#$ꢇꢄ(ꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢎꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢁꢄꢑꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢎꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢄ"ꢌꢅꢆꢆꢄꢃꢊ'ꢄꢇ%ꢋꢇꢇ$ꢄꢒꢁꢍ0ꢄ((ꢄꢎꢇꢈꢄ"ꢂ$ꢇꢁ  
ꢓꢁ ꢐꢂ(ꢇꢃ"ꢂꢊꢃꢂꢃꢔꢄꢅꢃ$ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢂꢃꢔꢄꢎꢇꢈꢄꢕꢖꢑ/ꢄ1ꢀꢓꢁ0ꢑꢁ  
2ꢖ,3 2ꢅ"ꢂꢋꢄꢐꢂ(ꢇꢃ"ꢂꢊꢃꢁꢄꢗꢌꢇꢊꢈꢇ'ꢂꢋꢅꢆꢆꢉꢄꢇ%ꢅꢋ'ꢄ!ꢅꢆ#ꢇꢄ"ꢌꢊ+ꢃꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ"ꢁ  
ꢘ/43 ꢘꢇ&ꢇꢈꢇꢃꢋꢇꢄꢐꢂ(ꢇꢃ"ꢂꢊꢃ)ꢄ#"#ꢅꢆꢆꢉꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ)ꢄ&ꢊꢈꢄꢂꢃ&ꢊꢈ(ꢅ'ꢂꢊꢃꢄꢎ#ꢈꢎꢊ"ꢇ"ꢄꢊꢃꢆꢉꢁ  
ꢑꢂꢋꢈꢊꢋꢌꢂꢎ ꢋꢌꢃꢊꢆꢊꢔꢉ ꢐꢈꢅ+ꢂꢃꢔ ,ꢒꢓꢞꢀꢀꢒ2  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 439  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70000591F-page 440  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
APPENDIX A: MIGRATING FROM dsPIC33FJ06GS101/X02 AND  
dsPIC33FJ16GSX02/X04 TO dsPIC33FJ32GS406/606/608/610 AND  
dsPIC33FJ64GS406/606/608/610 DEVICES  
This appendix provides an overview of considerations  
for migrating from the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 family of devices to the  
On  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices, Fault1  
through Fault8 were assigned to Fault and Current-  
Limit Controls with the following values:  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 family of devices.  
The code developed for the dsPIC33FJ06GS101/X02  
and dsPIC33FJ16GSX02/X04 devices can be ported  
01000= Fault 1  
01001= Fault 2  
01010= Fault 3  
01011= Fault 4  
01100= Fault 5  
01101= Fault 6  
01110= Fault 7  
01111= Fault 8  
to  
dsPIC33FJ64GS406/606/608/610  
making the appropriate changes outlined below.  
the  
dsPIC33FJ32GS406/606/608/610  
and  
after  
devices  
A.1  
Device Pins and Peripheral Pin  
Select (PPS)  
On  
dsPIC33FJ06GS101/X02  
and  
A.2.2  
ANALOG COMPARATORS  
CONNECTION  
dsPIC33FJ16GSX02/X04 devices, some peripherals  
such as the Timer, Input Capture, Output Compare,  
UART, SPI, External Interrupts, Analog Comparator  
Output, as well as the PWM4 pin pair, were mapped to  
physical pins via Peripheral Pin Select (PPS)  
functionality. On dsPIC33FJ32GS406/606/608/610  
and dsPIC33FJ64GS406/606/608/610 devices, these  
peripherals are hard-coded to dedicated pins. Because  
of this, as well as pinout differences between the two  
devices families, software must be updated to utilize  
peripherals on the desired pin locations.  
Connection of analog comparators to the PWM Fault  
and Current-Limit Control Signal Sources on  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices is performed by assigning a comparator to  
one of the Fault sources via the virtual PPS pins, and  
then selecting the desired Fault as the source for Fault  
and Current-Limit Control. On dsPIC33FJ32GS406/  
606/608/610 and dsPIC33FJ64GS406/606/608/610  
devices, analog comparators have a direct connection  
to Fault and Current-Limit Control, and can be selected  
with the following values for the CLSRC or FLTSRC  
bits:  
A.2  
High-Speed PWM  
A.2.1  
FAULT AND CURRENT-LIMIT  
CONTROL SIGNAL SOURCE  
SELECTION  
00000= Analog Comparator 1  
00001= Analog Comparator 2  
00010= Analog Comparator 3  
00011= Analog Comparator 4  
Fault and Current-Limit Control Signal Source selec-  
tion has changed between the two families of devices.  
On  
dsPIC33FJ06GS101/X02  
and  
A.2.3  
LEADING-EDGE BLANKING (LEB)  
dsPIC33FJ16GSX02/X04 devices, Fault1 through  
Fault8 were assigned to Fault and Current-Limit  
Controls with the following values:  
The Leading-Edge Blanking Delay (LEB) bits have  
been moved from the LEBCOx register on  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices to the LEBDLYx register on  
00000= Fault 1  
00001= Fault 2  
00010= Fault 3  
00011= Fault 4  
00100= Fault 5  
00101= Fault 6  
00110= Fault 7  
00111= Fault 8  
dsPIC33FJ32GS406/606/608/610  
and  
dsPIC33FJ64GS406/606/608/610 devices.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 441  
 
 
 
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Revision B (November 2009)  
APPENDIX B: REVISION HISTORY  
The revision includes the following global update:  
Revision A (March 2009)  
• Added Note 2 to the shaded table that appears at  
the beginning of each chapter. This new note  
provides information regarding the availability of  
registers and their associated bits  
This is the initial release of this document.  
This revision also includes minor typographical and  
formatting changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in Table B-1.  
TABLE B-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital  
Signal Controllers”  
Added “DMA Channels” column and updated the RAM size to 9K for the  
dsPIC33FJ64GS406 devices in the controller families table (see Table 1).  
Updated the pin diagrams as follows:  
• 64-pin TQFP and QFN  
- Removed FLT8 from pin 51  
- Added FLT8 to pin 60  
- Added FLT17 to pin 31  
- Added FLT18 to pin32  
• 80-pin TQFP  
- Removed FLT8 from pin 63  
- Added FLT8 to pin 76  
- Added FLT19 to pin 53  
- Added FLT20 to pin 52  
• 100-pin TQFP  
- Removed FLT8 from pin 78  
- Added FLT8 to pin 93  
- Added SYNCO1 to pin 95  
Added Data Memory Map for Devices with 8 KB RAM (see Figure 4-4).  
Section 4.0 “Memory Organization”  
Removed SFRs IPC25 and IPC26 from the Interrupt Controller Register  
Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices (see  
Table 4-7).  
The following bits in the Interrupt Controller Register Map for  
dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices were changed to  
unimplemented (see Table 4-7):  
• Bit 2 of IFS1  
• Bits 9-7 of IFS6  
• Bit 2 of IEC1  
• Bits 9-7 of IEC6  
• Bits 10-8 of IPC4  
Removed OSCTUN2 and LFSR, updated OSCCON and OSCTUN,  
renamed bit 13 of the REFOCON SFR in the System Control Register  
Map from ROSIDL to ROSSLP and changed the All Resets value from  
0000’ to ‘2300’ for the ACLKCON SFR (see Table 4-56).  
Updated bit 1 of the PMD Register Map for dsPIC33FJ64GS608 devices  
from unimplemented to C1MD (see Table 4-60).  
DS70000591F-page 442  
2009-2014 Microchip Technology Inc.  
 
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE B-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Section 9.0 “Oscillator Configuration” Removed Section 9.2 “FRC Tuning”.  
Removed the PRCDEN, TSEQEN, and LPOSCEN bits from the Oscillator  
Update Description  
Control Register (see Register 9-1).  
Updated the Oscillator Tuning Register (see Register 9-4).  
Removed the Oscillator Tuning Register 2 and the Linear Feedback Shift  
Register.  
Updated the default Reset values from R/W-0 to R/W-1 for the SELACLK  
and APSTSCLR<2:0> bits in the ACLKCON register (see Register 9-5).  
Renamed the ROSIDL bit to ROSSLP in the REFOCON register (see  
Register 9-6).  
Section 10.0 “Power-Saving Features” Updated the last paragraph of Section 10.2.2 “Idle Mode” to clarify when  
instruction execution begins.  
Added Note 1 to the PMD1 register (see Register 10-1).  
Section 11.0 “I/O Ports”  
Changed the reference to digital-only pins to 5V tolerant pins in the  
second paragraph of Section 11.2 “Open-Drain Configuration”.  
Section 16.0 “High-Speed PWM”  
Updated the High-Speed PWM Module Register Interconnect Diagram  
(see Figure 16-2).  
Updated the SYNCSRC<2:0> = 111, 101, and 100definitions to  
Reserved in the PTCON and STCON registers (see Register 16-1 and  
Register 16-5).  
Updated the PWM time base maximum value from 0xFFFB to 0xFFF8 in  
the PTPER register (Register 16-3).  
Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 1  
of the shaded note that follows the MDC register (see Register 16-10).  
Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 2  
of the shaded note that follows the PDCx and SDCx registers (see  
Register 16-12 and Register 16-13).  
Added Note 2 and updated the FLTDAT<1:0> and CLDAT<1:0> bits,  
changing the word ‘data’ to ‘state’ in the IOCONx register (see  
Register 16-19).  
Section 20.0 “Universal  
Asynchronous Receiver Transmitter  
(UART)”  
Updated the two baud rate range features to: 10 Mbps to 38 bps at 40  
MIPS.  
Section 22.0 “High-Speed 10-bit  
Analog-to-Digital Converter (ADC)”  
Updated the TRGSRCx<4:0> = 01101definition from Reserved to PWM  
secondary special event trigger selected, and updated Note 1 in the  
ADCP0-ADCP6 registers (see Register 22-6 through Register 22-12).  
Section 24.0 “Special Features”  
Updated the second paragraph and removed the fourth paragraph in  
Section 24.1 “Configuration Bits”.  
Updated the Device Configuration Register Map (see Table 24-1).  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 443  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE B-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 27.0 “Electrical  
Characteristics”  
Updated the Absolute Maximum Ratings for high temperature and added  
Note 4.  
Updated all Operating Current (IDD) Typical and Max values in Table 27-5.  
Updated all Idle Current (IIDLE) Typical and Max values in Table 27-6.  
Updated all Power-Down Current (IPD) Typical and Max values in  
Table 27-7.  
Updated all Doze Current (IDOZE) Typical and Max values in Table 27-8.  
Updated the Typ and Max values for parameter D150 and removed  
parameters DI26, DI28, and DI29 from the I/O Pin Input Specifications  
(see Table 27-9).  
Updated the Typ and Max values for parameter DO10 and DO27 and the  
Min and Typ values for parameter DO20 in the I/O Pin Output  
Specifications (see Table 27-10).  
Added parameter numbers to the Auxiliary PLL Clock Timing  
Specifications (see Table 27-18).  
Added parameters numbers and updated the Internal RC Accuracy Min,  
Typ, and Max values (see Table 27-19 and Table 27-20).  
Added parameter numbers, Note 2, updated the Min and Typ parameter  
values for MP31 and MP32, and removed the conditions for MP10 and  
MP11 in the High-Speed PWM Module Timing Requirements (see  
Table 27-29).  
Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics  
(see Figure 27-14).  
Added parameter IM51 to the I2Cx Bus Data Timing Requirements  
(Master Mode) (see Table 27-34).  
Updated the Max value for parameter AD33 in the 10-bit High-Speed ADC  
Module Specifications (see Table 27-36).  
Updated the titles and added parameter numbers to the Comparator and  
DAC Module Specifications (see Table 27-38 and Table 27-39) and the  
DAC Output Buffer Specifications (see Table 27-40).  
DS70000591F-page 444  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Revision C (February 2010)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
All other changes are referenced by their respective  
section in Table B-2.  
TABLE B-2:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
Added Note 2 to PTPER (Register 16-3).  
Section 16.0 “High-Speed PWM”  
Added Note 1 to SEVTCMP (Register 16-4).  
Updated Note 1 in MDC (Register 16-10).  
Updated Note 5 and added Note 6 to PWMCONx (Register 16-11).  
Updated Note 1 in PDCx (Register 16-12).  
Updated Note 1 in SDCx (Register 16-13).  
Updated Note 1 and Note 2 in PHASEx (Register 16-14).  
Updated Note 2 in SPHASEx (Register 16-15).  
Updated Note 1 in FCLCONx (Register 16-21).  
Added Note 1 to STRIGx (Register 16-22).  
Updated Leading-Edge Blanking Delay increment value from 8.4 ns to  
8.32 ns and added a shaded note in LEBDLYx (Register 16-24).  
Added Note 3 and Note 4 to PWMCAPx (Register 16-26).  
Section 27.0 “Electrical  
Characteristics”  
Updated the Min and Typ values for the Internal Voltage Regulator  
specifications in Table 27-13.  
Updated the Min and Max values for the Internal RC Accuracy  
specifications in Table 27-20.  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 445  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
All other changes are referenced by their respective  
section in Table B-3.  
Revision D (January 2012)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
All occurrences of PGCn and PGDn (where n = 1, 2,  
or 3) were updated to: PGECn and PGEDn throughout  
the document.  
TABLE B-3:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
16-Bit Digital Signal Controllers with  
High-Speed PWM, ADC and  
Comparators”  
Added 50 MIPS to Operating Range.  
Changed the Oscillator frequency range in System Management.  
Added the Referenced Sourcessection.  
Section 1.0 “Device Overview”  
Updated the block diagram of the core and peripheral modules (see  
Figure 1-1).  
Section 2.0 “Guidelines for Getting  
Started with 16-Bit Digital Signal  
Controllers”  
Updated the Recommended Minimum Connection diagram (see  
Figure 2-1).  
Updated the VCAP pin capacitor specification in Section 2.3  
“Capacitor on Internal Voltage Regulator (VCAP)”.  
Section 4.0 “Memory Organization”  
Removed IPC20 and updated IFS5, IFS7, IEC5, IEC7, and IPC29 in  
the Interrupt Controller Register Map for dsPIC33FJ64GS606 devices  
(see Table 4-6).  
Removed IPC20 and IPC21 and updated IFS5, IFS7, IEC5, IEC7, and  
IPC29 in the Interrupt Controller Register Map for dsPIC33FJ32GS406  
and dsPIC33FJ64GS406 devices (see Table 4-7).  
Removed IPC20 and updated IFS5, IFS7, IEC5, IEC7, and IPC29 in  
the Interrupt Controller Register Map for dsPIC33FJ32GS606 devices  
(see Table 4-10).  
Added High-Speed 10-bit ADC Register Map for dsPIC33FJ32GS406  
and dsPIC33FJ64GS406 devices (see Table 4-35).  
Updated ODCG in PORTG Register Map for dsPIC33FJ32GS610 and  
dsPIC33FJ64GS610 devices (see Table 4-54).  
Updated ODCG in PORTG Register Map for dsPIC33FJ32GS608 and  
dsPIC33FJ64GS608 devices (see Table 4-55).  
Updated ODCG in PORTG Register Map for dsPIC33FJ32GS406/606  
and dsPIC33FJ64GS406/606 devices (see Table 4-56).  
Section 9.0 “Oscillator Configuration”  
Changed the High-Speed Crystal (HS) frequency range in  
Section 9.1.1 “System Clock sources”.  
Updated the device operating speed to up to 50 MHz in Section 9.1.2  
“System Clock Selection”.  
Updated Section 9.1.3 “PLL Configuration” to reflect the new  
operating range/speed of 50 MIPS/50 MHz.  
Updated Section 9.2 “Auxiliary Clock Generation”.  
DS70000591F-page 446  
2009-2014 Microchip Technology Inc.  
 
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE B-3:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 22.0 “High-Speed, 10-Bit Analog- Updated the ADC Block Diagram for dsPIC33FJ32GS406 and  
to-Digital Converter (ADC)”  
dsPIC33FJ64GS406 Devices with one SAR (see Table 22-1).  
Added Note 2 to ADCPC6: ADC Convert Pair Control Register 6 (see  
Register 22-12).  
Section 23.0 “High-Speed Analog  
Comparator”  
Added Note 1 to the High-Speed Analog Comparator Module block  
diagram (see Figure 23-1).  
Section 24.0 “Special Features”  
Updated Section 24.1 “Configuration Bits”.  
Added the RTSP Effect column to the dsPIC33F Configuration Bits  
Description (see Table 24-2).  
Added Note 3 to the Connections for the On-chip Voltage Regulator  
(see Figure 24-1).  
Section 27.0 “Electrical Characteristics” Updated the Absolute Maximum Ratings.  
Updated the Operating MIPS vs. Voltage and added Note 1 (see  
Table 27-1).  
Updated Note 4 and removed parameter DC18 from the DC  
Temperature and Voltage Specifications (see Table 27-4).  
Updated Note 2, Typical and Maximum values for parameters DC20-  
DC24, and the Conditions for parameters DC25-DC28 in the Operating  
Current DC Characteristics (see Table 27-5).  
Updated Note 2 in the Idle Current DC Characteristics (see Table 27-6).  
Updated Note 2 in the Power-down Current DC Characteristics (see  
Table 27-7).  
Added Note 2 to the Doze Current DC Characteristics (see Table 27-8).  
Added parameters DI60a, DI60b, and DI60c to the I/O Pin Input  
Specifications (see Table 27-9).  
Updated all I/O Pin Output Specifications (see Table 27-10).  
Updated parameter BO10 and added Note 2 and Note 3 to the BOR  
Electrical Characteristics (see Table 27-11).  
Added Note 1 to the Internal Voltage Regulator Specifications (see  
Table 27-13).  
Updated the OS25 parameter in the External Clock Timing diagram  
(see Figure 27-2).  
Added the Secondary Oscillator (SOSC) to parameter OS10, added  
parameter OS42 (GM), and added Note 2 to the External Clock Timing  
Requirements (see Table 27-16).  
Updated Note 2 in the Internal FRC Accuracy AC Characteristics (see  
Table 27-19).  
Updated parameters DO31 and DO32 in the I/O Timing Requirements  
(see Table 27-21).  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 447  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TABLE B-3:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 27.0 “Electrical Characteristics” Updated the Timer1, Timer2, and Timer3 External Clock Timing  
(Continued)  
Requirements (see Table 27-23, Table 27-24, and Table 27-25).  
Updated the Simple OC/PWM Mode Timing Requirements (see  
Table 27-28).  
Updated all SPI Timing specifications (see Figure 27-11-Figure 27-18  
and Table 27-30-Table 27-37).  
Added Note 2 to the 10-bit High-Speed ADC Module Specifications (see  
Table 27-40).  
Added Note 2 to the 10-bit High-Speed ADC Module Timing  
Requirements (see Table 27-41).  
Added parameter DA08 to the DAC Module Specifications (see  
Table 27-43).  
Updated parameter DA16 in the DAC Output Buffer Specifications (see  
Table 27-44).  
Added DMA Read/Write Timing Requirements (see Table 27-49).  
Added new chapter with electrical specifications for 50 MIPS devices.  
Section 28.0 “50 MIPS Electrical  
Characteristics”  
Section 29.0 “DC and AC Device  
Characteristics Graphs”  
Added new chapter.  
Revision E (October 2012)  
This revision removes the Preliminary watermark and  
includes minor typographical and formatting changes  
throughout the data sheet.  
Revision F (July 2014)  
Changes CHOP bit to CHOPCLK in the High Speed  
PWM Register Map and CHOPCLK PWMCHOP Clock  
Adds Register 29-7 through Register 29-12 to  
Section 29.0 “DC and AC Device Characteristics  
Graphs”  
Generator  
Register  
(see  
Register 4-16  
and  
Register 16-9).  
Also includes minor typographical and formatting  
changes throughout the data sheet.  
Changes values in the Minimum Row Write Time and  
Maximum Row Write time equation examples (see  
Equation 5-2 and Equation 5-3).  
Adds the Oscillator Delay table (see Table 6-2).  
Updates TUN bit ranges in the OSCTUN: Oscillator  
Tuning Register (see Register 9-4).  
Updates the Type C Timer Block Diagram (see  
Figure 13-2).  
Adds Note 1 to the CxFCTRL: ECANx FIFO Control  
Register (see Register 21-4).  
Adds Note 10 to the DC Characteristics: I/O Pin Input  
Specifications (see Table 27-9).  
Updates values in the DC Characteristics: Program  
Memory Table (see Table 27-12).  
DS70000591F-page 448  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
INDEX  
Type B Timer............................................................ 219  
Type C Timer............................................................ 219  
Watchdog Timer (WDT)............................................ 354  
Brown-out Reset (BOR).................................... 120, 349, 353  
A
AC Characteristics ............................................................ 382  
10-Bit, High-Speed ADC........................................... 410  
Internal FRC Accuracy.............................................. 385  
Internal LPRC Accuracy............................................ 385  
Load Conditions........................................................ 382  
Temperature and Voltage Specifications.................. 382  
Arithmetic Logic Unit (ALU)................................................. 39  
Assembler  
C
C Compilers  
MPLAB XC Compilers .............................................. 366  
Clock Generation  
Auxiliary.................................................................... 193  
Reference................................................................. 193  
Clock Switching ................................................................ 201  
Enabling.................................................................... 201  
Sequence ................................................................. 201  
Code Examples  
Erasing a Program Memory Page ............................ 113  
Initiating a Programming Sequence ......................... 114  
Loading Write Buffers............................................... 114  
Port Write/Read........................................................ 215  
PWRSAV Instruction Syntax .................................... 203  
Code Protection........................................................ 349, 356  
CodeGuard Security ................................................. 349, 356  
Configuration Bits ............................................................. 349  
Description................................................................ 350  
Configuration Register Map.............................................. 349  
Configuring Analog Port Pins............................................ 215  
CPU  
Control Registers........................................................ 36  
Data Addressing Overview......................................... 33  
DSP Engine Overview................................................ 33  
Special MCU Features ............................................... 34  
CPU Clocking System ...................................................... 191  
PLL Configuration..................................................... 192  
Selection................................................................... 191  
Sources .................................................................... 191  
Customer Change Notification Service............................. 455  
Customer Notification Service .......................................... 455  
Customer Support............................................................. 455  
MPASM Assembler................................................... 366  
B
Barrel Shifter ....................................................................... 43  
Bit-Reversed Addressing .................................................. 102  
Example.................................................................... 103  
Implementation ......................................................... 102  
Sequence Table (16-Entry)....................................... 103  
Block Diagrams  
16-Bit Timer1 Module................................................ 217  
AC-to-DC Power Supply with PFC and 3 Outputs..........32  
ADC Module with 1 SAR for dsPIC33FJ32GS406,  
dsPIC33FJ64GS406 Devices...............................315  
ADC Module with 2 SARs for dsPIC33FJ32GS606,  
dsPIC33FJ64GS606 Devices...............................316  
ADC Module with 2 SARs for dsPIC33FJ32GS608,  
dsPIC33FJ64GS608 Devices...............................317  
ADC Module with 2 SARs for dsPIC33FJ32GS610,  
dsPIC33FJ64GS610 Devices...............................318  
Boost Converter Implementation ................................ 27  
Conceptual High-Speed PWMx ................................ 233  
Connections for On-Chip Voltage Regulator............. 353  
Digital PFC.................................................................. 27  
DMA Top Level Architecture Using Dedicated  
Transaction Bus................................................ 180  
DSP Engine ................................................................ 40  
dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 .........................18  
dsPIC33FJ32GS406/606/608/610 and  
dsPIC33FJ64GS406/606/608/610 CPU Core........34  
ECANx Module ......................................................... 286  
High-Speed Analog Comparator x Module ............... 345  
High-Speed PWMx Architecture ............................... 232  
I2Cx Module.............................................................. 272  
Input Capture x ......................................................... 225  
Interleaved PFC.......................................................... 30  
MCLR Pin Connections............................................... 24  
Minimum Connections ................................................ 24  
Multi-Phase Synchronous Buck Converter ................. 28  
Off-Line Ups................................................................ 29  
Oscillator Circuit Placement........................................ 25  
Oscillator System...................................................... 190  
Output Compare x Module........................................ 227  
Phase-Shifted Full-Bridge Converter .......................... 31  
PLL............................................................................ 192  
Quadrature Encoder Interface x................................ 261  
Reset System............................................................ 116  
Shared Port Structure ............................................... 214  
Simplified UARTx Module......................................... 279  
Single-Phase Synchronous Buck Converter............... 28  
SPIx Module.............................................................. 265  
Timer2/3/4/5 (32-Bit)................................................. 221  
D
Data Accumulators and Adder/Subtracter .......................... 41  
Data Space Write Saturation...................................... 43  
Overflow and Saturation............................................. 41  
Round Logic ............................................................... 42  
Write-Back.................................................................. 42  
Data Address Space........................................................... 47  
Alignment.................................................................... 47  
Memory Map for 4-Kbyte RAM Devices ..................... 48  
Memory Map for 8-Kbyte RAM Devices ..................... 49  
Memory Map for 9-Kbyte RAM Devices ..................... 50  
Near Data Space........................................................ 47  
SFR Space ................................................................. 47  
Software Stack ........................................................... 99  
Width .......................................................................... 47  
DC and AC Characteristics  
Graphs and Tables................................................... 423  
DC Characteristics  
Brown-out Reset (BOR)............................................ 380  
Doze Current (IDOZE)................................................ 376  
I/O Pin Input Specifications ...................................... 377  
I/O Pin Output Specifications.................................... 379  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 449  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Idle Current (IIDLE) ....................................................374  
Internal Voltage Regulator Specifications.................381  
G
Getting Started with 16-Bit DSCs ....................................... 23  
Operating Current (IDD).............................................372  
Application Connection Examples .............................. 26  
Operating MIPS vs. Voltage......................................370  
Capacitor on Internal Voltage Regulator (VCAP)......... 24  
Power-Down Current (IPD) ........................................375  
Configuring Analog and Digital Pins During  
Program Memory ......................................................381  
ICSP Operations................................................. 26  
Temperature and Voltage Specifications..................371  
Connection Requirements.......................................... 23  
DC Characteristics (50 MIPS)  
Decoupling Capacitors................................................ 23  
External Oscillator Pins............................................... 25  
Doze Current (IDOZE) ................................................420  
Idle Current (IIDLE) ....................................................419  
ICSP Pins ................................................................... 25  
Operating Current (IDD).............................................418  
Master Clear (MCLR) Pin ........................................... 24  
Operating MIPS vs. Voltage......................................418  
Oscillator Value Conditions on Start-up...................... 26  
Unused I/Os................................................................ 26  
Demo/Development Boards, Evaluation and  
Starter Kits ................................................................368  
Development Support .......................................................365  
Third-Party Tools ......................................................368  
DMA Controller  
Channel to Peripheral Associations ..........................179  
Control Registers ......................................................180  
Doze Mode........................................................................204  
DSP Engine.........................................................................39  
Multiplier......................................................................41  
H
High-Speed Analog Comparator....................................... 345  
Applications .............................................................. 346  
Comparator Input Range .......................................... 346  
Control Registers...................................................... 346  
DAC .......................................................................... 346  
Output Range ................................................... 346  
Digital Logic .............................................................. 346  
Features Overview.................................................... 345  
Interaction with I/O Buffers ....................................... 346  
Module Description................................................... 345  
High-Speed PWM............................................................. 231  
Control Registers...................................................... 234  
High-Speed, 10-Bit ADC  
E
ECAN Module  
Frame Types.............................................................285  
Modes of Operation ..................................................287  
Overview ...................................................................285  
ECANx Message Buffers  
Control Registers...................................................... 314  
Description................................................................ 313  
Module Functionality................................................. 314  
ECANx Word 0..........................................................309  
ECANx Word 1..........................................................309  
ECANx Word 2..........................................................310  
ECANx Word 3..........................................................310  
ECANx Word 4..........................................................311  
ECANx Word 5..........................................................311  
ECANx Word 6..........................................................312  
ECANx Word 7..........................................................312  
Electrical Characteristics...................................................369  
Absolute Maximum Ratings ......................................369  
AC Characteristics and Timing Parameters..............382  
Electrical Characteristics (50 MIPS)..................................417  
AC Characteristics and Timing Parameters..............421  
Enhanced CAN (ECAN) Module .......................................285  
Equations  
Device Operating Frequency ....................................191  
FOSC Calculation.......................................................192  
Maximum Row Write Time........................................110  
Minimum Row Write Time.........................................110  
Programming Time ...................................................110  
XT with PLL Mode Example......................................192  
Errata ..................................................................................14  
External Reset (EXTR)......................................................121  
I
I/O Ports............................................................................ 213  
Parallel I/O (PIO) ...................................................... 213  
Write/Read Timing.................................................... 215  
2
I C  
Control Registers...................................................... 271  
Operating Modes...................................................... 271  
Illegal Opcode Reset (IOPUWR) ...................................... 121  
In-Circuit Debugger........................................................... 355  
In-Circuit Emulation .......................................................... 349  
In-Circuit Serial Programming (ICSP)....................... 349, 355  
Input Capture.................................................................... 225  
Control Registers...................................................... 226  
Input Change Notification ................................................. 215  
Instruction Addressing Modes ............................................ 99  
File Register Instructions ............................................ 99  
Fundamental Modes Supported ............................... 100  
MAC Instructions ...................................................... 100  
MCU Instructions ........................................................ 99  
Move and Accumulator Instructions.......................... 100  
Other Instructions ..................................................... 100  
Instruction Set  
F
Fail-Safe Clock Monitor (FSCM) .......................................201  
Flash Program Memory.....................................................109  
Control Registers ......................................................110  
Operations ................................................................110  
Programming Algorithm ............................................113  
RTSP Operation........................................................110  
Table Instructions......................................................109  
Flexible Configuration .......................................................349  
Overview................................................................... 360  
Summary .................................................................. 357  
Symbols Used in Opcode Descriptions .................... 358  
Instruction-Based Power-Saving Modes........................... 203  
Idle............................................................................ 204  
Sleep ........................................................................ 203  
Interfacing Program and Data Memory Spaces................ 104  
2
Inter-Integrated Circuit. See I C.  
DS70000591F-page 450  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
Internet Address................................................................ 455  
Interrupts  
O
Open-Drain Configuration................................................. 215  
Alternate Interrupt Vector Table (AIVT) .................... 123  
Oscillator Configuration .................................................... 189  
Control and Status Registers.................................... 127  
Interrupt Control and Status Registers  
Control Registers...................................................... 194  
Output Compare ............................................................... 227  
IECx.................................................................. 127  
Modes....................................................................... 228  
IFSx .................................................................. 127  
INTCON1 .......................................................... 127  
INTCON2 .......................................................... 127  
INTTREG .......................................................... 127  
IPCx.................................................................. 127  
Interrupt Vector Table (IVT) ...................................... 123  
Reset Sequence ....................................................... 123  
Setup Procedures ..................................................... 178  
Initialization ....................................................... 178  
Interrupt Disable ............................................... 178  
Interrupt Service Routine .................................. 178  
Trap Service Routine........................................ 178  
P
Packaging......................................................................... 427  
Details....................................................................... 429  
Marking..................................................................... 427  
Peripheral Module Disable (PMD) .................................... 205  
PICkit 3 In-Circuit Debugger/Programmer........................ 367  
Pinout I/O Descriptions (table)............................................ 19  
Power Save Instructions  
Coincident Interrupts ................................................ 204  
Power-on Reset (POR)..................................................... 120  
Power-Saving Features.................................................... 203  
Clock Frequency....................................................... 203  
Clock Switching ........................................................ 203  
Power-up Timer (PWRT).................................................. 120  
Program Address Space..................................................... 45  
Construction ............................................................. 104  
Data Access from Program Memory  
J
JTAG Boundary Scan Interface ........................................ 349  
JTAG Interface.................................................................. 355  
L
Leading-Edge Blanking (LEB)........................................... 231  
LPRC Oscillator  
Using PSV ........................................................ 107  
Data Access from Program Memory Using  
Table Instructions ............................................. 106  
Data Access from, Address Generation ................... 105  
Memory Maps............................................................. 45  
Table Read High Instructions  
Use with WDT........................................................... 353  
M
Memory Organization.......................................................... 45  
Microchip Internet Web Site.............................................. 455  
Migrating from dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 to dsPIC33FJ32GS406/606/  
608/610 and dsPIC33FJ64GS406/606/608/610  
Devices ..................................................................... 441  
Migration  
TBLRDH ........................................................... 106  
Table Read Low Instructions  
TBLRDL............................................................ 106  
Visibility Operation.................................................... 107  
Program Memory  
Interrupt Vector........................................................... 46  
Organization ............................................................... 46  
Reset Vector............................................................... 46  
Programmer’s Model .......................................................... 35  
PWM  
Analog Comparators Connection.............................. 441  
Device Pins and Peripheral Pin Select (PPS)........... 441  
Fault and Current-Limit Control Signal  
Source Selection............................................... 441  
Leading-Edge Blanking (LEB)................................... 441  
Modes of Operation  
Power-Saving Features............................................ 204  
Disable...................................................................... 287  
Initialization ............................................................... 287  
Listen All Messages.................................................. 287  
Listen Only................................................................ 287  
Loopback .................................................................. 287  
Normal ...................................................................... 287  
Modulo Addressing ........................................................... 101  
Applicability............................................................... 102  
Operation Example ................................................... 101  
Start and End Address.............................................. 101  
W Address Register Selection .................................. 101  
MPLAB Assembler, Linker, Librarian ................................ 366  
MPLAB ICD 3 In-Circuit Debugger ................................... 367  
MPLAB PM3 Device Programmer .................................... 367  
MPLAB REAL ICE In-Circuit Emulator System................. 367  
MPLAB X Integrated Development  
Q
Quadrature Encoder Interface (QEI)................................. 261  
R
RCON Register  
Use of Status Bits..................................................... 122  
Register Maps  
Analog Comparator Control........................................ 91  
Change Notification (dsPIC33FJ32GS406/606 and  
dsPIC33FJ64GS406/606 Devices)........................ 54  
Change Notification (dsPIC33FJ32GS608/610 and  
dsPIC33FJ64GS608/610 Devices)........................ 54  
CPU Core ................................................................... 52  
DMA............................................................................ 88  
ECAN1 (WIN (C1CTRL1) = 0 or 1)............................. 89  
ECAN1 (WIN (C1CTRL1) = 0).................................... 89  
ECAN1 (WIN (C1CTRL1) = 1).................................... 90  
High-Speed 10-Bit ADC Module (dsPIC33FJ32GS608  
and dsPIC33FJ64GS608 Devices)........................ 85  
Environment Software............................................... 365  
MPLAB X SIM Software Simulator.................................... 367  
MPLIB Object Librarian..................................................... 366  
MPLINK Object Linker ...................................................... 366  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 451  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
High-Speed 10-Bit ADC Module (dsPIC33FJ32GS610  
and dsPIC33FJ64GS610 Devices)........................ 83  
High-Speed 10-Bit ADC Module (for  
PORTE (dsPIC33FJ32GS406/606 and  
dsPIC33FJ64GS406/606 Devices)..................... 94  
PORTE (dsPIC33FJ32GS608/610 and  
dsPIC33FJ32GS406 and dsPIC33FJ64GS406  
Devices) ..............................................................87  
High-Speed 10-Bit ADC Module (for  
dsPIC33FJ64GS608/610 Devices)..................... 94  
PORTF (dsPIC33FJ32GS406/606 and  
dsPIC33FJ64GS406/606 Devices)..................... 95  
PORTF (dsPIC33FJ32GS608 and  
dsPIC33FJ64GS608 Devices)............................ 94  
PORTF (dsPIC33FJ32GS610 and  
dsPIC33FJ64GS610 Devices)............................ 94  
PORTG (dsPIC33FJ32GS406/606 and  
dsPIC33FJ64GS406/606 Devices)..................... 95  
PORTG (dsPIC33FJ32GS608 and  
dsPIC33FJ64GS608 Devices)............................ 95  
PORTG (dsPIC33FJ32GS610 and  
dsPIC33FJ64GS610 Devices)............................ 95  
Quadrature Encoder Interface 1 (QEI1)...................... 70  
Quadrature Encoder Interface 2 (QEI2)...................... 70  
SPI1............................................................................ 82  
SPI2............................................................................ 82  
System Control ........................................................... 96  
Timers......................................................................... 69  
UART1........................................................................ 81  
UART2........................................................................ 81  
dsPIC33FJ32GS606 and dsPIC33FJ64GS606  
Devices)..............................................................86  
High-Speed PWM .......................................................71  
High-Speed PWM Generator 1 ...................................71  
High-Speed PWM Generator 2 ...................................72  
High-Speed PWM Generator 3 ...................................73  
High-Speed PWM Generator 4 ...................................74  
High-Speed PWM Generator 5 ...................................75  
High-Speed PWM Generator 6 ...................................76  
High-Speed PWM Generator 7 (All Devices  
except dsPIC33FJ32GS406 and  
dsPIC33FJ64GS406) ............................................. 77  
High-Speed PWM Generator 8 (All Devices  
except dsPIC33FJ32GS406 and  
dsPIC33FJ64GS406) ............................................. 78  
High-Speed PWM Generator 9 (dsPIC33FJ32GS610  
and dsPIC33FJ64GS610 Devices)........................ 79  
I2C1 ............................................................................80  
I2C2 ............................................................................80  
Input Capture ..............................................................69  
Interrupt Controller (dsPIC33FJ32GS406 and  
dsPIC33FJ64GS406 Devices)............................61  
Interrupt Controller (dsPIC33FJ32GS606  
Devices)..............................................................67  
Interrupt Controller (dsPIC33FJ32GS608  
Devices)..............................................................65  
Interrupt Controller (dsPIC33FJ32GS610  
Devices)..............................................................63  
Interrupt Controller (dsPIC33FJ64GS606  
Devices)..............................................................59  
Interrupt Controller (dsPIC33FJ64GS608  
Devices)..............................................................57  
Interrupt Controller (dsPIC33FJ64GS610  
Devices)..............................................................55  
NVM ............................................................................96  
Output Compare .........................................................70  
PMD (dsIPC33FJ64GS606 Devices)..........................98  
PMD (dsPIC33FJ32GS406 and  
dsPIC33FJ64GS406 Devices)............................98  
PMD (dsPIC33FJ32GS606 Devices)..........................98  
PMD (dsPIC33FJ32GS608 Devices)..........................97  
PMD (dsPIC33FJ32GS610 Devices)..........................97  
PMD (dsPIC33FJ64GS608 Devices)..........................97  
PMD (dsPIC33FJ64GS610 Devices)..........................96  
PORTA (dsPIC33FJ32GS608 and  
Registers  
ACLKCON (Auxiliary Clock Divisor Control)............. 199  
ADBASE (ADC Base)............................................... 322  
ADC Base Register (ADBASE)................................. 322  
ADCON (ADC Control) ............................................. 319  
ADCPC0 (ADC Convert Pair Control 0).................... 324  
ADCPC1 (ADC Convert Pair Control 1).................... 327  
ADCPC2 (ADC Convert Pair Control 2).................... 330  
ADCPC3 (ADC Convert Pair Control 3).................... 333  
ADCPC4 (ADC Convert Pair Control 4).................... 336  
ADCPC5 (ADC Convert Pair Control 5).................... 339  
ADCPC6 (ADC Convert Pair Control 6).................... 342  
ADPCFG (ADC Port Configuration).......................... 323  
ADPCFG2 (ADC Port Configuration 2)..................... 323  
ADSTAT (ADC Status) ............................................. 321  
ALTDTRx (PWM Alternate Dead-Time x)................. 248  
AUXCONx (PWM Auxiliary Control x) ...................... 258  
CHOP (PWM Chop Clock Generator) ...................... 241  
CLKDIV (Clock Divisor) ............................................ 196  
CMPCONx (Comparator Control x) .......................... 347  
CMPDACx (Comparator DAC Control x).................. 348  
CORCON (Core Control).................................... 38, 128  
CxBUFPNT1 (ECANx Filter 0-3  
Buffer Pointer 1) ............................................... 298  
CxBUFPNT2 (ECANx Filter 4-7  
Buffer Pointer 2) ............................................... 299  
CxBUFPNT3 (ECANx Filter 8-11  
dsPIC33FJ64GS608 Devices)............................92  
PORTA (dsPIC33FJ32GS610 and  
Buffer Pointer 3) ............................................... 300  
CxBUFPNT4 (ECANx Filter 12-15  
dsPIC33FJ64GS610 Devices)............................92  
PORTB........................................................................92  
PORTC (dsPIC33FJ32GS406/606 and  
dsPIC33FJ64GS406/606 Devices).....................93  
PORTC (dsPIC33FJ32GS608 and  
dsPIC33FJ64GS608 Devices)............................93  
PORTC (dsPIC33FJ32GS610 and  
dsPIC33FJ64GS610 Devices)............................92  
PORTD (dsPIC33FJ32GS406/606 and  
Buffer Pointer 4) ............................................... 301  
CxCFG1 (ECANx Baud Rate Configuration 1) ......... 296  
CxCFG2 (ECANx Baud Rate Configuration 2) ......... 297  
CxCTRL1 (ECANx Control 1) ................................... 288  
CxCTRL2 (ECANx Control 2) ................................... 289  
CxEC (ECANx Transmit/Receive Error Count)......... 296  
CxFCTRL (ECANx FIFO Control)............................. 291  
CxFEN1 (ECANx Acceptance Filter Enable 1)......... 298  
CxFIFO (ECANx FIFO Status).................................. 292  
CxFMSKSEL1 (ECANx Filter 7-0 Mask  
dsPIC33FJ64GS406/606 Devices).....................93  
PORTD (dsPIC33FJ32GS608/610 and  
Selection 1)....................................................... 303  
dsPIC33FJ64GS608/610 Devices).....................93  
DS70000591F-page 452  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
CxFMSKSEL2 (ECANx Filter 15-8 Mask  
IPC16 (Interrupt Priority Control 16)......................... 165  
IPC17 (Interrupt Priority Control 17)......................... 166  
IPC18 (Interrupt Priority Control 18)......................... 167  
IPC2 (Interrupt Priority Control 2)............................. 154  
IPC20 (Interrupt Priority Control 20)......................... 168  
IPC21 (Interrupt Priority Control 21)......................... 169  
IPC23 (Interrupt Priority Control 23)......................... 170  
IPC24 (Interrupt Priority Control 24)......................... 171  
IPC25 (Interrupt Priority Control 25)......................... 172  
IPC26 (Interrupt Priority Control 26)......................... 173  
IPC27 (Interrupt Priority Control 27)......................... 174  
IPC28 (Interrupt Priority Control 28)......................... 175  
IPC29 (Interrupt Priority Control 29)......................... 176  
IPC3 (Interrupt Priority Control 3)............................. 155  
IPC4 (Interrupt Priority Control 4)............................. 156  
IPC5 (Interrupt Priority Control 5)............................. 157  
IPC6 (Interrupt Priority Control 6)............................. 158  
IPC7 (Interrupt Priority Control 7)............................. 159  
IPC8 (Interrupt Priority Control 8)............................. 160  
IPC9 (Interrupt Priority Control 9)............................. 161  
LEBCONx (Leading-Edge Blanking Control x)......... 255  
LEBDLYx (Leading-Edge Blanking Delay x) ............ 257  
MDC (PWM Master Duty Cycle)............................... 242  
NVMCON (Flash Memory Control)........................... 111  
NVMKEY (Nonvolatile Memory Key)........................ 112  
OCxCON (Output Compare x Control, x = 1-4)........ 229  
OSCCON (Oscillator Control)................................... 194  
OSCTUN (Oscillator Tuning).................................... 198  
PDCx (PWM Generator Duty Cycle x)...................... 245  
PHASEx (PWM Primary Phase-Shift x).................... 246  
PLLFBD (PLL Feedback Divisor) ............................. 197  
PMD1 (Peripheral Module Disable Control 1) .......... 206  
PMD2 (Peripheral Module Disable Control 2) .......... 208  
PMD3 (Peripheral Module Disable Control 3) .......... 209  
PMD4 (Peripheral Module Disable Control 4) .......... 209  
PMD6 (Peripheral Module Disable Control 6) .......... 210  
PMD7 (Peripheral Module Disable Control 7) .......... 211  
PTCON (PWM Time Base Control).......................... 235  
PTCON2 (PWM Clock Divider Select 2)................... 237  
PTPER (PWM Primary Master  
Selection 2)....................................................... 304  
CxINTE (ECANx Interrupt Enable)............................ 295  
CxINTF (ECANx Interrupt Flag)................................ 293  
CxRXFnEID (ECANx Acceptance Filter n  
Extended Identifier)........................................... 303  
CxRXFnSID (ECANx Acceptance Filter n  
Standard Identifier) ........................................... 302  
CxRXFUL1 (ECANx Receive Buffer Full 1) .............. 306  
CxRXFUL2 (ECANx Receive Buffer Full 2) .............. 306  
CxRXMnEID (ECANx Acceptance Filter Mask n  
Extended Identifier)........................................... 305  
CxRXMnSID (ECANx Acceptance Filter Mask n  
Standard Identifier) ........................................... 305  
CxRXOVF1 (ECANx Receive Buffer  
Overflow 1) ....................................................... 307  
CxRXOVF2 (ECANx Receive Buffer  
Overflow 2) ....................................................... 307  
CxTRmnCON (ECANx TX/RX  
Buffer mn Control) ............................................ 308  
CxVEC (ECANx Interrupt Code)............................... 290  
DFLTxCON (Digital Filter x Control) ......................... 264  
DMACS0 (DMA Controller Status 0)......................... 185  
DMACS1 (DMA Controller Status 1)......................... 186  
DMAxCNT (DMA Channel x Transfer Count) ........... 184  
DMAxCON (DMA Channel x Control)....................... 181  
DMAxPAD (DMA Channel x  
Peripheral Address).......................................... 183  
DMAxREQ (DMA Channel x IRQ Select) ................. 182  
DMAxSTA (DMA Channel x RAM Start Address  
Offset A)............................................................ 182  
DMAxSTB (DMA Channel x RAM Start Address  
Offset B)............................................................ 183  
DSADR (Most Recent DMA RAM Address).............. 187  
DTRx (PWM Dead-Time x)....................................... 248  
FCLCONx (PWM Fault Current-Limit Control x)....... 252  
I2CxCON (I2Cx Control) ........................................... 273  
I2CxMSK (I2Cx Slave Mode Address Mask) ............ 277  
I2CxSTAT (I2Cx Status) ........................................... 275  
ICxCON (Input Capture x Control)............................ 226  
IEC0 (Interrupt Enable Control 0) ............................. 142  
IEC1 (Interrupt Enable Control 1) ............................. 144  
IEC2 (Interrupt Enable Control 2) ............................. 146  
IEC3 (Interrupt Enable Control 3) ............................. 147  
IEC4 (Interrupt Enable Control 4) ............................. 148  
IEC5 (Interrupt Enable Control 5) ............................. 149  
IEC6 (Interrupt Enable Control 6) ............................. 150  
IEC7 (Interrupt Enable Control 7) ............................. 151  
IFS0 (Interrupt Flag Status 0) ................................... 132  
IFS1 (Interrupt Flag Status 1) ................................... 134  
IFS2 (Interrupt Flag Status 2) ................................... 136  
IFS3 (Interrupt Flag Status 3) ................................... 137  
IFS4 (Interrupt Flag Status 4) ................................... 138  
IFS5 (Interrupt Flag Status 5) ................................... 139  
IFS6 (Interrupt Flag Status 6) ................................... 140  
IFS7 (Interrupt Flag Status 7) ................................... 141  
INTCON1 (Interrupt Control 1).................................. 129  
INTCON2 (Interrupt Control 2).................................. 131  
INTTREG (Interrupt Control and Status)................... 177  
IOCONx (PWM I/O Control x)................................... 250  
IPC0 (Interrupt Priority Control 0) ............................. 152  
IPC1 (Interrupt Priority Control 1) ............................. 153  
IPC12 (Interrupt Priority Control 12) ......................... 162  
IPC13 (Interrupt Priority Control 13) ......................... 163  
IPC14 (Interrupt Priority Control 14) ......................... 164  
Time Base Period)............................................ 237  
PWMCAPx (Primary PWM Time Base  
Capture x)......................................................... 259  
PWMCONx (PWM Control x) ................................... 243  
QEIxCON (QEIx Control, x = 1 or 2)......................... 262  
RCON (Reset Control).............................................. 117  
REFOCON (Reference Oscillator Control)............... 200  
SDCx (PWM Secondary Duty Cycle x)..................... 245  
SEVTCMP (PWM Special Event Compare) ............. 238  
SPHASEx (PWM Secondary Phase-Shift x) ............ 247  
SPIxCON1 (SPIx Control 1) ..................................... 267  
SPIxCON2 (SPIx Control 2) ..................................... 269  
SPIxSTAT (SPIx Status and Control)....................... 266  
SR (CPU STATUS) ............................................ 36, 128  
SSEVTCMP (PWM Secondary Special Event  
Compare).......................................................... 241  
STCON (PWM Secondary Master Time Base  
Control)............................................................. 239  
STCON2 (PWM Secondary Clock Divider  
Select 2) ........................................................... 240  
STPER (PWM Secondary Master Time Base  
Period).............................................................. 240  
STRIGx (PWM Secondary Trigger x  
Compare Value) ............................................... 254  
T1CON (Timer1 Control) .......................................... 218  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 453  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
TRGCONx (PWM Trigger Control x).........................249  
TRIGx (PWM Primary Trigger x  
SPIx Slave Mode (Full-Duplex, CKE = 0,  
CKP = 0, SMP = 0)........................................... 404  
SPIx Slave Mode (Full-Duplex, CKE = 0,  
Compare Value)................................................251  
TxCON (Timerx Control, x = 2, 4) .............................222  
TyCON (Timery Control, y = 3, 5) .............................223  
UxMODE (UARTx Mode)..........................................280  
UxSTA (UARTx Status and Control).........................282  
Resets...............................................................................115  
Brown-out Reset (BOR)............................................115  
Illegal Condition Reset (IOPUWR)............................115  
Illegal Opcode................................................... 115, 121  
Master Clear Pin Reset (MCLR) ...............................115  
Power-on Reset (POR) .............................................115  
Security.....................................................................121  
Security Reset...........................................................115  
Software RESET Instruction (SWR) .........................115  
Trap Conflict Reset (TRAPR)....................................115  
Uninitialized W Register.................................... 115, 121  
Watchdog Timer Reset (WDTO)...............................115  
Revision History ................................................................442  
CKP = 1, SMP = 0)........................................... 402  
SPIx Slave Mode (Full-Duplex, CKE = 1,  
CKP = 0, SMP = 0)........................................... 398  
SPIx Slave Mode (Full-Duplex, CKE = 1,  
CKP = 1, SMP = 0)........................................... 400  
System Reset ........................................................... 119  
Timer1/2/3 External Clock ........................................ 389  
TimerQ (QEI Module) External Clock  
Characteristics.................................................. 415  
Timing Requirements  
10-Bit, High-Speed ADC........................................... 411  
Auxiliary PLL Clock Specifications............................ 384  
Capacitive Loading on Output Pins .......................... 382  
DMA Read/Write....................................................... 416  
ECAN I/O.................................................................. 416  
External Clock........................................................... 383  
High-Speed PWMx ................................................... 393  
I/O............................................................................. 386  
I2Cx Bus Data (Master Mode) .................................. 407  
I2Cx Bus Data (Slave Mode) .................................... 409  
Input Capture x (ICx) ................................................ 391  
Output Compare x (OCx).......................................... 391  
PLL Clock Specifications .......................................... 384  
QEI External Clock ................................................... 415  
QEI Index Pulse........................................................ 415  
Quadrature Decoder................................................. 414  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out Reset ............. 388  
Simple OCx/PWMx Mode......................................... 392  
SPIx Master Mode (Full-Duplex, CKE = 0,  
S
Serial Peripheral Interface (SPI) .......................................265  
Software RESET Instruction (SWR)..................................121  
Software Stack Pointer, Frame Pointer  
CALL Stack Frame......................................................99  
Special Features of the CPU.............................................349  
T
Thermal Operating Conditions ..........................................370  
Thermal Packaging Characteristics ..................................370  
Timer1...............................................................................217  
Mode Settings...........................................................217  
Timer2/3/4/5......................................................................219  
16-Bit Operation........................................................220  
32-Bit Operation........................................................220  
32-Bit Timer ..............................................................220  
Mode Settings...........................................................220  
Timing Diagrams  
CKP = x, SMP = 1) ........................................... 397  
SPIx Master Mode (Full-Duplex, CKE = 1,  
CKP = x, SMP = 1) ........................................... 396  
SPIx Master Mode (Half-Duplex,  
Transmit Only).................................................. 395  
SPIx Slave Mode (Full-Duplex, CKE = 0,  
Analog-to-Digital Conversion per Input.....................411  
Brown-out Situations.................................................120  
ECAN I/O ..................................................................416  
External Clock...........................................................383  
High-Speed PWMx Characteristics...........................393  
High-Speed PWMx Fault Characteristics..................393  
I/O Characteristics ....................................................386  
I2Cx Bus Data (Master Mode) ..................................406  
I2Cx Bus Data (Slave Mode) ....................................408  
I2Cx Bus Start/Stop Bits (Master Mode)...................406  
I2Cx Bus Start/Stop Bits (Slave Mode).....................408  
Input Capture x (ICx) Characteristics........................391  
OCx/PWMx Characteristics ......................................392  
Output Compare x (OCx) Characteristics .................391  
Output Compare x Operation....................................228  
QEA/QEB Input Characteristics................................413  
QEI Module Index Pulse ...........................................414  
Reset, Watchdog Timer, Oscillator Start-up Timer  
and Power-up Timer .........................................387  
SPIx Master Mode (Full-Duplex, CKE = 0,  
CKP = 0, SMP = 0)........................................... 405  
SPIx Slave Mode (Full-Duplex, CKE = 0,  
CKP = 1, SMP = 0)........................................... 403  
SPIx Slave Mode (Full-Duplex, CKE = 1,  
CKP = 0, SMP = 0)........................................... 399  
SPIx Slave Mode (Full-Duplex, CKE = 1,  
CKP = 1, SMP = 0)........................................... 401  
Timer1 External Clock .............................................. 389  
Timer2/4 External Clock ........................................... 390  
Timer3/5 External Clock ........................................... 390  
Timing Requirements (50 MIPS)  
External Clock........................................................... 421  
Timing Specifications  
Comparator Module.................................................. 412  
DAC Module ............................................................. 412  
DAC Output Buffer.................................................... 413  
Trap Conflict Reset (TRAPR) ........................................... 121  
CKP = x, SMP = 1)............................................397  
SPIx Master Mode (Full-Duplex, CKE = 1,  
CKP = x, SMP = 1)............................................396  
SPIx Master Mode (Half-Duplex,  
Transmit Only, CKE = 0)...................................394  
SPIx Master Mode (Half-Duplex,  
Transmit Only, CKE = 1)...................................394  
DS70000591F-page 454  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
U
W
Universal Asynchronous Receiver  
Transmitter (UART)................................................... 279  
Watchdog Timer (WDT)............................................ 349, 353  
Programming Considerations................................... 354  
Watchdog Timer Time-out Reset (WDTO) ....................... 121  
WWW Address ................................................................. 455  
WWW, On-Line Support ..................................................... 14  
V
Voltage Regulator (On-Chip) ............................................ 353  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 455  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 456  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or Field Application Engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 457  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS7000591F-page 458  
2009-2014 Microchip Technology Inc.  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
dsPIC 33 FJ 32 GS4 06 T - 50 I / PT - XXX  
a) dsPIC33FJ32GS406-50-I/PT:  
SMPS dsPIC33, 32-Kbyte  
program memory, 64-pin,  
50 MIPS, Industrial temp., TQFP  
package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (Kbytes)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Speed  
Temperature Range  
Package  
Pattern  
Architecture:  
33  
FJ  
=
=
16-Bit Digital Signal Controller  
Flash program memory, 3.3V  
Flash Memory  
Family:  
Product Group:  
Pin Count:  
GS4  
GS6  
=
=
Switch Mode Power Supply (SMPS) family  
Switch Mode Power Supply (SMPS) family  
06  
08  
10  
=
=
=
64-pin  
80-pin  
100-pin  
Speed:  
50  
=
=
50 MIPS  
40 MIPS (marking intentionally absent)  
Temperature Range:  
Package:  
I
=
=
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
E
PT  
PT  
PF  
MR  
=
=
=
=
Plastic Thin Quad Flatpack – 10x10x1 mm body (TQFP)  
Plastic Thin Quad Flatpack – 12x12x1 mm body (TQFP)  
Plastic Thin Quad Flatpack – 14x14x1 mm body (TQFP)  
Plastic Quad Flat, No Lead Package – 9x9x0.9 mm body (QFN)  
2009-2014 Microchip Technology Inc.  
DS70000591F-page 459  
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  
NOTES:  
DS70000591F-page 460  
2009-2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009-2014, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63276-374-7  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2009-2014 Microchip Technology Inc.  
DS7000591F-page 461  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/25/14  
DS70000591F-page 462  
2009-2014 Microchip Technology Inc.  

相关型号:

DSPIC33FJ64GS406-50I/PT

IC,DSP,16-BIT,CMOS,TQFP,64PIN,PLASTIC
MICROCHIP

DSPIC33FJ64GS406-I

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP

DSPIC33FJ64GS406-I/PT

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-64
MICROCHIP

DSPIC33FJ64GS406-PT

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP

DSPIC33FJ64GS606

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP

DSPIC33FJ64GS606-50I/MR

IC,DSP,16-BIT,CMOS,LLCC,64PIN,PLASTIC
MICROCHIP

DSPIC33FJ64GS606-50I/PT

IC,DSP,16-BIT,CMOS,TQFP,64PIN,PLASTIC
MICROCHIP

DSPIC33FJ64GS606-I

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP

DSPIC33FJ64GS606-IPT

16-Bit Digital Signal Controllers with High-Speed PWM, ADC and Comparators
MICROCHIP

DSPIC33FJ64GS606-PT

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP

DSPIC33FJ64GS608

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP

DSPIC33FJ64GS608-50I/PT

IC,DSP,16-BIT,CMOS,TQFP,80PIN,PLASTIC
MICROCHIP