HCS412-/P [MICROCHIP]

暂无描述;
HCS412-/P
型号: HCS412-/P
厂家: MICROCHIP    MICROCHIP
描述:

暂无描述

存储
文件: 总28页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCSXXX  
HCSXXX Memory Programming Specification  
This document includes the  
programming specifications for the  
following devices:  
1.2  
Program/Verify Mode  
The Program/Verify mode for the KEELOQ devices  
allows programming for all memory locations within the  
device being programmed. With the exception of the  
decoders, these pins are also used to verify the memory  
arrays.  
• HCS200  
• HCS201  
• HCS300  
• HCS301  
• HCS320  
• HCS360  
• HCS361  
• HCS362  
• HCS410  
• HCS412  
• HCS500  
• HCS512  
• HCS515  
1.0  
PROGRAMMING THE HCSXXX  
®
All of the KEELOQ devices are programmed using a  
serial method. This Serial mode allows KEELOQ  
devices to be programmed while in users' systems,  
which increases the flexibility of designing  
cryptographic encoders, decoders and transponders  
into electronic systems. While some of the devices are  
capable of being programmed through wireless  
communications, the subject of this document is  
focused on wired programmers that make contact with  
the KEELOQ products while the components are in-  
circuit or in a programmer socket. Additionally, this  
programming specification only applies to all KEELOQ  
devices listed above in all packages.  
Note:  
For the purpose of this document,  
“KEELOQ devices” and “KEELOQ products”  
refers to all of the components listed  
above.  
1.1  
Programming Algorithm  
Requirements  
Depending on the device being programmed, the  
method for entering Programming mode can be  
achieved through the use of a combination of logic level  
signals applied to the programming pins. One or two  
pins are capable of accepting clock signals, while  
another pin is dedicated to bidirectional data. These  
pins are detailed in Table 1-1.  
Additionally, the programming voltage range for VDD is  
+5V ± 10% for all the KEELOQ devices. There is not a  
requirement to apply high voltages to any of the pins  
beyond the level of VDD in order to enter the  
Programming mode. For more details about pin  
configurations during programming, refer to Table 1-1.  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 1  
HCSXXX  
Pin Diagrams  
PDIP, SOIC  
8
7
6
5
8
7
6
5
VDD  
NC  
VDD  
S0  
S1  
S0  
S1  
1
2
3
4
1
2
3
4
STEP  
DATA  
VSS  
PWM  
VSS  
S2  
S2  
NC  
VDDB  
8
8
VDD  
LED  
PWM  
VSS  
VDD  
LED  
PWM  
VSS  
S0  
S1  
S0  
S1  
1
1
7
6
5
7
6
5
2
3
4
2
3
4
S2  
S3  
S2  
SHIFT  
8
7
6
5
8
7
6
5
VDD  
VDD  
S0  
S1  
S0  
S1  
1
2
3
4
1
2
3
4
LED/SHIFT  
DATA  
LED  
DATA  
VSS  
S2  
S2  
S3  
VSS  
S3/RFEN  
8
7
6
5
8
VDD  
VDD  
S0  
S1  
S0  
1
2
3
4
1
LC0  
7
6
5
LED  
DATA  
GND  
2
3
4
S1  
PWM  
GND  
S2/LED  
LC1  
S2/RFEN/LC1  
LC0  
8
7
6
5
VSS  
VDD  
1
2
3
4
RFIN  
EE_CLK  
S_CLK  
S_DAT  
EE_DAT  
MCLR  
DS41256A-page 2  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
Pin Diagrams (Continued)  
PDIP, SOIC  
LRNIN  
LRNOUT  
NC  
1
2
3
4
5
6
7
8
9
18 RFIN  
17 NC  
14  
13  
12  
NC  
NC  
NC  
NC  
VSS  
1
2
3
16 OSCIN  
15 OSCOUT  
14 VDD  
MCLR  
GND  
S0  
VDD  
S1  
S0  
4
5
11  
10  
RF_IN  
S_CLK  
13 DATA  
12 CLK  
S1  
6
7
9
8
MCLR  
NC  
S_DAT  
NC  
S2  
11 SLEEP  
10 VLOW  
S3  
TSSOP  
8
8
S1  
S1  
S2/LED  
S2  
1
1
2
3
4
7
6
5
S0  
7
6
5
S0  
2
3
4
LC1  
GND  
PWM  
S3/RFEN  
VSS  
HCS410  
HCS362  
VDD  
LC0  
VDD  
LED/SHIFT  
DATA  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 3  
HCSXXX  
TABLE 1-1:  
Device  
PIN DESCRIPTIONS (DURING PROGRAMMING)  
Pin Number  
Clock  
Comments  
Power Supply  
Ground  
Data  
Other  
HCS200  
HCS201  
HCS300  
HCS301  
HCS320  
HCS360  
HCS361  
HCS362  
HCS410  
HCS412  
HCS500  
HCS512  
HCS515  
8
8
5
5
3
3
6
6
2
(Notes 1)  
8
5
3, 4  
3, 4  
3
6
(Notes 2)  
(Notes 2)  
(Notes 2)  
(Notes 2)  
(Notes 2)  
(Notes 2)  
8
5
6
8
5
6
8
5
3, 4  
3, 4  
3, 4  
3
6
8
5
6
2
8
5
6
4
8
5
6
8
5
3
6
(Note 1)  
1
8
6
5
(Notes 2, 3, 4, 7, 8)  
(Notes 5, 6, 8, 9)  
(Notes 7, 8)  
14  
3
5
12  
10  
13  
9
12  
Note 1: Sends calibration pulse during ACK periods.  
2: VDD pin must be driven low after a Program/Verify cycle.  
3: In-circuit programming recommended.  
4: Used in conjunction with a Microchip Technology 24LC02B device.  
5: MCLR, pin 4, is used to enter Program mode.  
6: Must apply external clock source to OSCIN while programming.  
7: Requires command byte preceding data packet.  
8: Verify function not available.  
9: Uses checksum in data packet.  
DS41256A-page 4  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
2.0  
MEMORY MAPPING  
The program memory maps for KEELOQ products begin  
at 0x000 and extend as shown in the tables that follow.  
As a device is being programmed, the address counter  
automatically increments to the next word location after  
receiving a data word. The memory maps for all  
KEELOQ encoders and transponders were designed so  
that each word is 16 bits wide. Decoder memory maps  
are 8 bits wide.  
2.1  
Encoder Memory Maps  
TABLE 2-1:  
Word Address  
0x00  
HCS200 12 X 16-BIT EEPROM MEMORY MAP  
Mnemonic  
Description  
Word 0 (LSb's) of 64-bit crypt key  
KEY_0  
KEY_1  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
Word 1 of 64-bit crypt key  
Word 2 of 64-bit crypt key  
Word 3 (MSb's) of 64-bit crypt key  
16-bit synchronization value  
Set to 0x0000  
KEY_2  
KEY_3  
SYNC  
Reserved  
SER_0  
Word 0 (LSb's) of 32-bit serial number  
Word 1 (MSb's) of 32-bit serial number  
Word 0 (LSb's) of 32-bit seed value  
Word 1 (MSb's) of 32-bit seed value  
Set to 0x0000  
SER_1  
SEED_0  
SEED_1  
Reserved  
CONFIG  
Configuration Word  
TABLE 2-2:  
HCS201 12 X 16-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
Word 0 (LSb's) of 64-bit crypt key  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
KEY_0  
KEY_1  
KEY_2  
KEY_3  
SYNC  
Word 1 of 64-bit crypt key  
Word 2 of 64-bit crypt key  
Word 3 (MSb's) of 64-bit crypt key  
16-bit synchronization value  
Set to 0x0000  
Reserved  
SER_0  
SER_1  
SEED_0  
SEED_1  
DISC  
Word 0 (LSb's) of 32-bit serial number  
Word 1 (MSb's) of 32-bit serial number  
Word 0 (LSb's) of 32-bit seed value  
Word 1 (MSb's) of 32-bit seed value  
Discrimination Word  
CONFIG  
Configuration Word  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 5  
HCSXXX  
TABLE 2-3:  
HCS300 12 X 16-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
Word 0 (LSb's) of 64-bit crypt key  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
KEY_0  
KEY_1  
Word 1 of 64-bit crypt key  
Word 2 of 64-bit crypt key  
Word 3 (MSb's) of 64-bit crypt key  
16-bit synchronization value  
Set to 0x0000  
KEY_2  
KEY_3  
SYNC  
Reserved  
SER_0  
Word 0 (LSb's) of 32-bit serial number  
Word 1 (MSb's) of 32-bit serial number  
Word 0 (LSb's) of 32-bit seed value  
Word 1 (MSb's) of 32-bit seed value  
Set to 0x0000  
SER_1(1)  
SEED_0  
SEED_1  
Reserved  
CONFIG  
Configuration Word  
Note 1: MSb of this word is used for auto-shutoff timer.  
TABLE 2-4:  
HCS301 12 X 16-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
Word 0 (LSb's) of 64-bit crypt key  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
KEY_0  
KEY_1  
Word 1 of 64-bit crypt key  
Word 2 of 64-bit crypt key  
Word 3 (MSb's) of 64-bit crypt key  
16-bit synchronization value  
Set to 0x0000  
KEY_2  
KEY_3  
SYNC  
Reserved  
SER_0  
Word 0 (LSb's) of 32-bit serial number  
Word 1 (MSb's) of 32-bit serial number  
Word 0 (LSb's) of 32-bit seed value  
Word 1 (MSb's) of 32-bit seed value  
Set to 0x0000  
SER_1(1)  
SEED_0  
SEED_1  
Reserved  
CONFIG  
Configuration Word  
Note 1: MSb of this word is used for auto-shutoff timer.  
TABLE 2-5:  
HCS320 12 X 16-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
Word 0 (LSb's) of 64-bit crypt key  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
KEY_0  
KEY_1  
KEY_2  
KEY_3  
SYNC  
Word 1 of 64-bit crypt key  
Word 2 of 64-bit crypt key  
Word 3 (MSb's) of 64-bit crypt key  
16-bit synchronization value  
Set to 0x0000  
Reserved  
SER_0  
SER_1(1)  
Word 0 (LSb's) of 32-bit serial number  
Word 1 (MSb's) of 32-bit serial number  
Not used  
Not used  
Reserved  
CONFIG  
Set to 0x0000  
Configuration Word  
Note 1: MSb of this word is used for auto-shutoff timer.  
DS41256A-page 6  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
TABLE 2-6:  
Word Address  
0x00  
HCS360 12 X 16-BIT EEPROM MEMORY MAP  
Mnemonic  
Description  
Word 0 (LSb's) of 64-bit crypt key  
KEY_0  
KEY_1  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
Word 1 of 64-bit crypt key  
KEY_2  
Word 2 of 64-bit crypt key  
KEY_3  
Word 3 (MSb's) of 64-bit crypt key  
16-bit synchronization value A  
SYNC_A  
SYNC_B  
Reserved  
SEED_0  
SEED_1  
SER_0  
16-bit synchronization value B or Seed Value (Word 2)  
Set to 0x0000  
Word 0 (LSb's) of 32-bit seed value  
Word 1 (MSb's) of 32-bit seed value  
Word 0 (LSb's) of 32-bit serial number  
Word 1 (MSb's) of 32-bit serial number  
Configuration Word  
SER_1  
CONFIG  
TABLE 2-7:  
HCS361 12 X 16-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
Word 0 (LSb's) of 64-bit crypt key  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
KEY_0  
KEY_1  
Word 1 of 64-bit crypt key  
KEY_2  
Word 2 of 64-bit crypt key  
KEY_3  
Word 3 (MSb's) of 64-bit crypt key  
16-bit synchronization value A  
16-bit synchronization value B or Seed Value (Word 2)  
Set to 0x0000  
SYNC_A  
SYNC_B/SEED_2  
Reserved  
SEED_0  
SEED_1  
SER_0  
Word 0 (LSb's) of 32-bit seed value  
Word 1 (MSb's) of 32-bit seed value  
Word 0 (LSb's) of 32-bit serial number  
Word 1 (MSb's) of 32-bit serial number  
Configuration Word  
SER_1  
CONFIG  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 7  
HCSXXX  
TABLE 2-8:  
HCS362 18 X 16-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
KEY1_0  
KEY1_1  
KEY1_2  
KEY1_3  
KEY2_0  
KEY2_1  
KEY2_2  
KEY2_3  
SEED_0  
SEED_1  
SEED_2  
SEED_3  
CONFIG_0  
CONFIG_1  
SERIAL_0  
SERIAL_0  
SYNC  
Word 0 (LSb's) of 64-bit crypt key 1  
Word 1 of 64-bit crypt key 1  
Word 2 of 64-bit crypt key 1  
Word 3 (MSb's) of 64-bit crypt key 1  
Word 0 (LSb's) of 64-bit crypt key 2  
Word 1 of 64-bit crypt key 2  
Word 2 of 64-bit crypt key 2  
Word 3 (MSb's) of 64-bit crypt key 2  
Word 0 (LSb's) of 64-bit seed value  
Word 1 of 64-bit seed value  
Word 2 of 64-bit seed value  
Word 3 (MSb's) of 64-bit seed value  
Configuration Word (LSb's)  
Configuration Word (MSb's)  
Word 0 (LSb's) of 32-bit serial number  
Word 1 (MSb's) of 32-bit serial number  
16-bit synchronization value  
Set to 0x0000  
Reserved  
TABLE 2-9:  
HCS500 9 X 8-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
CONFIG  
KEY0  
KEY1  
KEY2  
KEY3  
KEY4  
KEY5  
KEY6  
KEY7  
Configuration Word  
Byte 0 (LSb’s) of 64-bit manufacturer key  
Byte 1 of 64-bit manufacturer key  
Byte 2 of 64-bit manufacturer key  
Byte 3 of 64-bit manufacturer key  
Byte 4 of 64-bit manufacturer key  
Byte 5 of 64-bit manufacturer key  
Byte 6 of 64-bit manufacturer key  
Byte 7 (MSb’s) of 64-bit manufacturer key  
TABLE 2-10: HCS512 10 X 8-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
KEY0  
KEY1  
Byte 0 (LSb’s) of 64-bit manufacturer key  
Byte 1 of 64-bit manufacturer key  
Byte 2 of 64-bit manufacturer key  
Byte 3 of 64-bit manufacturer key  
Byte 4 of 64-bit manufacturer key  
Byte 5 of 64-bit manufacturer key  
Byte 6 of 64-bit manufacturer key  
Byte 7 (MSb’s) of 64-bit manufacturer key  
Configuration byte  
KEY2  
KEY3  
KEY4  
KEY5  
KEY6  
KEY7  
CONFIG  
Checksum  
Checksum byte  
DS41256A-page 8  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
TABLE 2-11: HCS515 9 X 8-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
CONFIG  
KEY0  
KEY1  
KEY2  
KEY3  
KEY4  
KEY5  
KEY6  
KEY7  
Configuration byte  
Byte 0 (LSb’s) of 64-bit manufacturer key  
Byte 1 of 64-bit manufacturer key  
Byte 2 of 64-bit manufacturer key  
Byte 3 of 64-bit manufacturer key  
Byte 4 of 64-bit manufacturer key  
Byte 5 of 64-bit manufacturer key  
Byte 6 of 64-bit manufacturer key  
Byte 7 (MSb’s) of 64-bit manufacturer key  
2.2  
Transponder Memory Maps  
TABLE 2-12: HCS410 16 X 16-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
Word 0 (LSb's) of 64-bit crypt key  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
KEY_0  
KEY_1  
KEY_2  
KEY_3  
DISC  
Word 1 of 64-bit crypt key  
Word 2 of 64-bit crypt key  
Word 3 (MSb's) of 64-bit crypt key  
Ext. Config. Word/10-bit Discriminator  
16-bit Configuration Word  
CONFIG  
SER_0  
SER_1  
SEED_0  
SEED_1  
SEED_2  
SEED_3  
USR_0  
USR_1  
USR_2  
USR_3  
Word 0 (LSb's) of 32-bit serial number  
Word 1 (MSb's) of 32-bit serial number  
Word 0 (LSb's) of 64-bit seed value  
Word 1 of 64-bit seed value  
Word 2 of 64-bit seed value  
Word 3 (MSb's) of 64-bit seed value  
Word 0 (LSb's) of 64-bit user area  
Word 1 of 64-bit user area  
Word 2 of 64-bit user area  
Word 3 (MSb's) of 64-bit user area SYNC  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 9  
HCSXXX  
TABLE 2-13: HCS412 18 X 16-BIT EEPROM MEMORY MAP  
Word Address  
Mnemonic  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
KEY0  
KEY1  
Word 0 (LSb’s) of 64-bit crypt key 1  
Word 1 of 64-bit crypt key 1  
KEY2  
Word 2 of 64-bit crypt key 1  
KEY3  
Word 3 (MSb’s) of 64-bit crypt key 1  
Word 0 (LSb’s) of 60-bit seed value  
Word 1 of 60-bit seed value  
SEED0  
SEED1  
SEED2  
CFG/SEED3  
CONFIG1  
CONFIG2  
SER0  
Word 2 of 60-bit seed value  
Word 3 of 60-bit seed value/Configuration in top nibble  
Configuration Word 1 (security options)  
Configuration Word 2  
Word 0 (LSb’s) of 32-bit serial number  
Word 1 (MSb’s) of 32-bit serial number  
Word 0 (LSb’s) of 64-bit user area  
Word 1 of 64-bit user area  
SER1  
USR0  
USR1  
USR2  
Word 2 of 64-bit user area  
USR3  
Word 3 (MSb’s) of 64-bit user area  
The HCS512 is another device that does not conform to  
the 2-wire protocol described above. For this device, the  
MCLR pin is driven high while data is held low. After the  
minimum setup time has been realized, the clock pin is  
driven high and then low for a minimum amount of time  
in order to send the HCS512 a Start condition and  
complete the Entry mode for the next programming  
sequence. The associated waveform is detailed in  
Section 5.0 “Program/Verify Mode Electrical  
Characteristics”. The HCS512 is also the only device  
that requires a checksum be sent to the target device  
while it is being programmed. See the Checksum  
2.3  
Entering Program Mode  
Entering the Program/Verify mode will be dependent  
upon the type of device in use. Most KEELOQ devices  
use a serial clock and bidirectional data line to access  
the chips' memory maps. In order to enter the  
Programming mode, a Start condition is sent to the  
target device, where the clock and data lines must be  
held high and low for specified periods of time. That is,  
all lines are held low while the clock line is driven high.  
After a short delay, the data line is driven high. At this  
point, both lines must remain high for another delay  
period prior to dropping back to ground. After dropping  
both lines low and providing another delay, the state  
machine for the KEELOQ device will enter the  
Programming mode and begin to wait for data, or  
depending on the component, a bulk erase is  
performed on the memory array.  
®
Section in the HCS512 Data Sheet, “KEELOQ Code  
Hopping Decoder“ (DS40151), for details on calculating  
the checksum.  
Note:  
The HCS512 requires an external clock  
signal for the OSCIN pin. This signal is  
necessary throughout the Programming  
mode.  
For the HCS360 and HCS361 devices, the Programming  
mode is entered by providing a clock source on the clock  
line and a Start pulse on the data line, as described in the  
previous paragraph. However, the difference is with  
driving the S1 pin, as shown in Figure 5-5. Bit 0 of the  
data packet must be driven on the S1 pin and kept at that  
level throughout the programming cycles and through  
verification.  
DS41256A-page 10  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
2.4  
Bulk Write Device  
2.7  
Polling Write Cycle  
All transponders and encoders are bulk erased and  
programmed with zeros following the Start condition.  
The bulk erase/write time frame is specified as TPBW,  
which is minimally 4.0 ms. After the bulk function is  
complete, the programming state machine continues  
into the Program mode where it begins to wait for data  
and clock signals.  
2.7.1  
HCS201 AND HCS412  
Once the 16th clock cycle for the data word has been  
generated and the next minimum low time for the clock  
passes, the clock pin can be driven high to poll the  
completion of the write cycle. Before the write cycle is  
complete, the data pin for the target KEELOQ device will  
be low. After the write cycle is complete, the data pin on  
the HCS201 and the HCS412 will begin to provide  
pulses to the programmer in order to signal the  
completion of the write cycle. As a result, the  
programmer data pin should be set to high-impedance  
(input) so that it can read the pulses. After reading the  
pulses on the data pin, the programmer should drive  
the clock pin low and make the data pin an output so  
that data can continue to be driven into the target  
device. These pulses can be used for calibration  
sequences for the HCS201 and the HCS412. For  
information relating to oscillator calibration refer to  
Section 5.0 “Program/Verify Mode Electrical  
Characteristics”, which discusses oscillator tuning. If  
the programmer polls the target device for the end of a  
write cycle, these two devices will continue to emit  
calibration pulses until their clock lines are driven low.  
In order to measure the calibration pulses, the clock pin  
must be driven high prior to the end of the write cycle,  
otherwise the calibration pulses will not appear.  
2.5  
Serial Program/Verify Operation  
For all of the encoders and transponders, the memory  
maps have been designed to be in 16-bit format, which  
means that each address location contains 16 bits of  
information including “don't care” bits that are read as  
zeros. Details relating to the designated pins for clock  
and data signals are outlined in Table 1-1. The  
decoders, on the other hand, were designed with  
memory maps in 8-bit format, so they are discussed  
separately in the next couple of paragraphs.  
For specific information relating to the size of the  
memory maps for a given family of devices, be sure to  
review the tables in Section 2.1 “Encoder Memory  
Maps”.  
The following paragraphs were written with the  
assumption that the target device has been placed into  
the Programming mode and is now waiting for data or  
a command byte to continue programming the memory  
array.  
2.7.2  
ALL OTHER KEELOQ DEVICES  
Once the 16th clock cycle for the data word has been  
generated for any of the encoders or transponders or  
the last clock cycle for a decoder data packet is  
generated, the clock pin can be driven high to poll for  
the completion of the write cycle. Before the write cycle  
is complete, the data pin for the target KEELOQ device  
will be low. As a result, the programmer data pin should  
be set to high-impedance (input) so that it can sense  
the rising edge of data. After the write cycle is  
complete, the data pin will be driven high until the clock  
line is driven low again.  
2.5.1  
ENCODERS/TRANSPONDERS  
To input data to the target KEELOQ encoder or  
transponder, 16 clock cycles are applied to the clock pin  
of the target device while data is driven into the data pin.  
Data is clocked into the target device on the falling edge  
of the clock signal. Also, the minimum high time and low  
time for the clock signals are 50 µs. During verification,  
data must be sampled on the rising edge of the clock.  
2.5.2  
DECODERS  
To input data to the target KEELOQ decoder, 8 clock  
cycles are applied to the clock pin of the target device  
while data is driven into the data pin. Data is clocked  
into the target device on the falling edge of the clock  
signals. Also, the minimum high time and minimum low  
time for the clock signals are 50 µs. For the decoder  
family, there are no verification functions.  
2.6  
Begin Programming  
Write cycles are performed a bit-at-a-time throughout  
the entire programming sequence for KEELOQ  
products. The total write cycle, which includes internal  
processing and programming time, is specified to take  
a minimum of 50 ms. As a result, programmers can  
include a delay for the minimum write cycle time or they  
can poll the target device as discussed in Section 2.7  
“Polling Write Cycle”.  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 11  
HCSXXX  
2.8  
Verify Mode  
4.0  
OSCILLATOR TUNING  
In terms of verify operations, all KEELOQ encoders and  
transponders incorporate a security feature that only  
allows one verify operation to be completed, and it  
must be completed at the end of the programming  
sequence before exiting the Programming mode.  
Calibrating the oscillator of select devices can be  
completed a number of ways. For the purpose of this  
document, calibration will be completed using the Two-  
Point Calibration Algorithm, which is described in  
®
Application Note AN824, “KEELOQ  
Encoders  
Oscillator Calibration” (DS00824). The algorithm is as  
follows:  
When implementing polling routines to sense the end  
of the last write cycle and after driving the clock line low,  
the programmer can begin to read data by continuing  
to provide clock cycles to the target device. Note that  
there is not an Acknowledge bit from KEELOQ devices  
during the Verify mode.  
• OSCCAL = -8  
• Program target device  
• Measure oscillator frequency FHIGH  
• OSCCAL = +7  
In the case where the programmer provides a time delay  
to allow for write cycle completion, the programmer can  
provide clock cycles after the delay to begin reading  
data.  
• Program target device  
• Measure oscillator frequency FLOW  
• Interpolate:  
- OSCCAL = 16*(FIDEAL - FLOW)/(FHIGH - FLOW)  
• Program target device  
Note:  
Decoders do not incorporate a verify  
function.  
For a better understanding of how to implement this  
algorithm, the following flow charts are being provided:  
3.0  
CONFIGURATION WORD  
For detailed descriptions of bit functions for the  
configuration words of the KEELOQ devices, be sure to  
download the latest Data Sheet for the respective device  
from  
the  
Microchip  
Technology  
web  
site  
(www.microchip.com). Configuration word architectures  
are also shown earlier in Section 2.0 “Memory  
Mapping”.  
DS41256A-page 12  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
FIGURE 4-1:  
HCS201 AND HCS412 OSCILLATOR TUNING  
Preload Datastream  
with 0x7 for OSCCAL(1)  
Store Average Value  
as FLOW  
Interpolate  
OSCCAL  
Preload Datastream  
with 400 µs Time Element  
Measure Calibration Pulses  
as Time Elements  
Reset Target(2)  
Preload Datastream  
with Interpolated OSCCAL  
Poll Target for End  
of Write Cycle  
Program Target  
Reset Target(2)  
Program First Word  
of Target  
Preload Desired  
Baud Rate  
Preload Datastream  
with 0x8 for OSCCAL(1)  
Reset Target(2)  
Program Target  
Preload Datastream  
with 400 µs Time Element  
Program Remaining  
Target  
Program First Word  
of Target  
Store Average Value  
as FHIGH  
Poll Target for End  
of Write Cycle  
Measure Calibration Pulses  
as Time Elements  
Note 1: -8d = 0x7, and +7d = 0x8  
2: Cycle Power  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 13  
HCSXXX  
FIGURE 4-2:  
HCS362 AND HCS410 OSCILLATOR TUNING  
Preload Datastream  
with 0x7 for OSCCAL(1)  
Store Average Value  
as FLOW  
Interpolate  
OSCCAL  
Preload Datastream  
with 400 µs Time Element  
Measure Preamble  
Time Elements  
Preload Datastream  
with Interpolated OSCCAL  
Activate Button  
Input on Target  
Program Target  
Device  
Preload Desired  
Baud Rate  
Reset Target(2)  
Reset Target(2)  
Program Target  
Activate Button  
Input on Target  
Program Target  
Device  
Measure Preamble  
Time Elements  
Preload Datastream  
With 400 µs Time Element  
Store Average  
Value as FHIGH  
Preload Datastream  
With 0x8 for OSCCAL  
Reset Target(2)  
Note 1: -8d = 0x7, and +7d = 0x8  
2: Cycle Power  
DS41256A-page 14  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
KEELOQ devices that are capable of oscillator tuning  
include the HCS201, HCS362, HCS410 and the  
HCS412. Though, only the HCS201 and HCS412  
transmit calibration pulses when polling the chips at the  
end of write cycles.  
The HCS362 and the HCS410 oscillator tuning register  
can also be tuned as shown in the algorithm above, but  
with the caveat that after the device is programmed, the  
programmer must activate the target device in order to  
measure the time element in the communication  
preamble. A typical preamble is shown in Figure 4-3.  
The other two devices must be tuned according to the  
preamble pulses that they transmit at the beginning of  
a data packet. For the best accuracy, use multiple time  
elements to achieve an average time element value.  
Typically, a number that is a power of 2n is used in order  
to simplify the resultant quotient (i.e., 4 or 8). In order to  
obtain the most accurate time element measurement,  
the widest possible baud rate should be chosen. For  
simplifying the two flow diagrams below, a common  
time element was chosen to the devices that share  
algorithms.  
FIGURE 4-3:  
PWM CODE WORD TRANSMISSION TIMINGS  
TE TE  
TE TE TE  
Preamble = 23 TE  
bit 1  
Header = 10 TE  
bit 0  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 15  
HCSXXX  
4.1  
Programming Flow Charts  
FIGURE 4-4:  
PROGRAMMING FLOW  
CHART 1  
FIGURE 4-5:  
PROGRAMMING FLOW  
CHART 2  
Start  
Start  
Set VDD =  
5.0V ± 10%  
Set VDD =  
5.0V ± 10%  
Send Start  
Sequence  
Send Start  
Sequence  
If Data Bit 0 =  
Then S1 =  
Else S1 =  
0
0
Device  
Bulk Erase  
1
Load 16 Bits  
of Data  
(LSb first)  
Load 16-Bits  
of Data  
Load 16 Bits of  
Complemented  
Data  
Wait TWC or  
Poll Rising  
Pulse  
(LSb first)  
Wait TWC or  
Poll Calibration  
Pulse  
All Locations  
Programmed?  
No  
Yes  
All Locations  
Programmed?  
No  
Begin Verify  
Yes  
Begin Verify  
Read 16-Bits  
of Data  
Read 16-Bits  
of Data  
No  
All Locations  
Verified?  
No  
All Locations  
Verified?  
Yes  
Program/Verify  
Complete  
Yes  
Program/Verify  
Complete  
Note:  
Applies to HCS200, HCS201, HCS300,  
HCS301, HCS320, HCS362, HCS410  
and HCS412 only.  
Note:  
Applies to HCS360 and HCS361 only.  
DS41256A-page 16  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
FIGURE 4-6:  
PROGRAMMING FLOW  
CHART 3  
FIGURE 4-7:  
PROGRAMMING FLOW  
CHART 4  
Start  
Start  
Set VDD =  
Set VDD =  
5.0V ± 10%  
5.0V ± 10%  
Raise  
NMCLR  
Send Start  
Sequence  
Send Start  
Sequence  
Load 8-Bits  
of Data  
Load 8-Bits  
of Data  
All Locations  
Loaded?  
No  
Yes  
All Locations  
Loaded?  
No  
Wait TWC or  
Poll Rising  
Pulse  
Yes  
Program  
Complete  
Load  
Checksum  
Wait TWC or  
Poll Rising  
Pulse  
Note:  
Applies to HCS500 and HCS515 only.  
Program  
Complete  
Note:  
Applies to HCS512 only.  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 17  
HCSXXX  
5.0  
5.1  
PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS  
Timing Requirements for Program/Verify Mode – Encoders  
Standard Operating Conditions (unless otherwise  
stated)  
AC/DC CHARACTERISTICS  
Operating Temperature +25°C ± 5°C  
Operating Voltage  
4.5V VDD 5.5V  
Sym  
Characteristics  
Min  
Max  
Units  
Conditions/Comments  
HCS200, HCS300, HCS301, HCS320 and HCS362  
TCLKH  
TCLKL  
TDH  
Clock high time  
Clock low time  
50  
50  
30  
0
30  
4.5  
µs  
µs  
Data hold time  
µs  
TDS  
Data setup time  
Data out valid time  
Bulk Write time  
µs  
TDV  
µs  
TPBW  
TPH1  
TPH2  
TPROG  
TPS  
4.0  
3.5  
50  
4.0  
3.5  
50  
ms  
ms  
µs  
Hold Time 1  
Hold Time 2  
Program delay time  
Program mode setup time  
Program cycle time  
ms  
ms  
ms  
TWC  
HCS201  
TACKH  
TACKL  
TCLKH  
TCLKL  
TDH  
Data out valid time  
Data hold time  
Clock high time  
Clock low time  
Data hold time  
Data setup time  
Data out valid time  
Bulk Write time  
Hold Time 1  
800  
800  
50  
30  
5.0  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ms  
ms  
µs  
µs  
ms  
ms  
ms  
50  
18  
TDS  
0
TDV  
TPBW  
TPH1  
TPH2  
4.0  
4.0  
50  
Hold Time 2  
TPHOLD Hold time  
100  
4.0  
2.0  
50  
TPROG  
TPS  
Program delay time  
Program mode setup time  
Program cycle time  
TWC  
HCS360, HCS361  
T1  
Hold Time 1  
9.0  
0
4.0  
30  
ms  
ms  
µs  
µs  
µs  
µs  
µs  
ms  
T2  
Program mode setup time  
Clock high time  
TCLKH  
TCLKL  
TDH  
TDS  
TDV  
TWC  
50  
50  
30  
0
Clock low time  
Data hold time  
Data setup time  
Data out valid time  
Program cycle time  
50  
DS41256A-page 18  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
5.2 Timing Requirements for Program/Verify Mode – Transponders  
Standard Operating Conditions (unless otherwise  
stated)  
AC/DC CHARACTERISTICS  
Operating Temperature +25°C ± 5°C  
Operating Voltage  
4.5V VDD 5.5V  
Sym  
Characteristics  
Min  
Max  
Units  
Conditions/Comments  
HCS410, HCS412  
TAS  
ACK start time  
100  
50  
50  
20  
20  
20  
5
µs  
µs  
µs  
µs  
µs  
µs  
ms  
µs  
ms  
ms  
ms  
TCLKH  
TCLKL  
TDH  
Clock high time  
Clock low time  
Data hold time  
TDS  
Data stable time  
TDV  
Data valid time  
TPH1  
TPH2  
TPROG  
TPS  
Program Hold Time 1  
Program Hold Time 2  
Bulk write time  
4
100  
2.2  
3
Program mode setup time  
EEPROM write time  
TWC  
36  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 19  
HCSXXX  
5.3 Timing Requirements for Program/Verify Mode – Decoders  
Standard Operating Conditions (unless otherwise  
stated)  
AC/DC CHARACTERISTICS  
Operating Temperature +25°C ± 5°C  
Operating Voltage  
4.5V VDD 5.5V  
Sugg.  
Value  
Sym  
Characteristics  
Min  
Max Units Conditions/Comments  
HCS500  
FCLK  
Clock frequency  
500 25000 Hz  
TACK  
Decoder acknowledge time  
Address validate time  
Clock high time  
30  
10  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ms  
ms  
µs  
TADDR  
TCLKH  
TCLKL  
TCMD  
TDATA  
TDS  
20  
1000  
1000  
10  
Clock low time  
20  
Command validate time  
Command last bit to data first bit  
Data hold time  
10  
14  
TREQ  
TRESP  
TSTART  
HCS512  
TACK  
Command request time  
Acknowledge time  
0.015  
500  
1
Command request to first command bit  
20  
1000  
Acknowledge time  
Acknowledge duration  
Clock high time  
1
80  
ms FOSC = 4 MHZ  
µs FOSC = 4 MHZ  
µs FOSC = 4 MHZ  
µs FOSC = 4 MHZ  
ms FOSC = 4 MHZ  
µs FOSC = 4 MHZ  
ms FOSC = 4 MHZ  
TACKH  
TCLKH  
TCLKL  
TPH1  
TPH2  
TPS  
0.05  
0.05  
8
320  
320  
128  
320  
64  
Clock low time  
Hold Time 1  
Hold Time 2  
0.05  
1
Program mode setup time  
HCS515  
TACK  
Command acknowledge time  
Clock high time  
*
30  
20  
240  
1000  
1000  
1000  
1000  
500  
ms  
µs  
µs  
µs  
µs  
ms  
µs  
µs  
µs  
µs  
TCLKH  
TCLKL  
TDATA  
TDS  
100  
100  
100  
50  
Clock low time  
20  
Command last bit to data first bit  
Data hold time  
10  
14  
TREQ  
TRESP  
TSTART  
TWTH  
TWTL  
Command request time  
Acknowledge time  
*
0.005  
10  
100  
100  
100  
100  
1000  
1000  
1000  
Command request to first command bit  
Acknowledge respond time  
Clock low to next command  
Depends on decoder status.  
20  
20  
10  
*
DS41256A-page 20  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
5.4  
Programming Waveforms (HCS200, HCS300, HCS301, HCS320, HCS362)  
FIGURE 5-1:  
PROGRAMMING WAVEFORMS  
Enter Program  
Mode  
TPBW  
TAS  
TCLKH  
TDS  
S2  
(Clock)  
TWC  
TDH  
TPS  
TPH1  
TCLKL  
PWM  
(Data)  
bit 0 bit 1 bit 2 bit 3  
bit 14  
bit 15  
bit 16  
bit 17  
Data for Word 0 (KEY_0)  
Data for Word 1 (KEY_1)  
TPH2  
Repeat for each word (12 times)  
Ack  
Pulse  
Note 1: Unused button inputs to be held to ground during the entire programming sequence.  
FIGURE 5-2:  
VERIFY WAVEFORMS  
End of Programming Cycle  
Beginning of Verify Cycle  
Data from Word 0  
TWC  
S2 (S3)  
(Clock)  
PWM  
(Data)  
bit 190 bit 191  
bit 3  
bit 14  
bit 15  
bit 16 bit 17  
bit 1 bit 2  
TDV  
bit 190 bit 191  
bit 0  
Note: If a Verify operation is to be done, then it must immediately follow the Program cycle.  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 21  
HCSXXX  
5.5  
Programming Waveforms (HCS201)  
FIGURE 5-3:  
PROGRAMMING WAVEFORMS (HCS201)  
Initiate Data  
Polling Here  
Enter Program  
TCLKH  
Mode  
TPBW  
TPHOLD  
TCLKL  
TDS  
S2  
(Clock)  
T
ACKLTACKH  
TPS TPH1  
TWC  
TDH  
bit 0 bit 1 bit 2 bit 3  
TCLKL  
DATA  
(Data)  
Ack  
Calibration Pulses  
Ack  
Ack  
bit 14  
bit 15  
bit 17  
bit 16  
Data for Word 1  
TPH2  
Write Cycle  
Complete Here  
Repeat for each word (12 times)  
S0 and S1 button inputs to be held to ground during the entire programming sequence.  
Note:  
FIGURE 5-4:  
VERIFY WAVEFORMS  
End of Programming Cycle  
Beginning of Verify Cycle  
Data from Word 0  
DATA  
Ack  
bit 190 bit 191  
bit 0 bit 1 bit 2 bit 3  
TDV  
bit 14  
bit 15  
bit 16 bit 17  
bit 190bit 191  
(Data)  
TWC  
S2  
(Clock)  
Note:  
If a Verify operation is to be done, then it must immediately follow the Program cycle.  
DS41256A-page 22  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
5.6  
Programming Waveforms (HCS360, HCS361)  
PROGRAMMING WAVEFORMS  
FIGURE 5-5:  
Enter Program  
Acknowledge Pulse  
bit 16 bit 17  
Mode  
TWC  
DATA  
(Data)  
bit 0 bit 1 bit 2 bit 3  
bit 3  
bit 14 bit 15  
bit 14 bit 15 bit 0 bit 1 bit 2  
TCLKH  
T2  
TCLKL  
TDH  
S2/S3  
(Clock)  
T1  
TDS  
bit 0 of Word 0  
S1  
Data for Word 1  
Data for Word 0 (KEY_0)  
Repeat for each word  
Note 1: Unused button inputs to be held to ground during the entire programming sequence.  
2: The VDD pin must be taken to ground after a Program/Verify cycle.  
FIGURE 5-6:  
VERIFY WAVEFORMS  
End of Programming Cycle  
Beginning of Verify Cycle  
Data from Word0  
DATA  
bit 2 bit 3  
bit 1  
bit 15  
Ack  
bit 0  
bit 14  
bit 16 bit 17  
bit 190 bit 191  
bit 190 bit 191  
(Data)  
TWC  
TDV  
S2/S3  
(Clock)  
S1  
Note 1:  
A Verify sequence is performed only once immediately after the Program cycle.  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 23  
HCSXXX  
5.7  
Programming Waveforms (HCS410, HCS412)  
FIGURE 5-7:  
PROGRAMMING WAVEFORMS  
Enter Program  
Mode  
TPBW  
TAS  
TCLKH  
TDS  
S2  
(Clock)  
TWC  
TDH  
TPS  
TPH1  
TCLKL  
PWM  
(Data)  
bit 0  
bit 1 bit 2 bit 3  
bit 14 bit 15  
bit 16 bit 17  
Data for Word 0 (KEY_0)  
Data for Word 1 (KEY_1)  
TPH2  
Repeat for each word (18 times)  
Ack  
Pulse  
Note 1:  
2:  
Unused button inputs to be held to ground during the entire programming sequence.  
The VDD pin must be taken to ground after a Program/Verify cycle.  
FIGURE 5-8:  
VERIFY WAVEFORMS  
End of Programming Cycle  
Beginning of Verify Cycle  
Data from Word 0  
TWC  
S2 (S3)  
(Clock)  
PWM  
(Data)  
bit 0  
bit 206  
bit 207  
bit 2  
bit 3  
bit 14  
bit 15  
bit 16  
bit 17  
bit 1  
bit 206  
bit 207  
TDV  
Note: If a Verify operation is to be done, then it must immediately follow the Program cycle.  
DS41256A-page 24  
Preliminary  
2004 Microchip Technology Inc.  
HCSXXX  
5.8  
Programming Waveforms (HCS500)  
FIGURE 5-9:  
PROGRAMMING WAVEFORMS  
TCLKL  
TCMD  
TADDR  
TDATA  
TDATA  
TACK  
TWT2  
TPP3  
TPP1  
TCLKH  
TDS  
CLK  
µC Data  
LSb  
MSb  
LSb  
MSb  
MSb  
MSb  
LSb  
TPP2  
TPP4  
TAW  
Decoder  
Data  
Start Command  
Command Byte  
Configuration Byte Least Significant Byte  
Most Significant Byte Acknowledge  
G H  
A
B
C
D
E
F
5.9  
Programming Waveforms (HCS512)  
FIGURE 5-10:  
PROGRAMMING WAVEFORMS  
MCLR  
TCLKL  
TACK  
TACKH  
TPS  
TPH1  
TPH2  
TCLKH  
CLK  
(Clock)  
DAT  
bit 0  
bit 1  
bit 78 bit 79  
Ack  
(Data)  
Acknowledge  
pulse  
Enter Program Mode  
80-bit Data Package  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 25  
HCSXXX  
5.10 Programming Waveforms (HCS515)  
FIGURE 5-11:  
PROGRAMMING WAVEFORMS  
TCLKL  
TCLKH  
TSTART  
TDATA  
TDATA  
TDATA  
TDATA  
TACK  
TREQ  
CLK  
TWTH  
TDS  
µC Data  
LSb  
LSb  
MSb  
LSb  
MSb  
MSb  
LSb  
MSb  
TRESP  
HCS515  
TWTL  
Data  
Start Command  
Acknowledge  
Command Byte  
Configuration Byte  
LSb  
MSb  
D
E
G
H
A
B
C
F
Note:  
The programming command consists of the following:  
Command Request Sequence (A to B)  
Command Byte (B to C)  
Configuration Byte (C to D)  
Manufacturer’s Code Eight Data Bytes (D to G)  
Activation and Acknowledge Sequence (G to H)  
DS41256A-page 26  
Preliminary  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,  
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel and Total  
Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2004 Microchip Technology Inc.  
Preliminary  
DS41256A-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
10/20/04  
DS41256A-page 28  
Preliminary  
2004 Microchip Technology Inc.  

相关型号:

HCS412-I/P

TELECOM, DATA ENCRYPTION CIRCUIT, PDIP8, PLASTIC, DIP-8
MICROCHIP

HCS412-I/SN

TELECOM, DATA ENCRYPTION CIRCUIT, PDSO8, SOIC-8
MICROCHIP

HCS412/P

TELECOM, DATA ENCRYPTION CIRCUIT, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MICROCHIP

HCS412/SN

TELECOM, DATA ENCRYPTION CIRCUIT, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MICROCHIP

HCS412C/P

IC,TRANSPONDER,CMOS,DIP,8PIN,PLASTIC
MICROCHIP

HCS412C/SO

IC,TRANSPONDER,CMOS,SOP,8PIN,PLASTIC
MICROCHIP

HCS412I

KEELOQ Code Hopping Encoder and Transponder
MICROCHIP

HCS412I/SO

IC,TRANSPONDER,CMOS,SOP,8PIN,PLASTIC
MICROCHIP

HCS412IP

KEELOQ Code Hopping Encoder and Transponder
MICROCHIP

HCS412P

KEELOQ Code Hopping Encoder and Transponder
MICROCHIP

HCS412SN

KEELOQ Code Hopping Encoder and Transponder
MICROCHIP

HCS412T

KEELOQ Code Hopping Encoder and Transponder
MICROCHIP