HV53011T-E/KVX [MICROCHIP]

16-Channel ±135V Push-Pull Driver with RTZ;
HV53011T-E/KVX
型号: HV53011T-E/KVX
厂家: MICROCHIP    MICROCHIP
描述:

16-Channel ±135V Push-Pull Driver with RTZ

文件: 总32页 (文件大小:1575K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HV53011  
16-Channel ±135V Push-Pull Driver with RTZ  
Features  
General Description  
• 16-Channel Push-Pull Output  
HV53011 is a high-voltage driver solution for surface  
haptic applications. It consists of 16 push-pull drivers  
capable of ±135V output swing with Return-To-Zero  
(RTZ) function. Each output driver is capable of sourc-  
ing and sinking at least 24 mA. Each high-voltage out-  
put is capable of driving up to 250 pF capacitive load. A  
global current sensor function is also integrated into  
this device to monitor the charge and discharge cur-  
rents. The measured current is mapped to a low volt-  
age analog output with a scale factor of 3.1 V/V via a  
current-sensing resistor.  
• Return-To-Zero (RTZ) and High Impedance (Hi-Z)  
Function  
• Up to ±135V Output Voltage  
• 24 mA Minimum Source Sink Output Current  
• 250 pF Maximum Output Load  
• Current Sensor Output  
• SPI Interface with Quad-Latched 2-Bit per  
Channel Architecture  
• Power-On Reset Function  
• Shutdown Function  
An SPI interface is used to communicate between the  
microcontroller/processor and the high-voltage drivers.  
This interface accepts 3.3V logic I/O signals up to clock  
speeds of 32 MHz. Five digital LATCH control signals  
manage the data flow and the firing pattern. It estab-  
• 59-Ball 8 x 8 mm TFBGA Package  
Application  
lishes the output to one of four possible states: VPP  
VNN, 0V or high impedance.  
,
• Surface Haptic Application  
• MEMS Driver  
A proper power on and off sequence is critical to  
ensure the operation of the high-voltage driver. This  
• Piezo Driver  
driver requires four high-voltage power rails, VPP, VPF  
,
VNN, VNF, and three low-voltage power rails, VCC, VSS  
and VLL. A companion integrated driver IC, HV53001,  
has a built-in power on/off sequence control circuits to  
maintain the proper orders.  
A shutdown function is available to disable the driver  
and set it to consume minimum power when the driver  
is not used.  
The HV53011 device is packaged in a 8 x 8 mm  
59-ball TFBGA package. All high-voltage I/Os are  
assigned to have sufficient clearance for safety  
purposes.  
2021 Microchip Technology Inc.  
DS20006519A-page 1  
HV53011  
Typical Application Diagram  
SHDN  
LATCHA,B,C,D  
GPIOs  
4
LATCHIN  
32  
32  
32  
32  
32  
32  
32  
32  
Surface  
Haptics  
Element  
4
2
2
HVOUT  
0
1
SS  
HVOUT  
SCK  
SPI  
SDI  
32  
SDO  
2
2
HVOUT14  
HVOUT15  
VPPSENSE  
Analog  
IPP and INN  
Current Sensors  
VNNSENSE  
Inputs  
HV53011  
DS20006519A-page 2  
2021 Microchip Technology Inc.  
HV53011  
Package Types (Top View)  
HV53011  
8 x 8 TFBGA*  
9
1
2
3
4
5
6
7
8
10  
11  
A
HV  
1
HV  
5
6
HV  
4
HV  
3
HV  
2
HV  
OUT  
0
OUT  
A
B
OUT  
OUT  
OUT  
OUT  
B
VPP  
SENSE  
HV  
OUT  
LATCHD  
SS  
SHDN  
V
V
FILP  
C
D
E
LL  
PPO  
C
D
E
HVGND LATCHC  
HVGND LATCHB  
SDI  
Reserved  
V
CC  
SDO  
SCK  
HVGND  
V
V
V
HV  
7
SS  
PF  
PP  
OUT  
VNN  
LATCHA  
SENSE  
HVGND HVGND  
F
F
NC  
NC  
LATCHIN HVGND HVGND HVGND  
HVGND HVGND HVGND HVGND  
V
V
G
NF  
NN  
HV  
HV  
HV  
8
9
G
OUT  
H
J
H
J
HVGND HVGND HVGND HVGND HVGND  
V
FILN  
OUT  
NNO  
K
L
K
L
HV  
11  
10  
HV  
12  
HV  
13  
HV  
14  
HV  
15  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1
2
3
4
5
6
7
8
9
10  
11  
* see Table 2-1.  
2021 Microchip Technology Inc.  
DS20006519A-page 3  
HV53011  
Block Diagram  
VPP  
VPF  
VNF  
VNN  
Logic voltage  
supply  
VPF VPP VNN VNNO VPPO  
Sensor Circuit  
FILN FILP  
VLL  
VNF  
HV53011  
VCC  
VCC  
VSS  
VNNSENSE  
VPPSENSE  
VSS  
POR  
actuator  
High Voltage Die  
LATCHIN  
LATCHA  
LATCHB  
LATCHC  
LATCHD  
LATCHIN  
HVOUT  
0
LATCHA  
LATCHB  
LATCHC  
LATCHD  
Control  
Logic  
HVOUT15  
SPI  
Interface  
SDI SDO SCK SS  
HVGND  
SHDN  
DATA FROM MCU  
DS20006519A-page 4  
2021 Microchip Technology Inc.  
HV53011  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
High Positive Supply Voltage (VPP) .......................................................................................................... -0.3V to +140V  
High Negative Supply Voltage (VNN)......................................................................................................... -140V to +0.3V  
High Positive Floating Supply Voltage (VPF).......................................................................................... VPP - 14V to VPP  
High Negative Floating Supply Voltage (VNF).......................................................................................VNN to VNN + 14V  
Analog Low Positive Voltage Supply (VCC)................................................................................................ -0.3V to +8.0V  
Analog Low Negative Voltage Supply (VSS) ............................................................................................. -8.0V to +0.3V  
Logic Voltage Supply (VLL) ........................................................................................................................ -0.3V to +4.0V  
Logic Input Levels (Hi-V Driver, SPI interface, LATCHx and SHDN) ...................................................-0.3V to VLL +0.3V  
Maximum Junction Temperature (TJ(MAX))............................................................................................................ +125°C  
Storage Temperature ..............................................................................................................................-65°C to +150°C  
ESD Rating on Low Voltage Pins (Human Body Model)............................................................................................2 kV  
ESD Rating on Low Voltage Pins (Charged Device Model).....................................................................................500 V  
ESD Rating on High Voltage Pins (Human Body Model).........................................................................................500 V  
ESD Rating on High Voltage Pins (Charged Device Model)....................................................................................500 V  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at those or any other conditions above those indicated in the  
operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
TABLE 1-1:  
OPERATING SUPPLY VOLTAGES  
Electrical Specifications: Unless otherwise specified: TA = TJ = +25°C. Boldface specifications apply over the  
TA = TJ = range of -40°C to +125°C.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Note 1  
V
V
High Positive Supply Voltage  
High Negative Supply Voltage  
VPP  
VNN  
48  
135  
-48  
-135  
Low Positive Supply Voltage  
(High Voltage Driver)  
V
V
V
VCC  
VSS  
VLL  
6.0  
-6.5  
3.0  
6.5  
-6.0  
3.3  
7.0  
-5.5  
3.6  
Low Negative Supply Voltage  
(High Voltage Driver)  
Logic Input Supply Voltage  
(SPI Interface)  
Negative Floating Supply Voltage  
Positive Floating Supply Voltage  
High-Level Input Logic Voltage  
Low-Level Input Logic Voltage  
VNN + 9V  
VPP-13.2V  
0.8 VLL  
0
-
-
VNN+13.2V  
VPP - 9V  
V
V
V
V
VNF  
VPF  
VIH  
VIL  
0.2 VLL  
Note 1: Specification is obtained by characterization and is not 100% tested.  
2021 Microchip Technology Inc.  
DS20006519A-page 5  
HV53011  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA = TJ = -40°C to 125°C. Typical values are at +25°C.  
VPP = +135V, VNN = -135V, VPF = +123V, VNF = -123V, VCC = +6.5V, VSS = -6.0V, VLL = +3.3V unless otherwise  
specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
5.6  
Units  
Conditions  
High Voltage Driver  
Quiescent VPP Supply Current  
(Sum of Current at VPP and  
VPPO pins)  
IPPQ  
3.7  
mA  
mA  
Quiescent VNN Supply Current  
(Sum of Current at VNN and  
VNNO pins)  
INN  
Q
-5.8  
-5.2  
-3.8  
Quiescent VPF Supply Current  
(Source)  
IPF  
Q
Q
-3.6  
3.7  
mA  
mA  
Quiescent VNF Supply Current  
(Source)  
INF  
5.4  
0.4  
Quiescent High Voltage Positive  
Supply Resultant Current,  
I
PPRQ  
mA  
mA  
IPPQ+ IPF  
Q
Quiescent High Voltage  
Negative Supply Resultant  
INNR  
Q
-0.4  
-7.5  
Current, INNQ+ INF  
Q
VPP Supply Current  
(Sum of current at VPP and  
VPPO pins)  
V
PP=+90V, VNN=-90V,  
IPP  
7.5  
mA  
mA  
VPF=+78V, VNF=-78V,  
fHVOUT = 20 kHz,CL=  
250 pF, Running two  
channels. Test pattern =  
Figure 1-3 with 12.5 s  
pulse width  
VNN Supply Current  
(Sum of current at VNN and  
VNNO pins)  
INN  
V
PP=+90V, VNN=-90V,  
High Voltage Positive Supply  
Resultant Current, IPP + IPF  
IPPR  
INNR  
IPF  
2
mA  
mA  
mA  
mA  
VPF=+78V, VNF=-78V,  
fHVOUT = 20 kHz,CL=  
250 pF, Running two  
channels. Test pattern =  
Figure 1-3 with 12.5 s  
pulse width  
High Voltage Negative Supply  
Resultant Current, INN + INF  
-2  
VPP = +90V, VNN= -90V,  
VPF= + 78V, VNF= -78V,  
fHVOUT = 20 kHz,  
CL= 250 pF,  
Running two channels.  
Test pattern =  
VPF Operating Supply Current  
VNF Operating Supply Current  
-5.5  
INF  
5.5  
Figure 1-3 with 12.5 μs  
pulse width  
Note 1: Recommended operating conditions: VLL = +3.3V, VCC = +6.5V, VSS = -6.0V, VPP = +135V, VNN = -135V  
all input pins = 0V unless noted. TJ = 25°.C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
DS20006519A-page 6  
2021 Microchip Technology Inc.  
HV53011  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA = TJ = -40°C to 125°C. Typical values are at +25°C.  
VPP = +135V, VNN = -135V, VPF = +123V, VNF = -123V, VCC = +6.5V, VSS = -6.0V, VLL = +3.3V unless otherwise  
specified.  
Parameter  
Sym.  
Min.  
-0.2  
Typ.  
Max.  
0.2  
Units  
Conditions  
V
PP=+90V, VNN=-90V,  
VPF=+78V, VNF=-78V,  
Test pattern =  
Figure 1-3 with 12.5 s  
pulse width  
VCC Operating Supply Current  
VSS Operating Supply Current  
ICC  
mA  
ISS  
mA  
mA  
VLL = +3.3V  
SCK = 32 MHz,  
SDI = 16 MHz pulse  
train  
VLL Operating Supply Current  
ILL  
25  
VNF Negative Floating Supply  
Voltage  
VNN+9V  
VNN+13.2V  
VPP-9V  
VNF  
-
-
V
V
VPF Positive Floating Supply  
Voltage  
VPP-13.2V  
VPF  
VPP = +90V, VNN= -90V,  
VPF = +78V, VNF= -78V,  
CL= 250 pF,  
Testpattern=Figure 1-3  
with 12.5 μs pulse width  
HVOUT Switching Frequency  
fHVOUT  
0
25  
kHz  
mA  
VPP = +90V,  
VNN = -90V,  
VPF= +78V,  
VNF = -78V  
HVOUT Output Source and Sink  
Current  
IHVOUT  
24  
40  
VPP = +90V,VNN = -90V,  
VPF= +78V,VNF = -78V,  
V/s VCC= +6.5V,VSS= -6.0V  
Return-To-Zero Slew Rate  
90% to 10%  
(i) from VPP to 0V  
(ii) from VNN to 0V  
SR  
100  
200  
CL = 250 pF  
V
PP = +135 V,  
Delay Time for Output to Start  
Rise/Fall  
(from LATCHA, B, C, D to  
VNN = -135 V,  
VCC= 6.5V, VSS = -6.0V  
No load (Note 3)  
td(ON/OFF)  
100  
40  
ns  
1V HVOUT  
)
Variation of Delay Time  
(Channel to Channel)  
td  
ns  
V
Note 3  
Shutdown Pin Input Enable  
Voltage  
VIH(SHDN)  
2.5  
VPPSENSE and VNNSENSE Current Sensor  
Note 1: Recommended operating conditions: VLL = +3.3V, VCC = +6.5V, VSS = -6.0V, VPP = +135V, VNN = -135V  
all input pins = 0V unless noted. TJ = 25°.C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
2021 Microchip Technology Inc.  
DS20006519A-page 7  
HV53011  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA = TJ = -40°C to 125°C. Typical values are at +25°C.  
VPP = +135V, VNN = -135V, VPF = +123V, VNF = -123V, VCC = +6.5V, VSS = -6.0V, VLL = +3.3V unless otherwise  
specified.  
Parameter  
Sym.  
Min.  
0
Typ.  
Max.  
3.6  
Units  
Conditions  
VPP = +135V,  
VNN = -135V,  
VCC = +6.5V,  
VSS = -6.0V,  
VPP - VPPO = 1.0V,  
VNNO - VNN = 1.0V  
Vout  
VPPSENSE/VNNSENSE  
Output Voltage  
V
(VPPSENSE/  
VNNSENSE)  
VPP = +135V,  
VNN = -135V,  
VCC = +6.5V,  
VSS = -6.0V,  
VPP-VPPO and  
VNNO-VNN: from 0.1 to  
1.0V  
Voltage Gain of Current Sensor  
Sensing Amplifier Output Offset  
AVSENSE  
-14%  
-280  
3.1  
+14%  
+280  
V/V  
mV  
VPP = +135V,  
VNN = -135V,  
VCC = +6.5V,  
VSS = -6.0V,  
VPP-VPPO and  
VNNO-VNN: from 0.1 to  
1.0V  
VOS  
(Note 3)  
VPP = +90V,  
VNN = -90V,  
VCC = +6.5V,  
300  
ns  
VSS = -6.0V, CL = 3 pF,  
Test pulse: 1V, 1 μs  
pulse width  
1. VPP and VPPO  
2. VNN and VNNO  
Rise Time  
(Time from 10% to 90% of  
targeted value)  
tR  
VPP = +90V,  
VNN = -90V,  
VCC = +6.5V,  
VSS = -6.0V, CL = 20 pF,  
Test pulse: 1V, 1 μs  
pulse width  
740  
ns  
1. VPP and VPPO  
2. VNN and VNNO  
RLOAD  
CLOAD  
10  
M  
Note 2  
Note 2  
VPPSENSE/VNNSENSE  
Output Load  
3
pF  
SPI Interface  
Digital Input Clock Frequency  
High-Level Input Logic Voltage  
Low-Level Input Logic Voltage  
Logic I/O Pin Rise and Fall Time  
fCLK  
VIH  
32  
MHz 3.3V logic input  
0.8VLL  
0
V
V
VIL  
0.2VLL  
tR, tF  
5
ns  
CL = 15 pF (Note 3)  
Note 1: Recommended operating conditions: VLL = +3.3V, VCC = +6.5V, VSS = -6.0V, VPP = +135V, VNN = -135V  
all input pins = 0V unless noted. TJ = 25°.C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
DS20006519A-page 8  
2021 Microchip Technology Inc.  
HV53011  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA = TJ = -40°C to 125°C. Typical values are at +25°C.  
VPP = +135V, VNN = -135V, VPF = +123V, VNF = -123V, VCC = +6.5V, VSS = -6.0V, VLL = +3.3V unless otherwise  
specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Note 2  
Sourced by any standard I/O pin  
Sunk by any standard I/O pin  
Isource  
Isink  
10  
10  
mA  
mA  
Note 2  
SPI Quiescent Current of Low  
Voltage Supplies with Shut-  
down asserted  
In shutdown mode.  
All logic input = 0V.  
V(SHDN) = VLL  
I
LLQ  
100  
1
A  
SCK = 32 MHz and  
SDI = 16 MHz pulse  
train.  
Time to Enter and Exit  
Shutdown  
tSHDN  
ms  
Time from Chip Select and SPI  
data  
Refer to Figure 1-1  
(Note 2)  
tWAIT  
tPKT  
20  
4
50  
-
-
-
-
ns  
s  
ns  
Time to Transfer 128 Bits of  
Data  
Refer to Figure 1-1  
(Note 2)  
Time from Last Clock Pulse to  
LATCHIN  
Refer to Figure 1-1  
(Note 2)  
tH(LAT)  
20  
50  
Digital Interface  
Refer to Figure 1-2  
(Note 2)  
Time SPI Latch Held Low  
tab  
tac  
tae  
tak  
tgk  
tmn  
trs  
20  
10  
-
50  
12  
10  
50  
50  
50  
100  
10  
-
-
ns  
s  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Figure 1-2  
(Note 2)  
Time Between SPI Latches  
Time from SPI Latch Assert to  
Data Valid  
Refer to Figure 1-2  
(Note 2)  
20  
-
Time from SPI Latch to Data  
Latch  
Refer to Figure 1-2  
(Note 2)  
20  
20  
20  
80  
-
Refer to Figure 1-2  
(Note 2)  
Time Latch Signal Held High  
Time Latch Signal Held Low  
-
Refer to Figure 1-2  
(Note 2)  
-
Time Between Two Data Latch  
Events  
Refer to Figure 1-2  
(Note 2)  
-
Propagation Delay from Data  
Register to Output Register  
Refer to Figure 1-2  
(Note 2)  
tkv  
20  
Note 1: Recommended operating conditions: VLL = +3.3V, VCC = +6.5V, VSS = -6.0V, VPP = +135V, VNN = -135V  
all input pins = 0V unless noted. TJ = 25°.C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
2021 Microchip Technology Inc.  
DS20006519A-page 9  
HV53011  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: VPP = +135V, VNN = -135V, VPF = +123V, VNF = -123V, VCC = +6.5V, VSS = -6.0V,  
VLL = +3.3V unless otherwise specified.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Operating Junction Temperature Range  
Storage Temperature Range  
TJ  
-40  
-65  
+125  
+150  
°C  
°C  
TA  
Package Thermal Resistance  
Thermal Resistance, 59B 8x8 TFBGA  
JA  
33.7  
°C/W  
DS20006519A-page 10  
2021 Microchip Technology Inc.  
HV53011  
1.1  
Timing Diagrams  
SS  
SCK  
SDI  
tWAIT  
128 bits valid data  
tPKT  
tH(LAT)  
LATCHIN  
FIGURE 1-1:  
SPI and LATCHIN Timing Diagram.  
tac  
tab  
LATCHIN  
Register D  
Register C  
Register B  
Register A  
LATCHA  
c
a
b
SPI buffer bit 127:96  
e
tae  
SPI buffer bit 95:64  
SPI buffer bit 63:32  
SPI buffer bit 31:0  
g
k
tak  
tgk  
tmn  
LATCHB  
m
n
LATCHC  
s
trs  
LATCHD  
r
Output  
v
Reg A  
Reg D  
Reg C  
Reg B  
Reg B  
tkv  
Register  
w
HV Output  
Reg A  
Reg D  
Reg C  
tkw  
FIGURE 1-2:  
LATCHA, B, C, D and High Voltage Output Timing Diagram.  
2021 Microchip Technology Inc.  
DS20006519A-page 11  
HV53011  
FIGURE 1-3:  
High Voltage Output Test Pattern.  
DS20006519A-page 12  
2021 Microchip Technology Inc.  
HV53011  
1.2  
Typical Performance Curves  
Note:  
The graphs and tables provided below are a statistical summary based on a limited number of samples and  
are provided for informational purposes only. The performance characteristics listed herein are not tested  
or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range  
(e.g. outside specified power supply range) and therefore outside the warranted range.  
FIGURE 1-4:  
Typical HV  
Output  
FIGURE 1-5:  
Typical HV  
from 0V to  
OUT  
OUT  
Waveform V =135V, V =-135V,  
135V, Load = 100 pF  
PP  
NN  
Load = 100 pF.  
FIGURE 1-6:  
Typical HV  
from 135V to  
FIGURE 1-7:  
Typical HV  
from 0V to  
OUT  
OUT  
0V, Load = 100 pF.  
-135V, Load = 100 pF.  
FIGURE 1-8:  
Typical HV  
from -135V  
FIGURE 1-9:  
Typ. HV  
Rise Time  
OUT  
OUT  
to 0V, Load = 100 pF.  
Distribution, from 0V to 90V, Load = 250 pF.  
2021 Microchip Technology Inc.  
DS20006519A-page 13  
HV53011  
Note:  
The graphs and tables provided below are a statistical summary based on a limited number of samples and  
are provided for informational purposes only. The performance characteristics listed herein are not tested  
or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range  
(e.g. outside specified power supply range) and therefore outside the warranted range.  
FIGURE 1-10:  
Typ. HV  
Fall Time  
FIGURE 1-11:  
Typ. HV  
Fall Time  
OUT  
OUT  
Distribution, from 90V to 0V, Load = 250 pF.  
Distribution, from 0V to -90V, Load = 250 pF.  
FIGURE 1-12:  
Typ. HV  
Rise Time  
FIGURE 1-13:  
Typical VNNSENSE  
OUT  
Distribution, from -90V to 0V, Load = 250 pF.  
Buffered Output, V =135V, V =-135V,  
PP  
NN  
Load=100pF, 6.04 ohm sense resistor, four  
channels active.  
FIGURE 1-14:  
Typical VPPSENSE  
buffered output, V = 135V, V = -135V,  
Load=100 pF, 6.04 ohm sense resistor, four  
channels active.  
FIGURE 1-15:  
Channel-to-Channel Delay.  
Typical HV  
OUT  
PP  
NN  
DS20006519A-page 14  
2021 Microchip Technology Inc.  
HV53011  
Note:  
The graphs and tables provided below are a statistical summary based on a limited number of samples and  
are provided for informational purposes only. The performance characteristics listed herein are not tested  
or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range  
(e.g. outside specified power supply range) and therefore outside the warranted range.  
FIGURE 1-16:  
Typical LATCHA to HV  
FIGURE 1-17:  
Typical LATCHB to HV  
OUT  
OUT  
Propagation Delay  
Propagation Delay  
FIGURE 1-18:  
Typical LATCHC to HV  
FIGURE 1-19:  
Typical LATCHD to HV  
OUT  
OUT  
Propagation Delay  
Propagation Delay  
FIGURE 1-20:  
Typical SDO output Rise  
Time and Fall Time  
2021 Microchip Technology Inc.  
DS20006519A-page 15  
HV53011  
2.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
Pin  
PIN FUNCTION TABLE  
Symbol  
Description  
E11  
C9  
G11  
J9  
VPP  
VPPO  
VNN  
Positive High-Voltage Supply  
Positive High-Voltage Current Sense  
Negative High-Voltage Supply  
Negative High-Voltage Current Sense  
Positive Low-Voltage Supply  
Negative Low-Voltage Supply  
VLL Logic Voltage  
VNNO  
VCC  
D7  
E7  
VSS  
C7  
VLL  
J3-7, H4-7,G5-7,  
F6-7, E6, D3, E3  
HVGND  
High-Voltage Ground  
E9  
G9  
J11  
C11  
C3  
F3  
G3  
H3  
A11  
A9  
A7  
A5  
A3  
A1  
C1  
E1  
G1  
J1  
VPF  
VNF  
Positive floating voltage supply reference to VPP level  
Negative floating voltage supply reference to VNN level  
0.1 μF Capacitor across FILN and VNNO  
FILN  
FILP  
0.1 μF Capacitor across FILP and VPPO  
VPPSENSE Positive High-Voltage Sense Analog Output  
VNNSENSE Negative High-Voltage Sense Analog Output  
NC  
No connection (Do not connect. Keep the pin floating.)  
No connection (Do not connect. Keep the pin floating.)  
High-Voltage Output 0  
NC  
HVOUT0  
HVOUT1  
HVOUT2  
High-Voltage Output 1  
High-Voltage Output 2  
HVOUT  
3
High-Voltage Output 3  
HVOUT4  
HVOUT5  
High-Voltage Output 4  
High-Voltage Output 5  
HVOUT  
6
High-Voltage Output 6  
HVOUT7  
HVOUT8  
High-Voltage Output 7  
High-Voltage Output 8  
HVOUT  
9
High-Voltage Output 9  
L1  
HVOUT10  
HVOUT11  
HVOUT12  
HVOUT13  
HVOUT14  
HVOUT15  
SS  
High-Voltage Output 10  
High-Voltage Output 11  
High-Voltage Output 12  
High-Voltage Output 13  
High-Voltage Output 14  
High-Voltage Output 15  
SPI Chip Select  
L3  
L5  
L7  
L9  
L11  
C5  
D5  
E5  
F5  
G4  
F4  
E4  
D4  
C4  
SDI  
SPI Data In  
SDO  
SPI Data Out (for daisy chain)  
SPI Clock  
SCK  
LATCHIN  
LATCHA  
LATCHB  
LATCHC  
LATCHD  
Latch SPI Data (SPI -> Latch A, B, C, D)  
Latch A -> Output Register  
Latch B -> Output Register  
Latch C -> Output Register  
Latch D -> Output Register  
DS20006519A-page 16  
2021 Microchip Technology Inc.  
HV53011  
TABLE 2-1:  
Pin  
PIN FUNCTION TABLE (CONTINUED)  
Symbol  
Description  
C6  
D6  
SHDN  
Shutdown Mode  
Reserved Pin. Connect to Ground.  
Reserved  
2021 Microchip Technology Inc.  
DS20006519A-page 17  
HV53011  
microcontroller or host processor. The SDI and SDO  
are the data input and data output pins of the SPI shift  
register buffer.  
3.0  
3.1  
DEVICE DESCRIPTION  
Serial Peripheral Interface  
The SDI and SDO can be used to cascade multiple  
HV53011 or HV53011 drivers together if only a single  
SPI port is available. This SPI interface is compatible  
with 3.3V logic input voltage with a maximum clock fre-  
quency of 32 MHz.  
The SPI interface is used to transfer data of the channel  
settings from the microcontroller to the high-voltage  
driver. The HV53011 operates as an SPI slave device  
and receives 128 bits of data from the master device  
(microcontroller). The HV53011 SPI interface is  
designed to be compatible with all Microchip 8-bit,  
16-bit and 32-bit SPI data transmission formats. This  
SPI interface has a 128-bit shift register buffer to store  
128 bits of data.  
The SPI shift register captures the data at the SDI input  
in the rising edge of the SCK clock and pushes out the  
data from the buffer to the SDO output in the falling  
edge of the SCK clock. When the SPI bus is at idle sta-  
tus, the SS pin stays in logic “1” and the SCK clock is  
expected to stay at “0”.  
The SS pin is a chip select function which is similar to  
the enable function to guard the clock and data input  
signal. The SCK contains the bus clock signal from the  
SS  
SCK  
ReceiveDatatoSPIShiftRegisterBuffer  
SDI  
TransmitDatafromSPIShiftRegisterBuffer  
SDO  
FIGURE 3-1:  
SPI Signal Diagram.  
The bit order of the SDI data input is defined as follows.  
The first and second data bits represent bit 1 and bit 0  
of channel 15 in register D, respectively. The third and  
fourth bits represent bit 1 and bit 0 of channel 14 in reg-  
ister D. The similar pattern is extended all the way to  
channel 0. Hence, there are 32 data bits to control  
register D to cover all sixteen channels.  
The next 32 data bits are arranged in the same fashion  
for register C. Similarly, the exact pattern repeats itself  
for register B and A. Since each register (A, B, C and  
D) contains 32 bits of data, the SPI shift register buffer  
is 128 bits long.  
Bit 1 of channel 15 in register D is defined as the MSb  
(Most Significant bit) and bit 0 of channel 0 in register  
A as the LSb (Least Significant bit) in this SPI shift  
register buffer definition.  
MSb  
LSb  
FIGURE 3-2:  
SPI Bit Pattern Diagram.  
DS20006519A-page 18  
2021 Microchip Technology Inc.  
HV53011  
The following table shows the summary of the SPI shift  
register buffer.  
TABLE 3-1:  
Sym  
REGISTER LEGEND  
Description  
Sym  
Description  
Cleared by Hardware only  
R
W
U
P
Readable bit  
Writable bit  
HC  
HS  
1
Set by Hardware only  
Bit is set at Reset  
Unimplemented bit, read as ‘0’  
Programmable bit  
Settable bit  
0
Bit is cleared at Reset  
Bit is unknown at Reset  
S
x
C
Clearable bit  
Example: R/W - 0 indicates the bit is both readable or writable, and reads ‘0’ after a Reset.  
TABLE 3-2: SPI_SR 128-BIT BUFFER SUMMARY  
Register  
Name  
Bit Range  
Bit  
Bit  
Bit  
101  
Bit  
Bit  
99  
Bit  
Bit  
97  
Bit  
127/119/111/ 126/118/110/ 125/117/109/ 124/116/108/ 123/115/107/ 122/114/106/ 121/113/105/ 120/112/104/  
103  
102  
100  
98  
96  
LATCHD  
<127:120>  
<119:112>  
<111:104>  
<103:96>  
Bit Range  
CH15<1:0>  
CH11<1:0>  
CH7<1:0>  
CH3<1:0>  
CH14<1:0>  
CH10<1:0>  
CH6<1:0>  
CH2<1:0>  
CH13<1:0>  
CH9<1:0>  
CH5<1:0>  
CH1<1:0>  
CH12<1:0>  
CH8<1:0>  
CH4<1:0>  
CH0<1:0>  
Register  
Name  
Bit  
95/87/79/71  
Bit  
Bit  
93/85/77/69  
Bit  
Bit  
91/83/75/67  
Bit  
Bit  
89/81/73/65  
Bit  
94/86/78/70  
92/84/76/68  
90/82/74/66  
88/80/72/64  
LATCHC  
<95:88>  
<87:80>  
<79:72>  
<71:64>  
Bit Range  
CH15<1:0>  
CH14<1:0>  
CH13<1:0>  
CH12<1:0>  
CH11<1:0>  
CH7<1:0>  
CH3<1:0>  
CH10<1:0>  
CH6<1:0>  
CH2<1:0>  
CH9<1:0>  
CH5<1:0>  
CH1<1:0>  
CH8<1:0>  
CH4<1:0>  
CH0<1:0>  
Register  
Name  
Bit  
63/55/47/39  
Bit  
Bit  
61/53/45/37  
Bit  
Bit  
59/51/43/35  
Bit  
Bit  
57/49/41/33  
Bit  
62/54/46/38  
60/52/44/36  
58/50/42/34  
56/48/40/32  
LATCHB  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
Bit Range  
CH15<1:0>  
CH14<1:0>  
CH13<1:0>  
CH12<1:0>  
CH11<1:0>  
CH7<1:0>  
CH3<1:0>  
CH10<1:0>  
CH6<1:0>  
CH2<1:0>  
CH9<1:0>  
CH5<1:0>  
CH1<1:0>  
CH8<1:0>  
CH4<1:0>  
CH0<1:0>  
Register  
Name  
Bit  
31/23/15/7  
Bit  
Bit  
29/21/13/5  
Bit  
Bit  
27/19/11/3  
Bit  
Bit  
25/17/9/1  
Bit  
30/22/14/6  
28/20/12/4  
26/18/10/2  
24/16/8/0  
LATCHA  
<31:24>  
<23:16>  
<15:8>  
<7:0>  
CH15<1:0>  
CH14<1:0>  
CH13<1:0>  
CH12<1:0>  
CH11<1:0>  
CH7<1:0>  
CH3<1:0>  
CH10<1:0>  
CH6<1:0>  
CH2<1:0>  
CH9<1:0>  
CH5<1:0>  
CH1<1:0>  
CH8<1:0>  
CH4<1:0>  
CH0<1:0>  
11” = Driven to Ground. Since there are 16 channels  
on each HV53011 device, a 32-bit output control  
register is required.  
3.2  
Quad-Latched Two-Bit per  
Channel Architecture  
In the Quad-Latched 2-bit per channel architecture,  
each channel is controlled by a 2-bit encoding for each  
of the four possible states: “00” = (Hi-Z) high imped-  
Four separate latched arrays (A, B, C, & D) hold four  
possible 32-bit output configurations. The data is  
loaded from the arrays into the output control register  
by four separate external control signals (LATCHA, B,  
C, D). When the output control register is being  
ance, “01” = Pull-down to VNN, “10” = Pull-up to VPP  
,
2021 Microchip Technology Inc.  
DS20006519A-page 19  
HV53011  
updated using one of the latch signals, the output will  
LATCHB, LATCHC and LATCHD) are used to control  
the data selection of the high-voltage output from the  
four 32-bit registers. The SPI interface and latch  
functions are two independent operation blocks.  
go to  
a not driven state temporarily to avoid  
shoot-through.  
The data in these four latched arrays can be updated  
using the SPI shift register buffer. The 128 bits of data  
is first transmitted from the host processor to this  
device via the SPI interface. The data format has been  
discussed in the previous section. After this 128 bits  
transaction has completed, the data will stay in the SPI  
shift register buffer. Then the user sends an activation  
signal at the LATCHIN pin to initiate the transfer of the  
data from the SPI shift register to the four 32-bit regis-  
ters (A, B, C and D).  
To achieve some power savings when idling for a  
period of time, a shutdown pin is available to reduce the  
quiescent current draw as much as possible.  
TABLE 3-3:  
2-BIT CONTROL AND  
OUTPUT VOLTAGE LOGIC  
TABLE  
CONTROL BITS  
HVOUT OUTPUT  
Bit 1  
Bit 0  
When the application requires more output channels,  
the user can cascade more driver devices in a daisy  
chain configuration. The SDO pin is used to pass the  
data from the SPI shift register buffer to the cascaded  
driver IC.  
0
0
1
1
0
1
0
1
High Impedance (Hi-Z)  
Driven Low (VNN  
)
Driven High (VPP  
)
Driven to Ground (0V)  
The SPI signal pins (SCK, SS, SDI and SDO) are used  
to control the data flow of the SPI shift register buffer.  
The five latch control signals (LATCHIN, LATCHA,  
SS  
SCK  
Clock Control  
SDO  
SDI  
SPI 128 bits shift register buffer  
32  
32  
32  
32  
LATCHIN  
32-bit LATCHA  
32  
32-bit LATCHB  
32  
32-bit LATCHC  
32  
32-bit LATCHD  
32  
LATCHA,B,C,D  
SWITCHES  
4
32-bit OUTPUT CONTROL REGISTER  
SHDN  
FIGURE 3-3:  
Quad-Latched Two Bits per Channel Architecture.  
DS20006519A-page 20  
2021 Microchip Technology Inc.  
HV53011  
TABLE 3-4:  
LATCHIN  
QUAD-LATCHED TWO-BIT LOGIC STATE TABLE  
LATCHA  
LATCHB  
LATCHC  
LATCHD  
Description  
X
X
X
X
SPI bit[127:96] into Latch Register D  
SPI bit[95:64] into Latch Register C  
SPI bit[63:32] into Latch Register B  
SPI bit[31:0] into Latch Register A  
X*  
X*  
X*  
X*  
X
X
X
X
X
X
Register A to output  
Register B to output  
Register C to output  
Register D to output  
X
X
X
X
X
X
Note:  
* = Delay LATCHX appropriately if a register update from LATCHIN is still in progress.  
= Negative edge-triggered.  
X = Don’t care.  
The difference amplifier accepts maximum input volt-  
3.3  
Driver Shutdown Mode  
age of 1V. The amplifier gain of 3.1 amplifies this input  
and send the output to the VPPSENSE and VNN-  
SENSE pins. These amplifiers are designed using  
high-voltage and high value resistors to minimize its  
power consumption. These amplifier outputs are high  
impedance in nature, so an external high bandwidth  
(200 MHz) unity gain buffer is recommended. The high  
bandwidth is needed to capture the fast current pulse  
during the transition.  
When the shutdown (SHDN) pin is at logic “1”, any  
unnecessary circuit in the line driver will be disabled to  
minimize power consumption. It includes the level  
translator, bias current, voltage reference, driver out-  
put, SPI interface, and combinational logic. During  
shutdown, the quiescent current will be less than  
100 μA. The system response time is less than 1 ms to  
switch between shutdown and active modes when a  
new signal is asserted at the shutdown pin.  
The user selects the value of the sensing resistor to fit  
the system requirement. The speed of the difference  
amplifier is its highest priority because the charge or  
discharge current appear in a short period of time. The  
amplifier output accuracy is less important. Both  
VPPSENSE and VNNSENSE outputs have a tolerance  
of ±14%.  
3.4  
Driver Power On Reset  
The Power-on Reset function resets all high-voltage  
HVOUT output to high impedance when the device is  
initially powered on. It also resets and clears the SPI  
buffer registers, registers A, B, C and D to logic “0”.  
3.5  
Driver Output Current Sensing  
Sense  
Resistor  
+135V  
Some system designs require a load sensing function  
to determine the size or any change of the capacitive  
load. One simple scheme is to place a series current  
sensing resistor on the power supply rail and measure  
the voltage drop across this resistor. This solution is  
very effective as long as the voltage drop is small  
enough not to affect the operation of the system.  
VPPO  
VPP  
V+  
V-  
Av  
HVOUT  
HVOUT  
0
1
Difference  
Amplifier  
x3.1  
VPPSENSE  
The HV53011 driver IC provides this function by which  
users can monitor the supply current flowing through  
both high-voltage positive and negative supplies. Two  
external current sensing resistors are connected to VPP  
and VNN supply rails, respectively, as high side current  
sensing. The voltage drop across these resistors are  
fed to two pin pairs, VPP-VPPO and VNN-VNNO. Since  
this voltage drop is referenced to the VPP and VNN sup-  
ply rails, it is not practical for any low-voltage ADC to  
measure this voltage. Hence, two internal difference  
amplifiers in the driver IC convert these voltage drops  
to ground reference.  
(Reference to GND)  
HVOUT14  
HVOUT15  
FIGURE 3-4:  
Current Sensing Topology.  
2021 Microchip Technology Inc.  
DS20006519A-page 21  
HV53011  
TABLE 3-5:  
Steps  
ACCEPTABLE POWER-ON SEQUENCES  
Description  
1
2
3
4
5
Connect ground.  
Keep shutdown pin to low.  
Set all driver inputs to low.  
Power-on supplies in this sequence: VLL, VNN, VNF, VSS, VCC, VPF and then VPP  
Set all inputs to a known state.  
TABLE 3-6:  
Steps  
ACCEPTABLE POWER-OFF SEQUENCES  
Description  
1
2
3
Set all inputs and shutdown pin to low.  
Power-off supplies in this sequence: VPP, VPF, VCC, VSS, VNF, VNN and then VLL  
.
Disconnect ground  
DS20006519A-page 22  
2021 Microchip Technology Inc.  
HV53011  
4.0  
4.1  
PACKAGING INFORMATION  
Package Marking Information  
59-Ball TFBGA (8x8x1.2 mm)  
Example  
HV53011  
2008256  
Legend: XX...X Product Code or Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
e8  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e8  
*
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
2021 Microchip Technology Inc.  
DS20006519A-page 23  
HV53011  
ꢁꢂꢃ%DOOꢄ7KLQꢄ)LQHꢄ3LWFKꢄ%DOOꢄ*ULGꢄ$UUD\ꢄꢅ.9;ꢆꢄꢃꢄꢇ[ꢇꢄPPꢄ%RG\ꢄ>7)%*$@  
1RWHꢀ )RUꢅWKHꢅPRVWꢅFXUUHQWꢅSDFNDJHꢅGUDZLQJVꢋꢅSOHDVHꢅVHHꢅWKHꢅ0LFURFKLSꢅ3DFNDJLQJꢅ6SHFLILFDWLRQꢅORFDWHGꢅDW  
KWWSꢌꢍꢍZZZꢁPLFURFKLSꢁFRPꢍSDFNDJLQJ  
'
$
%
(
127(ꢅꢂ  
ꢂꢀ ꢂꢂ  
$
%
&
'
(
)
*
+
-
ꢄ'$780ꢅ%ꢆ  
ꢄ'$780ꢅ$ꢆ  
.
/
ꢇ;  
ꢀꢁꢂꢃ &  
ꢇ;  
ꢀꢁꢂꢃ &  
ꢄ$ꢇꢆ  
723ꢅ9,(:  
$ꢂ  
ꢀꢁꢇꢀ &  
&
$
6($7,1*  
3/$1(  
ꢃꢊ;  
ꢀꢁꢀꢈ &  
ꢄ$ꢉꢆ  
6,'(ꢅ9,(:  
'ꢂ  
ꢂꢀ ꢂꢂ  
/
.
-
H
+
*
)
(ꢇ  
(
'
&
%
$
127(ꢅꢂ  
H
%27720ꢅ9,(:  
DS20006519A-page 24  
2021 Microchip Technology Inc.  
HV53011  
ꢁꢂꢃ%DOOꢄ7KLQꢄ)LQHꢄ3LWFKꢄ%DOOꢄ*ULGꢄ$UUD\ꢄꢅ.9;ꢆꢄꢃꢄꢇ[ꢇꢄPPꢄ%RG\ꢄ>7)%*$@  
1RWHꢀ )RUꢅWKHꢅPRVWꢅFXUUHQWꢅSDFNDJHꢅGUDZLQJVꢋꢅSOHDVHꢅVHHꢅWKHꢅ0LFURFKLSꢅ3DFNDJLQJꢅ6SHFLILFDWLRQꢅORFDWHGꢅDW  
KWWSꢌꢍꢍZZZꢁPLFURFKLSꢁFRPꢍSDFNDJLQJ  
8QLWV  
'LPHQVLRQꢅ/LPLWV  
0,//,0(7(56  
120  
0,1  
0$;  
1XPEHUꢅRIꢅ7HUPLQDOV  
3LWFK  
2YHUDOOꢅ+HLJKW  
6WDQGRII  
0ROGꢅ7KLFNQHVV  
6XEVWUDWHꢅ7KLFNQHVV  
2YHUDOOꢅ/HQJWK  
2YHUDOOꢅ7HUPLQDOꢅ6SDFLQJ  
2YHUDOOꢅ:LGWK  
1
ꢃꢊ  
ꢀꢁꢏꢃꢅ%6&  
H
$
ꢂꢁꢇꢀ  
ꢀꢁꢉꢇ  
$ꢂ  
$ꢇ  
$ꢉ  
'
'ꢂ  
(
ꢀꢁꢇꢇ  
ꢀꢁꢇꢐ  
ꢀꢁꢃꢉꢅ5()  
ꢀꢁꢇꢏꢅ5()  
ꢈꢁꢀꢀꢅ%6&  
ꢏꢁꢃꢀꢅ%6&  
ꢈꢁꢀꢀꢅ%6&  
ꢏꢁꢃꢀꢅ%6&  
ꢀꢁꢉꢐ  
2YHUDOOꢅ7HUPLQDOꢅ6SDFLQJ  
7HUPLQDOꢅ'LDPHWHU  
(ꢂ  
E
ꢀꢁꢉꢇ  
ꢀꢁꢎꢇ  
Notes:  
ꢂꢁ 3LQꢅꢂꢅYLVXDOꢅLQGH[ꢅIHDWXUHꢅPD\ꢅYDU\ꢋꢅEXWꢅPXVWꢅEHꢅORFDWHGꢅZLWKLQꢅWKHꢅKDWFKHGꢅDUHDꢁ  
ꢇꢁ 3DFNDJHꢅLVꢅVDZꢅVLQJXODWHG  
ꢉꢁ 'LPHQVLRQLQJꢅDQGꢅWROHUDQFLQJꢅSHUꢅ$60(ꢅ<ꢂꢎꢁꢃ0  
%6&ꢌꢅ%DVLFꢅ'LPHQVLRQꢁꢅ7KHRUHWLFDOO\ꢅH[DFWꢅYDOXHꢅVKRZQꢅZLWKRXWꢅWROHUDQFHVꢁ  
5()ꢌꢅ5HIHUHQFHꢅ'LPHQVLRQꢋꢅXVXDOO\ꢅZLWKRXWꢅWROHUDQFHꢋꢅIRUꢅLQIRUPDWLRQꢅSXUSRVHVꢅRQO\ꢁ  
2021 Microchip Technology Inc.  
DS20006519A-page 25  
HV53011  
ꢁꢂꢃ%DOOꢄ7KLQꢄ)LQHꢄ3LWFKꢄ%DOOꢄ*ULGꢄ$UUD\ꢄꢅ.9;ꢆꢄꢃꢄꢇ[ꢇꢄPPꢄ%RG\ꢄ>7)%*$@  
1RWHꢀ )RUꢅWKHꢅPRVWꢅFXUUHQWꢅSDFNDJHꢅGUDZLQJVꢋꢅSOHDVHꢅVHHꢅWKHꢅ0LFURFKLSꢅ3DFNDJLQJꢅ6SHFLILFDWLRQꢅORFDWHGꢅDW  
KWWSꢌꢍꢍZZZꢁPLFURFKLSꢁFRPꢍSDFNDJLQJ  
*
ꢂꢀ ꢂꢂ  
$
%
&
'
(
)
*
+
-
(
&ꢇ  
*
.
/
‘;  
(
6,/.ꢅ6&5((1  
&ꢂ  
5(&200(1'('ꢅ/$1'ꢅ3$77(51  
8QLWV  
'LPHQVLRQꢅ/LPLWV  
(
0,//,0(7(56  
0,1  
ꢀꢁꢇꢀ  
120  
ꢀꢁꢏꢃꢅ%6&  
ꢏꢁꢃꢀ  
0$;  
ꢀꢁꢉꢃ  
&RQWDFWꢅ3LWFK  
2YHUDOOꢅ&RQWDFWꢅ3DGꢅ6SDFLQJ  
2YHUDOOꢅ&RQWDFWꢅ3DGꢅ6SDFLQJ  
&RQWDFWꢅ3DGꢅ:LGWKꢅꢄ;ꢃꢊꢆ  
&ꢂ  
&ꢇ  
;
ꢏꢁꢃꢀ  
&RQWDFWꢅ3DGꢅWRꢅ&RQWDFWꢅ3DG  
*
1RWHVꢌ  
ꢂꢁ 'LPHQVLRQLQJꢅDQGꢅWROHUDQFLQJꢅSHUꢅ$60(ꢅ<ꢂꢎꢁꢃ0  
%6&ꢌꢅ%DVLFꢅ'LPHQVLRQꢁꢅ7KHRUHWLFDOO\ꢅH[DFWꢅYDOXHꢅVKRZQꢅZLWKRXWꢅWROHUDQFHVꢁ  
ꢇꢁ )RUꢅEHVWꢅVROGHULQJꢅUHVXOWVꢋꢅWKHUPDOꢅYLDVꢋꢅLIꢅXVHGꢋꢅVKRXOGꢅEHꢅILOOHGꢅRUꢅWHQWHGꢅWRꢅDYRLGꢅVROGHUꢅORVVꢅGXULQJ  
UHIORZꢅSURFHVV  
DS20006519A-page 26  
2021 Microchip Technology Inc.  
HV53011  
APPENDIX A: REVISION HISTORY  
Revision A (March 2021)  
• Original Release of this Document.  
2021 Microchip Technology Inc.  
DS20006519A-page 27  
HV53011  
NOTES:  
DS20006519A-page 28  
2021 Microchip Technology Inc.  
HV53011  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X-  
X
/XXX  
Examples:  
a)  
HV53011-E/KVX: 16-Channel, ±135V Push-Pull  
Driver with RTZ. Thin Fine Pitch  
Media Type Temperature  
Tape and Reel Range  
Package  
Ball Grid Array, 59-Ball TFBGA (8  
x 8 x 1.2mm) Package, 260/Tray  
b)  
HV53011T-E/KVX:16-Channel, ±135V Push-Pull  
Driver with RTZ. Thin Fine Pitch  
Ball Grid Array, 59-Ball TFBGA (8x  
8 x 1.2mm) Package, 1000/Reel  
Device:  
HV53011: 16-Channel, ±135V Push-Pull Driver with RTZ  
Media Type:  
blank = 260/Tray for KVX Package  
T
= 1000/Reel for KVX Package  
Temperature  
Range:  
E
=-40°C to +125°C (Extended) RoHS Compliant  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier  
is used for ordering purposes and is not  
printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
Package:  
KVX = Thin Fine Pitch Ball Grid Array  
59-Ball TFBGA (8 x 8 x 1.2 mm)  
2021 Microchip Technology Inc.  
DS20006519A-page 29  
HV53011  
NOTES:  
DS20006519A-page 30  
2021 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip  
devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications  
contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished  
without violating Microchip's intellectual property rights.  
Microchip is willing to work with any customer who is concerned about the integrity of its code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are  
committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection  
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or  
other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication is provided for the sole  
purpose of designing with and using Microchip products. Infor-  
mation regarding device applications and the like is provided  
only for your convenience and may be superseded by updates.  
It is your responsibility to ensure that your application meets  
with your specifications.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION INCLUDING BUT NOT  
LIMITED TO ANY IMPLIED WARRANTIES OF NON-  
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A  
PARTICULAR PURPOSE OR WARRANTIES RELATED TO  
ITS CONDITION, QUALITY, OR PERFORMANCE.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions  
Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight  
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,  
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-  
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-  
RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-  
TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND  
WHATSOEVER RELATED TO THE INFORMATION OR ITS  
USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS  
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES  
ARE FORESEEABLE. TO THE FULLEST EXTENT  
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON  
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION  
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF  
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP  
FOR THE INFORMATION. Use of Microchip devices in life sup-  
port and/or safety applications is entirely at the buyer's risk, and  
the buyer agrees to defend, indemnify and hold harmless  
Microchip from any and all damages, claims, suits, or expenses  
resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights  
unless otherwise stated.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,  
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,  
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, Espresso T1S,  
EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP,  
INICnet, Intelligent Paralleling, Inter-Chip Connectivity,  
JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi,  
MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK,  
NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,  
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,  
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O,  
simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI,  
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total  
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,  
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2021, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-7930-7  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2021 Microchip Technology Inc.  
DS20006519A-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006519A-page 32  
2021 Microchip Technology Inc.  
02/28/20  

相关型号:

HV5306PJ

Interface IC
ETC

HV5306X

Interface IC
ETC

HV5308

32-Channel Serial To Parallel Converter With High Voltage Push-Pull Outputs
SUPERTEX

HV5308

32-Channel, Serial-to-Parallel Converter
MICROCHIP

HV5308B

32-Channel Serial To Parallel Converter With High Voltage Push-Pull Outputs
SUPERTEX

HV5308BPJ-B-G

HV5308BPJ-B-G
MICROCHIP

HV5308DJ

32-Channel Serial To Parallel Converter With High Voltage Push-Pull Outputs
SUPERTEX

HV5308DJ-B

AC Plasma Driver, 32-Segment, CMOS, CQCC44, 0.653 X 0.653 INCH, 0.190 INCH HEIGHT, 0.050 INCH PITCH, CERAMIC, MO-087AB, LCC-44
SUPERTEX

HV5308DJ-B-G

AC PLASMA DISPLAY DRIVER
MICROCHIP

HV5308PG

32-Channel Serial To Parallel Converter With High Voltage Push-Pull Outputs
SUPERTEX

HV5308PG-B

AC Plasma Driver, 32-Segment, CMOS, PQFP44, PLASTIC, QFP-44
SUPERTEX

HV5308PG-B-G

32-Channel, Serial-to-Parallel Converter
MICROCHIP