HV7351 [MICROCHIP]

8-Channel, ±70V, 3A Programmable High-Voltage;
HV7351
型号: HV7351
厂家: MICROCHIP    MICROCHIP
描述:

8-Channel, ±70V, 3A Programmable High-Voltage

文件: 总26页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HV7351  
8-Channel, ±70V, 3A Programmable High-Voltage  
Ultrasound-Transmit Beamformer  
Features  
General Description  
• Eight Channels with Return-to-Zero (RTZ)  
• Up to ±70V Output Voltage  
The HV7351 device is an 8-channel programmable  
high-voltage ultrasound-transmit beamformer. Each  
channel is capable of swinging up to ±70V with an  
active discharge back to 0V. The outputs can source  
and sink up to 3.0A to achieve fast output rise and fall  
times. The active discharge is also capable of sourcing  
and sinking 3.0A for a fast return to ground. The topol-  
ogy of the HV7351 will significantly reduce the number  
of I/O logic control lines needed.  
• ±3.0A Output Current  
• Stores up to Four Different Patterns  
• Independent Programmable Delays  
• 80-lead Single 11 x 11 mm VQFN Package  
Applications  
Each pulser has four associated 64-bit shift registers  
for storing predetermined transmit patterns and a 10-bit  
delay counter for controlling the transmit time. One of  
four arbitrary patterns can be transmitted with adjust-  
able delay, depending on the data loaded into these  
shift registers and the delay counter. The delay counter  
can be clocked up to 200 MHz, allowing incremental  
delays down to 5 ns.  
• Medical Ultrasound Imaging  
• NDT, Non-Destructive Testing  
• Arbitrary Pattern Generator  
• High-Speed PIN Diode Driver  
Typical Application Circuit  
Array  
Probe  
tDELAY1  
tDELAY2  
tDELAY3  
Tx1  
E1  
E2  
E3  
HV7351  
8-channel  
U1  
Tx2  
Tx3  
HV7351  
8-channel  
U2  
TRIG  
tDELAY127  
Tx127  
Tx128  
HV7351  
8-channel  
U16  
E127  
E128  
tDELAY128  
TRIG  
2015 Microchip Technology Inc.  
DS20005412A-page 1  
HV7351  
Package Types (Top View)  
HV7351  
11 x 11 VQFN*  
1
60 VNN  
AVDD  
VNF  
59  
DIN2  
CS2  
2
3
4
5
58 DGND  
SIZE  
INV  
57  
56  
VPP  
VPF  
CW  
DOUT2  
EN  
6
55 PGND  
54  
7
PVSS  
8
53 PGND  
9
PVDD  
52  
SCK  
81  
VSUB  
DVDD  
10  
DGND  
51  
DGND  
TRIG  
TCK  
TCK  
VLL  
11  
50 DVDD  
PVDD  
49  
12  
13  
14  
15  
PGND  
48  
PVSS  
47  
PGND  
46  
VPF  
45  
CS1  
DOUT1  
A0  
16  
17  
18  
19  
20  
44 VPP  
DGND  
VNF  
43  
42  
A1  
41 VNN  
DIN1  
* Includes Exposed Thermal Pad (EP); see Table 2-1.  
DS20005412A-page 2  
2015 Microchip Technology Inc.  
HV7351  
Block Diagram  
VLL  
AVDD  
DVDD  
EN  
VPP  
VPP  
SIZE  
CS1  
SCK  
N-Ch. Registers  
P-Ch. Registers  
16/32-bit Register  
Pattern 1  
Linear  
16/32-bit Register  
Pattern 1  
VPF  
Regulator  
VPF  
DIN1  
DOUT1  
VRN  
16/32-bit Register  
Pattern 2  
16/32-bit Register  
Pattern 2  
VRN  
16/32-bit Register  
Pattern 3  
16/32-bit Register  
Pattern 3  
A0  
A1  
VRP  
VRP  
16/32-bit Register  
Pattern 4  
16/32-bit Register  
Pattern 4  
Linear  
VNF  
Regulator  
VNF  
VNN  
VNN  
DIN2  
DOUT2  
8 10-bit Registers  
for Delay Counters  
6-bit for  
Divide by N  
CS2  
VPP  
CW  
INV  
CW  
fCW  
VPF  
VNF  
TX1  
Divide  
by 2  
EN  
10-bit Delay  
Counter  
EN  
TRIG  
6-bit Counter  
Divide by N  
N = 1 to 64  
Control  
Logic  
INV  
VNN  
16/32 bit  
Serial  
EN/LD  
CW  
PIN  
Shift Reg.  
CLK  
PGND  
INV  
PVSS  
PVDD  
16/32 bit  
Serial  
EN/LD  
CW  
NIN  
Shift Reg.  
CLK  
PGND  
PVDD  
RTZ GATE Driver  
Supply Voltages  
PVSS  
VPP  
CW  
fCW  
Divide  
by 2  
EN  
10-bit Delay  
Counter  
EN  
VPF  
VNF  
TX8  
VNN  
6-bit Counter  
Divide by N  
N = 1 to 64  
Control  
Logic  
INV  
16/32 bit  
Serial  
EN/LD  
CW  
PIN  
Shift Reg.  
CLK  
-
TCK  
TCK  
PGND  
INV  
+
V
LL to VDD  
16/32 bit  
Serial  
EN/LD  
CW  
PVSS  
PVDD  
NIN  
Translator  
Shift Reg.  
CLK  
DGND  
AGND  
VSUB  
PGND  
2015 Microchip Technology Inc.  
DS20005412A-page 3  
HV7351  
NOTES:  
DS20005412A-page 4  
2015 Microchip Technology Inc.  
HV7351  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Positive logic supply (VLL)............................................................................................................................ -0.5V to 5.5V  
Positive logic supply voltage (DVDD)............................................................................................................ -0.5V to 5.5V  
Positive gate drive supply voltage (PVDD) ................................................................................................... -0.5V to 5.5V  
Positive analog supply voltage (AVDD)......................................................................................................... -0.5V to 5.5V  
Negative gate drive supply voltage (PVSS) ................................................................................................ +0.5V to -5.5V  
High-voltage positive supply voltage (VPP) ................................................................................................. -0.5V to +80V  
High-voltage negative supply voltage (VNN) ............................................................................................... +0.5V to -80V  
Differential high voltage supply (VPP - VNN)............................................................................................................+160V  
Positive floating supply voltage (VPF) .................................................................................................. VPP – 6.0V to VPP  
Negative floating supply voltage (VNF).................................................................................................VNN to VNN + 6.0V  
Positive supply for VNF regulator (VRP)............................................................................................................. 0V to 15V  
Negative supply for VPF regulator (VRN).......................................................................................................... 0V to -15V  
Operating temperature ...........................................................................................................................-40°C to +125°C  
Storage temperature ...............................................................................................................................-65°C to +150°C  
ESD Rating All Pins ..............................................................................................................................................0.75 kV  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at those or any other conditions above those indicated in the  
operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
TABLE 1-1:  
OPERATING SUPPLY VOLTAGES  
Electrical Specifications: Unless otherwise specified: TA = +25°C. Boldface specifications apply over the TA range  
of -20 to +85°C.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Note 1  
Positive High Voltage Supply  
Negative High Voltage Supply  
Logic Interface Voltage  
VPP  
VNN  
VLL  
3.0  
-70  
70  
-3.0  
3.6  
V
V
V
V
2.85  
4.75  
3.30  
5.00  
Low-Voltage Positive Analog  
Supply Voltage  
AVDD  
5.25  
Low-Voltage Positive Digital  
Supply Voltage  
DVDD  
PVDD  
PVSS  
VRP  
4.75  
4.75  
-5.25  
4.75  
-12  
5.00  
5.00  
-5.00  
5.25  
5.25  
-4.75  
12  
V
V
V
V
V
Low-Voltage Positive Gate Drive  
Supply Voltage  
Low-Voltage Negative Gate  
Drive Supply Voltage  
Low-Voltage Positive Supply  
for VNF Regulator  
Low-Voltage Negative Supply  
for VPF Regulator  
VRN  
-4.75  
Reference Voltage Logic Trip  
Point for TCK Pin  
TCK  
0.4VLL  
0.5VLL  
0.6VLL  
V
TCK/TCK Input Current  
ITCK TCK  
/I  
±10  
µA  
ITCK = 0 to VLL,  
TA = +25°C  
(Note 1)  
Note 1: Specification is obtained by characterization and is not 100% tested.  
2015 Microchip Technology Inc.  
DS20005412A-page 5  
HV7351  
TABLE 1-2:  
REGULATOR OUTPUTS  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Positive Floating Gate  
Drive Voltage  
VPF  
VPP - 5.25 VPP - 5.00 VPP - 4.00  
V
4x1 µF ceramic capacitors  
across VPF and VPP  
Negative Floating Gate  
Drive Voltage  
VNF  
VNN + 4.00 VNN + 5.00 VNN + 5.25  
V
4x1 µF ceramic capacitors  
across VNF and VNN  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: unless otherwise specified, VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V,  
PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
EN = Low,  
V
LL Quiescent Current  
IVLLQ  
384  
500  
µA  
all inputs are static  
AVDD Quiescent Current  
DVDD Quiescent Current  
PVDD Quiescent Current  
VRP Quiescent Current  
IAVDDQ  
IDVDDQ  
IPVDDQ  
IVRPQ  
12  
12  
30  
30  
100  
6
µA  
µA  
EN = Low,  
all inputs are static  
70  
0.3  
-0.01  
-45  
EN = Low,  
all inputs are static  
VRN Quiescent Current  
IVRNQ  
6
PVSS Quiescent Current  
IPVSSQ  
-85  
µA  
µA  
EN = Low,  
all inputs are static  
VPP Quiescent Current  
VNN Quiescent Current  
IVPPQ  
IVNNQ  
IVLLEN  
2.6  
-1.6  
390  
6
6
EN = Low,  
all inputs are static  
VLL Enabled  
Quiescent Current  
500  
µA  
µA  
EN = High,  
all inputs are static  
AVDD Enabled  
Quiescent Current  
IAVDDEN  
IDVDDEN  
IPVDDEN  
IVRPEN  
IVRNEN  
IPVSSEN  
IVPPEN  
600  
22  
800  
55  
EN = High,  
all inputs are static  
DVDD Enabled  
Quiescent Current  
PVDD Enabled  
Quiescent Current  
44  
100  
650  
µA  
µA  
EN = High,  
all inputs are static  
VRP Enabled  
450  
-350  
-44  
EN = High,  
all inputs are static  
Quiescent Current  
VRN Enabled  
Quiescent Current  
-650  
-100  
PVSS Enabled  
Quiescent Current  
µA  
µA  
EN = High,  
all inputs are static  
VPP Enabled  
370  
-420  
620  
EN = High,  
all inputs are static  
Quiescent Current  
VNN Enabled  
IVNNEN  
-620  
Quiescent Current  
VLL current at 80 MHz Clock  
DVDD current at CW = 5 MHz  
IVLLCW  
IDVDDCW  
IVPPCW  
IVNNCW  
500  
25  
µA  
mA  
mA  
mA  
VPP = +5.0V,  
VNN = -5.0V,  
EN = High,  
CW = High,  
80 MHz on TCK,  
0.5VLL on TCK,  
all 8 channels active at  
5.0 MHz, no load  
(Note 1)  
VPP current at CW = 5 MHz  
141  
98  
VNN current at CW = 5 MHz  
Note 1: Specification is obtained by characterization and is not 100% tested.  
DS20005412A-page 6  
2015 Microchip Technology Inc.  
HV7351  
AC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: unless otherwise specified, VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V,  
PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Transmit Clock  
Frequency  
fTCK  
0
200  
MHz  
Serial Clock Frequency  
fSCK  
0
0
2
80  
70  
MHz No daisy chain  
Daisy chained (Note 2)  
Note 1  
Set-up Time Data  
into SCK  
tSU-DIN  
tH-DIN  
ns  
ns  
Hold Time SCK  
to Data In  
2
2
Note 1  
Note 2  
Set-up Time CS1 Low  
to SCK  
tSU-CS1  
ns  
Set-up Time CS2 Low  
to SCK  
tSU-CS2  
2
2
ns  
ns  
Note 2  
Note 2  
Set-up Time from TRIG  
Fall to TCK Rise Edge  
tSU-TRIG  
TRIG Pulse Width  
tW-TRIG  
tLHDO  
2 x TCK  
9
12  
10  
12  
10  
Cycle Note 2  
SCK to Data Out Low  
to High Delay Time  
3
ns  
For DOUT1 (Note 1)  
3
9
For DOUT2 (Note 1)  
For DOUT1 (Note 1)  
For DOUT2 (Note 1)  
Note 2  
SCK to Data Out High  
to Low Delay Time  
tHLDO  
3
9
ns  
3
tW-TRIG + 40  
9
A1A0 Pulse Width  
tWA1A0  
20  
ns  
ns  
Set-up Time A1A0 to  
TRIG Rising Edge  
tSUA1A0  
Note 1  
Hold Time A1A0 to  
TRIG Falling Edge  
tHA1A0  
tEN-ON  
20  
1
ns  
Device Enable Time  
ms  
1.0 µF capacitor on every  
VPF and VNF pin (Note 1)  
Device Disable Time  
tEN-OFF  
tr1  
9
100  
13  
ns  
ns  
Note 1  
Output Rise Time  
from 0V to +HV  
Load = 330 pF||2.5 k  
Output Fall Time  
from 0V to -HV  
tf1  
tr2  
tf2  
tr3  
tf3  
9
9
13  
13  
13  
23  
23  
ns  
ns  
ns  
ns  
ns  
Damping Output Rise  
Time from -HV to 0V  
Damping Output Fall  
Time from +HV to 0V  
9
Output Rise Time from  
-HV to +HV  
17  
17  
Output Fall Time from  
+HV to -HV  
CW Output Rise Time  
CW Output Fall Time  
trcw  
tfcw  
9
9
16  
16  
ns  
ns  
VPP = +5.0V,  
VNN = -5.0V  
Load = 330 pF||2.5 k  
Note 1: Specification is obtained by characterization and is not 100% tested.  
2: Specification is for design guidance only.  
2015 Microchip Technology Inc.  
DS20005412A-page 7  
HV7351  
AC ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: unless otherwise specified, VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V,  
PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
No Load  
Output Propagation  
Delay Rise Time 1  
tdr1  
11  
14  
18  
ns  
Output Propagation  
Delay Fall Time 1  
tdf1  
tdr2  
11  
12  
11  
12  
11  
10  
14  
15  
15  
15  
15  
13  
18  
19  
18  
19  
18  
17  
ns  
ns  
ns  
ns  
ns  
ns  
Output Propagation  
Delay Rise Time 2  
Output Propagation  
Delay Fall Time 2  
tdf2  
Output Propagation  
Delay Rise Time 3  
tdr3  
Output Propagation  
Delay Fall Time 3  
tdf3  
CW Output  
tdcwlh  
VPP = +5.0V,  
VNN = -5.0V  
No Load  
Propagation Delay  
Time from Low to High  
CW Output  
Propagation Delay  
Time from High to Low  
tdcwhl  
10  
14  
17  
ns  
ns  
ps  
Delay Time Matching  
tdcwhl  
±0.7  
P to N,  
channel-to-channel  
matching  
Delay Jitter On Rise  
or Fall  
tJCW  
LAT  
13  
VPP = +5.0V, VNN = -5.0V,  
Load = 50Note 2  
Latency  
3.5  
TCK Note 2  
Output P-Channel MOSFET to VPP, CW = 0  
Output  
IOUT  
2.2  
3.2  
A
Saturation Current  
Output ON-Resistance  
Output Capacitance  
RON  
4.2  
62  
IOUT = 100 mA  
COSS  
pF  
VPP - VOUT = 25V,  
f = 1.0 MHz (Note 2)  
Output N-Channel MOSFET to VNN, CW = 0  
Output  
IOUT  
2.2  
3.2  
A
Saturation Current  
Output ON-Resistance  
Output Capacitance  
RON  
2.4  
50  
IOUT = -100 mA  
COSS  
pF  
VNN - VOUT = -25V,  
f = 1.0 MHz (Note 2)  
Output P-Channel MOSFET to VPP, CW = 1  
Output  
IOUT  
1.2  
1.5  
A
Saturation Current  
Output ON-Resistance  
Output Capacitance  
RON  
8
IOUT = 100 mA  
COSS  
62  
pF  
VPP - VOUT = 25V,  
f = 1.0 MHz (Note 2)  
Note 1: Specification is obtained by characterization and is not 100% tested.  
2: Specification is for design guidance only.  
DS20005412A-page 8  
2015 Microchip Technology Inc.  
HV7351  
AC ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: unless otherwise specified, VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V,  
PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Output N-Channel MOSFET to VNN, CW = 1  
Output  
IOUT  
1.2  
1.5  
A
Saturation Current  
Output ON-Resistance  
Output Capacitance  
RON  
6.6  
50  
IOUT = -100 mA  
COSS  
pF  
VNN - VOUT = -25V,  
f = 1.0 MHz (Note 2)  
Damping P-Channel MOSFET to PGND  
Output  
IOUT  
2.2  
3.2  
A
Saturation Current  
Output ON-Resistance  
Output capacitance  
RON  
4
IOUT = 100 mA  
COSS  
62  
pF  
VPP - VOUT = 25V,  
f = 1.0 MHz (Note 2)  
Damping N-Channel MOSFET to PGND  
Output  
IOUT  
2.2  
3.2  
A
Saturation Current  
Output ON-Resistance  
Output Capacitance  
RON  
2.3  
50  
IOUT = -100 mA  
COSS  
pF  
VNN - VOUT = -25V,  
f = 1.0 MHz (Note 2)  
Logic Inputs  
Clock Input Current  
ITCK  
±1.0  
µA  
V
Voltage 0 to VLL  
Clock Input  
VIH_TCK  
VTCK + 0.15  
VLL  
TCK = 0.5VLL (Note 2)  
High Voltage  
Clock Input  
Low Voltage  
VIL_TCK  
VIH  
0
VTCK - 0.15  
V
V
Logic Input  
High Voltage  
0.8VLL  
VLL  
0.2VLL  
1
For all logic inputs except  
clock inputs  
Logic Input  
Low Voltage  
VIL  
0
V
Input Logic  
High Current  
IIH  
µA  
µA  
V
Input Logic  
Low Current  
IIL  
-1  
Output Logic  
Low Voltage  
VOL  
VOH  
CIN  
0
VLL - 0.7  
0.7  
IOUT = 0 to -10 mA  
IOUT = 0 to 10 mA  
Note 2  
Output Logic  
High Voltage  
VLL  
5.0  
V
Input Logic  
pF  
Capacitance  
Note 1: Specification is obtained by characterization and is not 100% tested.  
2: Specification is for design guidance only.  
2015 Microchip Technology Inc.  
DS20005412A-page 9  
HV7351  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: unless otherwise specified, VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V,  
PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Operating Ambient Temperature Range  
Storage Temperature Range  
TA  
TA  
TJ  
-40  
-65  
-40  
+125  
+150  
+150  
°C  
°C  
°C  
Maximum Junction Temperature  
Package Thermal Resistances  
Thermal Resistance, 80L-11x11 VQFN  
JA  
14  
°C/W  
TABLE 1-3:  
LOGIC TRUTH TABLE  
Inputs  
Outputs  
Mode  
Comments  
EN  
CW  
INV  
NIN  
PIN  
N-Ch. P-Ch. RTZ  
Non-CW mode. Outputs  
not inverted. Outputs are  
controlled by data in the  
shift registers  
X
X
OFF  
OFF  
ON  
Return-to-Zero (RTZ) is  
activated when NIN and  
PIN are both low. Output is  
pulled to ground through a  
series diode.  
1
0
0
0
X
X
X
OFF  
ON  
ON  
OFF  
OFF  
OFF Not inverted. Logic 1 in the  
P-Channel register turns  
on the output P-Channel  
MOSFET.  
1
1
1
0
0
0
0
0
X
0
1
1
1
0
1
OFF Not inverted. Logic 1 in the  
N-Channel register turns  
on the output N-Channel  
MOSFET.  
OFF  
OFF Avoids cross overcurrent.  
A logic 1 in both P- and N-  
Channel registers will put  
the output in a High Z state.  
Non-CW mode. Outputs  
are inverted. Outputs are  
controlled by data in the  
shift registers  
X
X
ON  
OFF  
ON  
OFF Transmit pattern is inverted  
OFF  
1
1
0
0
1
1
0
1
1
0
OFF  
CW mode.  
Output follows f  
X
All 1  
X
X
X
X
X
X
OFF  
OFF  
OFF If 10-bit counter reach all 1,  
then the channel will be  
turned OFF.  
1
1
CW  
Not  
all 1  
OFF/  
ON  
ON/  
OFF  
OFF The channel's output fol-  
1
lows the f  
signal. The  
CW  
shift registers for PIN and  
NIN remain static to save  
power.  
Device Disabled  
X
X
X
X
X
OFF  
OFF  
OFF High Z state  
0
Legend: X = Don’t care.  
DS20005412A-page 10  
2015 Microchip Technology Inc.  
HV7351  
1.1  
Timing Diagrams  
TCK = 1.65V (0.5VLL  
)
3.5 TCK cycles  
3.3V  
TCK  
0V  
3.3V  
Internal CLK  
(for N = 2)  
0V  
tSU-TRIG  
3.3V  
TRIG  
0V  
tWTRIG  
tdr1  
tdf2  
+70V  
90%  
90%  
tWTRIG needs to be at least  
2 rising edges of TCK  
Delay time set by  
TX1 10-bit counter  
tdf1  
tdr2  
10%  
tr1  
10%  
tf2  
0V  
TX1  
10%  
10%  
90%  
tf1  
90%  
tr2  
-70V  
+70V  
Delay time set by  
TX2 10-bit counter  
0V  
TX2  
Example with TX2 delay having  
two TCK cycles more than TX1  
-70V  
FIGURE 1-1:  
Timing Diagram of 3-Level, 1-Cycle Bipolar RTZ TX Pulse.  
TCK = 1.65V (0.5VLL  
)
3.5 TCK cycles  
3.3V  
TCK  
0V  
3.3V  
Internal CLK  
(for N = 2)  
0V  
tSU-TRIG  
3.3V  
TRIG  
0V  
tWTRIG  
tdf3  
tdr3  
+70V  
90%  
90%  
10%  
tWTRIG needs to be at least  
2 rising edges of TCK  
Delay time set by  
TX1 10-bit counter  
0V  
TX1  
10%  
-70V  
tf3  
tr3  
+70V  
0V  
TX2  
Delay time set by  
TX2 10-bit counter  
Example with TX2 delay having  
one TCK cycle more than TX1  
-70V  
FIGURE 1-2:  
Timing Diagram of 2-Level 2-Cycle Bipolar, non-RTZ TX Pulses with Damping.  
2015 Microchip Technology Inc.  
DS20005412A-page 11  
HV7351  
NOTES:  
DS20005412A-page 12  
2015 Microchip Technology Inc.  
HV7351  
2.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
Pin  
PIN FUNCTION TABLE  
Symbol  
Description  
1
2
AVDD  
DIN2  
Positive analog supply voltage (+5.0V)  
Serial data in for delay counters and frequency divider  
Activates DIN2. Input logic high = off, input logic low = on.  
3
4
5
6
CS2  
SIZE  
INV  
Sets pattern width to either 16-bits or 32-bits. Logic low = 16-bits, logic high = 32-bits.  
Inverts the TX output waveform. See Table 1-3 for details.  
CW  
Activates CW mode. Logic low = non-CW mode, logic high = CW mode.  
See Table 1-3 for details.  
7
DOUT2  
EN  
Data out for delay counters and frequency divider  
Enables and disables device. Logic low = off, logic high = on.  
Serial clock input for serial shift registers  
Positive digital supply voltage (+5.0V)  
Digital ground  
8
9
10, 50  
SCK  
DVDD  
DGND  
TRIG  
11, 43, 51, 58  
12  
Toggles all TX outputs to transmit. Needs to be high for two rising edges of TCK.  
Delay counters will start on the rising edge of the TCK pin right after the falling edge of  
the TRIG signal. See Section 1.1 “Timing Diagrams” for details.  
13  
14  
TCK  
TCK  
The TCK and TCK pins can be driven by LVDS or SSTL types of output in a  
differential manner. The TCK pin can be driven by LVCMOS single-ended output,  
while setting the TCK to GND (or DC value of 0.4V to 0.6V). The logic trip point is on  
the TCK rising edge and on the TCK falling edge, crossing in the differential manner.  
In the single-ended case, the trip point is on the TCK rising edge.  
15  
VLL  
Logic interface supply voltage (3.3V)  
16  
CS1  
DOUT1  
A0  
Activates DIN1. Input logic high = off, input logic low = on  
Data out for P-Channel and N-Channel pattern registers  
Decoded to select 1 of 4 patterns to be loaded  
17  
18  
19  
A1  
20  
21  
DIN1  
VRN  
Serial data in for P-Channel and N-Channel pattern registers  
Negative supply for VPF regulator (-5.0V)  
22, 49, 52, 79  
PVDD  
PGND  
Positive gate drive supply voltage for RTZ output transistors (+5.0V)  
Power ground path for RTZ output transistors  
23, 24, 46, 48,  
53, 55, 77, 78  
25, 47, 54, 76  
26, 45, 56, 75  
PVSS  
VPF  
Negative gate drive supply voltage for RTZ output transistors (-5.0V)  
Linear regulator output gate drive voltage for the P-Channel output transistors. A low  
voltage 1.0 µF ceramic capacitor needs to be connected across every VPF and VPP  
pins. There are four capacitors required in total.  
27  
NC  
No connection  
28, 42, 59, 73  
VNF  
Linear regulator output gate drive voltage for the N-Channel output transistors. A low  
voltage 1.0 µF ceramic capacitor needs to be connected across every VNF to VNN  
pins. There are four capacitors required in total.  
29, 34, 35, 40,  
41, 60, 61, 66,  
67, 72  
VNN  
Negative high voltage supply (-3.0V to -70V)  
30  
TX1  
VPP  
Transmit pulser outputs for channel 1  
31, 32, 37, 38,  
44, 57, 63, 64,  
69, 70  
Positive high voltage supply (+3.0V to +70V)  
2015 Microchip Technology Inc.  
DS20005412A-page 13  
HV7351  
TABLE 2-1:  
Pin  
PIN FUNCTION TABLE (CONTINUED)  
Symbol  
Description  
Transmit pulser outputs for channel 2  
33  
36  
39  
62  
65  
68  
71  
74  
80  
81  
TX2  
TX3  
TX4  
TX5  
TX6  
TX7  
TX8  
NC  
Transmit pulser outputs for channel 3  
Transmit pulser outputs for channel 4  
Transmit pulser outputs for channel 5  
Transmit pulser outputs for channel 6  
Transmit pulser outputs for channel 7  
Transmit pulser outputs for channel 8  
No connection  
VRP  
VSUB  
Positive supply for VNF regulator (+5.0V)  
Exposed center pad must be externally connected to the ground (GND, 0V) on PCB.  
(DGND).  
DS20005412A-page 14  
2015 Microchip Technology Inc.  
HV7351  
3.0  
3.1  
DEVICE DESCRIPTION  
Loading Data into the Four 16/32  
bit Pattern Registers  
A detailed circuit diagram of the pattern registers is  
shown in Figure 3-1. There are four programmable pat-  
terns that can be stored. One of four patterns can be  
selected via the two input logic decoder pins, A1 and  
A0. Data can be loaded on the selected pattern. Each  
pattern can be either 16- or 32-bits wide. The SIZE pin  
determines whether they are 16- or 32-bits wide.  
SIZE = H will set the pattern to be 32-bits wide while  
SIZE = L will set it to 16-bits wide. DIN1 is the input  
data for the register. When CS1 is high, data will not be  
shifted in. Data is shifted in only when CS1 is low.  
SIZE  
SIZE  
A1 A0 CS1  
A1 A0 CS1  
A1 A0 CS1  
A1 A0 CS1  
16-/32-bits  
Shift Register  
P-ch. Pattern 1  
16-/32-bits  
Shift Register  
N-ch. Pattern 1  
EN  
DIN  
A1 A0 CS1  
SCK  
SIZE  
EN  
16-/32-bits  
Shift Register  
P-ch. Pattern 2  
16-/32-bits  
Shift Register  
N-ch. Pattern 2  
CS1  
A1  
DIN  
A1 A0 CS1  
A1 A0 CS1  
2 to 4  
Decoder  
SCK  
DOUT1  
Size  
EN  
A0  
16-/32-bits  
Shift Register  
N-ch. Pattern 3  
16-/32-bits  
Shift Register  
P-ch. Pattern 3  
DIN  
SCK  
Size  
EN  
16/32 bits  
Shift Register  
P-ch. Pattern 4  
16/32 bits  
Shift Register  
N-ch. Pattern 4  
SCK  
DIN  
A1 A0 CS1  
SCK  
DIN1  
FIGURE 3-1:  
Pattern Register Circuit Diagram.  
With SIZE = H, the circuit is effectively a 64-bit serial  
shift register. The data first enters into the P-Channel  
register and continues to be shifted though to the  
N-Channel register. Data is clocked in during the rising  
edge of the clock. There is no activity during the falling  
edge of the clock. The DIN1 data enters into the S64 of  
P-Channel register and exits the S1 of N-Channel  
register from DOUT1. The SPI writing operation of the  
waveform pattern registers are LSB first.  
Data is shifted in during the rising edge of the clock. S1  
is the first bit shifted in, entering the P-Channel register.  
After 64 clock cycles, S1 will be located in the N-Chan-  
nel register, as shown in Figure 3-2. It will also be  
clocked out to DOUT1.  
DIN1  
32 bits for  
P-ch Pattern 1  
32 bits for  
N-ch Pattern 1  
DOUT1  
SCK  
32 bits for P-ch Pattern 1  
32 bits for N-ch Pattern 1  
EXAMPLE 3-1:  
S64  
S63  
S34  
S33  
S32  
S31  
S2  
S1  
For:  
SIZE  
(SIZE  
A1  
=
=
=
=
High, 32-bits wide  
Low, 16-bits wide)  
FIGURE 3-2:  
Waveform Pattern Register.  
A0  
= Low, Pattern 1 selected  
CS1  
Low, data can be shifted in  
64-bit Serial Shift Register:  
32 bits for the P-Channel  
and  
32 bits for the N-Channel  
2015 Microchip Technology Inc.  
DS20005412A-page 15  
HV7351  
A 2-to-4 decoder is provided to select which of the four  
patterns is to be used for all of the outputs. Logic inputs  
A1 and A0 determine which patterns are selected, fol-  
lowing Table 3-1. Once A1 and A0 are set, a rising  
edge on the trigger logic input pin will automatically  
load the selected pattern to all of the outputs.  
3.2  
Loading Data into the Delay  
Counters and the Divide-by-N  
Counter  
Each output channel (TX) has its own programmable  
10-bit delay counter. For 8 channels, 80 bits are  
needed. A 6-bit divide-by-N counter is also provided to  
program the desired TX frequency. To program all the  
individual delay counters and the divide-by-N counter,  
an 86-bit serial shift register is provided. It uses the  
same clock input that the pattern registers uses. DIN2  
is the input data for this register. When CS2 is high,  
data will not be shifted in. Data is shifted in only when  
CS2 is low.  
TABLE 3-1:  
DECODER TRUTH TABLE  
Logic Decoder Input  
Pattern Selected  
A1  
A2  
0
0
1
1
0
1
0
1
1
2
3
4
As shown in Figure 3-3, the data first enters into the  
10-bit register for the TX8 delay counter and continues  
to be shifted through to the 6-bit register for the  
divide-by-N counter. Data is clocked in during the rising  
edge of the clock. There is no activity during the falling  
edge of the clock. The MSB bit in the 6-bit divide-by-N  
register is clocked out into DOUT2 for cascading multi-  
ple devices, if desired.  
86-bit Serial Shift Register: 80 bits for the delay counters and 6 bits for the divide by N  
6 bits  
divide by N  
DIN2  
SCK  
10 bits TX8 10 bits TX7 10 bits TX6 10 bits TX5 10 bits TX4 10 bits TX3 10 bits TX2 10 bits TX4  
DOUT2  
10 bits TX8 Delay Counter  
10 bits TX7 Delay Counter  
S70 S69 S68  
6 bits divide by N  
S86  
S84 S83 S82 S81  
S76 S75 S74  
S6 S5 S4  
S85  
S80 S79 S78 S77  
S73 S72 S71  
S67  
S3 S2 S1  
MSB  
LSB  
MSB LSB  
MSB  
LSB  
FIGURE 3-3:  
Delay and Divide-by-N Registers.  
3.3 10-Bit Delay Counter  
The TCK and TCK pins are the input clock for the 10-bit  
delay counter. The maximum capable clock frequency  
is up to 200 MHz. The counter counts upward.  
TABLE 3-2:  
MSB  
DELAY COUNTER  
LSB  
Delay Time  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1023 TCK cycles  
1022 TCK cycles  
1021 TCK cycles  
1020 TCK cycles  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
3 TCK cycles  
2 TCK cycles  
1 TCK cycle  
No trigger  
DS20005412A-page 16  
2015 Microchip Technology Inc.  
HV7351  
3.4  
6-Bit Divide-by-N Counter  
The TCK and TCK pins are the input clock for the 6-bit  
divide-by-N counter. It generates the clock frequency  
for the 16-/32-bit serial shift register for the output P-  
and N-Channel patterns. Each clock cycle will set the  
TX output to be either at VPP, VNN, ground or high-  
impedance, depending on what was preprogrammed in  
their corresponding registers.  
TABLE 3-3:  
MSB  
6-BIT DIVIDE-BY-N COUNTER REGISTER  
Output Shift Register Clock  
LSB  
Frequency  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
fTCK ÷ 64  
fTCK ÷ 63  
f
TCK ÷ 62  
fTCK ÷ 61  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
fTCK ÷ 4  
fTCK ÷ 3  
fTCK ÷ 2  
fTCK ÷ 1  
2015 Microchip Technology Inc.  
DS20005412A-page 17  
HV7351  
NOTES:  
DS20005412A-page 18  
2015 Microchip Technology Inc.  
HV7351  
4.0  
4.1  
PACKAGING INFORMATION  
Package Marking Information  
80-Lead VQFN (11x11x1.0 mm)  
Example  
HV7351K6  
1508256  
Legend: XX...X Product Code or Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
2015 Microchip Technology Inc.  
DS20005412A-page 19  
HV7351  
Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.  
DS20005412A-page 20  
2015 Microchip Technology Inc.  
HV7351  
APPENDIX A: REVISION HISTORY  
Revision A (June 2015)  
• Original Release of this Document.  
2015 Microchip Technology Inc.  
DS20005412A-page 21  
HV7351  
NOTES:  
DS20005412A-page 22  
2015 Microchip Technology Inc.  
HV7351  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
XX  
-X  
Examples:  
a) HV7351K6-G: Programmable High-Voltage  
Package  
Environmental  
Ultrasound-Transmit Beamformer,  
80LD 11x11 mm VQFN package  
Device:  
HV7351: Programmable High-Voltage, Ultrasound-Transmit  
Beamformer  
Package:  
K6 =  
Very Thin Plastic Quad Flat Pack, No Lead Package  
– 11.00x11.00x1.0 mm Body, 0.50 mm Pitch,  
80-Lead (VQFN)  
Environmental:  
G
=
Lead (Pb)-free/ROHS-compliant package  
2015 Microchip Technology Inc.  
DS20005412A-page 23  
HV7351  
NOTES:  
DS20005412A-page 24  
2015 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2015, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
ISBN: 978-1-63277-402-6  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2015 Microchip Technology Inc.  
DS20005412A-page 25  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Pforzheim  
Tel: 49-7231-424750  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
Indianapolis  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Noblesville, IN  
Tel: 317-773-8323  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Fax: 317-773-5453  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
01/27/15  
DS20005412A-page 26  
2015 Microchip Technology Inc.  

相关型号:

HV7351K6-G

8-Channel, ±70V, 3A Programmable High-Voltage
MICROCHIP

HV7351K6-G

Eight Channel Programmable High Voltage Ultrasound Transmit Beamformer
SUPERTEX

HV7355

Eight Channel, High Speed, Unipolar, Ultrasound Pulser 1.5A 150V
SUPERTEX

HV7355K6-G

Eight Channel, High Speed, Unipolar, Ultrasound Pulser 1.5A 150V
SUPERTEX

HV7355K6-GM937

Eight Channel, High Speed, Unipolar, Ultrasound Pulser 1.5A 150V
SUPERTEX

HV7358-V/AFA

Consumer IC
MICROCHIP

HV7360

High Speed, 100V 2.5A, Two or Three Level Ultrasound Pulser
SUPERTEX

HV7360

High-Speed ±100V 2.5A Two-or-Three-Level Ultrasound Pulsers
MICROCHIP

HV7360GA-G

High-Speed ±100V 2.5A Two-or-Three-Level Ultrasound Pulsers
MICROCHIP

HV7360LA-G

High Speed, 100V 2.5A, Two or Three Level Ultrasound Pulser
SUPERTEX

HV7361GA-G

High-Speed ±100V 2.5A Two-or-Three-Level Ultrasound Pulsers
MICROCHIP

HV7370

Quad, High Speed, 【100V 850mA, Ultrasound Damper
SIRECTIFIER