KSZ8001SIS-TR [MICROCHIP]

1.8V, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver;
KSZ8001SIS-TR
型号: KSZ8001SIS-TR
厂家: MICROCHIP    MICROCHIP
描述:

1.8V, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver

局域网(LAN)标准
文件: 总51页 (文件大小:542K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ8001L/S  
1.8V, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver  
• Fully compliant to IEEE 802.3u standard  
Features  
• Supports auto-negotiation and manual selection  
for 10/100Mbps speed and full / half-duplex mode  
• Single chip 100BASE-TX/100BASE-FX/  
10BASE-T physical layer solution  
• Configurable through MII serial management port  
or via external control pins  
• 1.8V CMOS design, power consumption 250 mW  
• Robust (130m+) operation over standard cables  
• Programmable LED outputs for link, activity, full/  
half duplex, collision and speed  
• Supports Media Independent Interface (MII),  
Reduced MII (RMII), and Serial MII (SMII)  
• LinkMD® feature to determine cable length and  
diagnose faulty cables with +/- 2 m accuracy  
• On-chip built-in analog front end filtering for both  
100BASE-TX and 10BASE-T  
• Supports back-to-back, 100BASE-FX to  
100BASE-TX for media converter applications  
• Supports HP MDI/MDI-X auto crossover  
• Supports power down mode and power saving  
mode  
• Single 3.3V power supply with built-in 1.8V regu-  
lator (‘L’ parts)  
• MDC/MDIO to 12.5 MHz for rapid configuration  
• Packages: 48-Pin LQFP, 48-Pin SSOP  
Functional Diagram  
4B/5B ENCODER  
SCRAMBLER  
PARALLEL/SERIAL  
NRZ/NRZI  
MLT3 ENCODER  
TXD3  
TXD2  
TXD1  
TXD0  
TXER  
TXC  
10/100  
PULSE  
SHAPER  
TX+  
TX-  
TRANSMITTER  
PARALLEL/SERIAL  
MANCHESTER ENCODER  
TXEN  
CRS  
COL  
MII/RMII/SMII  
REGISTERS  
AND  
CONTROLLER  
INTERFACE  
ADAPTIVE EQ  
RX+  
RX-  
BASELINE WANDER  
CORRECTION  
MLT3 DECODER  
NRZI/NRZ  
4B/5B DECODER  
DESCRAMBLER  
SERIAL/PARALLEL  
CLOCK  
RECOVERY  
MDIO  
MDC  
RXD3  
RXD2  
RXD1  
RXD0  
RXER  
RXDV  
RXC  
AUTO  
NEGOTIATION  
10BASE-T  
RECEIVER  
MANCHESTER DECODER  
SERIAL/PARALLEL  
POWER DOWN/  
POWER SAVING  
LINK  
COL  
FDX  
SPD  
LED  
DRIVER  
XI  
PLL  
XO  
PWRDWN  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 1  
KSZ8001L/S  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-  
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS00003062A-page 2  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
Table of Contents  
1.0 General Description ........................................................................................................................................................................ 4  
2.0 Pin Description and Configuration .................................................................................................................................................. 5  
3.0 Functional Overview ..................................................................................................................................................................... 12  
4.0 Register Map ................................................................................................................................................................................. 27  
5.0 Operational Characteristics ........................................................................................................................................................... 34  
6.0 Timing Diagrams ........................................................................................................................................................................... 36  
7.0 Package Information ..................................................................................................................................................................... 45  
Appendix A: Data Sheet Revision History ........................................................................................................................................... 47  
The Microchip Web Site ...................................................................................................................................................................... 48  
Customer Change Notification Service ............................................................................................................................................... 48  
Customer Support ............................................................................................................................................................................... 48  
Product Identification System ............................................................................................................................................................. 49  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 3  
KSZ8001L/S  
1.0  
GENERAL DESCRIPTION  
The KSZ8001 is a 10BASE-T/100BASE-TX/100BASE-FX Physical Layer Transceiver, operating the core at 1.8 volts to  
meet low voltage and low power requirements. The solution provides MII/RMII/SMII interfaces to transmit and receive  
data. A unique mixed-signal design extends signaling distance while reducing power consumption.  
HP Auto MDI/MDI-X provides the most robust solution for eliminating the need to differentiate between crossover and  
straight-through cables.  
Featuring LinkMD® cable diagnostics, which allows detection of common cabling plant problems such as open and short  
circuits, the KSZ8001 represents a level of features and performance and is an ideal choice of physical layer transceiver  
for 100BASE-TX/10BASE-T/100BASE-FX applications.  
DS00003062A-page 4  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
2.0  
2.1  
PIN DESCRIPTION AND CONFIGURATION  
Pin Diagram  
FIGURE 2-1:  
KSZ8001S - 48-PIN SSOP  
Top View  
SSOP 48  
RST#  
1
2
48  
47  
MDIO  
MDC  
VDDPLL  
3
XI 46  
RXD3/PHYAD1  
RXD2/PHYAD2  
4
XO 45  
5
44  
43  
42  
41  
40  
39  
38  
37  
RXD1/PHYAD3  
RXD0/PHYAD4  
VDDIO  
GND  
NC  
6
7
NC  
8
GND  
TX+  
9
RXDV/PCS_LPBK  
RXC  
TX-  
10  
11  
12  
GND  
RXER/ISO  
VDDRCV  
REXT  
GND  
KSZ8001S  
GND  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
VDDC  
TXER  
GND  
TXC/REF_CLK  
FXSD/FXEN  
TXEN  
TXD0  
RX+  
RX-  
TXD1  
TXD2  
TXD3  
VDDRX  
PD#  
LED3/NWAYEN  
LED2/DUPLEX  
LED1/SPD100  
LED0/TEST  
COL/RMII  
CRS/RMII_BTB  
GND  
VDDIO  
INT#/PHYAD0  
25  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 5  
KSZ8001L/S  
FIGURE 2-2:  
KSZ8001L - 48-PIN LQFP  
1
2
36  
GND  
MDIO  
Top View  
LQFP 48  
MDC  
GND 35  
RXD3/PHYAD1  
3
34  
FXSD/FXEN  
4
33  
RXD2/PHYAD2  
RXD1/PHYAD3  
RXD0/PHYAD4  
RX+  
5
RX- 32  
VDDRX  
6
31  
30  
KSZ8001L  
7
VDDIO  
GND  
PD#  
8
LED3/NWAYEN 29  
9
28  
RXDV/PCS_LPBK  
RXC  
LED2/DUPLEX  
10  
11  
12  
27  
26  
25  
LED1/SPD100  
RXER/ISO  
GND  
LED0/TEST  
INT#/PHYAD0  
2.2  
Pin Description  
Type  
(Note 1)  
Pin Number  
Pin Name  
Pin Function  
MII Management (MIIM) Interface: Data I/O  
1
2
3
MDIO  
I/O  
This pin requires an external 4.7K pull-up resistor.  
MDC  
I
MII Management (MIIM) Interface: Clock Input  
This pin is synchronous to the MDIO data line.  
MII Mode: Receive Data Output[3]2 /  
RXD3/  
Ipd/O  
PHYAD1  
Configuration Mode: The pull-up/pull-down value is latched as PHY-  
ADDR[1] during reset. See Section 2.3, "Strapping Options" for details.  
4
5
RXD2/  
PHYAD2  
Ipd/O  
Ipd/O  
MII Mode: MII Receive Data Output[2]2 /  
Configuration Mode: The pull-up/pull-down value is latched as PHY-  
ADDR[2] during reset. See Strapping Options for details.  
RXD1/  
RXD[1]/  
PHYAD3  
MII Mode: Receive Data Output[1]2 /  
RMII Mode: Receive Data Output[1]3 /  
Configuration Mode: The pull-up/pull-down value is latched as PHY-  
ADDR[3] during reset. See Strapping Options for details.  
DS00003062A-page 6  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
Type  
(Note 1)  
Pin Number  
Pin Name  
Pin Function  
6
RXD0/  
RXD[0]/  
RX  
Ipd/O  
MII Mode: Receive Data Output[0]2 /  
RMII Mode: Receive Data Output[0]3 /  
SMII Mode: Receive Data and Control4 /  
PHYAD4  
Configuration Mode: The pull-up/pull-down value is latched as PHY-  
ADDR[4] during reset. See Strapping Options for details.  
7
8
9
VDDIO  
GND  
Pwr  
Gnd  
3.3V digital VDD  
Ground  
RXDV/  
CRSDV/  
PCS_LPBK  
Ipd/O  
MII Mode: Receive Data Valid Output /  
RMII Mode: Carrier Sense/Receive Data Valid /  
Configuration Mode: The pull-up/pull-down value is latched as pcs_lpbk  
during reset. See Strapping Options for details.  
10  
11  
RXC/  
SMII_SE-  
LECT  
Ipd/O  
Ipd/O  
MII Receive Clock Output  
Operating at:  
25 MHz = 100 Mbps  
2.5 MHz = 10 Mbps  
Configuration Mode: The pull-up/pull-down value is latched as SMII  
during reset. See Strapping Options for details.  
RXER/  
RX_ER/  
ISO  
MII Mode: Receive Error Output /  
RMII Mode: Receive Error /  
Configuration Mode: The pull-up/pull-down value is latched as ISOLATE  
during reset. See Strapping Options for details.  
12  
13  
GND  
Gnd  
Pwr  
Ground  
VDDC  
1.8V digital core VDD  
VDD output  
VDD input  
:
:
KSZ8001L / KSZ8001SL  
KSZ8001S  
(See Section 3.11, "Circuit Design Reference for Power Supply" for  
details)  
14  
15  
TXER  
Ipd  
I/O  
MII Transmit Error Input  
TXC/ REF-  
CLK/  
CLOCK  
MII Mode: MII Transmit Clock Output /  
RMII Mode: 50 MHz Reference Clock Input /  
SMII Mode: 125 MHz Synchronization Clock Input  
16  
17  
TXEN  
Ipd  
Ipd  
MII Transmit Enable Input  
TXD0/  
TXD[0]/  
TX  
MII Mode: Transmit Data Input[0] /  
RMII Mode: Transmit Data Input[0] /  
SMII Mode: Transmit Data and Control  
18  
TXD1/  
TXD[1]/  
SYNC  
Ipd  
MII Mode: Transmit Data Input[1] /  
RMII Mode: Transmit Data Input[1] /  
SMII Mode: SYNC  
19  
20  
21  
TXD2  
TXD3  
Ipd  
Ipd  
MII Transmit Data Input[2]  
MII Transmit Data Input[3]  
COL /  
RMII_SE-  
LECT  
Ipd/O  
MII Collision Detect Output  
Configuration Mode: The pull-up/pull-down value is latched as RMII  
select during reset. See Strapping Options for details.  
22  
CRS/  
Ipd/O  
MII Carrier Sense Output  
RMII_BTB  
Configuration Mode: The pull-up/pull-down value is latched as RMII  
Loop-back during reset when RMII mode is selected. See Strapping  
Options” for details.  
23  
24  
GND  
Gnd  
Pwr  
Ground  
VDDIO  
3.3V digital VDD  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 7  
KSZ8001L/S  
Type  
(Note 1)  
Pin Number  
Pin Name  
Pin Function  
25  
INT#/ PHY-  
AD0  
Ipu/O  
Management Interface (MII) Interrupt Out.  
Configuration Mode: Latched as PHYAD[0] during power up / reset. See  
Strapping Options for details.  
26  
LED0/  
TEST  
Ipu/O  
Programmable LED Output 0  
Configuration Mode: The external pull down enable test mode and only  
used for the factory test. Active Low. The LED0 pin is also programma-  
ble via register 1eh.  
LED mode = 00  
Link/Act  
No Link  
Link  
Pin State  
LED Definition  
H
L
-
Off  
On  
Activity  
Toggle  
LED mode = 01  
Link  
Pin State  
LED Definition  
No Link  
Link  
H
L
Off  
On  
LED mode = 10  
10Mbps Link  
No Link  
Link  
Pin State  
LED Definition  
H
L
Off  
On  
27  
LED1 /  
SPD100/  
noFEF  
Ipu/O  
Programmable LED Output 1  
Configuration Mode: Latched as SPEED (Register 0, bit 13) during  
power up / reset. See Strapping Options for details. Active Low. The  
LED1 pin is also programmable via register 1eh.  
LED mode = 00  
Speed  
Pin State  
LED Definition  
10BT  
H
L
Off  
On  
100BT  
LED mode = 01  
Speed  
Pin State  
LED Definition  
10BT  
H
L
Off  
On  
100BT  
LED mode = 10  
100Mbps Link  
No Link  
Pin State  
LED Definition  
H
L
Off  
On  
Link  
DS00003062A-page 8  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
Type  
(Note 1)  
Pin Number  
Pin Name  
Pin Function  
Programmable LED Output 2  
28  
LED2/  
Ipu/O  
DUPLEX  
Configuration Mode: Latched as DUPLEX (register 0h, bit 8) during  
power up / reset. See Strapping Options for details. Active Low. The  
LED2 pin is also programmable via register 1eh.  
LED mode = 00  
Duplex  
Pin State  
LED Definition  
Half  
H
L
Off  
On  
Full  
LED mode = 01  
Full Duplex/Col  
Half  
Pin State  
LED Definition  
H
L
-
Off  
Full  
On  
Collision  
LED mode = 10  
Duplex  
Toggle  
Pin State  
LED Definition  
Half  
H
L
Off  
On  
Full  
29  
LED3/  
Ipu/O  
Programmable LED Output 3  
NWAYEN  
Configuration Mode: Latched as ANEG_EN (register 0h, bit 12) during  
power up / reset. See Strapping Options for details. Active Low. The  
LED3 pin is also programmable via register 1eh.  
LED mode = 00  
Collision  
Pin State  
LED Definition  
No Collision  
Collision  
H
L
Off  
On  
LED mode = 01  
Activity  
Pin State  
-
LED Definition  
Toggle  
Activity  
LED mode = 10  
Activity  
Pin State  
-
LED Definition  
Toggle  
Activity  
30  
31  
PD#  
Ipu  
Chip power down input (active low)  
1 (high) = Normal operation  
0 (low) = Power down  
VDDRX  
Pwr  
1.8V analog VDD  
(See Circuit Design Reference for Power Supply for details)  
Physical receive or transmit ‘-’ differential signal  
Physical receive or transmit ‘+’ differential signal  
32  
33  
34  
RX-  
I/O  
I/O  
RX+  
FXSD/  
FXEN  
Ipd/O  
Fiber Mode Enable / Signal Detect in Fiber Mode  
If FXEN=0, FX mode is disable. The default is “0”.  
(See Section 3.7, "100BASE-FX Mode" for details)  
35  
36  
37  
38  
GND  
GND  
Gnd  
Gnd  
I
Ground  
Ground  
REXT  
Connect a 6.65Kexternal resistor from this pin to ground  
VDDRCV  
Pwr  
3.3V analog VDD  
(See Circuit Design Reference for Power Supply for details)  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 9  
KSZ8001L/S  
Type  
(Note 1)  
Pin Number  
Pin Name  
Pin Function  
39  
40  
41  
42  
43  
44  
45  
46  
GND  
TX-  
TX+  
NC  
Gnd  
I/O  
Ground  
Physical transmit or receive ‘-’ differential signal  
I/O  
Physical transmit or receive ‘+’ differential signal  
No Connect  
No Connect  
Ground  
NC  
GND  
XO  
Gnd  
O
I
25MHz crystal/oscillator clock connections  
Pins (XI, XO) connect to a crystal. If an oscillator is used, XI connects to  
a 3.3V tolerant oscillator and XO is a no connect.  
Clock is +/- 50ppm for both crystal and oscillator.  
XI  
47  
48  
VDDPLL  
RST#  
Pwr  
Ipu  
1.8V analog PLL VDD  
(See Circuit Design Reference for Power Supply for details)  
Chip Reset  
Active low, minimum of 50 us pulse is required  
Note 1:  
Pwr = power supply;  
Ipu/O = input w/ internal pull up during  
reset, output pin otherwise;  
Ipd/O = input w/ internal pull down during  
reset, output pin otherwise;  
PD = strap pull down;  
Gnd = ground;  
I = input;  
O = output;  
I/O = bi-directional  
Ipu = input w/ internal pull up;  
Ipd = input w/ internal pull down;  
PU = strap pull up;  
2: MII Rx Mode: The RXD[3..0] bits are synchronous with RXCLK. When RXDV is asserted,  
RXD [3..0] presents valid data to MAC through the MII. RXD [3..0] is invalid when RXDV is  
de-asserted.  
3: RMII Rx Mode: The RXD[1..0] bits are synchronous with REF_CLK. For each clock period in  
which CRS_DV is asserted, two bits of recovered data are sent from the PHY.  
4: SMII Rx Mode: Receive data and control information are sent in 10 bit segments. In 100MBit  
mode, each segment represents a new byte of data. In 10MBit mode, each segment is  
repeated ten times; therefore, every ten segments represents a new byte of data. The MAC  
can sample any one of every 10 segments in 10MBit mode.  
5: MII Tx Mode: The TXD[3..0] bits are synchronous with TXCLK. When TXEN is asserted, TXD  
[3..0] presents valid data from the MAC through the MII. TXD [3..0] has no effect when TXEN  
is de-asserted.  
6: RMII Tx Mode: The TXD[1..0] bits are synchronous with REF_CLK. For each clock period in  
which TX_EN is asserted, two bits of recovered data are recovered by the PHY.  
7: SMII Tx Mode: Transmit data and control information are received in 10 bit segments. In  
100MBit mode, each segment represents a new byte of data. In 10MBit mode, each segment  
is repeated ten times; therefore, every ten segments represents a new byte of data. The PHY  
can sample any one of every 10 segments in 10MBit mode.  
DS00003062A-page 10  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
2.3  
Strapping Options  
Pin Number  
Pin Name  
Type  
Description  
6, 5, 4,  
3
PHYAD[4:1] /  
RXD[0:3]  
Ipd/O  
PHY Address latched at power-up / reset.  
The default PHY address is 00001.  
25  
9
PHYAD0 /  
INT#  
Ipu/O  
Ipd/O  
PCS_LPBK /  
RXDV  
Enables PCS_LPBK mode at power-up / reset.  
PD (default) = Disable, PU = Enable  
10  
11  
21  
22  
27  
SMII_SELECT  
/ RXC  
Ipd/O  
Ipd/O  
Ipd/O  
Ipd/O  
Ipu/O  
Enables SMII mode at power-up / reset.  
PD (default) = Disable, PU = Enable  
ISO / RXER  
Enables ISOLATE mode at power-up /reset.  
PD (default) = Disable, PU = Enable  
RMII_SELECT  
/ COL  
Enables RMII mode at power-up / reset.  
PD (default) = Disable, PU = Enable  
RMII_BTB/  
CRS  
Enable RMII_BTB mode at power-up / reset.  
PD (default) = Disable, PU = Enable  
SPD100 /  
No FEF /  
LED1  
Latched into Register 0h bit 13 during power-up / reset.  
PD = 10Mb/s, PU (default) = 100Mb/s.  
If SPD100 is asserted during power-up / reset, this pin also  
latched as the Speed Support in register 4h. (If FXEN is  
pulled up, the latched value 0 means no Far _End _Fault.)  
28  
29  
30  
DUPLEX/  
LED2  
Ipu/O  
Ipu/O  
Ipu  
Latched into Register 0h bit 8 during power-up / reset.  
PD = Half Duplex, PU (default) = Full duplex.  
If Duplex is pulled up during reset, this pin also latched as  
the Duplex support in register 4h.  
NWAYEN/  
LED3  
Nway (auto-=Negotiation) Enable  
Latched into Register 0h bit 12 during power-up / reset. PD  
= Disable Auto-Negotiation, PU (default) = Enable Auto-  
Negotiation  
PD#  
Power Down Enable  
PU (default) = Normal operation, PD = Power down mode  
Note:  
Strap-in is latched during power up or reset. In some systems, the MAC RXD pins may drive high at all  
times causing the PHY strap-in to be latched high during power up or system reset. In this case, it is rec-  
ommended to use a strong pull down to GND via 1kohm resistor on RXDV, RXC, and RXER pins. Other-  
wise, the PHY may stay in Isolate or loop back modes.  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 11  
KSZ8001L/S  
3.0  
FUNCTIONAL OVERVIEW  
3.1  
Functional Description  
3.1.1  
100BASE-TX TRANSMIT  
The 100BASE-TX transmit function performs parallel-to-serial conversion, NRZ to NRZI conversion, MLT-3 encoding  
and transmission. The circuitry starts with a parallel-to-serial conversion, which converts the 25 MHz, 4-bit nibbles into  
a 125 MHz serial bit stream. The incoming data is clocked in at the positive edge of the TXC signal. The serialized data  
is further converted from NRZ to NRZI format, and then transmitted in MLT3 current output. The output current is set by  
an external 1% 6.65 Kresistor for the 1:1 transformer ratio. It has typical rise/fall times of 4 ns and complies with the  
ANSI TP-PMD standard regarding amplitude balance, overshoot and timing jitter. The wave-shaped 10BASE-T output  
driver is also incorporated into the 100BASE-TX driver.  
3.1.2  
100BASE-TX RECEIVE  
The 100BASE-TX receive function performs adaptive equalization, DC restoration, MLT-3 to NRZI conversion, data and  
clock recovery, NRZI to NRZ conversion, and serial-to-parallel conversion. The receiving side starts with the equaliza-  
tion filter to compensate for inter-symbol interference (ISI) over the twisted pair cable. Since the amplitude loss and  
phase distortion are a function of the length of the cable, the equalizer has to adjust its characteristic to optimize perfor-  
mance. In this design, the variable equalizer will make an initial estimation based upon comparisons of incoming signal  
strength against some known cable characteristics, then tunes itself for optimization. This is an ongoing process and  
can self adjust against environmental changes such as temperature variations.  
The equalized signal then goes through a DC restoration and data conversion block. The DC restoration circuit is used  
to compensate for the effects of base line wander and to improve the dynamic range. The differential data conversion  
circuit converts the MLT3 format back to NRZI. The slicing threshold is also adaptive.  
The clock recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then  
used to convert the NRZI signal into the NRZ format. Finally, the NRZ serial data is converted to 4-bit parallel 4B nibbles.  
A synchronized 25 MHz RXC is generated so that the 4B nibbles is clocked out at the negative edge of RCK25 and is  
valid for the receiver at the positive edge. When no valid data is present, the clock recovery circuit is locked to the 25  
Mz reference clock and both TXC and RXC clocks continue to run.  
3.1.3  
PLL CLOCK SYNTHESIZER  
The KSZ8001 generates 125 Mz, 25 Mz and 20 Mz clocks for system timing. An internal crystal oscillator circuit  
provides the reference clock for the synthesizer.  
3.1.4  
SCRAMBLER/DE-SCRAMBLER (100BASE-TX ONLY)  
The purpose of the scrambler is to spread the power spectrum of the signal in order to reduce EMI and baseline wander.  
3.1.5  
10BASE-T TRANSMIT  
When TXEN (transmit enable) goes high, data encoding and transmission will begin. The KSZ8001 will continue to  
encode and transmit data as long as TXEN remains high. The data transmission will end when TXEN goes low. The last  
transition occurs at the boundary of the bit cell if the last bit is zero, or at the center of the bit cell if the last bit is one.  
The output driver is incorporated into the 100BASE- driver to allow transmission with the same magnetic. They are inter-  
nally wave-shaped and pre-emphasized into outputs with a typical 2.5 V amplitude. The harmonic contents are at least  
27 dB below the fundamental when driven by an all-ones Manchester-encoded signal.  
3.1.6  
10BASE-T RECEIVE  
On the receive side, input buffer and level detecting squelch circuits are employed. A differential input receiver circuit  
and a PLL performs the decoding function. The Manchester-encoded data stream is separated into clock signal and  
NRZ data. A squelch circuit rejects signals with levels less than 300 mV or with short pulse widths in order to prevent  
noises at the RX+ or RX- input from falsely trigger the decoder. When the input exceeds the squelch limit, the PLL locks  
onto the incoming signal and the KSZ8001 decodes a data frame. This activates the carrier sense (CRS) ad RXDV sig-  
nals and makes the receive data (RXD) available. The receive clock is maintained active during idle periods in between  
data reception.  
DS00003062A-page 12  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
3.1.7  
SQE AND JABBER FUNCTION (10BASE-T ONLY)  
In 10BASE-T operation, a short pulse will be put out on the COL pin after each packet is transmitted. This is required  
as a test of the 10BASE-T transmit/receive path and is called SQE test. The 10BASE-T transmitter will be disabled and  
COL will go high if TXEN is High for more than 20 ms (Jabbering). If TXEN then goes low for more than 250 ms, the  
10BASE-T transmitter will be re-enabled and COL will go Low.  
3.1.8  
AUTO-NEGOTIATION  
The KSZ8001 performs auto-negotiation by hardware strapping option (pin 29) or software (Register 0.12). It will auto-  
matically choose its mode of operation by advertising its abilities and comparing them with those received from its link  
partner whenever auto-negotiation is enabled. It can also be configured to advertise 100BASE-TX or 10BASE-T in either  
full- or half-duplex mode. Auto-negotiation is disabled in FX mode.  
During auto-negotiation, the contents of Register 4, coded in Fast Link Pulse (FLP), will be sent to its link partner under  
the conditions of power-on, link-loss or re-start. At the same time, the KSZ8001 will monitor incoming data to determine  
its mode of operation. Parallel detection circuit will be enabled as soon as either 10BASE-T NLP (Normal Link Pulse)  
or 100BASE-TX idle is detected. The operation mode is configured based on the following priority:  
• Priority 1: 100BASE-TX, full-duplex  
• Priority 2: 100BASE-TX, half-duplex  
• Priority 3: 10BASE-T, full-duplex  
• Priority 4: 10BASE-T, half-duplex  
When the KSZ8001 receives a burst of FLP from its link partner with 3 identical link code words (ignoring acknowledge  
bit), it will store these code words in Register 5 and wait for the next 3 identical code words. Once the KSZ8001 detects  
the second code words, it then configures itself according to the above-mentioned priority. In addition, the KSZ8001 also  
checks for 100BASE-TX idle or 10BASE-T NLP symbols. If either is detected, the KSZ8001 automatically configures to  
match the detected operating speed.  
3.2  
MII Management Interface  
The KSZ8001 supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input / Output  
(MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the KSZ8001. The MDIO  
interface consists of the following:  
• A physical connection including a data line (MDIO), a clock line (MDC) and an optional interrupt line (INTRPT)  
• A specific protocol that runs across the above-mentioned physical connection and it also allows one controller to  
communicate with multiple KSZ8001 devices. Each KSZ8001 is assigned an MII address between 0 and 31 by the  
PHYAD inputs.  
• An internal addressable set of fourteen 16-bit MDIO registers. Register [0:6] are required and their functions are  
specified by the IEEE 802.3 specifications. Additional registers are provided for expanded functionality.  
The INTPRT pin functions as a management data interrupt in the MII. An active Low or High in this pin indicates a status  
change on the KSZ8001 based upon 1fh.9 level control. Register bits at 1bh[15:8] are the interrupt enable bits. Register  
bits at 1bh[7:0] are the interrupt condition bits. This interrupt is cleared by reading Register 1bh.  
3.2.1  
MII DATA INTERFACE  
The data interface consists of separate channels for transmitting data from a 10/100 802.3 compliant Media Access  
Controller (MAC) to the KSZ8001, and for receiving data from the line. Normal data transmission is implemented in 4B  
Nibble Mode (4-bit wide nibbles).  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 13  
KSZ8001L/S  
3.2.1.1  
Transmit Clock (TXC): The transmit clock is normally generated by the KSZ8001 from an  
external 25MHz reference source at the X1 input. The transmit data and control signals must  
always be synchronized to the TXC by the MAC. The KSZ8001 normally samples these  
signals on the rising edge of the TXC.  
3.2.1.2  
Receive Clock (RXC): For 100BASE-TX links, the receive clock is continuously recovered  
from the line. If the link goes down, and auto-negotiation is disabled, the receive clock then  
operates off the master input clock (X1 or TXC). For 10BASE-T links, the receive clock is  
recovered from the line while carrier is active, and operates from the master input clock when  
the line is idle. The KSZ8001 synchronizes the receive data and control signals on the falling  
edge of RXC in order to stabilize the signals at the rising edge of the clock with 10ns setup and  
hold times.  
3.2.1.3  
3.2.1.4  
Transmit Enable: The MAC must assert TXEN at the same time as the first nibble of the  
preamble, and de-assert TXEN after the last bit of the packet.  
Receive Data Valid: The KSZ8001 asserts RXDV when it receives a valid packet. Line  
operating speed and MII mode will determine timing changes in the following way:  
For 100BASE-TX link with the MII in 4B mode, RXDV is asserted from the first nibble of the preamble to the last nibble  
of the data packet.  
For 10BASE-T links, the entire preamble is truncated. RXDV is asserted with the first nibble of the SFD “5D” and re-  
mains asserted until the end of the packet.  
3.2.1.5  
3.2.1.6  
Error Signals: Whenever the KSZ8001 receives an error symbol from the network, it asserts  
RXER and drives “1110” (4B) on the RXD pins. When the MAC asserts TXER, the KSZ8001  
will drive “H” symbols (a Transmit Error define in the IEEE 802.3 4B/5B code group) out on the  
line to force signaling errors.  
Carrier Sense (CRS): For 100TX links, a start-of-stream delimiter, or /J/K symbol pair causes  
assertion of Carrier Sense (CRS). An end-of-stream delimiter, or /T/R symbol pair causes de-  
assertion of CRS. The PMA layer will also de-assert CRS if IDLE symbols are received without  
/T/R, yet in this case RXER will be asserted for one clock cycle when CRS is de-asserted. For  
10T links, CRS assertion is based on reception of valid preamble, and de-assertion on  
reception of an end-of-frame (EOF) marker.  
3.2.1.7  
Collision: Whenever the line state is half-duplex and the transmitter and receiver are active at  
the same time, then the KSZ8001 asserts its collision signal, which is asynchronous to any  
clock.  
3.3  
RMII (Reduced MII) Data Interface  
RMII interface specifies a low pin count (Reduced) Media Independent Interface (RMII) intended for use between Ether-  
net PHYs and Switch or Repeater ASICs. It is fully compliant with IEEE 802.3u [2].  
This interface has the following characteristics:  
• It is capable of supporting 10Mb/s and 100Mb/s data rates  
• A single clock reference is sourced from the MAC to PHY (or from an external source)  
• It provides independent 2 bit wide (di-bit) transmit and receive data paths  
• It uses TTL signal levels, compatible with common digital CMOS ASIC processes  
DS00003062A-page 14  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
TABLE 3-1:  
RMII SIGNAL DEFINITION  
Direction  
Direction  
Signal Name  
(with respect to (with respect to  
Use  
the PHY)  
the MAC)  
REF_CLK  
Input  
Input or Output  
Synchronous clock reference for receive, transmit and con-  
trol interface  
CRS_DV  
RXD[1:0]  
TX_EN  
Output  
Output  
Input  
Input  
Carrier Sense/Receive Data Valid  
Receive Data  
Input  
Output  
Output  
Transit Enable  
TXD[1:0]  
RX_ER  
Input  
Transit Data  
Output  
Input  
Receive Error  
(Not Required)  
Note:  
Unused MII signals, TXD[3:2], TXER need to be tied to GND when RMII is used.  
3.3.1  
REFERENCE CLOCK (REF_CLK)  
REF_CLK is a continuous 50 MHz clock that provides the timing reference for CRS_DV, RXD[1:0], TX_EN, TXD[1:0],  
and RX_ER. REF_CLK is sourced by the MAC or an external source. Switch implementations may choose to provide  
REF_CLK as an input or an output depending on whether they provide a REF_CLK output or rely on an external clock  
distribution device. Each PHY device shall have an input corresponding to this clock but may use a single clock input  
for multiple PHYs implemented on a single IC.  
3.3.2  
CARRIER SENSE/RECEIVE DATA VALID (CRS_DV)  
CRS_DV is asserted asynchronously on detection of carrier due to the criteria relevant to the operating mode. That is,  
in 10BASE-T mode, when squelch is passed or in 100BASE-X mode when 2 non-contiguous zeroes in 10 bits are  
detected carrier is said to be detected.  
Loss of carrier shall result in the de-assertion of CRS_DV synchronous to REF_CLK. So long as carrier criteria are being  
met, CRS_DV shall remain asserted continuously from the first recovered di-bit of the frame through the final recovered  
di-bit and shall be negated prior to the first REF_CLK that follows the final di-bit.  
The data on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV is asyn-  
chronous relative to REF_CLK, the data on RXD[1:0] shall be "00" until proper receive signal decoding takes place (see  
definition of RXD[1:0] behavior).  
3.3.3  
RECEIVE DATA [1:0] (RXD[1:0])  
RXD[1:0] shall transition synchronously to REF_CLK. For each clock period in which CRS_DV is asserted, RXD[1:0]  
transfers two bits of recovered data from the PHY. In some cases (e.g. before data recovery or during error conditions)  
a pre-determined value for RXD[1:0] is transferred instead of recovered data. RXD[1:0] shall be "00" to indicate idle  
when CRS_DV is de-asserted. Values of RXD[1:0] other than "00" when CRS_DV is de-asserted are reserved for out-  
of-band signaling (to be defined). Values other than "00" on RXD[1:0] while CRS_DV is de-asserted shall be ignored by  
the MAC/repeater. Upon assertion of CRS_DV, the PHY shall ensure that RXD[1:0]=00 until proper receive decoding  
takes place.  
3.3.4  
TRANSMIT ENABLE (TX_EN)  
Transmit Enable TX_EN indicates that the MAC is presenting di-bits on TXD[1:0] on the RMII for trans-mission. TX_EN  
shall be asserted synchronously with the first nibble of the preamble and shall remain asserted while all di-bits to be  
transmitted are presented to the RMII. TX_EN shall be negated prior to the first REF_CLK following the final di-bit of a  
frame. TX_EN shall transition synchronously with respect to REF_CLK.  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 15  
KSZ8001L/S  
3.3.5  
TRANSMIT DATA [1:0] (TXD[1:0])  
Transmit Data TXD[1:0] shall transition synchronously with respect to REF_CLK. When TX_EN is asserted, TXD[1:0]  
are accepted for transmission by the PHY. TXD[1:0] shall be "00" to indicate idle when TX_EN is de-asserted. Values  
of TXD[1:0] other than "00" when TX_EN is de-asserted are reserved for out-of-band signaling (to be defined). Values  
other than "00" on TXD[1:0] while TX_EN is disserted shall be ignored by the PHY.  
3.3.6  
COLLISION DETECTION  
Since the definition of CRS_DV and TX_EN both contain an accurate indication of the start of frame, the MAC can reli-  
ably regenerate the COL signal of the MII by Ending TX_EN and CRS_DV.  
During the IPG time following the successful transmission of a frame, the COL signal is asserted by some transceivers  
as a self-test. The Signal Quality Error (SQE) function will not be supported by the reduced MII due to the lack of the  
COL signal. Historically, SQE was present to indicate that a transceiver located physically remote from the MAC was  
functioning. Since the reduced MII only supports chip-to-chip connections on a PCB, SQE functionality is not required.  
3.3.7  
RX_ER  
The PHY shall provide RX_ER as an output according to the rules specified in IEEE 802.3u [2] (see Clause 24, Figure  
24-11 - Receive State Diagram). RX_ER shall be asserted for one or more REF_CLK periods to indicate that an error  
(e.g. a coding error or any error that a PHY is capable of detecting, and that may otherwise be undetectable by the MAC  
sublayer) was detected somewhere in the frame presently being transferred from the PHY. RX_ER shall transition syn-  
chronously with respect to REF_CLK. While CRS_DV is de-asserted, RX_ER shall have no effect on the MAC.  
3.3.8  
RMII AC CHARACTERISTICS  
RMII Transmit Timing  
3.3.8.1  
20ns  
REF_CLK  
t
1
t2  
TXD[1:0]  
TXEN  
Parameter  
Min  
Typ  
Max  
Unit  
REF_CLK Frequency  
50  
MHz  
ns  
TXD[1:0], TX_EN, Data Setup to REF_CLK rising edge  
TXD[1:0], TX_EN, Data hold from REF_CLK rising edge  
4
2
ns  
DS00003062A-page 16  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
3.3.8.2  
RMII Receive Timing  
20ns  
REF_CLK  
RXD[1:0]  
RXDV  
RXER  
tod  
Parameter  
Min  
Typ  
Max  
Unit  
REF_CLK Frequency  
50  
MHz  
ns  
RXD[1:0], CRS_DV, RX_ER Output delay from  
REF_CLK rising edge  
2.8  
10  
3.4  
SMII Signal Definition  
SMII is composed of two signals per port, a global synchronization signal, and a global 125MHz reference clock. All  
signals are synchronous to the clock. All SMII I/F uses a common 125MHz reference clock and SYNC signals that are  
synchronous to the reference clock. There are two signals in SMII from MAC-to-PHY for each port (TXD and TxSYNC),  
and one signal per port from PHY-to-MAC (RXD).  
The Serial Media Independent Interface (SMII) is designed to satisfy the following requirements:  
• Convey complete MII information between a 10/100 PHY and MAC with two pins per port.  
• Allow a multi-port MAC/PHY communication with one system clock.  
• Operate in both half and full duplex.  
• Per packet switching between 10Mbit and 100Mbit data rates.  
• Allow direct MAC-to-MAC communication.  
3.4.1  
SMII SIGNALS  
Signal Name  
From  
To  
Use  
RX  
PHY  
MAC  
PHY  
PHY  
Receive Data and Control  
Transmit Data and Control  
Synchronization  
TX  
MAC  
SYNC  
Clock  
MAC  
System  
MAC&PHY  
Synchronization  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 17  
KSZ8001L/S  
3.4.2  
RECEIVE PATH  
Receive data and control information are signaled in ten bit segments. In 100Mbit mode, each segment represents a  
new byte of data. In 10Mbit mode, each segment is repeated ten times; therefore, every ten segments represent a new  
byte of data. The MAC can simply any one of every 10 segment ion 10Mbit mode.  
Segment boundaries are delimited by SYNC. The MAC continuously generates a pulse on SYNC every 10 clocks.  
FIGURE 3-1:  
Receive Sequence Diagram  
RX_CLK  
RX_SYNC  
RX  
CRS  
RX_DV  
RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
RX contains all of the information found on the receive path of the standard MII.  
Bits Purpose  
CRS  
Carrier Sense – identical to MII, except that it is not an asynchronous signal  
Receive Data Valid – identical to MII  
RX_DV  
RXD7-0  
Encoded Data, see the RXD0-7 Encoding table  
3.4.2.1  
RX – Bit Description  
RXD7-0 are used to convey packet data, RX_ER, and PHY status. The MAC can infer the meaning of RXD on a seg-  
ment-by-basis by encoding the two control bits.  
CRS  
RX_DV  
RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
X
0
RX_ER  
from pre- 0=10Mbit  
vious  
frame  
Speed  
Duplex  
0=Half  
1=Full  
Link  
0=Down  
1=Up  
Jabber  
0=OK  
1=Error  
Upper  
Nibble  
0=invalid Detected  
1=valid  
False  
Carrier  
1
1=100Mbit  
X
1
One Data Byte (Two MII Data Nibble)  
3.4.2.2  
TXD7 – 0 Encoding  
Inter-frame status bit RXD5 conveys the validity of the upper nibble of the byte of the previous frame. Inter-frame status  
bit RXD0 indicates whether or not the PHY detected an error somewhere on the previous frame. Both of these bits  
should be valid in the segment immediately following a frame, and should stay valid until the first data segment of the  
next frame begins.  
When asserted, inter-frame status bit RXD6 indicates that the PHY has detected a false carrier event.  
In order to send receive data to the MAC synchronous to the reference clock, the PHY must pass the data through an  
elasticity FIFO to handle any difference between the reference clock rate and the clock at the packet source. The Ether-  
net specification calls for packet data to be referenced to a clock with a frequency tolerance of 100ppm (0.01%); how-  
ever, it is not uncommon to encounter Ethernet stations with clocks that have frequency errors up to 0.1%. Therefore,  
the elasticity FIFO should be at least 27 bits * long, filling to the halfway point before beginning valid data transfer via  
RX. RX_ER should be asserted if, during the reception of a frame, this FIFO overflows or underflows.  
DS00003062A-page 18  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
Only RXD and RX_DV should be passed through the elasticity FIFO. CRS should not be passed through the elasticity  
FIFO. Instead, CRS should be asserted for the time the ‘wire’ is busy receiving a frame.  
3.4.3  
TRANSMIT PATH  
Transmit data and control information are signaled in ten bit segments, just like the receive path. In 100Mbit mode, each  
segment represents anew byte of data. In 10Mbit mode each segment is repeated ten times; therefore, every ten seg-  
ments represents a new byte of data. The PHY can sample any one of every 10 segments in 10Mbit mode.  
Segment boundaries are delimited by SYNC. The MAC continuously generates a pulse on SYNC every 10 clocks.  
FIGURE 3-2:  
Transmit Sequence Diagram  
TX_CLK  
TX_SYNC  
TX  
TX_ER  
TX_EN  
TXD0  
TXD1  
TXD2  
TXD3  
TXD4  
TXD5  
TXD6  
TXD7  
Bits  
Purpose  
TX_EN  
TX_ER  
TXD7-0  
Transmit Enable – identical to MII  
Transmit Error – identical to MII  
Encoded Data – see TXD7-0 Encoding Table  
3.4.3.1  
TX- Bit Description  
As far as the PHY is concerned, TXD7-0 are used to convey only packet data. To allow for a direct MAC-to-MAC con-  
nection, the MAC uses TXD7-0 to signal ‘status’ in between frames.  
TX_ER  
TX_EN  
TXD0  
TXD1  
TXD2  
TXD3  
TXD4  
TXD7-5  
x
0
Use to force  
an error in a  
direct MAC to  
MAC connec-  
tion  
1
1
1
0
1
100MBit  
Full Duplex  
Link Up  
No Jabber  
x
1
One Data Byte (Two MII Data Nibbles)  
TXD7 – 0 Encoding  
3.4.4  
COLLISION DETECTION  
Collisions occur when CRS and TX_EN are simultaneously asserted. For this to work, the PHY must ensure that CRS  
is not affected by its transmit path.  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 19  
KSZ8001L/S  
3.4.5  
DC SPECIFICATION  
Parameter  
Symbol  
Vih  
Min  
Max  
Units  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
2.0  
Volts  
Volts  
uA  
Vil  
Iih  
Iil  
0.8  
10  
10  
-10  
-10  
uA  
3.4.6  
TIMING SPECIFICATION  
Parameter  
Min  
Max  
Units  
Input Setup  
Input Hold  
1.5  
1
ns  
ns  
ns  
Output Delay  
1.5  
5
3.5  
HP Auto Crossover (Auto MDI/MDI-X)  
Automatic MDI/MDI-X configuration is intended to eliminate the need for crossover cables between similar devices. The  
assignment of pin-outs for a 10/100 BASE-T crossover function cable is shown below.  
This feature can eliminate the confusion in real applications by allowing both straight cable and crossover cables. This  
feature is controlled by register 1f:13, see “Register 1fh” section for details.  
DS00003062A-page 20  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
Straight Through Cable  
10/100 BaseT  
Media Dependent Interface  
10/100 BaseT  
Media Dependent Interface  
1
1
Transmit Pair  
Receive Pair  
2
2
3
4
3
4
Receive Pair  
Transmit Pair  
5
5
6
7
8
6
7
8
Modular Connector  
(RJ45)  
Modular Connector  
(RJ45)  
HUB  
NIC  
(Repeater or Switch)  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 21  
KSZ8001L/S  
Straight Through Cable  
10/100 BaseT  
Media Dependent Interface  
10/100 BaseT  
Media Dependent Interface  
1
1
Transmit Pair  
Receive Pair  
2
2
3
3
4
4
Receive Pair  
Transmit Pair  
5
5
6
7
8
6
7
8
Modular Connector  
(RJ45)  
Modular Connector  
(RJ45)  
HUB  
NIC  
(Repeater or Switch)  
3.5.1  
AUTO MDI/MDI-X CROSS-OVER TRANSFORMER CONNECTION  
KSZ8001 features HP Auto MDI/MDI-X crossover and requires symmetric transformers that support Auto MDI/MDI-X.  
See “Section 6.9, "Selection of Isolation Transformer"” for a list of transformers that support Auto MDI/MDI-X.  
3.6  
Power Management  
The KSZ8001 offers the following modes for power management:  
Power Down Mode: This mode can be achieved by writing to Register 0.11 or pulling pin 30 PD# Low. In the  
power down state, the KS8061 disables all internal functions and drives output pins to logic zero, except for the  
MII serial management interface.  
Power Saving Mode: writing to register 1fh.10 can disable this mode. The KSZ8001 will then turn off everything  
except for the Energy Detect and PLL circuits when the cable is not installed. In other words, the KSZ8001 will  
shutdown most of the internal circuits to save power if there is no link. Power Saving mode will be in this most  
effective state when Auto-Negotiation Mode is enabled.  
3.7  
100BASE-FX Mode  
100BASE-FX mode is activated when FXSD/FXEN is higher than 0.6V (This pin has a default pull down). Under this  
mode, the auto-negotiation and auto-MDIX features are disabled.  
In fiber operation FXSD pin should connect to the SD (signal detect) output of the fiber module. The internal threshold  
of FXSD is around Vdd +/- 50 mV (2.2V +/- 0.05V at 3.3V). Above this level, it is considered Fiber signal detected,  
and the operation is summarized in the following table:  
DS00003062A-page 22  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
FXSD/FXEN  
Condition  
Less than 0.6V  
100TX mode  
Less than 2.15V,  
FX mode  
but greater than 0.6V  
Greater than 2.25V  
No signal detected  
FEF generated  
FX mode  
Signal detected  
To ensure proper operation, the swing of fiber module SD should cover the threshold variation. Aresistive voltage divider  
is recommended to adjust the SD voltage range.  
FEF (Far End Fault), repetition of a special pattern, which consists of 84-ones and 1-zero, is generated under “FX mode  
with no signal detected”. The purpose of FEF is to notify the sender of a faulty link. When receiving a FEF, the LINK will  
go down to indicate a fault, even with fiber signal detected. The transmitter is not affected by receiving a FEF and still  
sends out its normal transmit pattern from MAC. FEF can be disabled by strapping pin27 low, please refer to “Strapping  
Options” section.  
3.8  
Media Converter Operation  
The KSZ8001 is capable of performing media conversion with 2 parts in a back-to-back RMII mode as indicated in the  
diagram. Both parts are in RMII mode and with RMII_BTB asserted (pin21 & 22 strapped high). One part is operating  
at TX mode and the other in FX mode. Both parts can share a common 50MHz oscillator.  
Under this operation, auto-Negotiation on the TX side will prohibit 10BASE-T link up. Additional options can be imple-  
mented under this operation. Disable the transmitter and set it at tri-state by controlling the high TXD2 pin. In order to  
do this, RXD2 and TXD2 pins need to be connected via an inverter. When TXD2 pin is high in both the copper and fiber  
operation, it disables transmit. Meanwhile, the RXD2 pin on the copper side serves as the energy detect and can indi-  
cate if a line signal is detected. TXD3 should be tied low and RXD3 let float. Please contact your local Microchip FAE  
for a Media Converter reference design.  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 23  
KSZ8001L/S  
Vcc  
21 22  
Pin  
Rx +/-  
RxD  
KSZ8001  
TxD  
Tx +/-  
TxC/  
Ref_CLK  
OSC  
50 MHz  
TxC/  
Ref_CLK  
FTx  
FRx  
TxD  
KSZ8001  
(Fiber Mode)  
RxD  
Pin  
34  
Pin  
21 22  
Vcc  
To the SD pin of the  
Fiber Module  
3.9  
LinkMD® Cable Diagnostics  
The KSZ8001 utilizes time domain reflectometry (TDR) to analyze the cabling plant for common cabling problems such  
as open circuits, short circuits and impedance mismatches. LinkMD® works by sending a pulse of known amplitude and  
duration down the MDI and MDIX pairs and analyzing the shape of the reflected signal. Timing the duration gives an  
indication of the distance to the cabling fault with maximum distance of 200 m and accuracy of +/- 2 m. Cable diagnostics  
are only valid for copper connections and do not support fiber optic operation.  
LinkMD is used by accessing register 1dh, the LinkMD Control/Status register in conjunction with register 1fh, the  
100BASE-TX PHY Controller register. To use LinkMD, HP Auto-MDIX is disabled by writing a ‘1’ to 1f:13 to enable man-  
ual control over which pair is used to transmit the LinkMD pulse. The self-clearing Cable diagnostic test enable bit, 1d.15  
is set to ‘1’ to start the test on this pair. When 1d.15 returns to ‘0’, the test is complete. The test result is returned in  
1d.14:13 and the distance is returned in 1d.8:0. The cable diagnostic test results are as follows:  
• 00 = Valid test, normal condition  
• 01 = Valid test, open circuit in cable  
• 10 = Valid test, short circuit in cable  
DS00003062A-page 24  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
• 11 = Invalid test, LinkMD failed  
The ‘11’ case, Invalid test, occurs when it is not possible for the KSZ8001 to shut down the link partner. In this case, the  
test is not run, since it would not be possible for the KSZ8001 to determine if the detected signal is a reflection of the  
signal generated or a signal from another source.  
Cable length can be determined by multiplying the contents of 1d.8:0 by 0.39. This constant may be calibrated for dif-  
ferent cabling conditions, including cables with a velocity of propagation that varies significantly from the norm.  
3.10 Reference Clock Connection Options  
KSZ8001 is capable of performing three different kinds of clock speed options for connecting the external reference  
clock depends upon the different interface of using MII/RMII/SMII. The figures below illustrate the recommended con-  
nection for using the different interface options. See Section 6.10, "Selection of Reference Crystal" for specifications.  
FIGURE 3-3:  
25MHz Oscillator Reference Clock Connection Diagram  
XI  
25MHz Osc  
+/-50ppm  
XO  
NC  
NC  
FIGURE 3-4:  
25MHz Crystal Reference Clock Connection Diagram  
27pF  
XI  
27pF  
27pF  
27pF  
XO  
25MHz Xtal  
+/-50ppm  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 25  
KSZ8001L/S  
FIGURE 3-5:  
50/125 MHz Oscillator Reference Clock Connection for RMII/SMII  
Mode Diagram  
VCC  
XI  
10K  
XO  
NC  
NC  
50/125MHz Osc  
+/-50ppm  
REF_CLK  
3.11 Circuit Design Reference for Power Supply  
The following diagram shows the power connections for the single 3.3V supply KSZ8001L and KSZ8001SL devices.  
Ferrite  
Bead  
Ferrite  
Bead  
Ferrite  
Bead  
3.3A  
1uF  
1.8PLL  
1.8A  
1.8V  
0.1uF  
1uF  
0.1uF  
0.1uF  
0.1uF  
13  
47  
31  
38  
VDDRCV  
VIN  
VDDIO  
VDDIO  
7
VOUT  
1.8V  
LDO  
Regulator  
3.3V  
24  
KSZ8001L  
KSZ8001SL  
GND  
8
12 23  
36 39 44  
35  
DS00003062A-page 26  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
4.0  
REGISTER MAP  
Register No.  
Description  
0h  
1h  
Basic Control Register  
Basic Status Register  
PHY Identifier I  
2h  
3h  
PHY Identifier II  
4h  
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Ability Register  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page Register  
Link Partner Next Page Ability  
Reserved  
5h  
6h  
7h  
8h  
9h-14h  
15h  
16h – 1ah  
1bh  
1ch  
1dh  
1eh  
1fh  
RXER Counter Register  
Reserved  
Interrupt Control/Status Register  
Reserved  
LinkMD® Control/Status Register  
PHY Control Register  
100BASE-TX PHY Control Register  
Address  
Name  
Description  
Mode  
Default  
Register 0h – Basic Control  
0.15  
0.14  
0.13  
Reset  
1 = software reset. Bit is self-clearing  
RW/  
SC  
0
Loop-back  
1 = loop-back mode  
0 = normal operation  
RW  
0
Speed Select 1 = 100Mb/s  
RW  
Set by SPD100  
(LSB)  
0 = 10Mb/s  
Ignored if Auto-Negotiation is enabled  
(0.12 = 1)  
0.12  
Auto-Negotia- 1 = enable auto-negotiation process (over- RW  
Set by NWAYEN  
tion Enable  
ride 0.13 and 0.8)  
0 = disable auto-negotiation process  
0.11  
0.10  
Power Down 1 = power down mode  
0 = normal operation  
RW  
0
Isolate  
1 = electrical isolation of PHY from MII and RW  
TX+/TX-  
Set by ISO  
0 = normal operation  
0.9  
Restart Auto- 1 = restart auto-negotiation process  
Negotiation 0 = normal operation. Bit is self-clearing  
RW/  
SC  
0
0.8  
Duplex Mode 1 = full duplex  
0 = half duplex  
RW  
RW  
RO  
Set by DUPLEX  
0.7  
Collision Test 1 = enable COL test  
0 = disable COL test  
0
0
0.6:1  
Reserved  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 27  
KSZ8001L/S  
Address  
0.0  
Name  
Disable  
Transmitter  
Description  
0 = enable transmitter  
1 = disable transmitter  
Mode  
RW  
Default  
0
Register 1h – Basic Status  
1.15  
1.14  
1.13  
1.12  
1.11  
100BASE-T4 1 = T4 capable  
RO  
RO  
RO  
RO  
RO  
0
1
1
1
1
0 = not T4 capable  
100BASE-TX 1 = capable of 100BASE-X full duplex  
Full Duplex  
0 = not capable of 100BASE-X full duplex  
100BASE-TX 1 = capable of 100BASE-X half duplex  
Half Duplex  
0 = not capable of 100BASE-X half duplex  
10BASE-T  
Full Duplex  
1 = 10Mbps with full duplex  
0 = no 10Mbps with full duplex capability  
10BASE-T  
Half Duplex  
1 = 10Mbps with half duplex  
0 = no 10Mbps with half duplex capability  
1.10:7  
1.6  
Reserved  
RO  
RO  
0
1
No Preamble 1 = preamble suppression  
0 = normal preamble  
1.5  
Auto-Negotia- 1 = auto-negotiation process completed  
tion Complete 0 = auto-negotiation process not com-  
pleted  
RO  
0
1.4  
1.3  
1.2  
1.1  
1.0  
Remote Fault 1 = remote fault  
0 = no remote fault  
RO/  
LH  
0
1
0
0
1
Auto-Negotia- 1 = capable to perform auto-negotiation  
RO  
tion Ability  
0 = unable to perform auto-negotiation  
Link Status  
1 = link is up  
RO/  
LL  
0 = link is down  
Jabber Detect 1 = jabber detected  
0 = jabber not detected. Default is Low  
RO/  
LH  
Extended  
Capability  
1 = supports extended capabilities regis-  
ters  
RO  
Register 2h – PHY Identifier 1  
2.15:0  
PHY ID Num- Assigned to the 3rd through 18th bits of the RO  
0022h  
ber  
Organizationally Unique Identifier (OUI).  
Kendin Communication’s OUI is 0010A1  
(hex)  
Register 3h – PHY Identifier 2  
3.15:10  
PHY ID Num- Assigned to the 19th through 24th bits of  
RO  
000101  
ber  
the Organizationally Unique Identifier  
(OUI). Kendin Communication’s OUI is  
0010A1 (hex)  
3.9:4  
3.3:0  
Model Num-  
ber  
Six bit manufacturer’s model number  
RO  
RO  
100001  
1010  
Revision  
Number  
Four bit manufacturer’s model number  
Register 4h – Auto-Negotiation Advertisement  
4.15  
Next Page  
1 = next page capable  
RW  
0
0 = no next page capability.  
4.14  
4.13  
Reserved  
RO  
0
0
Remote Fault 1 = remote fault supported  
0 = no remote fault  
RW  
DS00003062A-page 28  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
Address  
Name  
Description  
Mode  
RO  
Default  
4.12 : 11  
4.10  
Reserved  
Pause  
0
1 = pause function supported  
0 = no pause function  
RW  
RO  
RW  
RW  
RW  
RW  
RW  
0
4.9  
100BASE-T4 1 = T4 capable  
0 = no T4 capability  
0
4.8  
4.7  
100BASE-TX 1 = TX with full duplex  
Full Duplex  
Set by SPD100 & DUPLEX  
Set by SPD100  
0 = no TX full duplex capability  
100BASE-TX 1 = TX capable  
0 = no TX capability  
4.6  
4.5  
10BASE-T  
Full Duplex  
1 = 10Mbps with full duplex  
0 = no 10Mbps full duplex capability  
Set by  
DUPLEX  
10BASE-T  
1 = 10Mbps capable  
0 = no 10Mbps capability  
1
4.4:0  
Selector Field [00001] = IEEE 802.3  
00001  
Register 5h – Auto-Negotiation Link Partner Ability  
5.15  
5.14  
5.13  
Next Page  
1 = next page capable  
0 = no next page capability  
RO  
RO  
RO  
0
0
0
Acknowledge 1 = link code word received from partner  
0 = link code word not yet received  
Remote Fault 1 = remote fault detected  
0 = no remote fault  
5.12  
Reserved  
RO  
RO  
0
0
5.11:10  
Pause  
5.10 5.11  
0
No PAUSE  
1
Asymmetric PAUSE (link partner)  
0
Symmetric PAUSE  
1
Symmetric & Asymmetric PAUSE (local  
device)  
5.9  
100 BASE-T4 1 = T4 capable  
0 = no T4 capability  
RO  
RO  
RO  
RO  
RO  
RO  
0
5.8  
5.7  
100BASE-TX 1 = TX with full duplex  
0
Full Duplex  
0 = no TX full duplex capability  
100BASE-TX 1 = TX capable  
0 = no TX capability  
0
5.6  
5.5  
10BASE-T  
Full Duplex  
1 = 10Mbps with full duplex  
0 = no 10Mbps full duplex capability  
0
10BASE-T  
1 = 10Mbps capable  
0
0 = no 10Mbps capability  
5.4:0  
Selector Field [00001] = IEEE 802.3  
00001  
Register 6h – Auto-Negotiation Expansion  
6.15:5  
6.4  
Reserved  
RO  
0
0
Parallel  
Detection  
Fault  
1 = fault detected by parallel detection  
RO/  
0 = no fault detected by parallel detection. LH  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 29  
KSZ8001L/S  
Address  
6.3  
Name  
Description  
Mode  
RO  
Default  
Link Partner  
Next Page  
Able  
1 = link partner has next page capability  
0 = link partner does not have next page  
capability  
0
1
6.2  
Next Page  
Able  
1 = local device has next page capability  
0 = local device does not have next page  
capability  
RO  
6.1  
6.0  
Page  
Received  
1 = new page received  
0 = new page not yet received  
RO/  
LH  
0
0
Link Partner  
1 = link partner has auto-negotiation capa- RO  
Auto-Negotia- bility  
tion Able 0 = link partner does not have auto-negoti-  
ation capability  
Register 7h – Auto-Negotiation Next Page  
7.15  
Next Page  
Reserved  
1 = additional next page(s) will follow  
0 = last page  
RW  
0
7.14  
7.13  
RO  
0
1
Message  
Page  
1 = message page  
0 = unformatted page  
RW  
7.12  
7.11  
Acknowl-  
edge2  
1 = will comply with message  
0 = cannot comply with message  
RW  
RO  
0
0
Toggle  
1 = previous value of the transmitted link  
code word equaled logic One  
0 = logic Zero  
7.10:0  
Message  
Field  
11-bit wide field to encode 2048 messages RW  
001  
Register 8h – Link Partner Next Page Ability  
8.15  
8.14  
8.13  
8.12  
8.11  
Next Page  
1 = additional Next Page(s) will follow  
0 = last page  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
Acknowledge 1 = successful receipt of link word  
0 = no successful receipt of link word  
Message  
Page  
1 = Message Page  
0 = Unformatted Page  
Acknowl-  
edge2  
1 = able to act on the information  
0 = not able to act on the information  
Toggle  
1 = previous value of transmitted Link  
Code Word equal to logic zero  
0 = previous value of transmitted Link  
Code Word equal to logic one  
8.10:0  
Message  
Field  
RO  
RO  
RW  
0
Register 15h – RXER Counter  
15.15:0  
RXER  
Counter  
RX Error counter for the RX_ER in each  
package  
0000  
0
Register 1bh – Interrupt Control/Status Register  
1b.15  
Jabber Inter- 1=Enable Jabber Interrupt  
rupt Enable 0=Disable Jabber Interrupt  
DS00003062A-page 30  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
Address  
1b.14  
Name  
Description  
Mode  
RW  
Default  
Receive Error 1=Enable Receive Error Interrupt  
0
Interrupt  
Enable  
0=Disable Receive Error Interrupt  
1b.13  
1b.12  
1b.11  
Page  
1=Enable Page Received Interrupt  
0=Disable Page Received Interrupt  
RW  
RW  
0
0
0
Received  
Interrupt  
Enable  
Parallel  
1= Enable Parallel Detect Fault Interrupt  
0= Disable Parallel Detect Fault Interrupt  
Detect Fault  
Interrupt  
Enable  
Link Partner  
1= Enable Link Partner Acknowledge Inter- RW  
Acknowledge rupt  
Interrupt  
Enable  
0= Disable Link Partner Acknowledge  
Interrupt  
1b.10  
1b.9  
Link Down  
Interrupt  
Enable  
1= Enable Link Down Interrupt  
0= Disable Link Down Interrupt  
RW  
RW  
RW  
0
0
Remote Fault 1= Enable Remote Fault Interrupt  
Interrupt  
Enable  
0= Disable Remote Fault Interrupt  
1b.8  
1b.7  
1b.6  
1b.5  
1b.4  
Link Up Inter- 1= Enable Link Up Interrupt  
rupt Enable 0= Disable Link Up Interrupt  
Jabber Inter- 1= Jabber Interrupt Occurred  
0
0
0
0
0
RO/  
SC  
rupt  
0= Jabber Interrupt Does Not Occurred  
ReceiveError 1= Receive Error Occurred  
Interrupt  
RO/  
SC  
0= Receive Error Does Not Occurred  
Page Receive 1= Page Receive Occurred  
Interrupt  
RO/  
SC  
0= Page Receive Does Not Occurred  
Parallel  
Detect Fault  
Interrupt  
1= Parallel Detect Fault Occurred  
0= Parallel Detect Fault Does Not  
Occurred  
RO/  
SC  
1b.3  
Link Partner  
1= Link Partner Acknowledge Occurred  
RO/  
SC  
0
Acknowledge 0= Link Partner Acknowledge Does Not  
Interrupt  
Occurred  
1b.2  
1b.1  
1b.0  
Link Down  
Interrupt  
1= Link Down Occurred  
0= Link Down Does Not Occurred  
RO/  
SC  
0
0
0
Remote Fault 1= Remote Fault Occurred  
Interrupt  
RO/  
SC  
0= Remote Fault Does Not Occurred  
Link Up Inter- 1= Link Up Interrupt Occurred  
rupt  
RO/  
SC  
0= Link Up Interrupt Does Not Occurred  
Register 1dh – LinkMD® Control/Status Register  
1d.15  
Cable diag-  
nostic test  
enable  
0 = Indicates cable diagnostic test has  
completed and the status information is  
valid for read.  
RW/  
SC  
0
1 = the cable diagnostic test is activated.  
This bit is self-clearing.  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 31  
KSZ8001L/S  
Address  
Name  
Description  
[00] = normal condition  
[01] = open condition has been detected in  
cable  
Mode  
RO  
Default  
1d.14:13  
Cable diag-  
nostic test  
result  
0
[10] = short condition has been detected in  
cable  
[11] = cable diagnostic test failed  
1d.12:9  
1d.8:0  
Reserved  
Cable fault  
counter  
Distance to fault, approximately  
0.39m*cabfaultcnt value  
RO  
0
0
Register 1eh – PHY Control  
1e:15:14  
LED mode  
[00] =  
RW  
LED3 <- collision  
LED2 <- full duplex  
LED1 <- speed  
LED0 <- link/activity  
[01] =  
LED3 <- activity  
LED2 <- full duplex/collision  
LED1 <- speed  
LED0 <- link  
[10] =  
LED3 <- activity  
LED2 <- full duplex  
LED1 <- 100Mbps link  
LED0 <- 10Mbps link  
[11] = reserved  
1e.13  
1e.12  
1e.11  
Polarity  
0 = Polarity is not reversed  
1 = Polarity is reversed  
RO  
RO  
RO  
Far end fault  
detect  
0 = Far end fault detected  
1 = Far end fault not detected  
MDIX/MDI  
state  
0 = MDIX  
1 = MDI  
1e:10:8  
1e:7  
Reserved  
Remote loop- 0: normal mode  
RW  
0
back  
1: remote (analog) loop back is enable  
1e:6:0  
Reserved  
Register 1fh – 100BASE-TX PHY Controller  
1f:15  
1f:14  
HP_MDIX  
0: Microchip Auto MDI/MDI-X mode  
1: HP Auto MDI/MDI-X mode  
RW  
RW  
1
0
MDI/MDI-X  
Select  
When Auto MDI/MDI-X is disabled,  
0 = Transmit on TX+/- (pins 41,40)  
Receive on RX+/- (pins 33,32)  
1 = Transmit on RX+/- (pins 33,32)  
Receive on TX+/- (pins 41,40)  
DS00003062A-page 32  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
Address  
1f:13  
Name  
Pairswap dis- 1 = disable MDI/MDIX  
able 0 = enable MDI/MDIX  
Description  
Mode  
RW  
Default  
0
1f.12  
1f.11  
Energy detect 1 = presence of signal on RX+/- analog  
wire pair  
RO  
0
0
0 = no signal detected on RX+/-  
Force link  
1 = force link pass  
RW  
0 = normal link operation  
This bit bypasses the control logic and  
allow transmitter to send pattern even if  
there is no link.  
1f.10  
1f.9  
1f.8  
1f.7  
Power Saving 1 = enable power saving  
0 = disable  
RW  
RW  
RW  
RO  
1
0
1
0
Interrupt Level 1 = interrupt pin active high  
0 = active low  
Enable Jabber 1 = enable jabber counter  
0 = disable  
Auto-Negotia- 1 = auto-negotiation complete  
tion Complete 0 = not complete  
This bit has the same definition as register  
1.5.  
1f.6  
Enable Pause 1 = flow control capable  
(Flow-Control 0 = no flow control  
Result)  
RO  
0
1f.5  
PHY Isolate  
1 = PHY in isolate mode  
0 = not isolated  
RO  
RO  
0
0
1f.4:2  
Operation  
[000] = still in auto-negotiation  
Mode Indica- [001] = 10BASE-T half duplex  
tion  
[010] = 100BASE-TX half duplex  
[011] = default  
[101] = 10BASE-T full duplex  
[110] = 100BASE-TX full duplex  
[111] = PHY/MII isolate  
1f.1  
1f.0  
Enable SQE  
test  
1 = enable SQE test  
0 = disable  
RW  
RW  
0
0
Disable Data 1 = disable scrambler  
Scrambling 0 = enable  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 33  
KSZ8001L/S  
5.0  
5.1  
OPERATIONAL CHARACTERISTICS  
Absolute Maximum Rating (Note 1)  
Storage Temperature (TS) ...................................................................................................................... -55C to +150C  
Supply Referenced to GND.......................................................................................................................... -0.5V to +4.0  
All pins ......................................................................................................................................................... -0.5V to +4.0  
**Please read the Notes at the end of the Electrical Characteristics.  
5.2  
Operating Range (Note 2)  
Supply Voltage  
(VDDPLL, VDDRX, VDDC).....................................................................................................................................1.8V 5%  
(VDDRCV, VDDIO) ................................................................................................................................................3.3V 5%  
Ambient Temperature Commercial (TAC) .....................................................................................................0C to +70C  
Ambient Temperature Industrial (TAI)........................................................................................................-40C to +85C  
5.3  
Package Thermal Resistance (JA) (Note 3)  
Thermal Resistance  
JA  
JA  
JA  
JC  
Airflow Velocity (m/s)  
KSZ8001L / KSZ8001LI  
KSZ8001SL / KSZ8001SLI  
KSZ8001S  
0
1
2
0
83.56  
75.19  
42.43  
77.08  
68.20  
36.19  
72.36  
66.43  
34.24  
35.90  
42.65  
6.75  
5.4  
Electrical Characteristics (Note 4)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Total Supply Current (Note 5)  
KSZ8001L:  
• Current consumption is for the single 3.3V supply KSZ8001L device only, and includes the 1.8V supply voltages  
(VDDRX, VDDPLL) that are provided by the KSZ8001L via power output pin 13 (VDDC).  
• Transformer consumes an additional 45mA @ 3.3V for 100BASE-TX and 70mA @ 3.3V for 10BASE-T.  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
100BASE-TX  
Chip only, no transformer  
52  
32  
35  
5
mA  
mA  
mA  
mA  
mA  
10BASE-T  
Chip only, no transformer  
Power Saving Mode  
SW Power Down Mode  
Power down pin (PD#)  
Ethernet cable disconnected  
Register (software) power down  
Chip (hardware) power down  
3
TTL Inputs  
VIH  
VIL  
IIN  
Input High Voltage  
2.0  
2.4  
V
Input Low Voltage  
Input Current  
0.8  
10  
V
VIN = GND – VDD  
IOH = -4mA  
-10  
A  
TTL Outputs  
VOH  
VOL  
I IOZ  
Output High Voltage  
V
Output Low Voltage  
0.4  
10  
V
I
Output Tri-State Leakage  
A  
DS00003062A-page 34  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
100BASE-TX Transmit (measured differentially after 1:1 transformer)  
VO  
Peak Differential Output 50from each output to VDD  
Voltage  
0.95  
1.05  
V
VIMB  
tr, tt  
Output Voltage Imbal-  
ance  
50from each output to VDD  
2
%
Rise/Fall Time  
3
0
5
ns  
ns  
ns  
%
V
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
0.5  
0.25  
5
VSET  
Reference Voltage of  
ISET  
0.75  
Propagation Delay  
Jitter  
45  
60  
Ns  
0.7  
1.4  
ns(pk-pk)  
10BASE-T Transmit (measured differentially after 1:1 transformer)  
VP  
Peak Differential Output 50from each output to VDD  
Voltage  
2.2  
2.8  
V
VIMB  
tr, tt  
Output Voltage Imbal-  
ance  
50from each output to VDD  
3.5  
ns  
ns  
Rise/Fall Time  
25  
Clock Outputs  
X1, X2  
Crystal Oscillator  
25  
MHz  
RXC100 Receive Clock, 100TX  
25  
MHz  
RXC10  
Receive Clock, 10T  
Receive Clock Jitter  
2.5  
3.0  
25  
MHz  
ns(pk-pk)  
MHz  
TXC100 Transmit Clock, 100TX  
TXC10  
Transmit Clock, 10T  
Transmit Clock Jitter  
2.5  
1.8  
MHz  
ns(pk-pk)  
Note 1: Exceeding the absolute rating(s) may cause permanent damage to the device. Operating at maximum con-  
ditions for extended periods may affect device reliability.  
2: This device is not guaranteed to operate beyond its specified operating rating. Unused inputs must always  
be tied to an appropriate logic voltage level (Ground to VDD).  
3: No HS (heat spreader) in package.  
4: Specification for packaged product only.  
5: 100% data transmission in full-duplex mode and minimum IPG with 130-meter cable.  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 35  
KSZ8001L/S  
6.0  
6.1  
TIMING DIAGRAMS  
10BaseT MII Transmit Timing  
TXC  
tHD2  
tSU2  
TXEN  
tHD1  
TXD[3:0]  
CRS  
tSU1  
tCRS1  
tCRS2  
Valid  
Data  
TXP/TXM  
tLAT  
SQE Timing  
TXC  
TXEN  
COL  
tSQE  
tSQEP  
min.  
typ.  
max.  
tSU1  
tSU2  
TXD[3:0] Setup to TXC High  
TXEN Setup to TXC High  
TXD[3:0] Hold after TXC High  
TXEN Hold after TXC High  
TXEN High to CRS asserted latency  
TXEN Low to CRS de-asserted latency  
TXEN High to TXP/TXM output (TX latency)  
COL (SQE) Delay after TXEN de-asserted  
COL (SQE) Pulse Duration  
10ns  
10ns  
0ns  
tHD1  
tHD2  
tCRS1  
tCRS2  
tLAT  
tSQE  
tSQEP  
0ns  
4BT  
8BT  
4BT  
2.5us  
1.0us  
DS00003062A-page 36  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
6.2  
100BaseTX MII Transmit Timing  
TXC  
tHD2  
tSU2  
TXEN  
tHD1  
tSU1  
TXD[3:0],  
TXER  
Data  
In  
tCRS2  
tCRS1  
tLAT  
CRS  
Symbol  
Out  
TX+/TX-  
min.  
typ.  
max.  
tSU1  
tSU2  
TXD[3:0] Setup to TXC High  
TX_ER Setup to TXC High  
TXD[3:0] Hold after TXC High  
TXER Hold after TXC High  
TXEN Hold after TXC High  
TXEN High to CRS asserted latency  
TXEN Low to CRS de-asserted latency  
10ns  
10ns  
0ns  
0ns  
0ns  
tHD1  
tHD2  
tHD3  
tCRS1  
tCRS2  
tLAT  
4BT  
4BT  
7BT  
TXEN High to TX+/TX- output (TX latency)  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 37  
KSZ8001L/S  
6.3  
100BaseTX MII Receive Timing  
Start of  
Stream  
End of  
Stream  
RX+/RX-  
CRS  
tCRS1  
tCRS2  
RXDV  
tRLAT  
tHD  
RXD[3:0]  
RXER  
tSU  
tWH  
RXC  
tWL  
tP  
min.  
typ.  
max.  
3BT  
tP  
RXC period  
40ns  
20ns  
20ns  
20ns  
20ns  
2BT  
tWL  
tWH  
tSU  
RXC pulse width  
RXC pulse width  
RXD[3:0], RXER, RXDV setup to rising edge of RXC  
RXD[3:0], RXER, RXDV hold from rising edge of RXC  
CRS to RXD latency, 4B or 5B aligned  
tHD  
tRLAT  
tCRS1  
tCRS2  
1BT  
"Start of Stream " to CRS asserted  
"End of Stream" to CRS de-asserted  
140ns  
170ns  
DS00003062A-page 38  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
6.4  
Auto Negotiation / Fast Link Pulse Timing  
FLP  
FLP  
Burst  
Burst  
TX+/TX-  
tFLPW  
tBTB  
Clock  
Pulse  
Data  
Pulse  
Clock  
Pulse  
Data  
Pulse  
TX+/TX-  
tPW  
tPW  
tCTD  
tCTC  
min.  
8ms  
typ.  
max.  
tBTB  
tFLPW  
tPW  
tCTD  
tCTC  
FLP burst to FLP burst  
FLP burst width  
Clock/Data pulse width  
Clock pulse to data pulse  
Clock pulse to clock pulse  
16ms 24ms  
2ms  
100ns  
69us  
136us  
33  
Number of Clock/Data pulses per burst  
17  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 39  
KSZ8001L/S  
6.5  
Serial Management Interface Timing  
tP  
MDC  
tMD1  
tMD2  
MDIO  
(Into Chip)  
Valid  
Data  
Valid  
Data  
tMD3  
MDIO  
(Out of Chip)  
Valid  
Data  
min.  
typ.  
max.  
tP  
MDC period  
400 ns  
tMD1  
tMD2  
tMD3  
MDIO Setup to MDC (MDIO as input)  
MDIO Hold after MDC (MDIO as input)  
MDC to MDIO Valid (MDIO as output)  
10ns  
10ns  
222ns  
DS00003062A-page 40  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
6.6  
Reset Timing  
FIGURE 6-1:  
RESET TIMING DIAGRAM  
Supply  
Voltage  
tsr  
RST_N  
StrapIn Value  
TABLE 6-1:  
Parameter  
RESET TIMING PARAMETERS  
Description  
Min  
Max  
Units  
us  
tsr  
Stable supply voltages to reset high  
50  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 41  
KSZ8001L/S  
6.7  
Reset Circuit Diagram  
Microchip recommends the following discrete reset circuit when powering up the KSZ8001 device.  
FIGURE 6-2:  
RECOMMENDED RESET CIRCUIT  
VCC  
D1: 1N4148  
D1  
R 10K  
KSZ8001  
RST#  
C 10uF  
For the application where the reset circuit signal comes from another device (e.g., CPU, FPGA, etc), the following reset  
circuit is recommended.  
FIGURE 6-3:  
RECOMMENDED CIRCUIT FOR INTERFACING WITH CPU/FPGA RESET  
VCC  
R 10K  
D1  
KSZ8001  
CPU/FPGA  
RST#  
RST_OUT_n  
D2  
C 10uF  
D1, D2: 1N4148  
DS00003062A-page 42  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
At power-on-reset, R, C, and D1 provide the necessary ramp rise time to reset the Microchip device. The reset out from  
CPU/FPGA provides warm reset after power up. It is also recommend to power up VDD core voltage earlier than VDDIO  
voltage. At worst case, the both VDD core and VDDIO voltages should come up at the same time.  
6.8  
Reference Circuit for Strapping Option Configuration  
The following figure shows the reference circuits for external pull-up and pull-down on the LED strapping pins.  
3.3 V  
  
Pull Up  
  
LED pin  
KSZ8001  
3.3 V  
Pull Down  
KSZ8001  
  
  
LED pin  
Reference circuits for unmanaged programming through LED ports  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 43  
KSZ8001L/S  
6.9  
Selection of Isolation Transformer  
A1:1 isolation transformer is required at the line interface. An isolation transformer with integrated common-mode choke  
is recommended for exceeding FCC requirements. The following table gives recommended transformer characteristics.  
TABLE 6-2:  
TRANSFORMER SELECTION CRITERIA  
Parameter Value  
Test Condition  
Turns Ratio  
1 CT : 1 CT  
350 uH  
Open-Circuit Inductance (min.)  
Leakage Inductance (max.)  
Inter-Winding Capacitance (max.)  
D.C. Resistance (max.)  
Insertion Loss (max.)  
100 mV, 100 kHz, 8 mA  
1 MHz (min.)  
0.4 uH  
12 pF  
0.9 Ohms  
1.0 dB  
0-65 MHz  
HIPOT (min.)  
1500 Vrms  
TABLE 6-3:  
MAGNETIC VENDOR SELECTION LISTS  
Single Port  
Magnetic Manufacturer  
Part Number  
H1102  
AUTO MDIX  
Number of Port  
Pulse  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1
1
1
1
1
1
1
1
Bel Fuse  
Bel Fuse  
Bel Fuse  
YCL  
S558-5999-U7  
SI-46001  
SI-50170  
PT163020  
HB726  
Transpower  
Delta  
LF8505  
LanKom  
LF-H41S  
6.10 Selection of Reference Crystal  
An oscillator or crystal with the following typical characteristics is recommended.  
Characteristics Value  
Units  
Frequency  
25.00000  
50  
20  
MHz  
ppm  
pF  
Frequency Tolerance (max)  
Load Capacitance (max)  
Series Resistance  
40  
W
DS00003062A-page 44  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
7.0  
PACKAGE INFORMATION  
FIGURE 7-1:  
48-PIN LQFP PACKAGE OUTLINE AND RECOMMENDED LAND PATTERN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 45  
KSZ8001L/S  
FIGURE 7-2:  
48-PIN SSOP PACKAGE OUTLINE AND RECOMMENDED LAND PATTERN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS00003062A-page 46  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
APPENDIX A: DATA SHEET REVISION HISTORY  
TABLE A-1:  
REVISION HISTORY  
Section/Figure/Entry  
Revision  
Correction  
DS00003062A (06-26-19)  
Rev. 1.04 (25 June 2009)  
Rev. 1.03 (7 March 2006)  
Replaces previous Micrel version Rev. 1.04, June 2009.  
Updated ordering information.  
• Removed 48 Pin QFN (targeted) package option  
• Renamed KS8001 to KSZ8001 throughout data sheet  
• Added mechanical info for SSOP package  
• Updated package thermal resistance  
Rev. 1.02 (30 Jan 2006)  
• Updated part ordering information  
• Corrected recommended reset circuits to match corresponding description  
• Added Micrel disclaimer to last page  
• Corrected crystal/oscillator PPM in Reference Clock Connection Diagrams  
• Added current consumption for KSZ8001L  
• Correct RXC clock pulse width timing in 100BASE-TX MII Receive Timing Dia-  
gram  
• Added description for Auto MDI/MDI-X mode in register 1f.15  
• Updated description for MDI/MDI-X select in register 1f.14  
• Corrected Auto-Negotiation Complete bit, register 1f.7, to read only  
• Added “Circuit Design Reference for Power Supply” section  
• Updated Pin Description for the following pins: MDIO, VDDIO, VDDC, RX+, RX-  
, TX+, TX-, XI, XO  
Rev. 1.01 (16 May 2005)  
• Changed REXT value to 6.65 K  
• Removed preliminary status  
• Added KSZ8001S to ordering information  
• Added lead-free part numbers  
Rev. 1.00 (31 Mar 2005)  
Rev. 0.82 (25 Jan 2005)  
• LinkMD distance coefficient changed to 0.39  
• Interrupt register status bits set to RO/SC  
• Recommended reset circuit added  
• RMII timing added  
Rev. 0.81 (17 Sep 2004)  
Rev. 0.8 (9 Aug 2004)  
• Updated series resistance for crystal specification to 40   
• Updated pin 38 (VDDRCV) definition to 3.3V  
• Corrected pin configuration diagrams to reflect NC on pins 42 and 43  
• Updated crystal tolerance to +/- 50 ppm  
PRELIMINARY (25 Mar 2004) Preliminary data  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 47  
KSZ8001L/S  
THE MICROCHIP WEB SITE  
Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make  
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site con-  
tains the following information:  
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s  
guides and hardware support documents, latest software releases and archived software  
General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion  
groups, Microchip consultant program member listing  
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of semi-  
nars and events, listings of Microchip sales offices, distributors and factory representatives  
CUSTOMER CHANGE NOTIFICATION SERVICE  
Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive  
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or  
development tool of interest.  
To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notifi-  
cation” and follow the registration instructions.  
CUSTOMER SUPPORT  
Users of Microchip products can receive assistance through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales  
offices are also available to help customers. A listing of sales offices and locations is included in the back of this docu-  
ment.  
Technical support is available through the web site at: http://www.microchip.com/support  
DS00003062A-page 48  
2009-2019 Microchip Technology Inc.  
KSZ8001L/S  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
[X]  
XXX  
[X](1)  
Examples:  
-
-
a)  
KSZ8001L  
Temperature  
Range  
Package  
Tape and Reel  
Option  
Commercial Temperature, Integrated LDO  
48-pin LQFP RoHS Compliant Pkg, Tray  
KSZ8001L-TR  
b)  
Commercial Temperature, Integrated LDO  
48-pin LQFP RoHS Compliant Pkg, Tape &  
Reel  
(2)  
Device:  
KSZ8001L , KSZ8001S  
c)  
d)  
KSZ8001LI  
Temperature:  
Package:  
Blank  
I
=
=
0C to +70C (Commercial)  
-40C to +85C (Industrial)  
Industrial Temperature, Integrated LDO  
48-pin LQFP RoHS Compliant Pkg, Tray  
KSZ8001LI-TR  
Industrial Temperature, Integrated LDO  
48-pin LQFP RoHS Compliant Pkg, Tape &  
Reel  
S
=
48-pin SSOP  
(2)  
48-pin LQFP also offered  
e)  
f)  
KSZ8001SL  
Commercial Temperature, no Integrated LDO  
48-pin SSOP RoHS Compliant Pkg, Tape &  
Reel  
Tape and Reel Option:  
Blank = Standard packaging (tray)  
TR  
(1)  
KSZ8001SL-TR  
= Tape and Reel  
Commercial Temperature, no Integrated LDO  
48-pin SSOP RoHS Compliant Pkg, Tape &  
Reel  
Note 1: Tape and Reel identifier only appears in  
the catalog part number description. This  
identifier is used for ordering purposes  
and is not printed on the device package.  
Check with your Microchip Sales Office  
for package availability with the Tape and  
Reel option.  
2: L = built-in 1.8V regulator  
2009-2019 Microchip Technology Inc.  
DS00003062A-page 49  
KSZ8001L/S  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be  
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO  
REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Micro-  
chip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold  
harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo,  
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch,  
MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo,  
PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero,  
motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux,  
TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the  
U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,  
ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain,  
Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,  
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher,  
SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in  
other countries.  
GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other  
countries.  
All other trademarks mentioned herein are property of their respective companies.  
© 2009-2019, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 9781522444473  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
DS00003062A-page 50  
2009-2019 Microchip Technology Inc.  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS00003062A-page 51  
2009-2019 Microchip Technology Inc.  
05/14/19  

相关型号:

KSZ8001SL

1.8V, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver
MICREL

KSZ8001SL

DATACOM, ETHERNET TRANSCEIVER, PDSO48
MICROCHIP

KSZ8001SLI

DATACOM, ETHERNET TRANSCEIVER, PDSO48
MICROCHIP

KSZ8001STR

DATACOM, ETHERNET TRANSCEIVER, PDSO48, LEAD FREE, MO-118AA, SSOP-48
MICREL

KSZ801S

1.8C, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver
MICREL

KSZ8021RNL

Ethernet Transceiver, 1-Trnsvr, 4 X 4 MM, LEAD FREE, QFN-24
MICREL

KSZ8021RNLI

Ethernet Transceiver, 1-Trnsvr, 4 X 4 MM, LEAD FREE, QFN-24
MICROCHIP

KSZ8031RNL

Ethernet Transceiver, 1-Trnsvr, 4 X 4 MM, LEAD FREE, QFN-24
MICROCHIP

KSZ8031RNL

Ethernet Transceiver, 1-Trnsvr, 4 X 4 MM, LEAD FREE, QFN-24
MICREL

KSZ8031RNL-TR

IC TXRX ETHERNET 24QFN
MICROCHIP

KSZ8031RNLI

Ethernet Transceiver, 1-Trnsvr, 4 X 4 MM, LEAD FREE, QFN-24
MICROCHIP

KSZ8031RNLI-TR

Ethernet Transceiver, 4 X 4 MM, LEAD FREE, QFN-24
MICROCHIP