MCP1403T-E/OA [MICROCHIP]

4.5 A BUF OR INV BASED MOSFET DRIVER, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, MS-012, SOIC-8;
MCP1403T-E/OA
型号: MCP1403T-E/OA
厂家: MICROCHIP    MICROCHIP
描述:

4.5 A BUF OR INV BASED MOSFET DRIVER, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, MS-012, SOIC-8

驱动 光电二极管
文件: 总22页 (文件大小:886K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1403/4/5  
4.5A Dual High-Speed Power MOSFET Drivers  
General Description  
Features  
• High Peak Output Current: 4.5A (typ.)  
The MCP1403/4/5 are a family of dual-inverting, dual-  
non-inverting, or complimentary output drivers. They  
can delivery high peak currents of 4.5A typically into  
capacitive loads. These devices also feature low shoot-  
through current, matched rise/fall times and  
propagation delays.  
• Low Shoot-Through/Cross-Conduction Current in  
Output Stage  
• Wide Input Supply Voltage Operating Range:  
- 4.5V to 18V  
• High Capacitive Load Drive Capability:  
- 2200 pF in 15 ns  
The MCP1403/4/5 drivers operate from a 4.5V to 18V  
single power supply and can easily charge and  
discharge 2200 pF gate capacitance in under 15 ns  
(typ). They provide low enough impedances in both the  
on and off states to ensure the MOSFETs intended  
state will not be affected, even by large transients. The  
input to the MCP1403/4/5 may be driven directly from  
either TTL or CMOS (3V to 18V).  
- 5600 pF in 34 ns  
• Short Delay Times: 40 ns (typ.)  
• Low Supply Current:  
- With Logic ‘1’ Input – 1.0 mA (typ.)  
- With Logic ‘0’ Input – 150 µA (typ.)  
• Latch-Up Protected: Will Withstand 1.5A Reverse  
Current  
The MCP1403/4/5 dual-output 4.5A driver family is  
offered in both surface-mount and pin-through-hole  
packages with a -40oC to +125oC temperature rating.  
The low thermal resistance of the thermally enhanced  
DFN package allows for greater power dissipation  
capability for driving heavier capacitive or resistive  
loads.  
• Logic Input Will Withstand Negative Swing  
Up To 5V  
• Packages: 8-Pin SOIC, PDIP, 8-Pin 6x5 DFN,  
and 16-Pin SOIC  
Applications  
These devices are highly latch-up resistant under any  
conditions within their power and voltage ratings. They  
are not subject to damage when up to 5V of noise  
spiking (of either polarity) occurs on the ground pin. All  
terminals are fully protect against Electrostatic  
Discharge (ESD) up to 4 kV.  
• Switch Mode Power Supplies  
• Pulse Transformer Drive  
• Line Drivers  
• Motor and Solenoid Drive  
Package Types  
MCP1404  
MCP1404  
MCP1403  
8-Pin  
MCP1405  
MCP1403  
MCP1405  
PDIP/SOIC  
16-Pin SOIC  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
NC  
NC  
NC  
8
7
6
5
NC  
IN A  
NC  
GND  
GND  
NC  
1
NC  
NC  
NC  
OUT A  
OUT A  
VDD  
OUT A  
OUT A  
VDD  
OUT A  
OUT A  
VDD  
IN A 2  
GND 3  
IN B 4  
OUT A  
VDD  
OUT B  
OUT A  
VDD  
OUT B  
OUT A  
VDD  
OUT B  
VDD  
VDD  
VDD  
12  
11  
10  
OUT B  
OUT B  
NC  
OUT B  
OUT B  
NC  
OUT B  
OUT B  
NC  
MCP1404  
MCP1403 MCP1405  
IN B  
NC  
8-Pin DFN(2)  
9
1
8
7
6
5
NC  
IN A  
GND  
IN B  
NC  
NC  
NC  
Note 1: Duplicate pins must both be connected for  
2
3
4
proper operation.  
OUT A  
VDD  
OUT A  
VDD  
OUT A  
VDD  
2: Exposed pad of the DFN package is electrically  
isolated.  
OUT B  
OUT B  
OUT B  
© 2006 Microchip Technology Inc.  
DS22022A-page 1  
MCP1403/4/5  
Functional Block Diagram (1)  
VDD  
Inverting  
730 µA  
300 mV  
Output  
Non-inverting  
Input  
Effective  
Input C = 20 pF  
(Each Input)  
4.7V  
MCP1403 Dual Inverting  
MCP1404 Dual Non-inverting  
MCP1405 Inverting / Non-inverting  
GND  
Note 1: Unused inputs should be grounded.  
DS22022A-page 2  
© 2006 Microchip Technology Inc.  
MCP1403/4/5  
Notice: Stresses above those listed under "Maximum  
Ratings" may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational sections of this specification is not intended.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltage ................................................................+20V  
Input Voltage ...............................(VDD + 0.3V) to (GND – 5V)  
Input Current (VIN>VDD)................................................50 mA  
DC CHARACTERISTICS (NOTE 2)  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input  
Logic ‘1’, High Input Voltage  
Logic ‘0’, Low Input Voltage  
Input Current  
VIH  
VIL  
IIN  
2.4  
–1  
-5  
1.5  
1.3  
0.8  
V
V
1
µA 0V VIN VDD  
Input Voltage  
VIN  
VDD+0.3  
V
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
Output Resistance, Low  
Peak Output Current  
VOH  
VOL  
ROH  
ROL  
IPK  
VDD – 0.025  
0.025  
3.0  
3.5  
V
V
Ω
Ω
A
A
DC Test  
DC Test  
2.2  
2.8  
4.5  
>1.5  
IOUT = 10 mA, VDD = 18V  
IOUT = 10 mA, VDD = 18V  
VDD = 18V (Note 2)  
Duty cycle 2%, t 300 µsec.  
Latch-Up Protection With-  
stand Reverse Current  
IREV  
Switching Time (Note 1)  
Rise Time  
tR  
tF  
15  
18  
28  
28  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 2200 pF  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 2200 pF  
Delay Time  
tD1  
tD2  
40  
40  
48  
48  
ns  
ns  
Figure 4-1, Figure 4-2  
Figure 4-1, Figure 4-2  
Delay Time  
Power Supply  
Supply Voltage  
Power Supply Current  
VDD  
IS  
4.5  
1.0  
18.0  
2.0  
V
mA VIN = 3V (Both Inputs)  
mA VIN = 0V (Both Inputs)  
IS  
0.15  
0.25  
Note 1: Switching times ensured by design.  
2: Tested during characterization, not production tested.  
© 2006 Microchip Technology Inc.  
DS22022A-page 3  
MCP1403/4/5  
DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)  
Electrical Specifications: Unless otherwise indicated, operating temperature range with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input  
Logic ‘1’, High Input Voltage VIH  
2.4  
0.8  
+10  
V
V
Logic ‘0’, Low Input Voltage  
Input Current  
VIL  
IIN  
–10  
µA  
0V VIN VDD  
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
Output Resistance, Low  
Switching Time (Note 1)  
Rise Time  
VOH VDD – 0.025  
0.025  
6.0  
V
V
Ω
Ω
DC TEST  
VOL  
ROH  
ROL  
DC TEST  
3.1  
3.7  
IOUT = 10 mA, VDD = 18V  
IOUT = 10 mA, VDD = 18V  
7
tR  
tF  
25  
25  
40  
40  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 2200 pF  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 2200 pF  
Delay Time  
tD1  
tD2  
50  
50  
65  
65  
ns  
ns  
Figure 4-1, Figure 4-2  
Figure 4-1, Figure 4-2  
Delay Time  
Power Supply  
Power Supply Current  
IS  
2.0  
0.2  
3.0  
0.3  
mA  
VIN = 3V (Both Inputs)  
VIN = 0V (Both Inputs)  
Note 1: Switching times ensured by design.  
2: Tested during characterization, not production tested.  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Package Thermal Resistances  
Thermal Resistance, 8L-6x5 DFN  
TA  
TJ  
TA  
–40  
+125  
+150  
+150  
°C  
°C  
°C  
–65  
θJA  
33.2  
°C/W Typical four-layer board with  
vias to ground plane  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 16L-SOIC  
θJA  
θJA  
θJA  
125  
155  
155  
°C/W  
°C/W  
°C/W 4-Layer JC51-7 Standard  
Board, Natural Convection  
DS22022A-page 4  
© 2006 Microchip Technology Inc.  
MCP1403/4/5  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C with 4.5V <= VDD <= 18V.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
6800 pF  
6800 pF  
4700 pF  
4700 pF  
2200 pF  
2200 pF  
1800 pF  
6
1800 pF  
6
4
8
10  
12  
14  
16  
18  
4
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-1:  
Rise Time vs. Supply  
FIGURE 2-4:  
Fall Time vs. Supply  
Voltage.  
Voltage.  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
12V  
70  
12V  
60  
5V  
50  
5V  
40  
30  
18V  
20  
18V  
10  
10  
1000  
10000  
1000  
10000  
Capacitive Load (pF)  
Capacitive Load (pF)  
FIGURE 2-2:  
Rise Time vs. Capacitive  
FIGURE 2-5:  
Fall Time vs. Capacitive  
Load.  
Load.  
24  
160  
135  
110  
85  
CLOAD = 1800 pF  
VDD = 12V  
CLOAD = 1800 pF  
22  
20  
18  
16  
14  
12  
tFALL  
tD1  
60  
tRISE  
tD2  
3
35  
2
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
4
5
6
7
8
9
10  
Input Amplitude (V)  
FIGURE 2-3:  
Rise and Fall Times vs.  
FIGURE 2-6:  
Propagation Delay vs. Input  
Temperature.  
Amplitude.  
© 2006 Microchip Technology Inc.  
DS22022A-page 5  
MCP1403/4/5  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, TA = +25°C with 4.5V <= VDD <= 18V.  
100  
90  
80  
70  
60  
50  
40  
30  
0.5  
0.4  
0.3  
0.2  
0.1  
0
CLOAD = 1800 pF  
tD1  
Both Inputs = 1  
tD2  
Both Inputs = 0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-7:  
Propagation Delay Time vs.  
FIGURE 2-10:  
Quiescent Current vs.  
Supply Voltage.  
Temperature.  
7
6
70  
VIN = 5V (MCP1404)  
CLOAD = 1800 pF  
65  
60  
55  
50  
45  
40  
35  
30  
TJ = +150oC  
VIN = 0V (MCP1403)  
tD2  
5
4
3
2
1
tD1  
TJ = +25oC  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-8:  
Propagation Delay Time vs.  
FIGURE 2-11:  
Output Resistance (Output  
Temperature.  
High) vs. Supply Voltage.  
8
0.5  
0.4  
VIN = 0V (MCP1404)  
IN = 5V (MCP1403)  
V
TJ = +150oC  
7
6
5
4
3
2
0.3  
0.2  
0.1  
0
Both Inputs = 1  
TJ = +25oC  
Both Inputs = 0  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-9:  
Quiescent Current vs.  
FIGURE 2-12:  
Output Resistance (Output  
Supply Voltage.  
Low) vs. Temperature.  
DS22022A-page 6  
© 2006 Microchip Technology Inc.  
MCP1403/4/5  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, TA = +25°C with 4.5V <= VDD <= 18V.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 18V  
VDD = 18V  
6,800 pF  
4,700 pF  
650 kHz  
400 kHz  
50 kHz  
100 kHz  
2,200 pF  
200 kHz  
100 pF  
10  
100  
1000  
100  
1000  
10000  
Capacitive Load (pF)  
Frequency (kHz)  
FIGURE 2-13:  
Supply Current vs.  
FIGURE 2-16:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
140  
120  
VDD = 12V  
VDD = 12V  
4,700 pF  
2 MHz  
120  
100  
80  
60  
40  
20  
0
1 MHz  
100  
80  
6,800 pF  
100 kHz  
2,200 pF  
100 pF  
60  
500 kHz  
40  
200 kHz  
20  
0
100  
1000  
Capacitive Load (pF)  
10000  
10  
100  
1000  
10000  
Frequency (kHz)  
FIGURE 2-14:  
Supply Current vs.  
FIGURE 2-17:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
140  
120  
VDD = 6V  
VDD = 6V  
3.5 MHz  
6,800 pF  
4,700 pF  
120  
100  
80  
100  
80  
2 MHz  
200 kHz  
60  
1 MHz  
500 kHz  
60  
40  
20  
0
2,200 pF  
40  
20  
100 pF  
0
100  
1000  
Capacitive Load (pF)  
10000  
10  
100  
1000  
10000  
Frequency (kHz)  
FIGURE 2-15:  
Supply Current vs.  
FIGURE 2-18:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
© 2006 Microchip Technology Inc.  
DS22022A-page 7  
MCP1403/4/5  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, TA = +25°C with 4.5V <= VDD <= 18V.  
10-6  
-7  
10  
-8  
10  
-9  
10  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Note:  
The values on this graph represent the  
loss seen by both drivers in a package  
during one complete cycle. For a sin-  
gle driver, divide the stated value by 2.  
For a single transition of a single driver  
divide the stated value by 4.  
FIGURE 2-19:  
Crossover Energy vs.  
Supply Voltage.  
DS22022A-page 8  
© 2006 Microchip Technology Inc.  
MCP1403/4/5  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
(1)  
TABLE 3-1:  
PIN FUNCTION TABLE  
8-Pin  
PDIP  
SOIC  
8-Pin  
DFN  
16-Pin  
SOIC  
Symbol  
Description  
1
2
1
2
1
2
NC  
IN A  
NC  
No Connection  
Control Input for Output A  
No Connection  
Ground  
3
3
3
4
GND  
GND  
NC  
4
4
5
Ground  
6
No Connection  
Control Input for Output B  
No Connection  
No Connection  
Output B  
7
IN B  
NC  
5
5
8
9
NC  
10  
11  
12  
13  
14  
15  
16  
OUT B  
OUT B  
VDD  
6
6
Output B  
Supply Input  
7
7
VDD  
Supply Input  
OUT A  
OUT A  
NC  
Output A  
8
8
Output A  
No Connection  
Exposed Metal Pad  
PAD  
NC  
Note 1: Duplicate pins must be connected for proper operation.  
3.1  
Supply Input (VDD  
)
3.4  
Outputs A and B  
VDD is the bias supply input for the MOSFET driver and  
has a voltage range of 4.5V to 18V. This input must be  
decoupled to ground with a local capacitor. This bypass  
capacitor provides a localized low-impedance path for  
the peak currents that are to be provided to the load.  
Outputs A and B are CMOS push-pull output that is  
capable of sourcing and sinking 4.5A of peak current  
(VDD = 18V). The low output impedance ensures the  
gate of the external MOSFET will stay in the intended  
state even during large transients. These output also  
has a reverse current latch-up rating of 1.5A.  
3.2  
Control Inputs A and B  
3.5  
Exposed Metal Pad  
The MOSFET driver input is a high-impedance,  
TTL/CMOS-compatible input. The input also has  
hysteresis between the high and low input levels,  
allowing them to be driven from slow rising and falling  
signals, and to provide noise immunity.  
The exposed metal pad of the DFN package is not  
internally connected to any potential. Therefore, this  
pad can be connected to a ground plane or other cop-  
per plane on a printed circuit board to aid in heat  
removal from the package.  
3.3  
Ground (GND)  
Ground is the device return pin. The ground pin should  
have a low impedance connection to the bias supply  
source return. High peak currents will flow out the  
ground pin when the capacitive load is being  
discharged.  
© 2006 Microchip Technology Inc.  
DS22022A-page 9  
MCP1403/4/5  
4.0  
4.1  
APPLICATION INFORMATION  
General Information  
VDD = 18V  
1 µF  
MOSFET drivers are high-speed, high current devices  
which are intended to source/sink high peak currents to  
charge/discharge the gate capacitance of external  
MOSFETs or IGBTs. In high frequency switching power  
supplies, the PWM controller may not have the drive  
capability to directly drive the power MOSFET. A MOS-  
FET driver like the MCP1403/4/5 family can be used to  
provide additional source/sink current capability.  
0.1 µF  
Ceramic  
Input  
Input  
Output  
CL = 2200 pF  
4.2  
MOSFET Driver Timing  
MCP1404  
(1/2 MCP1405)  
The ability of a MOSFET driver to transition from a fully  
off state to a fully on state are characterized by the driv-  
ers rise time (tR), fall time (tF), and propagation delays  
(tD1 and tD2). The MCP1403/4/5 family of drivers can  
typically charge and discharge a 2200 pF load capaci-  
tance in 15 ns along with a typical matched propaga-  
tion delay of 40 ns. Figure 4-1 and Figure 4-2 show the  
test circuit and timing waveform used to verify the  
MCP1403/4/5 timing.  
+5V  
90%  
Input  
10%  
0V  
18V  
90%  
90%  
tD1  
tD2  
tF  
tR  
Output  
0V  
VDD = 18V  
10%  
10%  
0.1 µF  
1 µF  
Ceramic  
FIGURE 4-2:  
Non-Inverting Driver Timing  
Waveform.  
Input  
Input  
Output  
CL = 2200 pF  
4.3  
Decoupling Capacitors  
Careful layout and decoupling capacitors are highly  
recommended when using MOSFET drivers. Large  
currents are required to charge and discharge  
capacitive loads quickly. For example, 2.5A are needed  
to charge a 2200 pF load with 18V in 16 ns.  
MCP1403  
(1/2 MCP1405)  
To operate the MOSFET driver over a wide frequency  
range with low supply impedance a ceramic and low  
ESR film capacitor are recommended to be placed in  
parallel between the driver VDD and GND. A 1.0 µF low  
ESR film capacitor and a 0.1 µF ceramic capacitor  
+5V  
90%  
Input  
0V  
10%  
tD1  
90%  
10%  
tD2  
tF  
tR  
placed between V  
and GND pins should be used.  
DD  
18V  
90%  
These capacitors should be placed close to the driver  
to minimized circuit board parasitics and provide a local  
source for the required current.  
Output  
10%  
0V  
4.4  
PCB Layout Considerations  
FIGURE 4-1:  
Inverting Driver Timing  
Waveform.  
Proper PCB layout is important in a high current, fast  
switching circuit to provide proper device operation and  
robustness of design. PCB trace loop area and  
inductance should be minimized by the use of ground  
planes or trace under MOSFET gate drive signals,  
separate analog and power grounds, and local driver  
decoupling.  
DS22022A-page 10  
© 2006 Microchip Technology Inc.  
MCP1403/4/5  
Placing a ground plane beneath the MCP1403/4/5 will  
help as a radiated noise shield as well as providing  
some heat sinking for power dissipated within the  
device.  
4.5.2  
QUIESCENT POWER DISSIPATION  
The power dissipation associated with the quiescent  
current draw depends upon the state of the input pin.  
The MCP1403/4/5 devices have a quiescent current  
draw when both inputs are high of 1.0 mA (typ) and  
0.15 mA (typ) when both inputs are low. The quiescent  
power dissipation is:  
4.5  
Power Dissipation  
The total internal power dissipation in a MOSFET driver  
is the summation of three separate power dissipation  
elements.  
PQ = (IQH × D + IQL × (1 – D)) × VDD  
Where:  
PT = PL + PQ + PCC  
IQH = Quiescent current in the high state  
D = Duty cycle  
Where:  
PT = Total power dissipation  
PL = Load power dissipation  
PQ = Quiescent power dissipation  
PCC = Operating power dissipation  
IQL = Quiescent current in the low state  
VDD = MOSFET driver supply voltage  
4.5.3  
OPERATING POWER DISSIPATION  
The operating power dissipation occurs each time the  
MOSFET driver output transitions because for a very  
short period of time both MOSFETs in the output stage  
are on simultaneously. This cross-conduction current  
leads to a power dissipation describes as:  
4.5.1  
CAPACITIVE LOAD DISSIPATION  
The power dissipation caused by a capacitive load is a  
direct function of frequency, total capacitive load, and  
supply voltage. The power lost in the MOSFET driver  
for a complete charging and discharging cycle of a  
MOSFET is:  
PCC = CC × f × VDD  
2
Where:  
PL = f × CT × VDD  
CC = Cross-conduction constant (A*sec)  
f = Switching frequency  
Where:  
f = Switching frequency  
CT = Total load capacitance  
VDD = MOSFET driver supply voltage  
VDD = MOSFET driver supply voltage  
© 2006 Microchip Technology Inc.  
DS22022A-page 11  
MCP1403/4/5  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information (Not to Scale)  
8-Lead DFN  
Example:  
XXXXXXX  
XXXXXXX  
XXYYWW  
NNN  
MCP1403  
e
3
E/MF^
0648  
256  
8-Lead PDIP (300 mil)  
Example:  
MCP1403  
XXXXXXXX  
XXXXXNNN  
e
3
E/P^^256  
0648  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
MCP1405E  
XXXXXXXX  
XXXXYYWW  
SN^3 0648  
e
NNN  
256  
16-Lead SOIC (300 mil)  
Example:  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
MCP1405  
e
3
E/SO
0648256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22022A-page 12  
© 2006 Microchip Technology Inc.  
MCP1403/4/5  
8-Lead Plastic Dual-Flat, No-Lead Package (MF) 6x5 mm Body (DFN-S) – Saw Singulated  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
e
D1  
L
b
N
N
K
E
E2  
E1  
EXPOSED  
PAD  
2
1
NOTE 1  
1
2
NOTE 1  
D2  
BOTTOM VIEW  
TOP VIEW  
ϕ
A2  
A
A1  
A3  
NOTE 2  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MAX  
MIN  
Number of Pins  
Pitch  
N
e
8
1.27 BSC  
0.85  
Overall Height  
A
1.10  
0.80  
0.05  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
D
0.65  
0.00  
0.01  
Base Thickness  
0.20 REF  
4.92 BSC  
4.67 BSC  
4.00  
Overall Length  
Molded Package Length  
Exposed Pad Length  
Overall Width  
D1  
D2  
E
3.85  
4.15  
5.99 BSC  
5.74 BSC  
2.31  
Molded Package Width  
Exposed Pad Width  
Contact Width  
E1  
E2  
b
2.16  
0.35  
0.50  
0.20  
2.46  
0.47  
0.75  
0.40  
Contact Length  
§
L
0.60  
Contact-to-Exposed Pad  
Mold Draft Angle Top  
§
K
ϕ
12°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. § Significant Characteristic  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04–113, 09/20/06  
© 2006 Microchip Technology Inc.  
DS22022A-page 13  
MCP1403/4/5  
8-Lead Plastic Dual In-line (PA) – 300 mil Body (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
8
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.140  
.155  
.130  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
DS22022A-page 14  
© 2006 Microchip Technology Inc.  
MCP1403/4/5  
8-Lead Plastic Small Outline (OA) – Narrow, 150 mil Body (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
Overall Height  
A
.053  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
© 2006 Microchip Technology Inc.  
DS22022A-page 15  
MCP1403/4/5  
16-Lead Plastic Small Outline (SO) – Wide, 300 mil Body (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
p
E1  
D
2
n
1
B
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
16  
MAX  
MIN  
NOM  
16  
MAX  
n
p
Number of Pins  
Pitch  
.050  
.099  
1.27  
Overall Height  
A
.093  
.104  
2.36  
2.24  
2.50  
2.31  
0.20  
10.34  
7.49  
10.30  
0.50  
0.84  
4
2.64  
Molded Package Thickness  
A2  
A1  
E
.088  
.004  
.394  
.291  
.398  
.010  
.016  
0
.091  
.008  
.407  
.295  
.406  
.020  
.033  
4
.094  
.012  
.420  
.299  
.413  
.029  
.050  
8
2.39  
0.30  
10.67  
7.59  
10.49  
0.74  
1.27  
8
Standoff  
§
0.10  
10.01  
7.39  
10.10  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
E1  
D
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-102  
DS22022A-page 16  
© 2006 Microchip Technology Inc.  
MCP1403/4/5  
APPENDIX A: REVISION HISTORY  
Revision A (December 2006)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS22022A-page 17  
MCP1403/4/5  
NOTES:  
DS22022A-page 18  
© 2006 Microchip Technology Inc.  
MCP1403/4/5  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XX  
a) MCP1403-E/OA: 4.5A Dual Inverting  
MOSFET Driver,  
Temperature Package  
Range  
8LD SOIC package.  
b)  
c)  
d)  
MCP1403-E/PA: 4.5A Dual Inverting  
MOSFET Driver,  
Device:  
MCP1403: 4.5A Dual MOSFET Driver, Inverting  
MCP1403T: 4.5A Dual MOSFET Driver, Inverting  
(Tape and Reel)  
MCP1404: 4.5A Dual MOSFET Driver, Non-Inverting  
MCP1404T: 4.5A Dual MOSFET Driver, Non-Inverting  
(Tape and Reel)  
MCP1405: 4.5A Dual MOSFET Driver, Complementary  
MCP1405T: 4.5A Dual MOSFET Driver, Complementary  
(Tape and Reel)  
8LD PDIP package.  
MCP1403-E/MF: 4.5A Dual Inverting  
MOSFET Driver,  
8LD DFN package.  
MCP1403-E/SO: 4.5A Dual Inverting  
MOSFET Driver,  
16LD SOIC package.  
a) MCP1404T-E/OA: Tape and Reel.  
4.5A Dual Non-Inverting,  
Temperature Range:  
Package: *  
E
=
-40°C to +125°C  
MOSFET Driver,  
8LD SOIC package,  
MF  
OA  
PA  
=
=
=
=
Dual, Flat, No-Lead (6x5 mm Body), 8-lead  
Plastic SOIC (150 mil Body), 8-Lead  
Plastic DIP, (300 mil body), 8-lead  
Plastic SOIC (Wide), 16-Lead  
b)  
MCP1404-E/PA: 4.5A Dual Non-Inverting,  
MOSFET Driver,  
SO  
8LD PDIP package.  
* All package offerings are Pb Free (Lead Free)  
a) MCP1405-E/OA: 4.5A Dual Complementary,  
MOSFET Driver,  
8LD SOIC package.  
b)  
c)  
MCP1405-E/PA: 4.5A Dual Complementary,  
MOSFET Driver,  
8LD PDIP package.  
MCP1405T-E/SO: Tape and Reel,  
4.5A Dual Complementary  
MOSFET Driver,  
16LD SOIC package.  
© 2006 Microchip Technology Inc.  
DS22022A-page 19  
MCP1403/4/5  
NOTES:  
DS22022A-page 20  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs,  
microperipherals, nonvolatile memory and analog products. In addition,  
Microchip’s quality system for the design and manufacture of  
development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS22022A-page 21  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
10/19/06  
DS22022A-page 22  
© 2006 Microchip Technology Inc.  

相关型号:

MCP1403T-E/P

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP

MCP1403T-E/SN

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP

MCP1403T-E/SO

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP

MCP1404

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP

MCP1404-E/MF

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP

MCP1404-E/P

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP

MCP1404-E/PA

4.5 A BUF OR INV BASED MOSFET DRIVER, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, MS-001, DIP-8
MICROCHIP

MCP1404-E/SN

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP

MCP1404-E/SO

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP

MCP1404T-E/MF

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP

MCP1404T-E/OA

4.5 A BUF OR INV BASED MOSFET DRIVER, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, MS-012, SOIC-8
MICROCHIP

MCP1404T-E/P

4.5A Dual High-Speed Power MOSFET Drivers
MICROCHIP