MCP1407T-E/SNVAO [MICROCHIP]

Buffer/Inverter Based MOSFET Driver, 6A, PDSO8;
MCP1407T-E/SNVAO
型号: MCP1407T-E/SNVAO
厂家: MICROCHIP    MICROCHIP
描述:

Buffer/Inverter Based MOSFET Driver, 6A, PDSO8

驱动 光电二极管 接口集成电路 驱动器
文件: 总30页 (文件大小:943K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1406/07  
6A High-Speed Power MOSFET Drivers  
Features  
General Description  
• High Peak Output Current: 6.0A (typical)  
The MCP1406/07 devices are  
a
family of  
buffers/MOSFET drivers that feature a single-output  
with 6A peak drive current capability, low shoot-through  
current, matched rise/fall times and propagation delay  
times. These devices are pin-compatible and are  
improved versions of the TC4420/TC4429 MOSFET  
drivers.  
• Low Shoot-Through/Cross-Conduction Current in  
Output Stage  
• Wide Input Supply Voltage Operating Range:  
- 4.5V to 18V  
• High Capacitive Load Drive Capability:  
- 2500 pF in 20 ns  
The MCP1406/07 MOSFET drivers can easily charge  
and discharge 2500 pF gate capacitance in under  
20 ns, provide low enough impedances (in both the ON  
and OFF states) to ensure that intended state of the  
MOSFETs will not be affected, even by large transients.  
The input to the MCP1406/07 may be driven directly  
from either TTL or CMOS (3V to 18V).  
- 6800 pF in 40 ns  
• Short Delay Times: 40 ns (typical)  
• Matched Rise/Fall Times  
• Low Supply Current:  
- With Logic ‘1’ Input – 130 µA (typical)  
- With Logic ‘0’ Input – 35 µA (typical)  
These devices are highly latch-up resistant under any  
conditions that fall within their power and voltage  
ratings. They are not subject to damage when up to 5V  
of noise spiking (of either polarity) occurs on the ground  
pin. All terminals are fully protected against  
electrostatic discharge (ESD), up to 2.0 kV (HBM) and  
400V (MM).  
• Latch-Up Protected: Will Withstand 1.5A Reverse  
Current  
• Logic Input Will Withstand Negative Swing up to 5V  
• Pin compatible with the TC4420/TC4429 devices  
• Space-saving 8-Pin SOIC, PDIP and  
8-Pin 6 x 5 mm DFN Packages  
The MCP1406/07 single-output 6A MOSFET driver  
family is offered in both surface-mount and  
pin-through-hole packages with a -40°C to +125°C  
temperature rating, making it useful in any wide  
temperature range application.  
Applications  
• Switch Mode Power Supplies  
• Pulse Transformer Drive  
• Line Drivers  
• Motor and Solenoid Drive  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 1  
MCP1406/07  
Package Types  
8-Pin PDIP/SOIC  
MCP1406  
MCP1407  
VDD  
VDD  
INPUT  
NC  
VDD  
VDD  
INPUT  
NC  
1
2
3
8
7
6
1
2
3
8
7
6
OUT  
OUT  
GND  
OUT  
OUT  
GND  
4
5
4
5
GND  
GND  
8-Pin 6x5 DFN-S(2)  
MCP1407  
MCP1406  
VDD  
VDD  
8
1
VDD  
VDD  
8
1
INPUT  
2
3
4
7 OUT  
EP  
9
INPUT  
2
3
4
7 OUT  
EP  
9
6
NC  
OUT  
6
NC  
OUT  
GND  
5 GND  
GND  
5 GND  
5-Pin TO-220  
MCP1406  
MCP1407  
Tab is common to VDD  
1
2
3
4
5
1
2 3 4 5  
Note 1: Duplicate pins must both be connected for proper operation.  
2: Exposed pad of the DFN package is electrically isolated; see Table 3-1.  
DS20002019C-page 2  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
Functional Block Diagram(1)  
VDD  
Inverting  
130 µA  
300 mV  
Output  
Output  
Non-Inverting  
Input  
Effective  
Input C = 25 pF  
4.7V  
MCP1406 Inverting  
MCP1407 Non-Inverting  
GND  
Note 1: Unused inputs should be grounded.  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 3  
MCP1406/07  
Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational sections of this  
specification is not intended. Exposure to maximum  
rating conditions for extended periods may affect  
device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltage ................................................................+20V  
Input Voltage ..................................(VDD +0.3V) to (GND -5V)  
Input Current (VIN > VDD)..............................................50 mA  
Package Power Dissipation (TA <= +70°C)  
DFN-S .......................................................................2.5W  
PDIP..........................................................................1.2W  
SOIC .......................................................................0.83W  
TO-220......................................................................3.9W  
ESD Protection on all Pins................2 kV (HBM), 400V (MM)  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, with 4.5VVDD18V.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input  
Logic ‘1’, High Input Voltage  
Logic ‘0’, Low Input Voltage  
Input Current  
VIH  
VIL  
IIN  
2.4  
1.8  
1.3  
0.8  
V
V
–10  
-5  
10  
µA 0VVINVDD  
Input Voltage  
VIN  
VDD + 0.3  
V
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
Output Resistance, Low  
Peak Output Current  
Continuous Output Current  
VOH  
VOL  
ROH  
ROL  
IPK  
VDD – 0.025  
0.025  
2.8  
V
V
A
A
A
DC Test  
1.3  
DC Test  
2.1  
1.5  
6
IOUT = 10 mA, VDD = 18V  
IOUT = 10 mA, VDD = 18V  
VDD 18V (Note 1)  
Note 1, Note 2  
2.5  
IDC  
Latch-Up Protection Withstand  
Reverse Current  
IREV  
1.5  
Duty cycle2%, t 300 µs  
Switching Time (Note 3)  
Rise Time  
tR  
tF  
20  
20  
30  
30  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 2500 pF  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 2500 pF  
Delay Time  
tD1  
tD2  
40  
40  
55  
55  
ns  
ns  
Figure 4-1, Figure 4-2  
Figure 4-1, Figure 4-2  
Delay Time  
Power Supply  
Supply Voltage  
Power Supply Current  
VDD  
IS  
4.5  
130  
35  
18.0  
250  
100  
V
µA VIN = 3V  
µA VIN = 0V  
IS  
Note 1: Tested during characterization, not production tested.  
2: Valid for AT (TO-220) and MF (DFN-S) packages only. TA = +25°C  
3: Switching times ensured by design.  
DS20002019C-page 4  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)  
Electrical Specifications: Unless otherwise indicated, operating temperature range with 4.5V VDD18V.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input  
Logic ‘1’, High Input Voltage VIH  
2.4  
0.8  
V
V
Logic ‘0’, Low Input Voltage  
Input Current  
VIL  
IIN  
-10  
-5  
+10  
µA  
V
0VVINVDD  
Input Voltage  
VIN  
VDD+0.3  
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
Output Resistance, Low  
Switching Time (Note 1)  
Rise Time  
VOH  
VOL  
ROH  
ROL  
VDD – 0.025  
0.025  
5.0  
V
V
DC TEST  
DC TEST  
3.0  
2.3  
IOUT = 10 mA, VDD = 18V  
IOUT = 10 mA, VDD = 18V  
5.0  
tR  
tF  
25  
25  
40  
40  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 2500 pF  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 2500 pF  
Delay Time  
tD1  
tD2  
50  
50  
65  
65  
ns  
ns  
Figure 4-1, Figure 4-2  
Figure 4-1, Figure 4-2  
Delay Time  
Power Supply  
Supply Voltage  
Power Supply Current  
VDD  
IS  
4.5  
200  
50  
18.0  
500  
150  
V
µA  
VIN = 3V  
VIN = 0V  
Note 1: Switching times ensured by design.  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 5  
MCP1406/07  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V VDD 18V.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units Conditions  
Specified Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Package Thermal Resistances  
TA  
TJ  
TA  
-40  
+125  
+150  
+150  
°C  
°C  
°C  
-65  
Junction-to-Ambient Thermal Resistance,  
8-L 6x5 DFN  
JA  
31.8  
°C/W Note 1  
Junction-to-Ambient Thermal Resistance, 8-L PDIP  
Junction-to-Ambient Thermal Resistance, 8-L SOIC  
JA  
JA  
JA  
65.2  
96.3  
20.1  
°C/W Note 1  
°C/W Note 1  
°C/W Note 1  
Junction-to-Ambient Thermal Resistance,  
5-L TO-220  
Junction-to-Case (Bottom) Thermal Resistance,  
5-L TO-220  
JC(BOT)  
JT  
3.2  
0.2  
°C/W Note 2  
°C/W Note 1  
°C/W Note 1  
°C/W Note 1  
°C/W Note 1  
°C/W Note 1  
°C/W Note 1  
°C/W Note 1  
°C/W Note 1  
Junction-to-Top Characterization Parameter,  
8-L 6x5 DFN  
Junction-to-Top Characterization Parameter,  
8-L PDIP  
JT  
8.8  
Junction-to-Top Characterization Parameter,  
8-L SOIC  
JT  
3.2  
Junction-to-Top Characterization Parameter,  
5-L TO-220  
JT  
3.6  
Junction-to-Board Characterization Parameter,  
8-L 6x5 DFN  
JB  
15.5  
36.1  
60.7  
4.0  
Junction-to-Board Characterization Parameter,  
8-L PDIP  
JB  
Junction-to-Board Characterization Parameter,  
8-L SOIC  
JB  
Junction-to-Board Characterization Parameter,  
5-L TO-220  
JB  
Note 1: Parameter is determined using a High 2S2P 4-layer board, as described in JESD 51-7, as well as in JESD  
51-5, for packages with exposed pads.  
2: Parameter is determined using a 1S0P 2-layer board with a cold plate attached to indicated location.  
DS20002019C-page 6  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD 18V.  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
10,000 pF  
10,000 pF  
8,200 pF  
8,200 pF  
1,000 pF  
4,700 pF  
2,500 pF  
4,700 pF  
1,000 pF  
2,500 pF  
6,800 pF  
6,800 pF  
100 pF  
100 pF  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-1:  
Rise Time vs. Supply  
FIGURE 2-4:  
Fall Time vs. Supply  
Voltage.  
Voltage.  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
10  
5V  
10V  
10V  
15V  
5V  
15V  
20  
10  
0
0
100  
1000  
10000  
100  
1000  
Capacitive Load (pF)  
10000  
Capacitive Load (pF)  
FIGURE 2-2:  
Rise Time vs. Capacitive  
FIGURE 2-5:  
Fall Time vs. Capacitive  
Load.  
Load.  
30  
85  
VDD = 18V  
VIN = 5V  
tRISE  
tD1  
25  
20  
15  
10  
5
75  
tFALL  
65  
tD2  
55  
45  
35  
0
4
6
8
10  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
Supply Voltage (V)  
FIGURE 2-3:  
Rise and Fall Times vs.  
FIGURE 2-6:  
Propagation Delay vs.  
Temperature.  
Supply Voltage.  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 7  
MCP1406/07  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD 18V.  
200  
175  
150  
125  
100  
75  
250  
VDD = 12V  
VDD = 18V  
200  
150  
100  
50  
Input = High  
Input = Low  
tD1  
50  
tD2  
0
25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
2
3
4
5
6
7
8
9
10  
Input Amplitude (V)  
FIGURE 2-7:  
Propagation Delay Time vs.  
FIGURE 2-10:  
Quiescent Current vs.  
Input Amplitude.  
Temperature.  
55  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
VDD = 18V  
VIN = 5V  
50  
VHI  
45  
40  
35  
tD2  
VLO  
tD1  
30  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-8:  
Propagation Delay Time vs.  
FIGURE 2-11:  
Input Threshold vs. Supply  
Temperature.  
Voltage.  
2
180  
160  
140  
120  
100  
80  
VDD = 12V  
1.9  
VHI  
INPUT = 1  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
VLO  
60  
40  
1.2  
1.1  
INPUT = 0  
20  
0
1
4
6
8
10  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
Supply Voltage (V)  
FIGURE 2-9:  
Quiescent Current vs.  
FIGURE 2-12:  
Input Threshold vs.  
Supply Voltage.  
Temperature.  
DS20002019C-page 8  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
Note: Unless otherwise indicated, TA = +25°C with 4.5VVDD 18V.  
150  
125  
100  
75  
120  
100  
80  
60  
40  
20  
0
VDD = 18V  
VDD = 18V  
10,000 pF  
1 MHz  
6,800 pF  
1,000 pF  
50 kHz  
100 kHz  
2,500 pF  
200 kHz  
50  
500 kHz  
4,700 pF  
25  
100 pF  
0
10  
100  
1000  
100  
1000  
Capacitive Load (pF)  
10000  
Frequency (kHz)  
FIGURE 2-13:  
Supply Current vs.  
FIGURE 2-16:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
150  
80  
VDD = 12V  
VDD = 12V  
70  
10,000 pF  
6,800 pF  
2 MHz  
1 MHz  
125  
100  
75  
60  
50  
40  
30  
20  
10  
1,000 pF  
4,700 pF  
50 kHz  
100 kHz  
200 kHz  
50  
25  
0
500 kHz  
2,500 pF  
100 pF  
0
10  
100  
1000  
100  
1000  
10000  
Frequency (kHz)  
Capacitive Load (pF)  
FIGURE 2-14:  
Supply Current vs.  
FIGURE 2-17:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
100  
90  
40  
VDD = 6V  
35  
10,000 pF  
6,800 pF  
2 MHz  
VDD = 6V  
80  
70  
60  
50  
40  
100 kHz  
50 kHz  
30  
25  
20  
15  
10  
5
1 MHz  
4,700 pF  
1,000 pF  
200 kHz  
30  
500 kHz  
2,500 pF  
20  
10  
0
100 pF  
0
100  
1000  
10000  
10  
100  
1000  
Capacitive Load (pF)  
Frequency (kHz)  
FIGURE 2-15:  
Supply Current vs.  
FIGURE 2-18:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 9  
MCP1406/07  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD 18V.  
7
VIN = 2.5V (MCP1407)  
TJ = +125oC  
VIN = 0V (MCP1406)  
6
5
4
3
2
1
TJ = +25oC  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-19:  
Output Resistance  
(Output High) vs. Supply Voltage.  
7
VIN = 0V (MCP1407)  
IN = 2.5V (MCP1406)  
V
6
5
4
3
2
1
TJ = +125oC  
TJ = +25oC  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-20:  
Output Resistance  
(Output Low) vs. Supply Voltage.  
100.00  
10.00  
1.00  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-21:  
Crossover Energy vs.  
Supply Voltage.  
DS20002019C-page 10  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
(1)  
TABLE 3-1:  
PIN FUNCTION TABLE  
5-Pin  
TO-220  
8-Pin  
8-Pin  
Symbol  
Description  
6x5 DFN PDIP, SOIC  
1
1
2
1
2
VDD  
INPUT  
NC  
Supply Input  
Control Input  
2
3
3
No Connection  
Ground  
4
4
GND  
4
5
5
GND  
Ground  
5
6
6
OUTPUT  
OUTPUT  
VDD  
CMOS Push-Pull Output  
CMOS Push-Pull Output  
Supply Input  
3
7
7
8
8
TAB  
9
EP  
Exposed Metal Pad  
VDD  
Metal Tab at VDD Potential  
Note 1: Duplicate pins must be connected for proper operation.  
3.1  
Supply Input (VDD  
)
3.5  
Exposed Metal Pad (6x5 DFN only)  
VDD is the bias supply input for the MOSFET driver and  
has a voltage range of 4.5V to 18V. This input must be  
decoupled to ground with local capacitors. The bypass  
capacitors provide a localized low-impedance path for  
the peak currents that are to be provided to the load.  
The exposed metal pad of the DFN package is not  
internally connected to any potential. Therefore, this  
pad can be connected to a ground plane or other  
copper plane on a printed circuit board to aid in heat  
removal from the package.  
3.2  
Control Input (INPUT)  
3.6  
TO-220 Metal Tab  
The MOSFET driver input is a high-impedance,  
TTL/CMOS-compatible input. The input also has hys-  
teresis between the high and low input levels, allowing  
them to be driven from slow rising and falling signals,  
and to provide noise immunity.  
The metal tab on the TO-220 package is at VDD  
potential. This metal tab is not intended to be the VDD  
connection to MCP1406/07. VDD should be supplied  
using the Supply Input pin of the TO-220.  
3.3  
Ground (GND)  
Ground is the device return pin. The ground pin should  
have a low impedance connection to the bias supply  
source return. High peak currents will flow out the  
ground pin when the capacitive load is being  
discharged.  
3.4  
CMOS Push-Pull Output  
(OUTPUT)  
The output is a CMOS push-pull output that is capable  
of sourcing peak currents of 6A (VDD = 18V). The low  
output impedance ensures the gate of the external  
MOSFET will stay in the intended state even during  
large transients. The output pins also have reverse  
current latch-up ratings of 1.5A.  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 11  
MCP1406/07  
4.0  
4.1  
APPLICATION INFORMATION  
General Information  
VDD = 18V  
1 µF  
MOSFET drivers are high-speed, high current devices  
which are intended to provide high peak currents to  
charge the gate capacitance of external MOSFETs or  
IGBTs. In high frequency switching power supplies, the  
PWM controller may not have the drive capability to  
directly drive the power MOSFET. A MOSFET driver  
like the MCP1406/07 family can be used to provide  
additional drive current capability.  
0.1 µF  
Ceramic  
Input  
Output  
CL = 2500 pF  
MCP1407  
4.2  
MOSFET Driver Timing  
The ability of a MOSFET driver to transition from a  
fully-OFF state to a fully-ON state are characterized by  
the drivers’ rise time (tR), fall time (tF) and propagation  
delays (tD1 and tD2). The MCP1406/07 family of  
devices is able to make this transition very quickly.  
Figure 4-1 and Figure 4-2 show the test circuits and  
timing waveforms used to verify the MCP1406/07  
timing.  
+5V  
90%  
Input  
10%  
0V  
18V  
90%  
90%  
tD1  
tD2  
tF  
tR  
Output  
0V  
10%  
10%  
VDD = 18V  
0.1 µF  
1 µF  
Input Signal: tRISE = tFALL = 10ns,  
100 Hz, 0-5V Square Wave  
Ceramic  
FIGURE 4-2:  
Waveform.  
Non-Inverting Driver Timing  
Input  
Output  
CL = 2500 pF  
MCP1406  
4.3  
Decoupling Capacitors  
Careful layout and decoupling capacitors are highly  
recommended when using MOSFET drivers. Large  
currents are required to charge and discharge  
capacitive loads quickly. For example, 2.25A are  
needed to charge a 2500 pF load with 18V in 20 ns.  
+5V  
90%  
Input  
0V  
10%  
To operate the MOSFET driver over a wide frequency  
range with low supply impedance, a ceramic and a  
low ESR film capacitor are recommended to be placed  
in parallel between the driver VDD and the GND. A  
tD1  
90%  
10%  
tD2  
tF  
tR  
18V  
90%  
Output  
1.0 µF low ESR film capacitor and  
a 0.1 µF  
10%  
0V  
ceramic capacitor placed between pins 1, 8 and 4, 5  
should be used. These capacitors should be placed  
close to the driver to minimize circuit board parasitics  
and provide a local source for the required current.  
Input Signal: tRISE = tFALL = 10ns,  
100 Hz, 0-5V Square Wave  
FIGURE 4-1:  
Inverting Driver Timing  
Waveform.  
DS20002019C-page 12  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
4.5.2  
QUIESCENT POWER DISSIPATION  
4.4  
PCB Layout Considerations  
The power dissipation associated with the quiescent  
current draw depends on the state of the input pin. The  
MCP1406/07 devices have a quiescent current draw  
when the input is high of 0.13 mA (typ) and 0.035 mA  
(typ) when the input is low. The quiescent power dissi-  
pation can be determined by using this equation:  
Proper PCB layout is important in a high current,  
fast switching circuit to provide proper device operation  
and robustness of design. PCB trace loop area and  
inductance should be minimized by the use of a ground  
plane or ground trace located under the MOSFET gate  
drive signals, separate analog and power grounds, and  
local driver decoupling.  
EQUATION 4-3:  
The MCP1406/07 devices have two pins each for VDD  
,
OUTPUT and GND. Both pins must be used for proper  
operation. This also lowers path inductance which will,  
along with proper decoupling, help minimize ringing in  
the circuit.  
PQ = IQH D + IQL  1 – D  VDD  
Where:  
IQH  
D
=
=
=
=
Quiescent current in the high state  
Duty cycle  
Placing a ground plane beneath the MCP1406/07 will  
help as a radiated noise shield as well as providing  
some heat sinking for power dissipated within the  
device.  
IQL  
VDD  
Quiescent current in the low state  
MOSFET driver supply voltage  
4.5  
Power Dissipation  
4.5.3  
OPERATING POWER DISSIPATION  
The total internal power dissipation in a MOSFET driver  
is the summation of three separate power dissipation  
elements, which can be calculated by using the  
following equation:  
The operating power dissipation occurs each time the  
MOSFET driver output transitions; this is because, for  
a very short period of time, both MOSFETs in the output  
stage are ON simultaneously. This cross-conduction  
current leads to a power dissipation, as described by  
the following equation:  
EQUATION 4-1:  
PT = PL + PQ + PCC  
Where:  
EQUATION 4-4:  
PCC = CC f VDD  
Where:  
PT  
PL  
=
=
=
=
Total power dissipation  
Load power dissipation  
CC  
f
=
=
=
Cross-conduction constant (A sec.)  
Switching frequency  
PQ  
Quiescent power dissipation  
Operating power dissipation  
PCC  
VDD  
MOSFET driver supply voltage  
4.5.1  
CAPACITIVE LOAD DISSIPATION  
The power dissipation caused by a capacitive load is a  
direct function of frequency, total capacitive load and  
supply voltage. The power lost in the MOSFET driver  
for a complete charging and discharging cycle of a  
MOSFET can be determined by means of this  
equation:  
EQUATION 4-2:  
2
PL = f CT VDD  
Where:  
f
=
Switching frequency  
CT = Total load capacitance  
VDD  
=
MOSFET driver supply voltage  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 13  
MCP1406/07  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information (Not to Scale)  
Example  
8-Lead SOIC (3.90 mm)  
MCP1406E  
e
3
SN ^1510  
256  
NNN  
5-Lead TO-220  
Example  
MCP1406  
XXXXXXXXX  
XXXXXXXXX  
YYWWNNN  
e
3
EAT
15102562  
Example  
8-Lead DFN-S (6x5x0.9 mm)  
MCP1406  
e
3
E/MF
1510  
256  
NNN  
PIN 1  
PIN 1  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
)
e3  
can be found on the outer packaging for this package.  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20002019C-page 14  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
8-Lead PDIP (300 mil)  
Example  
XXXXXXXX  
XXXXXNNN  
MCP1407  
E/P 256  
1510  
e
3
YYWW  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 15  
MCP1406/07  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢏꢉꢋꢉꢊꢐꢎꢆꢑꢒꢊꢈꢋꢏꢃꢆꢓꢔꢍꢕꢆꢖꢍꢑꢁꢗꢗꢘꢙ  
ꢚꢐꢊꢃꢛ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢛꢅꢉꢋꢓꢊꢦꢃꢆꢛꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢛꢃꢆꢛꢉꢝꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢛꢃꢆꢛ  
A
E
φP  
CHAMFER  
OPTIONAL  
A1  
Q
H1  
D
D1  
L
N
1
2
3
e
c
b
e1  
A2  
ꢬꢆꢃꢍꢇꢭꢮꢡꢯꢌꢝ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢰꢃꢄꢃꢍꢇ  
ꢕꢭꢮ  
ꢮꢱꢕ  
ꢕꢜꢲ  
ꢮꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢮ  
ꢪꢃꢍꢎꢒ  
ꢁꢗꢴꢵꢉꢠꢝꢡ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢪꢃꢆꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢯꢅꢃꢛꢒꢍ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢰꢅꢆꢛꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢛꢅꢉꢰꢅꢆꢛꢍꢒ  
ꢳꢉꢰꢅꢆꢛꢍꢒ  
ꢅꢀ  
ꢁꢚꢴꢶꢉꢠꢝꢡ  
ꢁꢀꢟꢗ  
ꢁꢺꢶꢗ  
ꢁꢘꢴꢗ  
ꢁꢺꢺꢗ  
ꢁꢚꢗꢟ  
ꢁꢗꢚꢗ  
ꢁꢀꢗꢗ  
ꢁꢀꢺꢸ  
ꢁꢟꢶꢚ  
ꢁꢗꢶꢗ  
ꢁꢗꢀꢚ  
ꢁꢗꢀꢘ  
ꢁꢀꢸꢗ  
ꢁꢟꢚꢗ  
ꢁꢴꢘꢗ  
ꢁꢺꢘꢘ  
ꢁꢚꢸꢺ  
ꢁꢗꢘꢘ  
ꢁꢀꢚꢗ  
ꢁꢀꢘꢴ  
ꢁꢘꢸꢗ  
ꢁꢀꢀꢘ  
ꢁꢗꢚꢘ  
ꢁꢗꢟꢗ  
ꢂꢀ  
ꢯꢀ  
ꢜꢀ  
ꢪ  
ꢜꢚ  
ꢳꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢕꢈꢐꢆꢍꢃꢆꢛꢉꢯꢈꢏꢅꢉꢡꢅꢆꢍꢅꢓ  
ꢕꢈꢐꢆꢍꢃꢆꢛꢉꢯꢈꢏꢅꢉꢂꢃꢊꢄꢅꢍꢅꢓ  
ꢰꢅꢊꢋꢉꢰꢅꢆꢛꢍꢒ  
ꢠꢊꢇꢅꢉꢍꢈꢉꢠꢈꢍꢍꢈꢄꢉꢈꢑꢉꢰꢅꢊꢋ  
ꢰꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢁꢗꢚꢵ  
ꢰꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢚꢐꢊꢃꢉꢛ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢁꢗꢗꢘꢙꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢚꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢛꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢛꢉꢔꢅꢓꢉꢜꢝꢕꢌꢉꢞꢀꢟꢁꢘꢕꢁ  
ꢠꢝꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢛꢤ ꢂꢓꢊꢦꢃꢆꢛ ꢡꢗꢟꢼꢗꢺꢴꢠ  
DS20002019C-page 16  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
ꢜꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢝꢒꢄꢈꢆꢞꢈꢄꢊꢟꢆꢚꢐꢆꢂꢃꢄꢅꢆꢇꢄꢌꢠꢄꢡꢃꢆꢓꢢꢞꢕꢆꢣꢆꢤꢥꢀꢆꢦꢦꢆꢧꢐꢅꢨꢆꢖꢝꢞꢚꢁꢩꢙ  
ꢚꢐꢊꢃꢛ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢛꢅꢉꢋꢓꢊꢦꢃꢆꢛꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢛꢃꢆꢛꢉꢝꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢛꢃꢆꢛ  
e
D
L
b
N
N
K
E
E2  
EXPOSED PAD  
NOTE 1  
NOTE 1  
1
2
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
NOTE 2  
ꢬꢆꢃꢍꢇꢕꢭꢰꢰꢭꢕꢌꢣꢌꢽꢝ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢰꢃꢄꢃꢍꢇ  
ꢕꢭꢮ  
ꢮꢱꢕ  
ꢕꢜꢲ  
ꢮꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢮ  
ꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢯꢅꢃꢛꢒꢍ  
ꢝꢍꢊꢆꢋꢈꢑꢑꢉ  
ꢡꢈꢆꢍꢊꢎꢍꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢰꢅꢆꢛꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢌꢖꢔꢈꢇꢅꢋꢉꢪꢊꢋꢉꢰꢅꢆꢛꢍꢒ  
ꢌꢖꢔꢈꢇꢅꢋꢉꢪꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢡꢈꢆꢍꢊꢎꢍꢉꢹꢃꢋꢍꢒ  
ꢜꢀ  
ꢜꢺ  
ꢀꢁꢚꢵꢉꢠꢝꢡ  
ꢗꢁꢶꢘ  
ꢗꢁꢗꢀ  
ꢗꢁꢚꢗꢉꢽꢌꢧ  
ꢘꢁꢗꢗꢉꢠꢝꢡ  
ꢴꢁꢗꢗꢉꢠꢝꢡ  
ꢟꢁꢗꢗ  
ꢚꢁꢺꢗ  
ꢗꢁꢟꢗ  
ꢗꢁꢴꢗ  
ꢗꢁꢶꢗ  
ꢗꢁꢗꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢗꢘ  
ꢂꢚ  
ꢌꢚ  
ꢺꢁꢸꢗ  
ꢚꢁꢚꢗ  
ꢗꢁꢺꢘ  
ꢗꢁꢘꢗ  
ꢗꢁꢚꢗ  
ꢟꢁꢀꢗ  
ꢚꢁꢟꢗ  
ꢗꢁꢟꢶ  
ꢗꢁꢵꢘ  
ꢡꢈꢆꢍꢊꢎꢍꢉꢰꢅꢆꢛꢍꢒ  
ꢡꢈꢆꢍꢊꢎꢍꢼꢍꢈꢼꢌꢖꢔꢈꢇꢅꢋꢉꢪꢊꢋ  
ꢚꢐꢊꢃꢉꢛ  
ꢀꢁ ꢪꢃꢆꢉꢀꢉꢥꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊꢤꢉꢥꢊꢓꢤꢩꢉꢳꢐꢍꢉꢄꢐꢇꢍꢉꢳꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉꢦꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢚꢁ ꢪꢊꢎꢨꢊꢛꢅꢉꢄꢊꢤꢉꢒꢊꢥꢅꢉꢈꢆꢅꢉꢈꢓꢉꢄꢈꢓꢅꢉꢅꢖꢔꢈꢇꢅꢋꢉꢍꢃꢅꢉꢳꢊꢓꢇꢉꢊꢍꢉꢅꢆꢋꢇꢁ  
ꢺꢁ ꢪꢊꢎꢨꢊꢛꢅꢉꢃꢇꢉꢇꢊꢦꢉꢇꢃꢆꢛꢐꢏꢊꢍꢅꢋꢁ  
ꢟꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢛꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢛꢉꢔꢅꢓꢉꢜꢝꢕꢌꢉꢞꢀꢟꢁꢘꢕꢁ  
ꢠꢝꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢽꢌꢧꢢ ꢽꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢩꢉꢐꢇꢐꢊꢏꢏꢤꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢩꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏꢤꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢛꢤ ꢂꢓꢊꢦꢃꢆꢛ ꢡꢗꢟꢼꢀꢚꢚꢠ  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 17  
MCP1406/07  
ꢚꢐꢊꢃꢛ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢛꢅꢉꢋꢓꢊꢦꢃꢆꢛꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢛꢃꢆꢛꢉꢝꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢛꢃꢆꢛ  
DS20002019C-page 18  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
N
B
E1  
NOTE 1  
1
2
TOP VIEW  
E
A2  
A
C
PLANE  
L
c
A1  
e
eB  
8X b1  
8X b  
.010  
C
SIDE VIEW  
END VIEW  
Microchip Technology Drawing No. C04-018D Sheet 1 of 2  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 19  
MCP1406/07  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
ALTERNATE LEAD DESIGN  
(VENDOR DEPENDENT)  
DATUM A  
DATUM A  
b
b
e
2
e
2
e
e
Units  
Dimension Limits  
INCHES  
NOM  
8
.100 BSC  
-
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
-
.210  
.195  
-
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
-
.130  
-
.310  
.250  
.365  
.130  
.010  
.060  
.018  
-
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing  
§
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-018D Sheet 2 of 2  
DS20002019C-page 20  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 21  
MCP1406/07  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002019C-page 22  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
ꢜꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢩꢦꢄꢈꢈꢆꢑꢒꢊꢈꢋꢏꢃꢆꢓꢩꢚꢕꢆꢣꢆꢚꢄꢎꢎꢐꢪꢟꢆꢫꢬꢭꢘꢆꢦꢦꢆꢧꢐꢅꢨꢆꢖꢩꢑꢮꢯꢙ  
ꢚꢐꢊꢃꢛ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢛꢅꢉꢋꢓꢊꢦꢃꢆꢛꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢛꢃꢆꢛꢉꢝꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢛꢃꢆꢛ  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 23  
MCP1406/07  
NOTES:  
DS20002019C-page 24  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
APPENDIX A: REVISION HISTORY  
Revision C (April 2016)  
The following is the list of modifications:  
• Updated the Package Thermal Resistances sec-  
tion of Temperature Characteristics table with the  
latest information.  
• Updated Figure 2-21 in Section 2.0 “Typical  
Performance Curves”.  
Revision B (May 2012)  
The following is the list of modifications:  
Removed the information referring to the  
Electrostatic Discharge from the General  
Description section.  
Revision A (December 2006)  
Original release of this document.  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 25  
MCP1406/07  
NOTES:  
DS20002019C-page 26  
2006-2016 Microchip Technology Inc.  
MCP1406/07  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
XX  
XXX  
Examples:  
a) MCP1406-E/MF: 6A High-Speed MOSFET  
Driver, Inverting,  
Temperature Package Tape & Reel  
Range  
8LD DFN Package  
b) MCP1406-E/AT: 6A High-Speed MOSFET  
Driver, Inverting,  
Device:  
MCP1406: 6A High-Speed MOSFET Driver,  
Inverting  
5LD TO-220 Package  
MCP1406T: 6A High-Speed MOSFET Driver,  
Inverting, Tape and Reel  
MCP1407: 6A High-Speed MOSFET Driver,  
Non-Inverting  
c) MCP1406-E/SN: 6A High-Speed MOSFET  
Driver, Inverting,  
8LD SOIC Package  
d) MCP1406-E/P:  
6A High-Speed MOSFET  
Driver, Inverting,  
MCP1407T: 6A High-Speed MOSFET Driver,  
Non-Inverting, Tape and Reel  
8LD PDIP Package  
e) MCP1406T-E/MF: Tape and Reel,  
6A High-Speed MOSFET  
Temperature Range:  
Package: *  
E
=
-40°C to +125°C  
Driver, Inverting,  
8LD DFN Package  
AT  
MF  
=
=
Plastic Transistor Outline, 5-Lead (TO-220)  
Plastic Dual Flat - 6x5 mm Body,  
8-Lead (DFN-S)  
Plastic Dual In-Line - 300 mil Body,  
8-Lead (PDIP)  
f)  
MCP1406T-E/SN: Tape and Reel,  
6A High-Speed MOSFET  
Driver, Inverting,  
8LD SOIC Package  
P
=
=
SN  
Plastic Small Outline - Narrow, 3.90 mm Body,  
8-Lead (SOIC)  
a) MCP1407-E/MF: 6A High-Speed MOSFET  
Driver, Non-Inverting,  
* All package offerings are Pb Free (Lead Free)  
8LD DFN Package  
b) MCP1407-E/AT: 6A High-Speed MOSFET  
Driver, Non-Inverting,  
5LD TO-220 Package  
c) MCP1407-E/SN: 6A High-Speed MOSFET  
Driver, Non-Inverting,  
8LD SOIC Package  
d) MCP1407-E/P:  
6A High-Speed MOSFET  
Driver, Non-Inverting,  
8LD PDIP Package  
e) MCP1407T-E/MF: Tape and Reel,  
6A High-Speed MOSFET  
Driver, Non-Inverting,  
8LD DFN Package  
f)  
MCP1407T-E/SN: Tape and Reel,  
6A High-Speed MOSFET  
Driver, Non-Inverting,  
8LD SOIC Package  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 27  
MCP1406/07  
NOTES:  
DS20002019C-page 28  
2006-2016 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate,  
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,  
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,  
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
ETHERSYNCH, Hyper Speed Control, HyperLight Load,  
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,  
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,  
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip  
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,  
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2006-2016, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-0450-7  
== ISO/TS16949==ꢀ  
2006-2016 Microchip Technology Inc.  
DS20002019C-page 29  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
07/14/15  
DS20002019C-page 30  
2006-2016 Microchip Technology Inc.  

相关型号:

MCP1415

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415R

The MCP1415R/16R (different pin configuration of MCP1415/16) devices are small(Tiny) footprint Low
MICROCHIP

MCP1415RT

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415RT-E

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415RT-E/OT

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415RT-OT

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415T

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415T-E

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415T-E/OT

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415T-E/OTVAO

Buffer/Inverter Based MOSFET Driver, 1.5A, PDSO5
MICROCHIP

MCP1415T-OT

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415_10

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP