MCP1541-ITO [MICROCHIP]

2.5V and 4.096V Voltage References;
MCP1541-ITO
型号: MCP1541-ITO
厂家: MICROCHIP    MICROCHIP
描述:

2.5V and 4.096V Voltage References

文件: 总20页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1525/41  
2.5V and 4.096V Voltage References  
Features  
Description  
• Precision Voltage Reference  
The Microchip Technology Inc. MCP1525/41 devices  
are 2.5V and 4.096V precision voltage references that  
use a combination of an advanced CMOS circuit  
design and EPROM trimming to provide an initial  
tolerance of ±1% (max.) and temperature stability of  
±50 ppm/°C (max.). In addition to a low quiescent  
current of 100 µA (max.) at 25°C, these devices offer a  
clear advantage over the traditional Zener techniques  
in terms of stability across time and temperature. The  
output voltage is 2.5V for the MCP1525 and 4.096V for  
the MCP1541. These devices are offered in SOT-23-3  
and TO-92 packages, and are specified over the  
industrial temperature range of -40°C to +85°C.  
• Output Voltages: 2.5V and 4.096V  
• Initial Accuracy: ±1% (max.)  
Temperature Drift: ±50 ppm/°C (max.)  
• Output Current Drive: ±2 mA  
• Maximum Input Current: 100 µA @ +25°C (max.)  
• Packages: TO-92 and SOT-23-3  
• Industrial Temperature Range: -40°C to +85°C  
Applications  
• Battery-powered Systems  
• Handheld Instruments  
Temperature Drift  
• Instrumentation and Process Control  
Test Equipment  
2.525  
2.520  
2.515  
2.510  
2.505  
2.500  
2.495  
2.490  
2.485  
2.480  
2.475  
4.140  
4.130  
4.120  
4.110  
4.100  
4.090  
4.080  
4.070  
4.060  
4.050  
4.040  
• Data Acquisition Systems  
• Communications Equipment  
• Medical Equipment  
MCP1541  
• Precision Power supplies  
• 8-bit, 10-bit, 12-bit A/D Converters (ADCs)  
• D/A Converters (DACs)  
MCP1525  
Typical Application Circuit  
-50 -25  
0
25 50 75 100  
Ambient Temperature (°C)  
VDD  
MCP1525  
MCP1541  
CIN  
Package Types  
VIN  
MCP1525  
MCP1541  
TO-92  
MCP1525  
MCP1541  
SOT-23-3  
0.1 µF  
(optional)  
VSS  
VOUT  
VREF  
VIN  
1
CL  
1 µF to 10 µF  
VSS  
3
VOUT  
2
Basic Configuration  
1
2
3
VSS  
VOUT  
VIN  
© 2005 Microchip Technology Inc.  
DS21653B-page 1  
MCP1525/41  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ..........................................................................7.0V  
SS  
IN  
Input Current (V ) .......................................................20 mA  
IN  
Output Current (V  
) .............................................. ±20 mA  
OUT  
Continuous Power Dissipation (T = 125°C)............. 140 mW  
A
All Inputs and Outputs .....................V – 0.6V to V + 1.0V  
SS  
IN  
Storage Temperature.....................................-65°C to +150°C  
Maximum Junction Temperature (T )..........................+125°C  
J
ESD protection on all pins (HBM) .....................................4 kV  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = 5.0V, V = GND, I  
= 0 mA and C = 1 µF.  
A
IN  
SS  
OUT  
L
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Output  
Output Voltage, MCP1525  
Output Voltage, MCP1541  
Output Voltage Drift  
V
2.475  
4.055  
2.5  
4.096  
27  
2.525  
4.137  
50  
V
V
2.7V V 5.5V  
OUT  
IN  
V
4.3V V 5.5V  
OUT  
IN  
TCV  
ppm/°C T = -40°C to 85°C (Note 1)  
OUT  
A
Long-Term Output Stability  
V
2
ppm/hr Exposed 1008 hrs @ +125°C  
(see Figure 1-1), measured @ +25°C  
OUT  
Load Regulation  
ΔV  
ΔV  
ΔV  
/ΔI  
0.5  
0.6  
1
1
mV/mA  
mV/mA  
mV/mA  
I
I
I
= 0 mA to -2 mA  
= 0 mA to 2 mA  
= 0 mA to -2 mA,  
OUT OUT  
OUT  
OUT  
OUT  
/ΔI  
OUT OUT  
/ΔI  
1.3  
OUT OUT  
T = -40°C to 85°C  
A
ΔV  
/ΔI  
1.3  
mV/mA  
I
= 0 mA to 2 mA,  
OUT OUT  
OUT  
T = -40°C to 85°C  
A
Output Voltage Hysteresis  
Maximum Load Current  
Input-to-Output  
V
115  
±8  
ppm  
mA  
Note 2  
HYS  
I
T = -40°C to 85°C, V = 5.5V  
SC  
A
IN  
Dropout Voltage  
V
137  
107  
mV  
I
= 2 mA  
DROP  
OUT  
Line Regulation  
ΔV  
/ΔV  
300  
µV/V  
V
V
= 2.7V to 5.5V for MCP1525,  
= 4.3V to 5.5V for MCP1541  
OUT  
IN  
IN  
IN  
ΔV  
/ΔV  
350  
µV/V  
V
V
= 2.7V to 5.5V for MCP1525,  
= 4.3V to 5.5V for MCP1541,  
OUT  
IN  
IN  
IN  
T = -40°C to 85°C  
A
Input  
Input Voltage, MCP1525  
Input Voltage, MCP1541  
Input Current  
V
V
2.7  
4.3  
86  
95  
5.5  
5.5  
V
V
T = -40°C to 85°C  
A
IN  
T = -40°C to 85°C  
IN  
IN  
IN  
A
I
I
100  
120  
µA  
µA  
No load  
No load, T = -40°C to 85°C  
A
Note 1: Output temperature coefficient is measured using a “box” method, where the +25°C output voltage is trimmed as close  
to typical as possible. The 85°C output voltage is then again trimmed to zero out the tempco.  
2: Output Voltage Hysteresis is defined as the change in output voltage measured at +25°C before and after cycling the  
temperature to +85°C and -40°C; refer to Section 1.1.10 “Output Voltage Hysteresis”.  
DS21653B-page 2  
© 2005 Microchip Technology Inc.  
MCP1525/41  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = 5.0V, V = GND, I  
= 0 mA and C = 1 µF.  
A
IN  
SS  
OUT  
L
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Bandwidth  
BW  
100  
kHz  
Input and Load Capacitors (see Figure 4-1)  
Input Capacitor  
C
1
0.1  
µF  
µF  
Notes 1  
Notes 2  
IN  
Load Capacitor  
C
10  
L
Noise  
MCP1525 Output Noise Voltage  
E
E
E
E
90  
µV  
µV  
µV  
µV  
0.1 Hz to 10 Hz  
10 Hz to 10 kHz  
0.1 Hz to 10 Hz  
10 Hz to 10 kHz  
no  
no  
no  
no  
P-P  
P-P  
P-P  
P-P  
500  
145  
700  
MCP1541 Output Noise Voltage  
Note 1: The input capacitor is optional; Microchip recommends using a ceramic capacitor.  
2: These parts are tested at both 1 µF and 10 µF to ensure proper operation over this range of load capacitors. A wider  
range of load capacitor values has been characterized successfully, but is not tested in production.  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = 5.0V and V = GND.  
A
IN  
SS  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, TO-92  
Thermal Resistance, SOT-23-3  
T
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
A
T
Note 1  
A
T
A
θ
θ
132  
336  
°C/W  
°C/W  
JA  
JA  
Note 1: These voltage references operate over the Operating Temperature Range, but with reduced performance. In any case,  
the internal Junction Temperature (T ) must not exceed the Absolute Maximum specification of +150°C.  
J
1.1.3  
OUTPUT VOLTAGE DRIFT (TCVOUT)  
1.1  
Specification Descriptions and  
Test Circuits  
The output temperature coefficient or voltage drift is a  
measure of how much the output voltage (VOUT) will  
vary from its initial value with changes in ambient  
temperature. The value specified in the electrical  
specifications is measured and equal to:  
1.1.1  
OUTPUT VOLTAGE  
Output voltage is the reference voltage that is available  
on the output pin (VOUT).  
1.1.2  
INPUT VOLTAGE  
EQUATION 1-1:  
The input (operating) voltage is the range of voltage  
that can be applied to the VIN pin and still have the  
device produce the designated output voltage on the  
VOUT pin.  
ΔVOUT VNOM  
------------------------------------  
TCVOUT  
Where:  
=
(ppm ⁄ °C)  
ΔTA  
VNOM = 2.5V, MCP1525  
VNOM = 4.096V, MCP1541  
© 2005 Microchip Technology Inc.  
DS21653B-page 3  
MCP1525/41  
1.1.4  
DROPOUT VOLTAGE  
1.1.9  
LONG-TERM OUTPUT STABILITY  
The dropout voltage of these devices is measured by  
reducing VIN to the point where the output drops by 1%.  
Under these conditions the dropout voltage is equal to:  
The long-term output stability is measured by exposing  
the devices to an ambient temperature of 125°C  
(Figure 2-9) while configured in the circuit shown in  
Figure 1-1. In this test, all electrical specifications of the  
devices are measured periodically at +25°C.  
EQUATION 1-2:  
VDROP = VIN VOUT  
VIN = 5.5V  
The dropout voltage is affected by ambient  
temperature and load current.  
MCP1525  
MCP1541  
VIN  
VOUT  
In Figure 2-18, the dropout voltage is shown over a  
negative and positive range of output current. For  
currents above zero milliamps, the dropout voltage is  
positive. In this case, the voltage reference is primarily  
powered by VIN. With output currents below zero  
milliamps, the dropout voltage is negative. As the  
output current becomes more negative, the input  
current (IIN) reduces. Under this condition, the output  
current begins to provide the needed power to the  
voltage reference.  
RL  
CL  
1 µF  
VSS  
±2 mA  
square wave  
@ 10 Hz  
FIGURE 1-1:  
Configuration.  
Dynamic Life Test  
1.1.10  
OUTPUT VOLTAGE HYSTERESIS  
The output voltage hysteresis is a measure of the  
output voltage error once the powered devices are  
cycled over the entire operating temperature range.  
The amount of hysteresis can be quantified by  
measuring the change in the +25°C output voltage after  
temperature excursions from +25°C to +85°C to +25°C  
and also from +25°C to -40°C to +25°C.  
1.1.5  
LINE REGULATION  
Line regulation is a measure of the change in output  
voltage (VOUT) as a function of a change in the input  
voltage (VIN). This is expressed as ΔVOUT/ΔVIN and is  
measured in either µV/V or ppm. For example, a 1 µV  
change in VOUT caused by a 500 mV change in VIN  
would net a ΔVOUT/ΔVIN of 2 µV/V, or 2 ppm.  
1.1.6  
LOAD REGULATION (ΔVOUT/ΔIOUT)  
Load regulation is a measure of the change in the  
output voltage (VOUT) as a function of the change in  
output current (IOUT). Load regulation is usually  
measured in mV/mA.  
1.1.7  
INPUT CURRENT  
The input current (operating current) is the current that  
sinks from VIN to VSS without a load current on the out-  
put pin. This current is affected by temperature and the  
output current.  
1.1.8  
INPUT VOLTAGE REJECTION  
RATIO  
The Input Voltage Rejection Ratio (IVRR) is a measure  
of the change in output voltage versus the change in  
input voltage over frequency, as shown in Figure 2-7.  
The calculation used for this plot is:  
EQUATION 1-3:  
VIN  
IVRR = 20log  
(dB)  
-------------  
VOUT  
DS21653B-page 4  
© 2005 Microchip Technology Inc.  
MCP1525/41  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VIN = 5.0V, VSS = GND, IOUT = 0 mA and CL = 1 µF.  
2.525  
2.520  
2.515  
2.510  
2.505  
2.500  
2.495  
2.490  
2.485  
2.480  
2.475  
4.140  
4.130  
4.120  
4.110  
4.100  
4.090  
4.080  
4.070  
4.060  
4.050  
4.040  
140  
120  
100  
80  
MCP1525  
IN = 2.7V to 5.5V  
V
MCP1541  
60  
MCP1541  
VIN = 4.3V to 5.5V  
MCP1525  
40  
20  
0
-50 -25  
0
25 50 75 100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-1:  
Output Voltage vs. Ambient  
FIGURE 2-4:  
Line Regulation vs. Ambient  
Temperature.  
Temperature.  
7
1.0  
MCP1525 and MCP1541  
MCP1525 and MCP1541  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
6
5
4
3
2
1
0
Source Current =  
0 mA to 2 mA  
IOUT = +2 mA  
Sink Current =  
0 mA to -2 mA  
IOUT = -2 mA  
-50  
-25  
0
25  
50  
75  
100  
1
10  
100  
1k  
10k  
100k  
1M  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Load Regulation vs.  
FIGURE 2-5:  
Output Impedance vs.  
Ambient Temperature.  
Frequency.  
1,000  
100  
MCP1541  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MCP1541  
MCP1525  
100  
10  
1
MCP1525  
0.1  
1
10  
100  
1k  
10k 100k  
-50  
-25  
0
25  
50  
75  
100  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-3:  
Input Current vs. Ambient  
FIGURE 2-6:  
Output Noise Voltage  
Temperature.  
Density vs. Frequency.  
© 2005 Microchip Technology Inc.  
DS21653B-page 5  
MCP1525/41  
Note: Unless otherwise indicated, TA = +25°C, VIN = 5.0V, VSS = GND, IOUT = 0 mA and CL = 1 µF.  
90  
80  
70  
60  
50  
40  
30  
4.0975  
4.0970  
4.0965  
4.0960  
4.0955  
4.0950  
MCP1541  
MCP1525  
MCP1541  
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0  
Output Current (mA)  
1
10  
100  
1k  
10k  
100k  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05  
Frequency (Hz)  
FIGURE 2-7:  
Input Voltage Rejection  
FIGURE 2-10:  
MCP1541 Output Voltage  
Ratio vs. Frequency.  
vs. Output Current.  
4.098  
4.097  
4.096  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
MCP1525  
IOUT = +2 mA  
IOUT = 0 mA  
IOUT = -2 mA  
2.502  
2.501  
2.500  
2.499  
2.498  
4.095  
4.094  
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0  
Output Current (mA)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Voltage (V)  
FIGURE 2-8:  
Output Voltage vs. Input  
FIGURE 2-11:  
MCP1525 Output Voltage  
Voltage.  
vs. Output Current.  
10  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
MCP1525  
600 Samples  
Life Test (TA = +125°C)  
MCP1541  
Sink  
8
6
4
+3σ  
Average  
-3σ  
2
MCP1525  
0
-2  
-4  
-6  
-8  
-10  
MCP1541  
Source  
0
200  
400  
600  
800  
1000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Time (hr)  
Input Voltage (V)  
FIGURE 2-9:  
Output Voltage Aging vs.  
FIGURE 2-12:  
Maximum Load Current vs.  
Time (MCP1525 Device Life Test data).  
Input Voltage.  
DS21653B-page 6  
© 2005 Microchip Technology Inc.  
MCP1525/41  
Note: Unless otherwise indicated, TA = +25°C, VIN = 5.0V, VSS = GND, IOUT = 0 mA and CL = 1 µF.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
2
15  
10  
5
MCP1541  
MCP1525  
IOUT  
0
-2  
0
-5  
ΔVOUT  
-10  
-15  
-20  
MCP1525  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Time (100 µs/div)  
FIGURE 2-13:  
Input Current vs. Input  
FIGURE 2-16:  
MCP1525 Load Transient  
Voltage.  
Response.  
6.0  
5.5  
5.0  
4.5  
4.0  
8
6
4
2
0
-2  
-4  
-6  
-8  
MCP1541  
Bandwidth = 0.1 Hz to 10 Hz  
no = 22 µVRMS = 145 µVP-P  
E
VIN  
ΔVOUT  
MCP1525  
Time (1 s/div)  
Time (100 µs/div)  
FIGURE 2-14:  
MCP1541 0.1 Hz to 10 Hz  
FIGURE 2-17:  
MCP1525 Line Transient  
Output Noise.  
Response.  
6
5
150  
MCP1525 and MCP1541  
VIN  
100  
50  
4
VOUT, MCP1541  
3
0
VOUT, MCP1525  
2
-50  
-100  
-150  
1
0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0  
Output Current (mA)  
-1  
Time (200 µs/div)  
FIGURE 2-15:  
Turn-on Transient Time.  
FIGURE 2-18:  
Dropout Voltage vs. Output  
Current.  
© 2005 Microchip Technology Inc.  
DS21653B-page 7  
MCP1525/41  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE.  
MCP1525, MCP1541  
MCP1525, MCP1541  
Symbol  
Description  
(TO-92-3)  
(SOT-23-3)  
3
2
1
1
2
3
VIN  
VOUT  
VSS  
Input Voltage (or Positive Power Supply)  
Output Voltage (or Reference Voltage)  
Ground (or Negative Power Supply)  
3.1  
Input Voltage (V )  
3.3  
Ground (V  
)
SS  
IN  
VIN functions as the positive power supply input (or  
operating input). An optional 0.1 µF ceramic capacitor  
can be placed at this pin if the input voltage is too noisy;  
it needs to be within 5 mm of this pin. The input voltage  
needs to be at least 0.2V higher than the output voltage  
for normal operation.  
Normally connected directly to ground. It can be placed  
at another voltage as long as all of the voltages shift  
with it, and proper bypassing is observed.  
3.2  
Output Voltage (V  
)
OUT  
VOUT is an accurate reference voltage output. It can  
source and sink small currents, and has a low output  
impedance. A load capacitor between 1 µF and 10 µF  
needs to be located within 5 mm of this pin.  
DS21653B-page 8  
© 2005 Microchip Technology Inc.  
MCP1525/41  
4.1.4  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
4.0  
APPLICATIONS INFORMATION  
4.1  
Application Tips  
Mechanical stress due to Printed Circuit Board (PCB)  
mounting can cause the output voltage to shift from its  
initial value. Devices in the SOT-23-3 package are  
generally more prone to assembly stress than devices  
in the TO-92 package. To reduce stress-related output  
voltage shifts, mount the reference on low-stress areas  
of the PCB (i.e., away from PCB edges, screw holes  
and large components).  
4.1.1  
BASIC CIRCUIT CONFIGURATION  
The MCP1525 and MCP1541 voltage reference  
devices should be applied as shown in Figure 4-1 in all  
applications.  
VDD  
MCP1525  
MCP1541  
4.1.5  
OUTPUT FILTERING  
CIN  
If the noise at the output of these voltage references is  
too high for the particular application, it can be easily  
filtered with an external RC filter and op amp buffer.  
The op amp’s input and output voltage ranges need to  
include the reference output voltage.  
VIN  
0.1 µF  
(optional)  
VSS  
VOUT  
VREF  
CL  
VDD  
1 µF to 10 µF  
MCP1525  
MCP1541  
FIGURE 4-1:  
Basic Circuit Configuration.  
VDD  
RFIL  
10 kW  
VIN  
As shown in Figure 4-1, the input voltage is connected  
to the device at the VIN input, with an optional 0.1 µF  
ceramic capacitor. This capacitor would be required if  
the input voltage has excess noise. A 0.1 µF capacitor  
would reject input voltage noise at approximately  
1 to 2 MHz. Noise below this frequency will be amply  
rejected by the input voltage rejection of the voltage ref-  
erence. Noise at frequencies above 2 MHz will be  
beyond the bandwidth of the voltage reference and,  
consequently, not transmitted from the input pin  
through the device to the output.  
VOUT  
VSS  
VREF  
CL  
10 µF  
CFIL  
1 µF  
MCP6021  
FIGURE 4-2:  
Filter.  
Output Noise-Reducing  
The RC filter values are selected for a desired cutoff  
frequency:  
The load capacitance (CL) is required in order to  
stabilize the voltage reference; see Section 4.1.3  
“Load Capacitor”.  
EQUATION 4-1:  
1
------------------------------  
fC  
=
2πRFILCFIL  
4.1.2  
The MCP1525 and MCP1541 voltage references do  
not require an input capacitor across VIN to VSS  
However, for added stability and input voltage transient  
noise reduction, 0.1 µF ceramic capacitor is  
INPUT (BYPASS) CAPACITOR  
The values that are shown in Figure 4-2 (10 kΩ and  
1 µF) will create a first-order, low-pass filter at the  
output of the amplifier. The cutoff frequency of this filter  
is 15.9 Hz, and the attenuation slope is 20 dB/decade.  
The MCP6021 amplifier isolates the loading of this low-  
pass filter from the remainder of the application circuit.  
This amplifier also provides additional drive, with a  
faster response time than the voltage reference.  
.
a
recommended, as shown in Figure 4-1. This capacitor  
should be close to the device (within 5 mm of the pin).  
4.1.3  
LOAD CAPACITOR  
The output capacitor from VOUT to VSS acts as a  
frequency compensation for the references and cannot  
be omitted. Use load capacitors between 1 µF and  
10 µF to compensate these devices. A 10 µF output  
capacitor has slightly better noise, and provides  
additional charge for fast load transients, when  
compared to a 1 µF output capacitor. This capacitor  
should be close to the device (within 5 mm of the pin).  
© 2005 Microchip Technology Inc.  
DS21653B-page 9  
MCP1525/41  
4.2.2  
A/D CONVERTER REFERENCE  
4.2  
Typical Application Circuits  
The MCP1525 and MCP1541 were carefully designed  
to provide a voltage reference for Microchip’s 10-bit  
and 12-bit families of ADCs. The circuit shown in  
Figure 4-4 shows a MCP1541 configured to provide the  
reference to the MCP3201, a 12-bit ADC.  
4.2.1  
NEGATIVE VOLTAGE REFERENCE  
A
negative precision voltage reference can be  
generated by using the MCP1525 or MCP1541 in the  
configuration shown in Figure 4-3.  
V
DD = 5.0V  
VDD = 5.0V  
10 µF  
CIN  
0.1 µF  
MCP1525  
MCP1541  
R1  
10 kΩ  
0.1%  
R2  
10 kΩ  
0.1%  
CL  
10 µF  
VIN  
VIN  
VOUT  
VSS  
VOUT  
VSS  
CL  
10 µF  
VREF  
VREF  
0.1 µF  
MCP606  
VSS = - 5.0V  
VREF = -2.5V, MCP1525  
IN+  
IN–  
VIN  
to PICmicro®  
Microcontroller  
MCP3201  
3
VREF = -4.096V, MCP1541  
FIGURE 4-4:  
ADC Reference Circuit.  
FIGURE 4-3:  
Negative Voltage  
Reference.  
In this circuit, the voltage inversion is implemented  
using the MCP606 and two equal resistors. The voltage  
at the output of the MCP1525 or MCP1541 voltage  
reference drives R1, which is connected to the inverting  
input of the MCP606 amplifier. Since the non-inverting  
input of the amplifier is biased to ground, the inverting  
input will also be close to ground potential. The second  
10 kΩ resistor is placed around the feedback loop of  
the amplifier. Since the inverting input of the amplifier is  
high-impedance, the current generated through R1 will  
also flow through R2. As a consequence, the output  
voltage of the amplifier is equal to -2.5V for the  
MCP1525 and -4.1V for the MCP1541.  
DS21653B-page 10  
© 2005 Microchip Technology Inc.  
MCP1525/41  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Lead TO-92 (Leaded)  
Example:  
XXXXXX  
XXXXXX  
XXYYWW  
NNN  
MCP  
1525I  
TO0544  
256  
3-Lead TO-92 (Lead Free)  
Example:  
XXXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
MCP  
1525I  
e
3
TO^
544256  
3-Lead SOT-23-3  
Example:  
I-Temp  
Code  
Device  
XXNN  
VA25  
MCP1525  
MCP1541  
VANN  
VBNN  
Note:  
Applies to 3-Lead SOT-23.  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2005 Microchip Technology Inc.  
DS21653B-page 11  
MCP1525/41  
3-Lead Plastic Transistor Outline (TO) (TO-92)  
E1  
D
n
1
L
1
2
3
α
B
p
c
A
R
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
3
MAX  
n
p
Number of Pins  
3
Pitch  
.050  
.143  
.186  
.183  
.090  
.555  
.017  
.019  
5
1.27  
Bottom to Package Flat  
Overall Width  
A
E1  
D
R
L
.130  
.155  
3.30  
4.45  
3.62  
4.71  
4.64  
2.29  
14.10  
0.43  
0.48  
5
3.94  
.175  
.170  
.085  
.500  
.014  
.016  
4
.195  
.195  
.095  
.610  
.020  
.022  
6
4.95  
4.95  
2.41  
15.49  
0.51  
0.56  
6
Overall Length  
4.32  
2.16  
12.70  
0.36  
0.41  
4
Molded Package Radius  
Tip to Seating Plane  
Lead Thickness  
Lead Width  
c
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
2
3
4
2
3
4
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: TO-92  
Drawing No. C04-101  
DS21653B-page 12  
© 2005 Microchip Technology Inc.  
MCP1525/41  
3-Lead Plastic Small Outline Transistor (TT) (SOT23)  
E
E1  
2
B
p1  
D
n
p
1
α
c
A
A2  
A1  
φ
β
L
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
3
3
Pitch  
.038  
.076  
.040  
.037  
.002  
.093  
.051  
.115  
.018  
5
0.96  
1.92  
1.01  
0.95  
0.06  
2.37  
1.30  
2.92  
0.45  
5
p1  
Outside lead pitch (basic)  
Overall Height  
A
A2  
A1  
E
.035  
.044  
0.89  
1.12  
Molded Package Thickness  
.035  
.000  
.083  
.047  
.110  
.014  
0
.040  
.004  
.104  
.055  
.120  
.022  
10  
0.88  
0.01  
2.10  
1.20  
2.80  
0.35  
0
1.02  
0.10  
2.64  
1.40  
3.04  
0.55  
10  
Standoff  
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.004  
.015  
0
.006  
.017  
5
.007  
.020  
10  
0.09  
0.37  
0
0.14  
0.44  
5
0.18  
0.51  
10  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: TO-236  
Drawing No. C04-104  
© 2005 Microchip Technology Inc.  
DS21653B-page 13  
MCP1525/41  
NOTES:  
DS21653B-page 14  
© 2005 Microchip Technology Inc.  
MCP1525/41  
APPENDIX A: REVISION HISTORY  
Revision B (February 2005)  
The following is the list of modifications:  
1. Added bandwidth and capacitor specifications  
(Section 1.0 “Electrical Characteristics”).  
2. Moved Section 1.1 “Specification Descrip-  
tions and Test Circuits” to the specifications  
section (Section 1.0 “Electrical Characteris-  
tics”).  
3. Corrected plots in Section 2.0 “Typical Perfor-  
mance Curves”.  
4. Added Section 3.0 “Pin Descriptions”.  
5. Corrected package markings in  
Section 5.0 “Packaging Information”.  
6. Added Appendix A: “Revision History”.  
Revision A (July 2001)  
• Original Release of this Document.  
© 2005 Microchip Technology Inc.  
DS21653B-page 15  
MCP1525/41  
NOTES:  
DS21653B-page 16  
© 2005 Microchip Technology Inc.  
MCP1525/41  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
MCP1525T-I/TT: Tape and Reel,  
Temperature Package  
Range  
Industrial Temperature,  
SOT23 package.  
b)  
c)  
MCP1525-I/TO: Industrial Temperature,  
TO-92 package.  
Device  
MCP1525:  
MCP1541:  
=
=
2.5V Voltage Reference  
4.096 Voltage Reference  
MCP1541T-I/TT: Tape and Reel,  
Industrial Temperature,  
SOT23 package.  
Temperature Range  
Package  
I
=
-40°C to +85°C  
d)  
MCP1541-I/TO: Industrial Temperature,  
TO-92 package.  
TO  
TT  
=
=
TO-92, Plastic Transistor Outline, 3-Lead  
SOT23, Plastic Small Outline Transistor, 3-Lead  
© 2005 Microchip Technology Inc.  
DS21653B-page 17  
MCP1525/41  
NOTES:  
DS21653B-page 18  
© 2005 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,  
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel and Total  
Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2005 Microchip Technology Inc.  
DS21653B-page 19  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
10/20/04  
DS21653B-page 20  
© 2005 Microchip Technology Inc.  

相关型号:

MCP1541I/TO

2.5V and 4.096V Voltage References
MICROCHIP

MCP1541I/TT

2.5V and 4.096V Voltage References
MICROCHIP

MCP1541T-I

2.5V and 4.096V Voltage References
MICROCHIP

MCP1541T-I/TO

THREE TERM VOLTAGE REFERENCE
MICROCHIP

MCP1541T-I/TT

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO3, PLASTIC, TO-236, SOT-23, 3 PIN
MICROCHIP

MCP1541T-ITT

2.5V and 4.096V Voltage References
MICROCHIP

MCP1601

500 mA Synchronous BUCK Regulator
MICROCHIP

MCP1601T-I/MS

1 A SWITCHING REGULATOR, 1000 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, MSOP-8
MICROCHIP

MCP1601_13

500 mA Synchronous BUCK Regulator
MICROCHIP

MCP1602

2.0 MHz, 500 mA Synchronous Buck Regulator with Power-Good
MICROCHIP

MCP1602-120I/MS

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, MSOP-8
MICROCHIP

MCP1602-150I/MF

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO8, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-8
MICROCHIP