MCP1640-ICHY [MICROCHIP]

0.65V Start-Up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option;
MCP1640-ICHY
型号: MCP1640-ICHY
厂家: MICROCHIP    MICROCHIP
描述:

0.65V Start-Up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option

文件: 总32页 (文件大小:511K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1640/B/C/D  
0.65V Start-Up Synchronous Boost Regulator  
with True Output Disconnect or Input/Output Bypass Option  
Features  
General Description  
• Up to 96% Typical Efficiency  
The MCP1640/B/C/D is a compact, high-efficiency,  
fixed frequency, synchronous step-up DC-DC con-  
verter. It provides an easy-to-use power supply solution  
for applications powered by either single-cell, two-cell,  
or three-cell alkaline, NiCd, NiMH, and single-cell Li-Ion  
or Li-Polymer batteries.  
• 800 mA Typical Peak Input Current Limit:  
- IOUT > 100 mA @ 1.2V VIN, 3.3V VOUT  
- IOUT > 350 mA @ 2.4V VIN, 3.3V VOUT  
- IOUT > 350 mA @ 3.3V VIN, 5.0V VOUT  
• Low Start-Up Voltage: 0.65V, typical 3.3V VOUT  
@ 1 mA  
Low-voltage technology allows the regulator to start-up  
without high inrush current or output voltage overshoot  
from a low 0.65V input. High efficiency is accomplished  
by integrating the low resistance N-Channel Boost  
switch and synchronous P-Channel switch. All  
compensation and protection circuitry is integrated to  
minimize the number of external components. For  
standby applications, the MCP1640 consumes only  
19 µA while operating at no load, and provides a true  
disconnect from input to output while in Shutdown  
(EN = GND). Additional device options are available by  
operating in PWM-Only mode and connecting input to  
output while the device is in Shutdown.  
• Low Operating Input Voltage: 0.35V, typical  
3.3VOUT @ 1 mA  
• Adjustable Output Voltage Range: 2.0V to 5.5V  
• Maximum Input Voltage VOUT < 5.5V  
• Automatic PFM/PWM Operation (MCP1640/C):  
- PFM Operation Disabled (MCP1640B/D)  
- PWM Operation: 500 kHz  
• Low Device Quiescent Current: 19 µA, typical  
PFM Mode (not switching)  
• Internal Synchronous Rectifier  
• Internal Compensation  
The “true” load disconnect mode provides input-to-out-  
put isolation while the device is disabled by removing  
the normal boost regulator diode path from input-to-  
output. The Input-to-Output Bypass mode option con-  
nects the input to the output using the integrated low  
resistance P-Channel MOSFET, which provides a low  
bias voltage for circuits operating in Deep Sleep mode.  
Both options consume less than 1 µA of input current.  
• Inrush Current Limiting and Internal Soft Start  
• Selectable, Logic Controlled Shutdown States:  
- True Load Disconnect Option (MCP1640/B)  
- Input to Output Bypass Option (MCP1640C/D)  
• Shutdown Current (All States): < 1 µA  
• Low Noise, Anti-Ringing Control  
• Overtemperature Protection  
Output voltage is set by a small external resistor  
divider. Two package options are available, 6-Lead  
SOT-23 and 8-Lead 2 x 3 mm DFN.  
• Available Packages:  
- 6-Lead SOT-23  
- 8-Lead 2 x 3 mm DFN  
Package Types  
Applications  
MCP1640  
MCP1640  
6-Lead SOT-23  
8-Lead 2 x 3 DFN*  
• One, Two and Three Cell Alkaline and NiMH/NiCd  
Portable Products  
VIN  
V
V
V
V
SW  
GND  
EN  
1
2
8
7
1
6
5
4
• Single-Cell Li-Ion to 5V Converters  
• Li Coin Cell Powered Devices  
• Personal Medical Products  
• Wireless Sensors  
FB  
IN  
S
P
EP  
9
GND  
OUTS  
OUTP  
VOUT  
VFB  
2
3
3
4
6
5
GND  
EN  
SW  
• Handheld Instruments  
• GPS Receivers  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
• Bluetooth Headsets  
• +3.3V to +5.0V Distributed Power Supply  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 1  
MCP1640/B/C/D  
Typical Application  
L1  
4.7 µH  
VOUT  
VIN  
0.9V to 1.7V  
3.3V @ 100 mA  
SW  
VOUT  
VIN  
976 k  
COUT  
10 µF  
CIN  
4.7 µF  
+
VFB  
EN  
562 k  
GND  
-
L1  
4.7 µH  
VOUT  
5.0V @ 300 mA  
VIN  
3.0V to 4.2V  
SW  
VOUTS  
VOUTP  
VIN  
976 k  
COUT  
10 µF  
CIN  
4.7 µF  
+
VFB  
EN  
309 k  
PGND  
SGND  
-
Efficiency vs. IOUT for 3.3VOUT  
100.0  
80.0  
60.0  
40.0  
VIN = 2.5V  
VIN = 0.8V  
VIN = 1.2V  
0.1  
1.0  
10.0  
100.0  
1000.0  
Output Current (mA)  
DS20002234D-page 2  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational sections of this  
specification is not intended. Exposure to maximum  
rating conditions for extended periods may affect  
device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
EN, VFB, VIN, VSW, VOUT - GND .........................+6.5V  
EN, VFB....<maximum of VOUT or VIN > (GND – 0.3V)  
Output Short-Circuit Current ...................... Continuous  
Output Current Bypass Mode...........................400 mA  
Power Dissipation ............................ Internally Limited  
Storage Temperature .........................-65°C to +150°C  
Ambient Temp. with Power Applied......-40°C to +85°C  
Operating Junction Temperature........-40°C to +125°C  
ESD Protection On All Pins:  
HBM........................................................ 3 kV  
MM.........................................................300V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V,  
OUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
I
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Characteristics  
Minimum Start-Up Voltage  
VIN  
VIN  
0.65  
0.35  
0.8  
V
V
Note 1  
Note 1  
Minimum Input Voltage After  
Start-Up  
Output Voltage Adjust Range  
Maximum Output Current  
VOUT  
IOUT  
2.0  
5.5  
V
VOUT VIN; Note 2  
1.2V VIN, 2.0V VOUT  
1.5V VIN, 3.3V VOUT  
3.3V VIN, 5.0V VOUT  
150  
150  
350  
1.21  
10  
mA  
mA  
mA  
V
Feedback Voltage  
VFB  
IVFB  
1.175  
1.245  
Feedback Input Bias Current  
pA  
µA  
Quiescent Current – PFM  
Mode  
IQPFM  
19  
30  
Measured at VOUT = 4.0V;  
EN = VIN, IOUT = 0 mA;  
Note 3  
Quiescent Current – PWM  
Mode  
IQPWM  
IQSHDN  
INLK  
220  
0.7  
2.3  
µA  
µA  
µA  
µA  
Measured at VOUT = 4.0V;  
EN = VIN, IOUT = 0 mA;  
Note 3  
Quiescent Current – Shutdown  
NMOS Switch Leakage  
VOUT = EN = GND;  
Includes N-Channel and  
P-Channel Switch Leakage  
0.3  
VIN = VSW = 5V;  
VOUT = 5.5V  
VEN = VFB = GND  
PMOS Switch Leakage  
IPLK  
0.05  
VIN = VSW = GND;  
VOUT = 5.5V  
Note 1: 3.3 kresistive load, 3.3VOUT (1 mA).  
2: For VIN > VOUT, VOUT will not remain in regulation.  
3: QOUT is measured at VOUT; VOUT is externally supplied with a voltage higher than the nominal 3.3V output  
I
(device is not switching); no load; VIN quiescent current will vary with boost ratio. VIN quiescent current  
can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)).  
4: Peak current limit determined by characterization, not production tested.  
5: 220resistive load, 3.3VOUT (15 mA).  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 3  
MCP1640/B/C/D  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V,  
I
OUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
NMOS Switch On Resistance  
PMOS Switch On Resistance  
RDS(ON)N  
RDS(ON)P  
IN(MAX)  
0.6  
0.9  
VIN = 3.3V, ISW = 100 mA  
VIN = 3.3V, ISW = 100 mA  
Note 4  
NMOS Peak Switch Current  
Limit  
600  
850  
mA  
VOUT Accuracy  
Line Regulation  
Load Regulation  
VOUT  
%
-3  
-1  
-1  
+3  
1
%
%/V  
%
Includes Line and Load  
Regulation; VIN = 1.5V  
VOUT/VOUT  
/VIN|  
)
0.01  
0.01  
VIN = 1.5V to 3V  
IOUT = 25 mA  
VOUT/VOUT  
|
1
IOUT = 25 mA to 100 mA;  
VIN = 1.5V  
Maximum Duty Cycle  
Switching Frequency  
EN Input Logic High  
EN Input Logic Low  
EN Input Leakage Current  
Soft-Start Time  
DCMAX  
fSW  
88  
425  
90  
90  
500  
575  
%
kHz  
VIH  
%of VIN IOUT = 1 mA  
%of VIN IOUT = 1 mA  
VIL  
20  
IENLK  
tSS  
0.005  
750  
µA  
µS  
VEN = 5V  
EN Low-to-High,  
90% of VOUT; Note 5  
Thermal Shutdown Die  
Temperature  
TSD  
150  
C  
C  
Die Temperature Hysteresis  
TSDHYS  
10  
Note 1: 3.3 kresistive load, 3.3VOUT (1 mA).  
2: For VIN > VOUT, VOUT will not remain in regulation.  
3: IQOUT is measured at VOUT; VOUT is externally supplied with a voltage higher than the nominal 3.3V output  
(device is not switching); no load; VIN quiescent current will vary with boost ratio. VIN quiescent current  
can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)).  
4: Peak current limit determined by characterization, not production tested.  
5: 220resistive load, 3.3VOUT (15 mA).  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, V = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA.  
OUT  
IN  
OUT  
IN  
OUT  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Operating Junction Temperature  
Range  
TJ  
-40  
+125  
°C  
Steady State  
Transient  
Storage Temperature Range  
TA  
TJ  
-65  
+150  
+150  
°C  
°C  
Maximum Junction Temperature  
Package Thermal Resistances  
Thermal Resistance, 6LD-SOT-23  
Thermal Resistance, 8LD-2x3 DFN  
JA  
JA  
190.5  
75  
°C/W  
°C/W  
DS20002234D-page 4  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = EN = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA, T = +25°C.  
IN  
OUT  
IN  
OUT  
LOAD  
A
27.5  
100  
VIN = 1.6V  
VIN = 1.2V  
VOUT = 2.0V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 5.0V  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
VIN = 0.8V  
VIN = 1.2V  
VOUT = 3.3V  
VOUT = 2.0V  
PWM / PFM  
PWM Only  
-40 -25 -10  
5
20  
35  
50  
65  
80  
0.01  
0.1  
1
10  
IOUT (mA)  
100  
1000  
Ambient Temperature (°C)  
FIGURE 2-1:  
Temperature in PFM Mode.  
VOUT IQ vs. Ambient  
FIGURE 2-4:  
Efficiency vs. IOUT  
2.0V VOUT PFM/PWM Mode  
.
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
VIN = 2.5V  
VOUT = 3.3V  
VIN = 1.2V  
VOUT = 5.0V  
VOUT = 3.3V  
275  
250  
225  
200  
175  
150  
VIN = 0.8V  
VIN = 1.2V  
PWM / PFM  
PWM Only  
-40 -25 -10  
5
20  
35  
50  
65  
80  
0.01  
0.1  
1
10  
IOUT (mA)  
100  
1000  
Ambient Temperature (°C)  
FIGURE 2-2:  
Temperature in PWM Mode.  
V
OUT IQ vs. Ambient  
FIGURE 2-5:  
Efficiency vs. IOUT  
3.3V VOUT PFM/PWM Mode  
.
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
VIN = 3.6V  
VOUT = 5.0V  
VOUT = 5.0V  
500  
400  
300  
200  
100  
0
VOUT = 3.3V  
VIN = 1.8V  
VIN = 1.2V  
VOUT = 2.0V  
PWM / PFM  
PWM Only  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.01  
0.1  
1
10  
IOUT (mA)  
100  
1000  
VIN (V)  
FIGURE 2-3:  
Maximum IOUT vs. VIN After  
FIGURE 2-6:  
5.0V VOUT PFM/PWM Mode  
Start-Up, VOUT 10% Below Regulation Point.  
Efficiency vs. IOUT.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 5  
MCP1640/B/C/D  
Note: Unless otherwise indicated, V = EN = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA, T = +25°C.  
IN  
OUT  
IN  
OUT  
LOAD A  
1.00  
3.33  
VIN = 1.2V  
IOUT = 15 mA  
VOUT = 3.3V  
3.325  
3.32  
0.85  
0.70  
0.55  
0.40  
0.25  
VIN = 1.8V  
3.315  
3.31  
Startup  
3.305  
3.3  
Shutdown  
VIN = 0.8V  
3.295  
3.29  
3.285  
-40 -25 -10  
5
20  
35  
50  
65  
80  
0
20  
40  
60  
80  
100  
Ambient Temperature (°C)  
IOUT (mA)  
FIGURE 2-7:  
3.3V VOUT vs. Ambient  
FIGURE 2-10:  
Minimum Start-Up and  
Temperature.  
Shutdown VIN into Resistive Load vs. IOUT  
.
3.38  
525  
520  
515  
510  
505  
500  
495  
490  
485  
480  
VIN = 1.5V  
VOUT = 3.3V  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
IOUT = 5 mA  
IOUT = 15 mA  
IOUT = 50 mA  
-40 -25 -10  
5
20  
35  
50  
65  
80  
-40 -25 -10  
5
20  
35  
50  
65  
80  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-8:  
3.3V VOUT vs. Ambient  
FIGURE 2-11:  
F
OSC vs. Ambient  
Temperature.  
Temperature.  
4.5  
4
3.40  
IOUT = 5 mA  
VOUT = 5.0V  
TA = +85°C  
3.36  
3.32  
3.28  
3.24  
3.20  
3.5  
3
TA = +25°C  
VOUT = 3.3V  
VOUT = 2.0V  
2.5  
2
TA = -40°C  
1.5  
1
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
0.8  
1.2  
1.6  
2
2.4  
2.8  
IOUT (mA)  
VIN (V)  
FIGURE 2-9:  
3.3V VOUT vs. VIN.  
FIGURE 2-12:  
Threshold vs. IOUT  
PWM Pulse-Skipping Mode  
.
DS20002234D-page 6  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
Note: Unless otherwise indicated, V = EN = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA, T = +25°C.  
IN  
OUT  
IN  
OUT  
LOAD A  
10000  
PWM / PFM  
PWM Only  
1000  
100  
10  
VOUT = 5.0V  
VOUT = 3.3V  
VOUT = 2.0V  
VOUT = 5.0V  
VOUT = 2.0V  
VOUT = 3.3V  
0.8 1.1 1.4 1.7  
2
2.3 2.6 2.9 3.2 3.5  
VIN (V)  
FIGURE 2-13:  
Input No Load Current vs.  
FIGURE 2-16:  
MCP1640 3.3V VOUT PFM  
VIN.  
Mode Waveforms.  
5
4
IOUT = 1 mA  
VOUT  
20 mV/DIV  
AC  
P - Channel  
Coupled  
3
2
1
0
VSW  
2V/DIV  
IL  
0.05 mA/DIV  
N - Channel  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
1 µs/DIV  
> VIN or VOUT  
FIGURE 2-14:  
N-Channel and P-Channel  
FIGURE 2-17:  
MCP1640B 3.3V VOUT  
R
DSON vs. > of VIN or VOUT  
.
PWM Mode Waveforms.  
60  
50  
40  
30  
20  
10  
0
VOUT = 5.0V  
VOUT = 3.3V  
VOUT = 2.0V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
VIN (V)  
FIGURE 2-15:  
Average of PFM/PWM  
FIGURE 2-18:  
MCP1640/B High Load  
Threshold Current vs. VIN.  
Waveforms.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 7  
MCP1640/B/C/D  
Note: Unless otherwise indicated, V = EN = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA, T = +25°C.  
IN  
OUT  
IN  
OUT  
LOAD  
A
MCP1640B PWM  
Mode Only  
VOUT  
100 mV/DIV  
AC  
VOUT  
1V/DIV  
Coupled  
ISTEP = 1 mA to 75 mA  
VIN  
1V/DIV  
IOUT  
50 mA/DIV  
VEN  
1V/DIV  
500 µs/DIV  
100 µs/DIV  
FIGURE 2-19:  
3.3V Start-Up After Enable.  
FIGURE 2-22:  
MCP1640B 3.3V VOUT Load  
Transient Waveforms.  
MCP1640B PWM  
Mode Only  
VOUT  
1V/DIV  
VOUT  
50 mV/DIV  
AC  
Coupled  
ISTEP = 1 mA to 50 mA  
VIN  
1V/DIV  
IOUT  
50 mA/DIV  
VEN  
1V/DIV  
100 µs/DIV  
500 µs/DIV  
FIGURE 2-20:  
3.3V Start-Up when  
FIGURE 2-23:  
MCP1640B 2.0V VOUT Load  
VIN = VENABLE  
.
Transient Waveforms.  
PFM  
MODE  
PWM  
MODE  
VOUT  
VOUT  
50 mV/DIV  
AC  
100 mV/DIV  
AC  
Coupled  
Coupled  
ISTEP = 1 mA to 75 mA  
VIN  
1V/DIV  
VSTEP from  
1V to 2.5V  
IOUT  
50 mA/DIV  
200 µs/DIV  
100 µs/DIV  
FIGURE 2-21:  
MCP1640 3.3V VOUT Load  
FIGURE 2-24:  
3.3V VOUT Line Transient  
Transient Waveforms.  
Waveforms.  
DS20002234D-page 8  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP1640/B/C/D MCP1640/B/C/D  
Symbol  
Description  
2x3 DFN  
SOT-23  
1
2
4
3
VFB  
SGND  
PGND  
EN  
Feedback Voltage Pin  
Signal Ground Pin  
3
Power Ground Pin  
4
Enable Control Input Pin  
5
1
SW  
Switch Node, Boost Inductor Input Pin  
6
6
VOUTP Output Voltage Power Pin  
VOUTS Output Voltage Sense Pin  
7
8
VIN  
EP  
Input Voltage Pin  
9
2
Exposed Thermal Pad (EP); must be connected to VSS  
GND  
VOUT  
Ground Pin  
5
Output Voltage Pin  
3.1  
Feedback Voltage Pin (V  
)
3.6  
Output Voltage Power Pin (V  
)
FB  
OUTP  
The output voltage power pin connects the output  
voltage to the switch node. High current flows through  
the integrated P-Channel and out of this pin to the  
output capacitor and the output. In the 2x3 DFN  
package, VOUTP and VOUTS are connected externally.  
The VFB pin is used to provide output voltage regulation  
by using a resistor divider. Feedback voltage will be  
1.21V typical with the output voltage in regulation.  
3.2  
Signal Ground Pin (S  
)
GND  
3.7  
Output Voltage Sense Pin (V  
)
OUTS  
The signal ground pin is used as a return for the  
integrated VREF and error amplifier. In the 2x3 DFN  
package, the SGND and power ground (PGND) pins are  
connected externally.  
The output voltage sense pin connects the regulated  
output voltage to the internal bias circuits. In the  
2x3 DFN package, the VOUTS and output voltage  
power (VOUTP) pins are connected externally.  
3.3  
Power Ground Pin (P  
)
GND  
3.8  
Power Supply Input Voltage Pin (V )  
IN  
The power ground pin is used as a return for the  
high-current N-Channel switch. In the 2x3 DFN  
package, the PGND and SGND pins are connected  
externally.  
Connect the input voltage source to VIN. The input  
source should be decoupled to GND with a 4.7 µF  
minimum capacitor.  
3.9  
Exposed Thermal Pad (EP)  
3.4  
Enable Pin (EN)  
There is no internal electrical connection between the  
Exposed Thermal Pad (EP) and the SGND and PGND  
pins. They must be connected to the same potential on  
the Printed Circuit Board (PCB).  
The EN pin is a logic-level input used to enable or  
disable device switching and lower quiescent current  
while disabled. A logic high (>90% of VIN) will enable  
the regulator output. A logic low (<20% of VIN) will  
ensure that the regulator is disabled.  
3.10 Ground Pin (GND)  
The ground or return pin is used for circuit ground  
connection. Length of trace from input cap return,  
output cap return, and GND pin should be made as  
short as possible to minimize noise on the GND pin. In  
the SOT-23-6 package, a single ground pin is used.  
3.5  
Switch Node Pin (SW)  
Connect the inductor from the input voltage to the SW  
pin. The SW pin carries inductor current and can be as  
high as 800 mA peak. The integrated N-Channel switch  
drain and integrated P-Channel switch source are  
internally connected at the SW node.  
3.11 Output Voltage Pin (V  
)
OUT  
The output voltage pin connects the integrated  
P-Channel MOSFET to the output capacitor. The FB  
voltage divider is also connected to the VOUT pin for  
voltage regulation.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 9  
MCP1640/B/C/D  
NOTES:  
DS20002234D-page 10  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
For noise immunity, the N-Channel MOSFET current  
sense is blanked for approximately 100 ns. With a typ-  
ical minimum duty cycle of 100 ns, the MCP1640B/D  
continues to switch at a constant frequency under light  
load conditions. Figure 2-12 represents the input volt-  
age versus load current for the pulse skipping threshold  
in PWM-Only mode. At lighter loads, the MCP1640B/D  
devices begin to skip pulses.  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Option Overview  
The MCP1640/B/C/D family of devices is capable of  
low start-up voltage and delivers high efficiency over a  
wide load range for single-cell, two-cell, or three-cell  
alkaline, NiCd, NiMH and single-cell Li-Ion battery  
inputs. A high level of integration lowers total system  
cost, eases implementation and reduces board area.  
4.1.3  
TRUE OUTPUT DISCONNECT  
MODE OPTION  
The devices feature low start-up voltage, adjustable  
output voltage, PWM/PFM mode operation, low IQ,  
integrated synchronous switch, internal compensation,  
low noise anti-ring control, inrush current limit, and soft  
start.  
The MCP1640/B devices incorporate a true output  
disconnect feature. With the EN pin pulled low, the  
output of the MCP1640/B is isolated or disconnected  
from the input by turning off the integrated P-Channel  
switch and removing the switch bulk diode connection.  
This removes the DC path that is typical in boost con-  
verters, which allows the output to be disconnected  
from the input. During this mode, less than 1 µA of cur-  
rent is consumed from the input (battery). True output  
disconnect does not discharge the output; the output  
voltage is held up by the external COUT capacitance.  
There are two options for the MCP1640/B/C/D family:  
• PWM/PFM mode or PWM-Only mode  
• “True Output Disconnect” mode or Input-to-Output  
Bypass mode  
4.1.1  
PWM/PFM MODE OPTION  
The MCP1640/C devices use an automatic switchover  
from PWM to PFM mode for light load conditions to  
maximize efficiency over a wide range of output  
current. During PFM mode, higher peak current is used  
to pump the output up to the threshold limit. While  
operating in PFM or PWM mode, the P-Channel switch  
is used as a synchronous rectifier, turning off when the  
inductor current reaches 0 mA to maximize efficiency.  
4.1.4  
INPUT BYPASS MODE OPTION  
The MCP1640C/D devices incorporate the Input  
Bypass shutdown option. With the EN input pulled low,  
the output is connected to the input using the internal  
P-Channel MOSFET. In this mode, the current draw  
from the input (battery) is less than 1 µA with no load.  
Input Bypass mode is used when the input voltage  
range is high enough for the load to operate in Sleep or  
Low IQ mode. When a higher regulated output voltage  
is necessary to operate the application, the EN input is  
pulled high, enabling the boost converter.  
In PFM mode, a comparator is used to terminate  
switching when the output voltage reaches the upper  
threshold limit. Once switching has terminated, the  
output voltage will decay or coast down. During this  
period, very low IQ is consumed from the device and  
input source, which keeps power efficiency high at light  
load.  
TABLE 4-1:  
PART NUMBER SELECTION  
Input  
Part  
Number  
PWM/ PWM  
PFM -Only Disconnect Output  
Bypass  
True  
-to-  
The disadvantages of PWM/PFM mode are higher out-  
put ripple voltage and variable PFM mode frequency.  
The PFM mode frequency is a function of input voltage,  
output voltage and load. While in PFM mode, the boost  
converter pumps the output up at a switching frequency  
of 500 kHz.  
MCP1640  
X
X
X
MCP1640B  
MCP1640C  
MCP1640D  
X
X
X
X
X
4.1.2  
PWM-ONLY MODE OPTION  
The MCP1640B/D devices disable PFM mode  
switching, and operate only in PWM mode over the  
entire load range. During periods of light load opera-  
tion, the MCP1640B/D continues to operate at a con-  
stant 500 kHz switching frequency, keeping the output  
ripple voltage lower than PFM mode.  
During PWM-Only mode, the MCP1640B/D P-Channel  
switch acts as a synchronous rectifier by turning off (to  
prevent reverse current flow from the output cap back  
to the input) in order to keep efficiency high.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 11  
MCP1640/B/C/D  
Figure 4-1 depicts the functional block diagram of the  
MCP1640/B/C/D.  
4.2  
Functional Description  
The MCP1640/B/C/D is a compact, high-efficiency,  
fixed frequency, step-up DC-DC converter that  
provides an easy-to-use power supply solution for  
applications powered by either single-cell, two-cell, or  
three-cell alkaline, NiCd, NiMH, and single-cell Li-Ion or  
Li-Polymer batteries.  
V
OUT  
Internal  
Bias  
V
IN  
I
ZERO  
Direction  
Control  
SW  
EN  
Soft Start  
.3V  
0V  
Gate Drive  
and  
Shutdown  
Control  
Logic  
I
I
LIMIT  
SENSE  
Slope  
Comp.  
GND  
Oscillator  
S
PWM/PFM  
Logic  
1.21V  
FB  
EA  
FIGURE 4-1:  
MCP1640/B/C/D Block Diagram.  
current is limited to 50% of its nominal value. Once the  
output voltage reaches 1.6V, normal closed-loop PWM  
operation is initiated.  
The MCP1640/B/C/D charges an internal capacitor  
with a very weak current source. The voltage on this  
capacitor, in turn, slowly ramps the current limit of the  
boost switch to its nominal value. The soft-start  
capacitor is completely discharged in the event of a  
commanded shutdown or a thermal shutdown.  
4.2.1  
LOW-VOLTAGE START-UP  
The MCP1640/B/C/D is capable of starting from a low  
input voltage. Start-up voltage is typically 0.65V for a  
3.3V output and 1 mA resistive load.  
When enabled, the internal start-up logic turns the  
rectifying P-Channel switch on until the output  
capacitor is charged to a value close to the input  
voltage. The rectifying switch is current-limited to  
approximately 100 mA during this time. This will affect  
the start-up under higher load currents, and the device  
may not start to the nominal value. After charging the  
output capacitor to the input voltage, the device starts  
switching. If the input voltage is below 1.6V, the device  
runs open-loop with a fixed duty cycle of 70% until the  
output reaches 1.6V. During this time, the boost switch  
There is no undervoltage lockout feature for the  
MCP1640/B/C/D. The device will start-up at the lowest  
possible voltage and run down to the lowest possible  
voltage. For typical battery applications, this may result  
in “motor-boating” (emitting a low-frequency tone) for  
deeply discharged batteries.  
DS20002234D-page 12  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
4.2.2  
PWM-ONLY MODE OPERATION  
4.2.5  
ENABLE PIN  
In normal PWM operation, the MCP1640/B/C/D  
operates as a fixed frequency, synchronous boost  
converter. The switching frequency is internally  
maintained with a precision oscillator typically set to  
500 kHz. The MCP1640B/D devices will operate in  
PWM-Only mode even during periods of light load  
operation. By operating in PWM-Only mode, the output  
ripple remains low and the frequency is constant.  
Operating in fixed PWM mode results in lower  
efficiency during light load operation (when compared  
to PFM mode (MCP1640/C)).  
The enable pin is used to turn the boost converter on  
and off. The enable threshold voltage varies with input  
voltage. To enable the boost converter, the EN voltage  
level must be greater than 90% of the VIN voltage. To  
disable the boost converter, the EN voltage must be  
less than 20% of the VIN voltage.  
4.2.6  
INTERNAL BIAS  
The MCP1640/B/C/D gets its start-up bias from VIN.  
Once the output exceeds the input, bias comes from  
the output. Therefore, once started, operation is  
completely independent of VIN. Operation is only  
limited by the output power level and the input source  
series resistance. When started, the output will remain  
in regulation down to 0.35V typical with 1 mA output  
current for low source impedance inputs.  
Lossless current sensing converts the peak current sig-  
nal to a voltage to sum with the internal slope compen-  
sation. This summed signal is compared to the voltage  
error amplifier output to provide a peak current control  
command for the PWM signal. The slope  
compensation is adaptive to the input and output  
voltage. Therefore, the converter provides the proper  
amount of slope compensation to ensure stability, but is  
not excessive, which causes a loss of phase margin.  
The peak current limit is set to 800 mA typical.  
4.2.7  
INTERNAL COMPENSATION  
The error amplifier, with its associated compensation  
network, completes the closed-loop system by  
comparing the output voltage to a reference at the  
input of the error amplifier, and feeding the amplified  
and inverted signal to the control input of the inner  
current loop. The compensation network provides  
phase leads and lags at appropriate frequencies to  
cancel excessive phase lags and leads of the power  
circuit. All necessary compensation components and  
slope compensation are integrated.  
4.2.3  
PFM MODE OPERATION  
The MCP1640/C devices are capable of operating in  
normal PWM mode and PFM mode to maintain high  
efficiency at all loads. In PFM mode, the output ripple  
has a variable frequency component that changes with  
the input voltage and output current. The value of the  
output capacitor changes the low-frequency compo-  
nent ripple. Output ripple peak-to-peak values are not  
affected by the output capacitor. With no load, the qui-  
escent current draw from the output is typically 19 µA.  
This is not a switching current and is not dependent on  
the input and output parameters. The no-load input cur-  
rent drawn from the battery depends on the above  
parameters. Its variation is shown in Figure 2-13. The  
PFM mode can be disabled in selected device options.  
4.2.8  
SHORT CIRCUIT PROTECTION  
Unlike most boost converters, the MCP1640/B/C/D  
allows its output to be shorted during normal operation.  
The internal current limit and overtemperature  
protection limit excessive stress and protect the device  
during periods of short circuit, overcurrent and over-  
temperature. While operating in Bypass mode, the  
P-Channel current limit is inhibited to minimize  
quiescent current.  
PFM operation is initiated if the output load current falls  
below an internally programmed threshold. The output  
voltage is continuously monitored. When the output  
voltage drops below its nominal value, PFM operation  
pulses one or several times to bring the output back  
into regulation. If the output load current rises above  
the upper threshold, the MCP1640/C transitions  
smoothly into PWM mode.  
4.2.9  
LOW NOISE OPERATION  
The MCP1640/B/C/D integrates a low noise anti-ring  
switch that damps the oscillations typically observed at  
the switch node of a boost converter when operating in  
the Discontinuous Inductor Current mode. This  
removes the high-frequency radiated noise.  
4.2.4  
ADJUSTABLE OUTPUT VOLTAGE  
4.2.10  
OVERTEMPERATURE  
PROTECTION  
The MCP1640/B/C/D output voltage is adjustable with  
a resistor divider over a 2.0V minimum to 5.5V  
maximum range. High-value resistors can be used to  
minimize quiescent current to keep efficiency high at  
light loads.  
Overtemperature protection circuitry is integrated into  
the MCP1640/B/C/D. This circuitry monitors the device  
junction temperature and shuts the device off if the  
junction temperature exceeds the typical +150°C  
threshold. If this threshold is exceeded, the device will  
automatically restart when the junction temperature  
drops by 10°C. The soft start is reset during an  
overtemperature condition.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 13  
MCP1640/B/C/D  
NOTES:  
DS20002234D-page 14  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
For boost converters, the removal of the feedback  
resistors during operation must be avoided. In this  
case, the output voltage will increase above the  
absolute maximum output limits of the MCP1640/B/C/D  
and damage the device.  
5.0  
5.1  
APPLICATION INFORMATION  
Typical Applications  
The MCP1640/B/C/D synchronous boost regulator  
operates over a wide input and output voltage range.  
The power efficiency is high for several decades of load  
range. Output current capability increases with input  
voltage and decreases with increasing output voltage.  
The maximum output current is based on the  
N-Channel peak current limit. Typical characterization  
curves in this data sheet are presented to display the  
typical output current capability.  
The maximum device output current is dependent upon  
the input and output voltage. For example, to ensure a  
100 mA load current for VOUT = 3.3V, a minimum of  
1.0-1.1V input voltage is necessary. If an application is  
powered by one Li-Ion battery (VIN from 3.0V to 4.2V),  
the minimum load current the MCP1640/B/C/D can  
deliver is close to 300 mA at 5.0V output and a  
maximum of 500 mA (Figure 2-3).  
5.2.1  
VIN > VOUT SITUATION  
5.2  
Adjustable Output Voltage  
Calculations and  
Maximum Output Current  
For VIN > VOUT, the output voltage will not remain in  
regulation. VIN > VOUT is an unusual situation for a  
boost converter, and there is a common issue when  
two Alkaline cells (2 x 1.6V typical) are used to boost to  
3.0V output. The Input-to-Output Bypass option is  
recommended to be used in this situation until the  
batteries’ voltages go down to a safe headroom. A  
minimum headroom of approximately 150 to 200 mV  
between VOUT and VIN must be ensured, unless a low-  
frequency, high-amplitude output ripple on VOUT is  
expected. The ripple and its frequency is VIN and load  
dependent. The higher the VIN, the higher the ripple  
and the lower its frequency.  
To calculate the resistor divider values for the  
MCP1640/B/C/D, the following equation can be used,  
where RTOP is connected to VOUT, RBOT is connected  
to GND and both are connected to the FB input pin.  
EQUATION 5-1:  
V
OUT  
R
= R  
---------------- 1  
TOP  
BOT  
V
FB  
EXAMPLE 1:  
5.3  
Input Capacitor Selection  
VOUT  
VFB  
=
=
=
=
3.3V  
The boost input current is smoothed by the boost induc-  
tor reducing the amount of filtering necessary at the  
input. Some capacitance is recommended to provide  
decoupling from the source. Low ESR X5R or X7R are  
well suited since they have a low temperature coefficient  
and small size. For most applications, 4.7 µF of capaci-  
tance is sufficient at the input. For high-power applica-  
tions that have high source impedance or long leads,  
connecting the battery to the input 10 µF of capacitance  
is recommended. Additional input capacitance can be  
added to provide a stable input voltage.  
1.21V  
RBOT  
RTOP  
309 k  
533.7 k(Standard Value = 536 k)  
EXAMPLE 2:  
VOUT  
VFB  
=
=
=
=
5.0V  
1.21V  
RBOT  
RTOP  
309 k  
Table 5-1 contains the recommended range for the  
input capacitor value.  
967.9 k(Standard Value = 976 k)  
The internal error amplifier is of transconductance type; its  
gain is not related to the resistors' value. There are some  
potential issues with higher-value resistors. For small  
surface-mount resistors, environment contamination can  
create leakage paths that significantly change the resistor  
divider ratio and modify the output voltage tolerance.  
5.4  
Output Capacitor Selection  
The output capacitor helps provide a stable output  
voltage during sudden load transients and reduces the  
output voltage ripple. As with the input capacitor, X5R  
and X7R ceramic capacitors are well suited for this appli-  
cation. Using other capacitor types (aluminum or tanta-  
lum) with large ESR has an impact on the converter's  
efficiency and maximum output power (see AN1337).  
Smaller feedback resistor values will increase the  
current drained from the battery by a few µA, but will  
result in good regulation over the entire temperature  
range and environment conditions. The feedback input  
leakage current can also impact the divider and change  
the output voltage tolerance.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 15  
MCP1640/B/C/D  
The MCP1640/B/C/D is internally compensated, so  
output capacitance range is limited (see Table 5-1 for  
the recommended output capacitor range). An output  
capacitance higher than 10 µF adds a better load-step  
response and high-frequency noise attenuation, espe-  
cially while stepping from light current loads (PFM  
mode) to heavy current loads (PWM mode). Over-  
shoots and undershoots during pulse load application  
are reduced by adding a zero in the compensation  
loop. A small capacitance (for example 100 pF) in par-  
allel with an upper feedback resistor will reduce output  
spikes, especially in PFM mode.  
5.5  
Inductor Selection  
The MCP1640/B/C/D is designed to be used with small  
surface-mount inductors; the inductance value can  
range from 2.2 µH to 10 µH. An inductance value of  
4.7 µH is recommended to achieve a good balance  
between inductor size, converter load transient  
response and minimized noise.  
TABLE 5-2:  
MCP1640/B/C/D  
RECOMMENDED INDUCTORS  
Size  
WxLxH  
(mm)  
Part Number  
While the N-Channel switch is on, the output current is  
supplied by the output capacitor COUT. The amount of  
output capacitance and equivalent series resistance  
will have a significant effect on the output ripple  
voltage. While COUT provides load current, a voltage  
drop also appears across its internal ESR that results  
in ripple voltage.  
Coilcraft  
EPL2014-472  
EPL3012-472  
MSS4020-472  
LPS6225-472  
Coiltronics®  
SD3110  
4.7  
4.7  
4.7  
4.7  
0.23  
0.165  
0.115  
0.065  
1.06 2.0x2.0x1.4  
1.1  
1.5  
3.2  
3.0x3.0x1.3  
4.0x4.0x2.0  
6.0x6.0x2.4  
EQUATION 5-2:  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
0.285  
0.246  
0.251  
0.162  
0.256  
0.68 3.1x3.1x1.0  
0.80 3.1x3.1x1.2  
1.14 3.1x3.1x1.4  
1.31 3.8x3.8x1.2  
1.13 3.8x3.8x1.2  
dV  
dt  
I
= C  
------  
SD3112  
OUT  
OUT  
Where:  
dV = ripple voltage  
dt = On time of the N-Channel switch  
SD3114  
SD3118  
SD3812  
SD25  
0.0467 1.83 5.0x5.0x2.5  
(D x 1/FSW  
)
Würth Elektronik®  
WE-TPC Type TH  
WE-TPC Type S  
WE-TPC Type M  
WE-TPC Type X  
Table 5-1 contains the recommended range for the  
input and output capacitor value.  
4.7  
4.7  
4.7  
4.7  
0.200  
0.105  
0.082  
0.046  
0.8 2.8x2.8x1.35  
0.90 3.8x3.8x1.65  
1.65 4.8x4.8x1.8  
2.00 6.8x6.8x2.3  
TABLE 5-1:  
CAPACITOR VALUE RANGE  
CIN  
COUT  
Sumida Corporation  
Min.  
4.7 µF  
10 µF  
CMH23  
4.7  
0.537  
0.216  
0.09  
0.70 2.3x2.3x1.0  
0.75 3.5x4.3x0.8  
0.800 4.6x4.6x1.5  
Max.  
100 µF  
CMD4D06  
CDRH4D  
4.7  
4.7  
TDK-EPCOS  
B82462A2472M000 4.7  
B82462G4472M 4.7  
0.084  
0.04  
2.00 6.0x6.0x2.5  
1.8  
6.3x6.3x3.0  
Several parameters are used to select the correct  
inductor: maximum rated current, saturation current  
and copper resistance (ESR). For boost converters, the  
inductor current is much higher than the output current;  
the average of the inductor current is equal to the input  
current drawn from the input. The lower the inductor  
ESR, the higher the efficiency of the converter. This is  
a common trade-off in size versus efficiency.  
Peak current is the maximum or the limit, and  
saturation current typically specifies a point at which  
the inductance has rolled off a percentage of the rated  
value. This can range from a 20% to 40% reduction in  
inductance. As inductance rolls off, the inductor ripple  
current increases; as does the peak switch current. It is  
important to keep the inductance from rolling off too  
much, causing switch current to reach the peak limit.  
DS20002234D-page 16  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
estimate, assuming that most of the power lost is  
internal to the MCP1640/B/C/D and not CIN, COUT and  
the inductor. There is some percentage of power lost in  
the boost inductor, with very little loss in the input and  
output capacitors. For a more accurate estimation of  
internal power dissipation, subtract the IINRMS2 x LESR  
power dissipation.  
5.6  
Thermal Calculations  
The MCP1640/B/C/D is available in two different  
packages: 6-Lead SOT-23 and 8-Lead 2 x 3 DFN. The  
junction temperature is estimated by calculating the  
power dissipation and applying the package thermal  
resistance (JA). The maximum continuous junction  
temperature rating for the MCP1640/B/C/D is +125°C.  
To quickly estimate the internal power dissipation for  
the switching boost regulator, an empirical calculation  
using measured efficiency can be used. Given the  
measured efficiency, the internal power dissipation is  
estimated by Equation 5-3.  
5.7  
PCB Layout Information  
Good printed circuit board layout techniques are  
important to any switching circuitry, and switching  
power supplies are no different. When wiring the  
switching high-current paths, short and wide traces  
should be used. Therefore, it is important that the input  
and output capacitors be placed as close as possible to  
the MCP1640/B/C/D to minimize the loop area.  
EQUATION 5-3:  
V
I  
OUT OUT  
The feedback resistors and feedback signal should be  
routed away from the switching node and the switching  
current loop. When possible, ground planes and traces  
should be used to help shield the feedback signal and  
minimize noise and magnetic interference.  
------------------------------------- V  
I  
OUT OUT  
= P  
Dis  
Efficiency  
The difference between the first term – input power,  
and the second term – power delivered, is the internal  
MCP1640/B/C/D power dissipation. This is an  
Via to GND Plane  
RBOT RTOP  
+V  
+V  
OUT  
IN  
CIN  
COUT  
L
MCP1640  
1
GND  
GND  
Via for Enable  
FIGURE 5-1:  
MCP1640/B/C/D SOT-23-6 Recommended Layout.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 17  
MCP1640/B/C/D  
Wired on Bottom  
Plane  
L
+V  
IN  
+V  
OUT  
CIN  
COUT  
GND  
MCP1640  
RTOP  
1
RBOT  
Enable  
GND  
FIGURE 5-2:  
MCP1640/B/C/D DFN-8 Recommended Layout.  
DS20002234D-page 18  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
6.0  
TYPICAL APPLICATION CIRCUITS  
L1  
4.7 µH  
VOUT  
5.0V @ 5 mA  
Manganese Lithium  
Dioxide Button Cell  
SW  
VOUT  
VIN  
976 k  
+
COUT  
10 µF  
CIN  
4.7 µF  
2.0V to 3.2V  
VFB  
EN  
-
309 k  
From PIC® MCU I/O  
GND  
Note:  
For applications that can operate directly from the battery input voltage during Sleep mode and  
require a higher voltage during Normal Run mode, the MCP1640C device provides Input to  
Output Bypass when disabled. The PIC® microcontroller is powered by the output of the  
MCP1640C. One of its I/O pins is used to enable and disable the MCP1640C. While operating  
in Sleep mode, the MCP1640C input quiescent current is typically less than 1 µA.  
FIGURE 6-1:  
Manganese Lithium Coin Cell Application Using Bypass Mode.  
L1  
10 µH  
VOUT  
VIN  
5.0V @ 350 mA  
SW  
VOUTS  
VOUTP  
3.3V To 4.2V  
VIN  
976 k  
COUT  
10 µF  
CIN  
10 µF  
+
-
VFB  
EN  
309 k  
PGND  
SGND  
FIGURE 6-2:  
USB On-The-Go Powered by Li-Ion.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 19  
MCP1640/B/C/D  
NOTES:  
DS20002234D-page 20  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
6-Lead SOT-23  
Example  
BZ25  
Part Number  
Code  
MCP1640T-I/CHY  
MCP1640BT-I/CHY  
MCP1640CT-I/CHY  
MCP1640DT-I/CHY  
BZNN  
BWNN  
BXNN  
BYNN  
8-Lead DFN  
Example  
Part Number  
Code  
MCP1640-I/MC  
AHM  
AHM  
AHP  
AHP  
AHQ  
AHQ  
AHR  
AHR  
MCP1640T-I/MC  
MCP1640B-I/MC  
MCP1640BT-I/MC  
MCP1640C-I/MC  
MCP1640CT-I/MC  
MCP1640D-I/MC  
MCP1640DT-I/MC  
AHM  
340  
25  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
*
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 21  
MCP1640/B/C/D  
6-Lead Plastic Small Outline Transistor (CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
4
N
E
E1  
PIN 1 ID BY  
LASER MARK  
1
2
3
e
e1  
D
c
A
φ
A2  
L
A1  
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
6
0.95 BSC  
Outside Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
0.00  
2.20  
1.30  
2.70  
0.10  
0.35  
0°  
1.45  
1.30  
0.15  
3.20  
1.80  
3.10  
0.60  
0.80  
30°  
L1  
I
c
b
0.08  
0.20  
0.26  
0.51  
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-028B  
DS20002234D-page 22  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
6-Lead Plastic Small Outline Transistor (CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 23  
MCP1640/B/C/D  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢗꢘꢆꢙꢆꢚꢛꢜꢛꢝ!"ꢆ##ꢆ$ꢒꢅ%ꢆ&ꢍꢏꢑ'  
ꢑꢒꢊꢃ* Jꢌꢊꢅ&ꢎꢉꢅ'ꢌ!&ꢅꢍ"ꢊꢊꢉꢄ&ꢅꢑꢇꢍ+ꢇꢐꢉꢅ#ꢊꢇ*ꢃꢄꢐ!(ꢅꢑꢈꢉꢇ!ꢉꢅ!ꢉꢉꢅ&ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ+ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ%ꢃꢍꢇ&ꢃꢌꢄꢅꢈꢌꢍꢇ&ꢉ#ꢅꢇ&ꢅ  
ꢎ&&ꢑGKK***ꢁ'ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ'Kꢑꢇꢍ+ꢇꢐꢃꢄꢐ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
Vꢄꢃ&!  
ꢖꢙZZꢙꢖ<ꢗ<ꢘꢕ  
ꢓꢃ'ꢉꢄ!ꢃꢌꢄꢅZꢃ'ꢃ&!  
ꢖꢙ[  
[\ꢖ  
^
ꢚꢁ>ꢚꢅ?ꢕ@  
ꢚꢁꢛꢚ  
ꢖꢔ]  
["')ꢉꢊꢅꢌ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢍꢎ  
\ꢆꢉꢊꢇꢈꢈꢅ_ꢉꢃꢐꢎ&  
ꢕ&ꢇꢄ#ꢌ%%ꢅ  
@ꢌꢄ&ꢇꢍ&ꢅꢗꢎꢃꢍ+ꢄꢉ!!  
\ꢆꢉꢊꢇꢈꢈꢅZꢉꢄꢐ&ꢎ  
\ꢆꢉꢊꢇꢈꢈꢅ`ꢃ#&ꢎ  
[
ꢔꢀ  
ꢔ;  
ꢚꢁ^ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ>  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ<J  
ꢏꢁꢚꢚꢅ?ꢕ@  
;ꢁꢚꢚꢅ?ꢕ@  
ꢚꢁꢏ>  
<
<$ꢑꢌ!ꢉ#ꢅꢂꢇ#ꢅZꢉꢄꢐ&ꢎ  
<$ꢑꢌ!ꢉ#ꢅꢂꢇ#ꢅ`ꢃ#&ꢎ  
@ꢌꢄ&ꢇꢍ&ꢅ`ꢃ#&ꢎ  
@ꢌꢄ&ꢇꢍ&ꢅZꢉꢄꢐ&ꢎ  
@ꢌꢄ&ꢇꢍ&ꢞ&ꢌꢞ<$ꢑꢌ!ꢉ#ꢅꢂꢇ#  
ꢓꢏ  
<ꢏ  
)
Z
q
ꢀꢁ;ꢚ  
ꢀꢁ>ꢚ  
ꢚꢁꢏꢚ  
ꢚꢁ;ꢚ  
ꢚꢁꢏꢚ  
ꢀꢁ>>  
ꢀꢁꢝ>  
ꢚꢁ;ꢚ  
ꢚꢁ>ꢚ  
ꢚꢁꢒꢚ  
ꢑꢒꢊꢃꢉ*  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ!"ꢇꢈꢅꢃꢄ#ꢉ$ꢅ%ꢉꢇ&"ꢊꢉꢅ'ꢇꢋꢅꢆꢇꢊꢋ(ꢅ)"&ꢅ'"!&ꢅ)ꢉꢅꢈꢌꢍꢇ&ꢉ#ꢅ*ꢃ&ꢎꢃꢄꢅ&ꢎꢉꢅꢎꢇ&ꢍꢎꢉ#ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ+ꢇꢐꢉꢅ'ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ'ꢌꢊꢉꢅꢉ$ꢑꢌ!ꢉ#ꢅ&ꢃꢉꢅ)ꢇꢊ!ꢅꢇ&ꢅꢉꢄ#!ꢁ  
;ꢁ ꢂꢇꢍ+ꢇꢐꢉꢅꢃ!ꢅ!ꢇ*ꢅ!ꢃꢄꢐ"ꢈꢇ&ꢉ#ꢁ  
ꢒꢁ ꢓꢃ'ꢉꢄ!ꢃꢌꢄꢃꢄꢐꢅꢇꢄ#ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ<ꢅ=ꢀꢒꢁ>ꢖꢁ  
?ꢕ@G ?ꢇ!ꢃꢍꢅꢓꢃ'ꢉꢄ!ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ&ꢃꢍꢇꢈꢈꢋꢅꢉ$ꢇꢍ&ꢅꢆꢇꢈ"ꢉꢅ!ꢎꢌ*ꢄꢅ*ꢃ&ꢎꢌ"&ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢉ!ꢁ  
ꢘ<JG ꢘꢉ%ꢉꢊꢉꢄꢍꢉꢅꢓꢃ'ꢉꢄ!ꢃꢌꢄ(ꢅ"!"ꢇꢈꢈꢋꢅ*ꢃ&ꢎꢌ"&ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢉ(ꢅ%ꢌꢊꢅꢃꢄ%ꢌꢊ'ꢇ&ꢃꢌꢄꢅꢑ"ꢊꢑꢌ!ꢉ!ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ*ꢃꢄꢐ @ꢚꢒꢞꢀꢏ;@  
DS20002234D-page 24  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 25  
MCP1640/B/C/D  
NOTES:  
DS20002234D-page 26  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
APPENDIX A: REVISION HISTORY  
Revision D (September 2015)  
The following is the list of modifications:  
1. Deleted maximum values for NMOS Switch  
Leakage and PMOS Switch Leakage parame-  
ters in DC Characteristics table.  
2. Updated Figure 2-15 in Section 2.0 “Typical  
Performance Curves”.  
3. Minor typographical corrections.  
Revision C (November 2014)  
The following is the list of modifications:  
1. Updated Features list.  
2. Updated values in the DC Characteristics and  
Temperature Specifications tables.  
3. Updated Figures 2-6 and 2-15.  
4. Updated Section 4.2.1 “Low-Voltage Start-  
Up”.  
5. Updated Section 5.2 “Adjustable Output  
Voltage Calculations and Maximum Output  
Current”.  
6. Updated Section 5.4 “Output Capacitor  
Selection”.  
7. Updated markings and SOT-23 package specifi-  
cation drawings for CHY designator in  
Section 7.0 “Packaging Information”.  
8. Minor editorial corrections.  
Revision B (March 2011)  
The following is the list of modifications:  
1. Updated Table 5-2.  
2. Added the package markings tables in  
Section 7.0 “Packaging Information”.  
Revision A (February 2010)  
Original release of this document.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 27  
MCP1640/B/C/D  
NOTES:  
DS20002234D-page 28  
2010-2015 Microchip Technology Inc.  
MCP1640/B/C/D  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
(1)  
[X]  
PART NO.  
Device  
X
/XX  
a)  
MCP1640-I/MC:  
0.65V, PWM/PFM  
True Disconnect  
Sync Reg.,  
Tape  
and Reel  
Temperature  
Range  
Package  
8LD-DFN pkg.  
0.65V, PWM/PFM  
True Disconnect  
Sync Reg.,  
8LD-DFN pkg.  
Tape and Reel  
b)  
MCP1640T-I/MC:  
MCP1640B-I/MC:  
Device  
MCP1640:  
0.65V, PWM/PFM True Disconnect,  
Sync Boost Regulator  
MCP1640B: 0.65V, PWM Only True Disconnect,  
Sync Boost Regulator  
MCP1640C: 0.65V, PWM/PFM Input to Output Bypass,  
Sync Boost Regulator  
MCP1640D: 0.65V, PWM Only Input to Output Bypass,  
Sync Boost Regulator  
c)  
d)  
0.65V, PWM-Only  
True Disconnect  
Sync Reg.,  
8LD-DFN pkg.  
Tape and Reel Option  
T
blank  
= Tape and Reel (1)  
= DFN only  
MCP1640BT-I/MC: 0.65V, PWM-Only  
True Disconnect  
Sync Reg.,  
8LD-DFN pkg.  
Tape and Reel  
Temperature Range  
Package  
I
= -40C to +85C (Industrial)  
CHY* =Plastic Small Outline Transistor (SOT-23), 6-lead  
MC =Plastic Dual Flat, No Lead (2x3 DFN), 8-lead  
e)  
f)  
MCP1640C-I/MC:  
0.65V, PWM/PFM  
Input-to-Output Bypass  
Sync Reg.,  
*Y = Nickel palladium gold manufacturing designator.  
8LD-DFN pkg.  
MCP1640CT-I/MC: 0.65V, PWM/PFM  
Input-to-Output Bypass  
Sync Reg.,  
8LD-DFN pkg.  
Tape and Reel  
g)  
h)  
MCP1640D-I/MC:  
0.65V, PWM-Only  
Input-to-Output Bypass  
Sync Reg.,  
8LD-DFN pkg.  
MCP1640DT-I/MC: 0.65V, PWM-Only  
Input-to-Output Bypass  
Sync Reg.,  
8LD-DFN pkg.  
Tape and Reel  
i)  
MCP1640T-I/CHY: 0.65V, PWM/PFM  
True Disconnect  
Sync Reg.,  
6LD SOT-23 pkg.  
Tape and Reel  
j)  
MCP1640BT-I/CHY: 0.65V, PWM-Only  
True Disconnect  
Sync Reg.,  
6LD SOT-23 pkg.  
Tape and Reel  
k)  
l)  
MCP1640CT-I/CHY: 0.65V, PWM/PFM  
Input-to-Output Bypass  
Sync Reg.,  
6LD SOT-23 pkg.  
Tape and Reel  
MCP1640DT-I/CHY: 0.65V, PWM-Only  
Input-to-Output Bypass  
Sync Reg.,  
6LD SOT-23 pkg.  
Tape and Reel  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identi-  
fier is used for ordering purposes and is not  
printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 29  
MCP1640/B/C/D  
NOTES:  
DS20002234D-page 30  
2010-2015 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, USBCheck, VariSense,  
ViewSpan, WiperLock, Wireless DNA, and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010-2015, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63277-829-1  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2010-2015 Microchip Technology Inc.  
DS20002234D-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
07/14/15  
DS20002234D-page 32  
2010-2015 Microchip Technology Inc.  

相关型号:

MCP1640-IMC

0.65V START-UP SYNCHRONOUS BOOST REGULATOR WITH TRUE OUTPUT DISCONNECT OR INPUT/OUTPUT BYPASS OPTION
MICROCHIP

MCP1640B

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP1640B-I/CH

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP1640B-I/MC

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP1640B-ICH

0.65V START-UP SYNCHRONOUS BOOST REGULATOR WITH TRUE OUTPUT DISCONNECT OR INPUT/OUTPUT BYPASS OPTION
MICROCHIP

MCP1640B-ICHY

0.65V Start-Up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP1640B-IMC

0.65V START-UP SYNCHRONOUS BOOST REGULATOR WITH TRUE OUTPUT DISCONNECT OR INPUT/OUTPUT BYPASS OPTION
MICROCHIP

MCP1640BT

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP1640BT-I

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP1640BT-I/CH

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP1640BT-I/CHY

暂无描述
MICROCHIP

MCP1640BT-I/MC

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP