MCP1640T-I/MC [MICROCHIP]

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option; 0.65V启动同步升压稳压器具有真正输出断接和输入/输出旁路选项
MCP1640T-I/MC
型号: MCP1640T-I/MC
厂家: MICROCHIP    MICROCHIP
描述:

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
0.65V启动同步升压稳压器具有真正输出断接和输入/输出旁路选项

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 PC
文件: 总32页 (文件大小:474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1640/B/C/D  
0.65V Start-up Synchronous Boost Regulator with True  
Output Disconnect or Input/Output Bypass Option  
Features  
General Description  
• Up to 96% Typical Efficiency  
The MCP1640/B/C/D is a compact, high-efficiency,  
fixed frequency, synchronous step-up DC-DC con-  
verter. It provides an easy-to-use power supply solution  
for applications powered by either one-cell, two-cell, or  
three-cell alkaline, NiCd, NiMH, one-cell Li-Ion or  
Li-Polymer batteries.  
• 800 mA Typical Peak Input Current Limit:  
- IOUT > 100 mA @ 1.2V VIN, 3.3V VOUT  
- IOUT > 350 mA @ 2.4V VIN, 3.3V VOUT  
- IOUT > 350 mA @ 3.3V VIN, 5.0V VOUT  
• Low Start-up Voltage: 0.65V, typical 3.3V VOUT  
@ 1 mA  
Low-voltage technology allows the regulator to start up  
without high inrush current or output voltage overshoot  
from a low 0.65V input. High efficiency is accomplished  
by integrating the low resistance N-Channel Boost  
switch and synchronous P-Channel switch. All  
compensation and protection circuitry are integrated to  
minimize external components. For standby  
applications, the MCP1640 operates and consumes  
only 19 µA while operating at no load and provides a  
true disconnect from input to output while shut down  
(EN = GND). Additional device options are available  
that operate in PWM only mode and connect input to  
output bypass while shut down.  
• Low Operating Input Voltage: 0.35V, typical  
3.3VOUT @ 1 mA  
• Adjustable Output Voltage Range: 2.0V to 5.5V  
• Maximum Input Voltage VOUT < 5.5V  
• Automatic PFM/PWM Operation (MCP1640/C):  
- PFM Operation Disabled (MCP1640B/D)  
- PWM Operation: 500 kHz  
• Low Device Quiescent Current: 19 µA, typical  
PFM Mode  
• Internal Synchronous Rectifier  
• Internal Compensation  
A “true” load disconnect mode provides input to output  
isolation while disabled by removing the normal boost  
regulator diode path from input to output. A bypass  
mode option connects the input to the output using the  
integrated low resistance P-Channel MOSFET, which  
provides a low bias keep alive voltage for circuits  
operating in Deep Sleep mode. Both options consume  
less than 1 µA of input current.  
• Inrush Current Limiting and Internal Soft-Start  
• Selectable, Logic Controlled, Shutdown States:  
- True Load Disconnect Option (MCP1640/B)  
- Input to Output Bypass Option (MCP1640C/D)  
• Shutdown Current (All States): < 1 µA  
• Low Noise, Anti-Ringing Control  
• Overtemperature Protection  
Output voltage is set by a small external resistor  
divider. Two package options, SOT23-6 and 2x3  
DFN-8, are available.  
• Available Packages:  
- SOT23-6  
- 2x3 8-Lead DFN  
Package Types  
Applications  
MCP1640  
MCP1640  
6-Lead SOT23  
2x3 DFN*  
• One, Two and Three Cell Alkaline and NiMH/NiCd  
Portable Products  
VIN  
V
V
V
V
SW  
GND  
EN  
1
2
8
7
1
6
5
4
• Single Cell Li-Ion to 5V Converters  
• Li Coin Cell Powered Devices  
• Personal Medical Products  
• Wireless Sensors  
FB  
IN  
S
P
EP  
9
GND  
OUTS  
OUTP  
VOUT  
VFB  
2
3
3
4
6
5
GND  
EN  
SW  
• Handheld Instruments  
• GPS Receivers  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
• Bluetooth Headsets  
• +3.3V to +5.0V Distributed Power Supply  
2010 Microchip Technology Inc.  
DS22234A-page 1  
MCP1640/B/C/D  
L1  
4.7 µH  
VOUT  
VIN  
3.3V @ 100 mA  
SW  
V
0.9V To 1.7V  
OUT  
V
IN  
976 K  
COUT  
10 µF  
CIN  
4.7 µF  
+
V
FB  
EN  
562 K  
GND  
-
L1  
4.7 µH  
VOUT  
5.0V @ 300 mA  
VIN  
SW  
V
3.0V To 4.2V  
OUTS  
V
IN  
V
OUTP  
976 K  
COUT  
10 µF  
CIN  
4.7 µF  
+
V
FB  
EN  
309 K  
P
S
-
GND  
GND  
Efficiency vs. IOUT for 3.3VOUT  
100.0  
80.0  
60.0  
40.0  
VIN = 2.5V  
VIN = 0.8V  
VIN = 1.2V  
0.1  
1.0  
10.0  
100.0  
1000.0  
Output Current (mA)  
DS22234A-page 2  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational sections of this  
specification is not intended. Exposure to maximum  
rating conditions for extended periods may affect  
device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
EN, FB, VIN, VSW, VOUT - GND...........................+6.5V  
EN, FB ...........<greater of VOUT or VIN > (GND - 0.3V)  
Output Short Circuit Current....................... Continuous  
Output Current Bypass Mode...........................400 mA  
Power Dissipation ............................ Internally Limited  
Storage Temperature .........................-65oC to +150oC  
Ambient Temp. with Power Applied......-40oC to +85oC  
Operating Junction Temperature........-40oC to +125oC  
ESD Protection On All Pins:  
HBM........................................................ 3 kV  
MM........................................................300 V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA,  
IN  
OUT  
IN  
OUT  
OUT  
T = +25°C.  
A
o
o
Boldface specifications apply over the T range of -40 C to +85 C.  
A
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Characteristics  
Minimum Start-Up Voltage  
VIN  
VIN  
0.65  
0.35  
0.8  
V
V
Note 1  
Note 1  
Minimum Input Voltage After  
Start-Up  
Output Voltage Adjust Range  
Maximum Output Current  
VOUT  
IOUT  
2.0  
5.5  
V
VOUT VIN; Note 2  
1.2V VIN, 2.0V VOUT  
1.5V VIN, 3.3V VOUT  
3.3V VIN, 5.0V VOUT  
150  
150  
350  
1.21  
10  
mA  
mA  
mA  
V
100  
Feedback Voltage  
VFB  
IVFB  
1.175  
1.245  
Feedback Input Bias Current  
pA  
µA  
Quiescent Current – PFM  
Mode  
IQPFM  
19  
30  
Measured at VOUT = 4.0V;  
EN = VIN, IOUT = 0 mA;  
Note 3  
Quiescent Current – PWM  
Mode  
IQPWM  
220  
0.7  
µA  
µA  
Measured at VOUT; EN = VIN  
IOUT = 0 mA; Note 3  
Quiescent Current – Shutdown  
IQSHDN  
2.3  
VOUT = EN = GND;  
Includes N-Channel and  
P-Channel Switch Leakage  
NMOS Switch Leakage  
PMOS Switch Leakage  
INLK  
IPLK  
0.3  
1
µA  
µA  
VIN = VSW = 5V; VOUT =  
5.5V VEN = VFB = GND  
0.05  
0.2  
VIN = VSW = GND;  
VOUT = 5.5V  
NMOS Switch ON Resistance  
PMOS Switch ON Resistance  
RDS(ON)N  
RDS(ON)P  
0.6  
0.9  
VIN = 3.3V, ISW = 100 mA  
VIN = 3.3V, ISW = 100 mA  
Note 1: 3.3 Kresistive load, 3.3VOUT (1 mA).  
2: For VIN > VOUT, VOUT will not remain in regulation.  
3: Q is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be  
estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)).  
I
4: 220resistive load, 3.3VOUT (15 mA).  
5: Peak current limit determined by characterization, not production tested.  
2010 Microchip Technology Inc.  
DS22234A-page 3  
MCP1640/B/C/D  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, V = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA,  
IN  
OUT  
IN  
OUT  
OUT  
T = +25°C.  
A
o
o
Boldface specifications apply over the T range of -40 C to +85 C.  
A
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
NMOS Peak Switch Current  
Limit  
IN(MAX)  
600  
850  
mA  
Note 5  
V
OUT Accuracy  
VOUT  
%
-3  
-1  
+3  
1
%
Includes Line and Load  
Regulation; VIN = 1.5V  
Line Regulation  
Load Regulation  
VOUT  
VOUT) /  
VIN|  
/
0.01  
%/V  
VIN = 1.5V to 3V  
IOUT = 25 mA  
VOUT  
VOUT  
/
-1  
0.01  
1
%
IOUT = 25 mA to 100 mA;  
VIN = 1.5V  
|
Maximum Duty Cycle  
Switching Frequency  
EN Input Logic High  
EN Input Logic Low  
EN Input Leakage Current  
Soft-start Time  
DCMAX  
fSW  
88  
425  
90  
90  
500  
575  
%
kHz  
IOUT = 1 mA  
IOUT = 1 mA  
VEN = 5V  
VIH  
%of VIN  
%of VIN  
µA  
VIL  
20  
IENLK  
tSS  
0.005  
750  
µS  
EN Low to High, 90% of  
VOUT; Note 4  
Thermal Shutdown Die  
Temperature  
TSD  
150  
C  
C  
Die Temperature Hysteresis  
TSDHYS  
10  
Note 1: 3.3 Kresistive load, 3.3VOUT (1 mA).  
2: For VIN > VOUT, VOUT will not remain in regulation.  
3: IQ is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be  
estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)).  
4: 220resistive load, 3.3VOUT (15 mA).  
5: Peak current limit determined by characterization, not production tested.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications:  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Junction Temperature  
Range  
TJ  
-40  
+125  
°C  
Steady State  
Storage Temperature Range  
TA  
TJ  
-65  
+150  
+150  
°C  
°C  
Maximum Junction Temperature  
Package Thermal Resistances  
Thermal Resistance, 5L-TSOT23  
Thermal Resistance, 8L-2x3 DFN  
Transient  
JA  
JA  
192  
93  
°C/W EIA/JESD51-3 Standard  
°C/W  
DS22234A-page 4  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = EN = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA, T = +25°C.  
IN  
OUT  
IN  
OUT  
LOAD  
A
VOUT = 2.0V  
27.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 1.6V  
VOUT = 5.0V  
VIN = 1.2V  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
VIN = 0.8V  
VOUT = 3.3V  
VIN = 1.2V  
PWM / PFM  
PWM ONLY  
VOUT = 2.0V  
0
0.01  
0.1  
1
10  
100  
1000  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
IOUT (mA)  
Ambient Temperature (°C)  
FIGURE 2-1:  
VOUT IQ vs. Ambient  
FIGURE 2-4:  
2.0V VOUT PFM / PWM  
Temperature in PFM Mode.  
Mode Efficiency vs. IOUT.  
VOUT = 3.3V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.5V  
300  
VOUT = 5.0V  
VIN = 1.2V  
275  
250  
225  
200  
175  
150  
VIN = 0.8V  
VIN = 1.2V  
VOUT = 3.3V  
PWM / PFM  
PWM ONLY  
0.01  
0.1  
1
10  
100  
1000  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
IOUT (mA)  
Ambient Temperature (°C)  
FIGURE 2-2:  
VOUT IQ vs. Ambient  
FIGURE 2-5:  
3.3V VOUT PFM / PWM  
Temperature in PWM Mode.  
Mode Efficiency vs. IOUT  
.
600  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 5.0V  
VIN = 2.5V  
VOUT = 5.0V  
500  
VOUT = 3.3V  
VIN = 1.8V  
VIN = 1.2V  
400  
VOUT = 2.0V  
300  
200  
100  
0
PWM / PFM  
PWM ONLY  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.01  
0.1  
1
10  
100  
1000  
VIN (V)  
IOUT (mA)  
FIGURE 2-3:  
Maximum IOUT vs. VIN.  
FIGURE 2-6:  
5.0V VOUT PFM / PWM  
Mode Efficiency vs. IOUT  
.
2010 Microchip Technology Inc.  
DS22234A-page 5  
MCP1640/B/C/D  
Note: Unless otherwise indicated, V = EN = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA, T = +25°C.  
IN  
OUT  
IN  
OUT  
LOAD A  
3.33  
1.00  
VIN = 1.2V  
IOUT = 15 mA  
VOUT = 3.3V  
3.325  
3.32  
0.85  
0.70  
0.55  
0.40  
0.25  
VIN = 1.8V  
Startup  
3.315  
3.31  
3.305  
3.3  
Shutdown  
VIN = 0.8V  
3.295  
3.29  
3.285  
0
20  
40  
60  
80  
100  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
IOUT (mA)  
Ambient Temperature (°C)  
FIGURE 2-7:  
3.3V VOUT vs. Ambient  
FIGURE 2-10:  
Minimum Start-up and  
Temperature.  
Shutdown VIN into Resistive Load vs. IOUT  
.
3.38  
3.36  
3.34  
3.32  
3.30  
525  
520  
515  
510  
505  
500  
495  
490  
485  
480  
VOUT = 3.3V  
VIN = 1.5V  
IOUT = 5 mA  
IOUT = 15 mA  
3.28  
3.26  
IOUT = 50 mA  
-10  
-40  
-25  
5
20  
35  
50  
65  
80  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-8:  
3.3V VOUT vs. Ambient  
FIGURE 2-11:  
F
OSC vs. Ambient  
Temperature.  
Temperature.  
3.40  
4.5  
4
TA = 85°C  
IOUT = 5 mA  
VOUT = 5.0V  
3.36  
3.5  
3
VOUT = 3.3V  
TA = 25°C  
3.32  
3.28  
3.24  
3.20  
2.5  
2
VOUT = 2.0V  
TA = - 40°C  
1.5  
1
0.5  
0
0.8  
1.2  
1.6  
2
2.4  
2.8  
0
1
2
3
4
5
6
7
8
9
10  
VIN (V)  
IOUT (mA)  
FIGURE 2-9:  
3.3V VOUT vs. VIN.  
FIGURE 2-12:  
Threshold vs. IOUT  
PWM Pulse Skipping Mode  
.
DS22234A-page 6  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
Note: Unless otherwise indicated, V = EN = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA, T = +25°C.  
IN  
OUT  
IN  
OUT  
LOAD A  
10000  
PWM / PFM  
PWM ONLY  
VOUT = 5.0V  
1000  
100  
10  
VOUT = 3.3V  
VOUT = 2.0V  
VOUT = 3.3V  
VOUT = 5.0V  
VOUT = 2.0V  
0.8 1.1 1.4 1.7  
2
2.3 2.6 2.9 3.2 3.5  
VIN (V)  
FIGURE 2-13:  
Input No Load Current vs.  
FIGURE 2-16:  
MCP1640 3.3V VOUT PFM  
VIN.  
Mode Waveforms.  
5
4
P - Channel  
3
2
1
0
N - Channel  
1.5  
1
2
2.5  
3
3.5  
4
4.5  
5
> VIN or VOUT  
FIGURE 2-14:  
N-Channel and P-Channel  
FIGURE 2-17:  
MCP1640B 3.3V VOUT  
R
DSON vs. > of VIN or VOUT  
.
PWM Mode Waveforms.  
16  
14  
12  
10  
8
VOUT = 5.0V  
VOUT = 3.3V  
VOUT = 2.0V  
6
4
2
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
VIN (V)  
FIGURE 2-15:  
PFM / PWM Threshold  
FIGURE 2-18:  
MCP1640/B High Load  
Current vs. VIN.  
Waveforms.  
2010 Microchip Technology Inc.  
DS22234A-page 7  
MCP1640/B/C/D  
Note: Unless otherwise indicated, V = EN = 1.2V, C  
= C = 10 µF, L = 4.7 µH, V  
= 3.3V, I  
= 15 mA, T = +25°C.  
IN  
OUT  
IN  
OUT  
LOAD A  
FIGURE 2-19:  
3.3V Start-up After Enable.  
FIGURE 2-22:  
MCP1640B 3.3V VOUT Load  
Transient Waveforms.  
FIGURE 2-20:  
VENABLE  
3.3V Start-up when VIN =  
FIGURE 2-23:  
Transient Waveforms.  
MCP1640B 2.0V VOUT Load  
.
FIGURE 2-21:  
MCP1640 3.3V VOUT Load  
FIGURE 2-24:  
3.3V VOUT Line Transient  
Transient Waveforms.  
Waveforms.  
DS22234A-page 8  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP1640/B/C/D MCP1640/B/C/D  
Pin No.  
Description  
SOT23  
2x3 DFN  
SW  
1
2
3
4
5
6
5
Switch Node, Boost Inductor Input Pin  
GND  
EN  
Ground Pin  
4
1
Enable Control Input Pin  
Feedback Voltage Pin  
Output Voltage Pin  
FB  
VOUT  
VIN  
8
2
3
7
6
9
Input Voltage Pin  
SGND  
PGND  
VOUTS  
VOUTP  
EP  
Signal Ground Pin  
Power Ground Pin  
Output Voltage Sense Pin  
Output Voltage Power Pin  
Exposed Thermal Pad (EP); must be connected to VSS.  
3.1  
Switch Node Pin (SW)  
3.6  
Power Supply Input Voltage Pin  
(V )  
IN  
Connect the inductor from the input voltage to the SW  
pin. The SW pin carries inductor current and can be as  
high as 800 mA peak. The integrated N-Channel switch  
drain and integrated P-Channel switch source are inter-  
nally connected at the SW node.  
Connect the input voltage source to VIN. The input  
source should be decoupled to GND with a 4.7 µF  
minimum capacitor.  
3.7  
Signal Ground Pin (S  
)
GND  
The signal ground pin is used as a return for the  
integrated VREF and error amplifier. In the 2x3 DFN  
package, the SGND and power ground (PGND) pins are  
connected externally.  
3.2  
Ground Pin (GND)  
The ground or return pin is used for circuit ground con-  
nection. Length of trace from input cap return, output  
cap return and GND pin should be made as short as  
possible to minimize noise on the GND pin. In the  
SOT23-6 package, a single ground pin is used.  
3.8  
Power Ground Pin (P  
)
GND  
The power ground pin is used as a return for the high-  
current N-Channel switch. In the 2x3 DFN package, the  
PGND and signal ground (SGND) pins are connected  
externally.  
3.3  
Enable Pin (EN)  
The EN pin is a logic-level input used to enable or  
disable device switching and lower quiescent current  
while disabled. A logic high (>90% of VIN) will enable  
the regulator output. A logic low (<20% of VIN) will  
ensure that the regulator is disabled.  
3.9  
Output Voltage Sense Pin (V  
)
OUTS  
The output voltage sense pin connects the regulated  
output voltage to the internal bias circuits. In the 2x3  
DFN package, VOUTS and VOUTP are connected  
externally.  
3.4  
Feedback Voltage Pin (FB)  
3.10 Output Voltage Power Pin (V  
)
OUTP  
The FB pin is used to provide output voltage regulation  
by using a resistor divider. The FB voltage will be 1.21V  
typical with the output voltage in regulation.  
The output voltage power pin connects the output volt-  
age to the switch node. High current flows through the  
integrated P-Channel and out of this pin to the output  
capacitor and output. In the 2x3 DFN package, VOUTS  
and VOUTP are connected externally.  
3.5  
Output Voltage Pin (V  
)
OUT  
The output voltage pin connects the integrated  
P-Channel MOSFET to the output capacitor. The FB  
voltage divider is also connected to the VOUT pin for  
voltage regulation.  
3.11 Exposed Thermal Pad (EP)  
There is no internal electrical connection between the  
Exposed Thermal Pad (EP) and the PGND and SGND  
pins. They must be connected to the same potential on  
the Printed Circuit Board (PCB).  
2010 Microchip Technology Inc.  
DS22234A-page 9  
MCP1640/B/C/D  
NOTES:  
DS22234A-page 10  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
4.1.3  
TRUE OUTPUT DISCONNECT  
OPTION  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Option Overview  
The MCP1640/B devices incorporate a true output  
disconnect feature. With the EN pin pulled low, the  
output of the MCP1640/B is isolated or disconnected  
from the input by turning off the integrated P-Channel  
switch and removing the switch bulk diode connection.  
This removes the DC path typical in boost converters,  
which allows the output to be disconnected from the  
input. During this mode, less than 1 µA of current is  
consumed from the input (battery). True output discon-  
nect does not discharge the output; the output voltage  
is held up by the external COUT capacitance.  
The MCP1640/B/C/D family of devices is capable of  
low start-up voltage and delivers high efficiency over a  
wide load range for single cell, two cell, three cell  
alkaline, NiMH, NiCd and single cell Li-Ion battery  
inputs. A high level of integration lowers total system  
cost, eases implementation and reduces board area.  
The devices feature low start-up voltage, adjustable  
output voltage, PWM/PFM mode operation, low IQ,  
integrated synchronous switch, internal compensation,  
low noise anti-ring control, inrush current limit and soft  
start. There are two feature options for the MCP1640/  
B/C/D family: PWM/PFM mode or PWM mode only,  
and “true output disconnect” or input bypass.  
4.1.4  
INPUT BYPASS OPTION  
The MCP1640C/D devices incorporate the input  
bypass shutdown option. With the EN input pulled low,  
the output is connected to the input using the internal  
P-Channel MOSFET. In this mode, the current draw  
from the input (battery) is less than 1 µA with no load.  
The Input Bypass mode is used when the input voltage  
range is high enough for the load to operate in Sleep or  
low IQ mode. When a higher regulated output voltage is  
necessary to operate the application, the EN input is  
pulled high enabling the boost converter.  
4.1.1  
PWM/PFM MODE OPTION  
The MCP1640/C devices use an automatic switchover  
from PWM to PFM mode for light load conditions to  
maximize efficiency over a wide range of output  
current. During PFM mode, higher peak current is used  
to pump the output up to the threshold limit. While  
operating in PFM or PWM mode, the P-Channel switch  
is used as a synchronous rectifier, turning off when the  
inductor current reaches 0 mA to maximize efficiency.  
In PFM mode, a comparator is used to terminate  
switching when the output voltage reaches the upper  
threshold limit. Once switching has terminated, the  
output voltage will decay or coast down. During this  
period, very low IQ is consumed from the device and  
input source, which keeps power efficiency high at light  
load. The disadvantages of PWM/PFM mode are  
higher output ripple voltage and variable PFM mode  
frequency. The PFM mode frequency is a function of  
input voltage, output voltage and load. While in PFM  
mode, the boost converter pumps the output up at a  
switching frequency of 500 kHz.  
TABLE 4-1:  
PART NUMBER SELECTION  
Part  
Number  
PWM/  
PFM  
PWM True Dis Bypass  
MCP1640  
X
X
MCP1640B  
MCP1640C  
MCP1640D  
X
X
X
X
X
X
4.1.2  
PWM MODE ONLY OPTION  
The MCP1640B/D devices disable PFM mode  
switching, and operate only in PWM mode over the  
entire load range. During periods of light load opera-  
tion, the MCP1640B/D continues to operate at a con-  
stant 500 kHz switching frequency keeping the output  
ripple voltage lower than PFM mode. During PWM only  
mode, the MCP1640B/D P-Channel switch acts as a  
synchronous rectifier by turning off to prevent reverse  
current flow from the output cap back to the input in  
order to keep efficiency high. For noise immunity, the  
N-Channel MOSFET current sense is blanked for  
approximately 100 ns. With a typical minimum duty  
cycle of 100 ns, the MCP1640B/D continues to switch  
at a constant frequency under light load conditions.  
Figure 2-12 represents the input voltage versus load  
current for the pulse skipping threshold in PWM only  
mode. At lighter loads, the MCP1640B/D devices begin  
to skip pulses.  
2010 Microchip Technology Inc.  
DS22234A-page 11  
MCP1640/B/C/D  
Figure 4-1 depicts the functional block diagram of the  
MCP1640/B/C/D.  
4.2  
Functional Description  
The MCP1640/B/C/D is a compact, high-efficiency,  
fixed frequency, step-up DC-DC converter that  
provides an easy-to-use power supply solution for  
applications powered by either one-cell, two-cell, or  
three-cell alkaline, NiCd, or NiMH, or one-cell Li-Ion or  
Li-Polymer batteries.  
V
OUT  
INTERNAL  
BIAS  
V
IN  
I
ZERO  
DIRECTION  
CONTROL  
SW  
EN  
SOFT-START  
.3V  
0V  
GATE DRIVE  
AND  
SHUTDOWN  
CONTROL  
LOGIC  
I
I
LIMIT  
SENSE  
SLOPE  
COMP.  
GND  
OSCILLATOR  
PWM/PFM  
LOGIC  
1.21V  
FB  
EA  
FIGURE 4-1:  
MCP1640/B/C/D Block Diagram.  
50% of its nominal value. Once the output voltage  
reaches 1.6V, normal closed-loop PWM operation is  
initiated.  
The MCP1640/B/C/D charges an internal capacitor  
with a very weak current source. The voltage on this  
capacitor, in turn, slowly ramps the current limit of the  
boost switch to its nominal value. The soft-start  
capacitor is completely discharged in the event of a  
commanded shutdown or a thermal shutdown.  
4.2.1  
LOW-VOLTAGE START-UP  
The MCP1640/B/C/D is capable of starting from a low  
input voltage. Start-up voltage is typically 0.65V for a  
3.3V output and 1 mA resistive load.  
When enabled, the internal start-up logic turns the  
rectifying P-Channel switch on until the output  
capacitor is charged to a value close to the input  
voltage. The rectifying switch is current limited during  
this time. After charging the output capacitor to the  
input voltage, the device starts switching. If the input  
voltage is below 1.6V, the device runs open-loop with a  
fixed duty cycle of 70% until the output reaches 1.6V.  
During this time, the boost switch current is limited to  
There is no undervoltage lockout feature for the  
MCP1640/B/C/D. The device will start up at the lowest  
possible voltage and run down to the lowest possible  
voltage. For typical battery applications, this may result  
in “motor-boating” for deeply discharged batteries.  
DS22234A-page 12  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
4.2.2  
PWM MODE OPERATION  
4.2.6  
INTERNAL BIAS  
In normal PWM operation, the MCP1640/B/C/D  
operates as a fixed frequency, synchronous boost  
converter. The switching frequency is internally  
maintained with a precision oscillator typically set to  
500 kHz. The MCP1640B/D devices will operate in  
PWM only mode even during periods of light load  
operation. By operating in PWM only mode, the output  
ripple remains low and the frequency is constant.  
Operating in fixed PWM mode results in lower  
efficiency during light load operation (when compared  
to PFM mode (MCP1640/C)).  
The MCP1640/B/C/D gets its start-up bias from VIN.  
Once the output exceeds the input, bias comes from  
the output. Therefore, once started, operation is  
completely independent of VIN. Operation is only  
limited by the output power level and the input source  
series resistance. Once started, the output will remain  
in regulation down to 0.35V typical with 1 mA output  
current for low source impedance inputs.  
4.2.7  
INTERNAL COMPENSATION  
The error amplifier, with its associated compensation  
network, completes the closed loop system by  
comparing the output voltage to a reference at the  
input of the error amplifier, and feeding the amplified  
and inverted signal to the control input of the inner  
current loop. The compensation network provides  
phase leads and lags at appropriate frequencies to  
cancel excessive phase lags and leads of the power  
circuit. All necessary compensation components and  
slope compensation are integrated.  
Lossless current sensing converts the peak current sig-  
nal to a voltage to sum with the internal slope compen-  
sation. This summed signal is compared to the voltage  
error amplifier output to provide a peak current control  
command for the PWM signal. The slope  
compensation is adaptive to the input and output  
voltage. Therefore, the converter provides the proper  
amount of slope compensation to ensure stability, but is  
not excessive, which causes a loss of phase margin.  
The peak current limit is set to 800 mA typical.  
4.2.8  
SHORT CIRCUIT PROTECTION  
4.2.3  
PFM MODE OPERATION  
Unlike most boost converters, the MCP1640/B/C/D  
allows its output to be shorted during normal operation.  
The internal current limit and overtemperature  
protection limit excessive stress and protect the device  
during periods of short circuit, overcurrent and over-  
temperature. While operating in Bypass mode, the  
P-Channel current limit is inhibited to minimize  
quiescent current.  
The MCP1640/C devices are capable of operating in  
normal PWM mode and PFM mode to maintain high  
efficiency at all loads. In PFM mode, the output ripple  
has a variable frequency component that changes with  
the input voltage and output current. With no load, the  
quiescent current draw from the output is typically  
19 µA. The PFM mode can be disabled in selected  
device options.  
4.2.9  
LOW NOISE OPERATION  
PFM operation is initiated if the output load current falls  
below an internally programmed threshold. The output  
voltage is continuously monitored. When the output  
voltage drops below its nominal value, PFM operation  
pulses one or several times to bring the output back  
into regulation. If the output load current rises above  
the upper threshold, the MCP1640/C transitions  
smoothly into PWM mode.  
The MCP1640/B/C/D integrates a low noise anti-ring  
switch that damps the oscillations typically observed at  
the switch node of a boost converter when operating in  
the discontinuous inductor current mode. This removes  
the high frequency radiated noise.  
4.2.10  
OVERTEMPERATURE  
PROTECTION  
4.2.4  
ADJUSTABLE OUTPUT VOLTAGE  
Overtemperature protection circuitry is integrated in the  
MCP1640/B/C/D. This circuitry monitors the device  
junction temperature and shuts the device off if the  
junction temperature exceeds the typical +150oC  
threshold. If this threshold is exceeded, the device will  
automatically restart once the junction temperature  
drops by 10oC. The soft start is reset during an  
overtemperature condition.  
The MCP1640/B/C/D output voltage is adjustable with  
a resistor divider over a 2.0V minimum to 5.5V  
maximum range. High value resistors are  
recommended to minimize quiescent current to keep  
efficiency high at light loads.  
4.2.5  
ENABLE  
The enable pin is used to turn the boost converter on  
and off. The enable threshold voltage varies with input  
voltage. To enable the boost converter, the EN voltage  
level must be greater than 90% of the VIN voltage. To  
disable the boost converter, the EN voltage must be  
less than 20% of the VIN voltage.  
2010 Microchip Technology Inc.  
DS22234A-page 13  
MCP1640/B/C/D  
NOTES:  
DS22234A-page 14  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
5.3  
Input Capacitor Selection  
5.0  
5.1  
APPLICATION INFORMATION  
Typical Applications  
The boost input current is smoothed by the boost  
inductor reducing the amount of filtering necessary at  
the input. Some capacitance is recommended to  
provide decoupling from the source. Low ESR X5R or  
X7R are well suited since they have a low temperature  
coefficient and small size. For most applications,  
4.7 µF of capacitance is sufficient at the input. For high  
power applications that have high source impedance or  
long leads, connecting the battery to the input 10 µF of  
capacitance is recommended. Additional input  
capacitance can be added to provide a stable input  
voltage.  
The MCP1640/B/C/D synchronous boost regulator  
operates over a wide input voltage and output voltage  
range. The power efficiency is high for several decades  
of load range. Output current capability increases with  
input voltage and decreases with increasing output  
voltage. The maximum output current is based on the  
N-Channel peak current limit. Typical characterization  
curves in this data sheet are presented to display the  
typical output current capability.  
Table 5-1 contains the recommended range for the  
input capacitor value.  
5.2  
Adjustable Output Voltage  
Calculations  
To calculate the resistor divider values for the  
MCP1640/B/C/D, the following equation can be used.  
Where RTOP is connected to VOUT, RBOT is connected  
to GND and both are connected to the FB input pin.  
5.4  
Output Capacitor Selection  
The output capacitor helps provide a stable output  
voltage during sudden load transients and reduces the  
output voltage ripple. As with the input capacitor, X5R  
and X7R ceramic capacitors are well suited for this  
application.  
EQUATION 5-1:  
VOUT  
The MCP1640/B/C/D is internally compensated so  
output capacitance range is limited. See Table 5-1 for  
the recommended output capacitor range.  
1  
------------  
RTOP = RBOT  
VFB  
While the N-Channel switch is on, the output current is  
supplied by the output capacitor COUT. The amount of  
output capacitance and equivalent series resistance  
will have a significant effect on the output ripple  
voltage. While COUT provides load current, a voltage  
drop also appears across its internal ESR that results  
in ripple voltage.  
Example A:  
VOUT = 3.3V  
VFB = 1.21V  
RBOT = 309 k  
RTOP = 533.7 k(Standard Value = 536 k)  
Example B:  
EQUATION 5-2:  
VOUT = 5.0V  
VFB = 1.21V  
dV  
dt  
IOUT = COUT ------  
RBOT = 309 k  
RTOP = 967.9 k(Standard Value = 976 k)  
Where dV represents the ripple voltage and dt  
represents the ON time of the N-Channel switch (D * 1/  
FSW).  
There are some potential issues with higher value  
resistors. For small surface mount resistors,  
environment contamination can create leakage paths  
that significantly change the resistor divider that effect  
the output voltage. The FB input leakage current can  
also impact the divider and change the output voltage  
tolerance.  
Table 5-1 contains the recommended range for the  
input and output capacitor value.  
TABLE 5-1:  
CAPACITOR VALUE RANGE  
CIN  
COUT  
Min  
4.7 µF  
none  
10 µF  
Max  
100 µF  
2010 Microchip Technology Inc.  
DS22234A-page 15  
MCP1640/B/C/D  
Peak current is the maximum or limit, and saturation  
current typically specifies a point at which the induc-  
tance has rolled off a percentage of the rated value.  
This can range from a 20% to 40% reduction in induc-  
tance. As inductance rolls off, the inductor ripple cur-  
rent increases as does the peak switch current. It is  
important to keep the inductance from rolling off too  
much, causing switch current to reach the peak limit.  
5.5  
Inductor Selection  
The MCP1640/B/C/D is designed to be used with small  
surface mount inductors; the inductance value can  
range from 2.2 µH to 10 µH. An inductance value of  
4.7 µH is recommended to achieve a good balance  
between inductor size, converter load transient  
response and minimized noise.  
TABLE 5-2:  
MCP1640/B/C/D  
RECOMMENDED INDUCTORS  
5.6  
Thermal Calculations  
The MCP1640/B/C/D is available in two different  
packages (SOT23-6 and 2x3 DFN8). By calculating the  
power dissipation and applying the package thermal  
resistance, (JA), the junction temperature is esti-  
mated. The maximum continuous junction temperature  
rating for the MCP1640/B/C/D is +125oC.  
Part  
Number  
Value  
DCR  
ISAT  
Size  
(µH) (typ) (A) WxLxH (mm)  
Coiltronics®  
SD3110  
SD3112  
SD3114  
SD3118  
SD3812  
SD25  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
0.285 0.68  
0.246 0.80  
0.251 1.14  
0.162 1.31  
0.256 1.13  
0.0467 1.83  
3.1x3.1x1.0  
3.1x3.1x1.2  
3.1x3.1x1.4  
3.8x3.8x1.2  
3.8x3.8x1.2  
5.0x5.0x2.5  
To quickly estimate the internal power dissipation for  
the switching boost regulator, an empirical calculation  
using measured efficiency can be used. Given the  
measured efficiency, the internal power dissipation is  
estimated by Equation 5-3.  
DCR  
ISAT  
(max)  
Part  
Number  
Value  
(µH)  
Size  
EQUATION 5-3:  
(A) WxLxH (mm)  
Wurth Elektronik®  
VOUT IOUT  
------------------------------ VOUT IOUT= PDis  
WE-TPC  
Type TH  
4.7  
4.7  
4.7  
4.7  
0.200  
0.8  
2.8x2.8x1.35  
Efficiency  
WE-TPC  
Type S  
0.105 0.90 3.8x3.8x1.65  
The difference between the first term, input power, and  
the second term, power delivered, is the internal  
MCP1640/B/C/D power dissipation. This is an estimate  
assuming that most of the power lost is internal to the  
MCP1640/B/C/D and not CIN, COUT and the inductor.  
There is some percentage of power lost in the boost  
inductor, with very little loss in the input and output  
capacitors. For a more accurate estimation of internal  
power dissipation, subtract the IINRMS2*LESR power  
dissipation.  
WE-TPC  
Type M  
0.082 1.65  
0.046 2.00  
4.8x4.8x1.8  
6.8x6.8x2.3  
WE-TPC  
Type X  
DCR  
ISAT  
(max)  
Part  
Number  
Value  
(µH)  
Size  
(A) WxLxH (mm)  
Sumida®  
CMH23  
4.7  
4.7  
4.7  
0.537 0.70  
0.216 0.75  
2.3x2.3x1.0  
3.5x4.3x0.8  
5.7  
PCB Layout Information  
CMD4D06  
CDRH4D  
EPCOS®  
0.09 0.800 4.6x4.6x1.5  
Good printed circuit board layout techniques are  
important to any switching circuitry and switching  
power supplies are no different. When wiring the  
switching high current paths, short and wide traces  
should be used. Therefore it is important that the input  
and output capacitors be placed as close as possible to  
the MCP1640/B/C/D to minimize the loop area.  
B82462A2  
472M000  
4.7  
4.7  
0.084 2.00  
0.04 1.8  
6.0x6.0x2.5  
6.3x6.3x3.0  
B82462G4  
472M  
Several parameters are used to select the correct  
inductor: maximum rated current, saturation current  
and copper resistance (ESR). For boost converters, the  
inductor current can be much higher than the output  
current. The lower the inductor ESR, the higher the  
efficiency of the converter, a common trade-off in size  
versus efficiency.  
The feedback resistors and feedback signal should be  
routed away from the switching node and the switching  
current loop. When possible, ground planes and traces  
should be used to help shield the feedback signal and  
minimize noise and magnetic interference.  
DS22234A-page 16  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
Via to GND Plane  
RBOT RTOP  
+V  
+V  
OUT  
IN  
CIN  
COUT  
L
MCP1640  
1
GND  
GND  
Via for Enable  
FIGURE 5-1:  
MCP1640/B/C/D SOT23-6 Recommended Layout.  
Wired on Bottom  
Plane  
L
+V  
IN  
+V  
OUT  
CIN  
COUT  
GND  
MCP1640  
RTOP  
1
RBOT  
Enable  
GND  
FIGURE 5-2:  
MCP1640/B/C/D DFN-8 Recommended Layout.  
2010 Microchip Technology Inc.  
DS22234A-page 17  
MCP1640/B/C/D  
NOTES:  
DS22234A-page 18  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
6.0  
TYPICAL APPLICATION CIRCUITS  
L1  
4.7 µH  
VOUT  
MANGANESE LITHIUM  
DIOXIDE BUTTON CELL  
5.0V @ 5 mA  
SW  
V
OUT  
V
IN  
976 K  
+
COUT  
10 µF  
CIN  
2.0V TO 3.2V  
V
4.7 µF  
FB  
EN  
-
309 K  
®
GND  
FROM PIC MCU I/O  
Note:  
For applications that can operate directly from the battery input voltage during Sleep mode and  
require a higher voltage during normal run mode, the MCP1640C device provides input to output  
bypass when disabled. The PIC Microcontroller is powered by the output of the MCP1640C. One  
of its I/O pins is used to enable and disable the MCP1640C to control its bias voltage. While  
operating in Sleep mode, the MCP1640C input quiescent current is typically less than 1 uA.  
FIGURE 6-1:  
Manganese Lithium Coin Cell Application using Bypass Mode.  
L1  
10 µH  
VOUT  
VIN  
5.0V @ 350 mA  
SW  
V
3.3V To 4.2V  
OUTS  
V
IN  
V
OUTP  
976 K  
COUT  
10 µF  
CIN  
10 µF  
+
V
FB  
EN  
309 K  
P
S
-
GND  
GND  
FIGURE 6-2:  
USB On-The-Go Powered by Li-Ion.  
2010 Microchip Technology Inc.  
DS22234A-page 19  
MCP1640/B/C/D  
NOTES:  
DS22234A-page 20  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information (Not to Scale)  
6-Lead SOT-23  
Example  
XXNN  
BZNN  
8-Lead DFN  
Example  
XXX  
YWW  
NN  
AHM  
945  
25  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS22234A-page 21  
MCP1640/B/C/D  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖꢗꢘꢆꢙꢍꢏꢒꢁꢚꢛꢜ  
ꢝꢔꢊꢃ  /ꢆꢌꢇ$ꢋꢄꢇ ꢆ!$ꢇꢉ%ꢌꢌꢄꢅ$ꢇꢍꢈꢉ0ꢈꢒꢄꢇ"ꢌꢈ.ꢃꢅꢒ!1ꢇꢍꢊꢄꢈ!ꢄꢇ!ꢄꢄꢇ$ꢋꢄꢇꢎꢃꢉꢌꢆꢉꢋꢃꢍꢇ2ꢈꢉ0ꢈꢒꢃꢅꢒꢇꢔꢍꢄꢉꢃ&ꢃꢉꢈ$ꢃꢆꢅꢇꢊꢆꢉꢈ$ꢄ"ꢇꢈ$ꢇ  
ꢋ$$ꢍ,33...ꢁ ꢃꢉꢌꢆꢉꢋꢃꢍꢁꢉꢆ 3ꢍꢈꢉ0ꢈꢒꢃꢅꢒ  
b
4
N
E
E1  
PIN 1 ID BY  
LASER MARK  
1
2
3
e
e1  
D
c
A
φ
A2  
L
A1  
L1  
4ꢅꢃ$!  
ꢎꢘ55ꢘꢎ#ꢖ#ꢙꢔ  
ꢂꢃ ꢄꢅ!ꢃꢆꢅꢇ5ꢃ ꢃ$!  
ꢎꢘ6  
67ꢎ  
ꢎꢓ8  
6% 9ꢄꢌꢇꢆ&ꢇ2ꢃꢅ!  
2ꢃ$ꢉꢋ  
6
ꢏꢁꢛ)ꢇ*ꢔ+  
7%$!ꢃ"ꢄꢇ5ꢄꢈ"ꢇ2ꢃ$ꢉꢋ  
7-ꢄꢌꢈꢊꢊꢇ:ꢄꢃꢒꢋ$  
ꢎꢆꢊ"ꢄ"ꢇ2ꢈꢉ0ꢈꢒꢄꢇꢖꢋꢃꢉ0ꢅꢄ!!  
ꢔ$ꢈꢅ"ꢆ&&  
7-ꢄꢌꢈꢊꢊꢇ=ꢃ"$ꢋ  
ꢎꢆꢊ"ꢄ"ꢇ2ꢈꢉ0ꢈꢒꢄꢇ=ꢃ"$ꢋ  
7-ꢄꢌꢈꢊꢊꢇ5ꢄꢅꢒ$ꢋ  
/ꢆꢆ$ꢇ5ꢄꢅꢒ$ꢋ  
/ꢆꢆ$ꢍꢌꢃꢅ$  
/ꢆꢆ$ꢇꢓꢅꢒꢊꢄ  
5ꢄꢈ"ꢇꢖꢋꢃꢉ0ꢅꢄ!!  
5ꢄꢈ"ꢇ=ꢃ"$ꢋ  
ꢄꢀ  
ꢓꢐ  
ꢓꢀ  
#
#ꢀ  
5
ꢀꢁꢛꢏꢇ*ꢔ+  
ꢏꢁꢛꢏ  
ꢏꢁ<ꢛ  
ꢏꢁꢏꢏ  
ꢐꢁꢐꢏ  
ꢀꢁꢜꢏ  
ꢐꢁꢑꢏ  
ꢏꢁꢀꢏ  
ꢏꢁꢜ)  
ꢏꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢕ)  
ꢀꢁꢜꢏ  
ꢏꢁꢀ)  
ꢜꢁꢐꢏ  
ꢀꢁ<ꢏ  
ꢜꢁꢀꢏ  
ꢏꢁꢚꢏ  
ꢏꢁ<ꢏ  
ꢜꢏꢝ  
5ꢀ  
9
ꢏꢁꢏ<  
ꢏꢁꢐꢏ  
ꢏꢁꢐꢚ  
ꢏꢁ)ꢀ  
ꢝꢔꢊꢃꢉ  
ꢀꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅ!ꢇꢂꢇꢈꢅ"ꢇ#ꢀꢇ"ꢆꢇꢅꢆ$ꢇꢃꢅꢉꢊ%"ꢄꢇ ꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢁꢇꢎꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢇ!ꢋꢈꢊꢊꢇꢅꢆ$ꢇꢄ'ꢉꢄꢄ"ꢇꢏꢁꢀꢐꢑꢇ  ꢇꢍꢄꢌꢇ!ꢃ"ꢄꢁ  
ꢐꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅꢃꢅꢒꢇꢈꢅ"ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢃꢅꢒꢇꢍꢄꢌꢇꢓꢔꢎ#ꢇ(ꢀꢕꢁ)ꢎꢁ  
*ꢔ+, *ꢈ!ꢃꢉꢇꢂꢃ ꢄꢅ!ꢃꢆꢅꢁꢇꢖꢋꢄꢆꢌꢄ$ꢃꢉꢈꢊꢊꢗꢇꢄ'ꢈꢉ$ꢇ-ꢈꢊ%ꢄꢇ!ꢋꢆ.ꢅꢇ.ꢃ$ꢋꢆ%$ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢄ!ꢁ  
ꢎꢃꢉꢌꢆꢉꢋꢃꢍ ꢉꢋꢅꢆꢊꢆꢒꢗ ꢂꢌꢈ.ꢃꢅꢒ +ꢏꢕꢞꢏꢐ<*  
DS22234A-page 22  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS22234A-page 23  
MCP1640/B/C/D  
!ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ"ꢐꢄꢈꢆ#ꢈꢄꢊ$ꢆꢝꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ%ꢄ&ꢃꢆꢕ'ꢖꢘꢆMꢆꢚ)ꢛ)*+,ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢙ"#ꢝꢜ  
ꢝꢔꢊꢃ  /ꢆꢌꢇ$ꢋꢄꢇ ꢆ!$ꢇꢉ%ꢌꢌꢄꢅ$ꢇꢍꢈꢉ0ꢈꢒꢄꢇ"ꢌꢈ.ꢃꢅꢒ!1ꢇꢍꢊꢄꢈ!ꢄꢇ!ꢄꢄꢇ$ꢋꢄꢇꢎꢃꢉꢌꢆꢉꢋꢃꢍꢇ2ꢈꢉ0ꢈꢒꢃꢅꢒꢇꢔꢍꢄꢉꢃ&ꢃꢉꢈ$ꢃꢆꢅꢇꢊꢆꢉꢈ$ꢄ"ꢇꢈ$ꢇ  
ꢋ$$ꢍ,33...ꢁ ꢃꢉꢌꢆꢉꢋꢃꢍꢁꢉꢆ 3ꢍꢈꢉ0ꢈꢒꢃꢅꢒ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
4ꢅꢃ$!  
ꢎꢘ55ꢘꢎ#ꢖ#ꢙꢔ  
ꢂꢃ ꢄꢅ!ꢃꢆꢅꢇ5ꢃ ꢃ$!  
ꢎꢘ6  
67ꢎ  
<
ꢏꢁ)ꢏꢇ*ꢔ+  
ꢏꢁꢛꢏ  
ꢎꢓ8  
6% 9ꢄꢌꢇꢆ&ꢇ2ꢃꢅ!  
2ꢃ$ꢉꢋ  
7-ꢄꢌꢈꢊꢊꢇ:ꢄꢃꢒꢋ$  
ꢔ$ꢈꢅ"ꢆ&&ꢇ  
+ꢆꢅ$ꢈꢉ$ꢇꢖꢋꢃꢉ0ꢅꢄ!!  
7-ꢄꢌꢈꢊꢊꢇ5ꢄꢅꢒ$ꢋ  
7-ꢄꢌꢈꢊꢊꢇ=ꢃ"$ꢋ  
6
ꢓꢀ  
ꢓꢜ  
ꢏꢁ<ꢏ  
ꢏꢁꢏꢏ  
ꢀꢁꢏꢏ  
ꢏꢁꢏ)  
ꢏꢁꢏꢐ  
ꢏꢁꢐꢏꢇꢙ#/  
ꢐꢁꢏꢏꢇ*ꢔ+  
ꢜꢁꢏꢏꢇ*ꢔ+  
M
M
ꢏꢁꢐ)  
#
#'ꢍꢆ!ꢄ"ꢇ2ꢈ"ꢇ5ꢄꢅꢒ$ꢋ  
#'ꢍꢆ!ꢄ"ꢇ2ꢈ"ꢇ=ꢃ"$ꢋ  
+ꢆꢅ$ꢈꢉ$ꢇ=ꢃ"$ꢋ  
+ꢆꢅ$ꢈꢉ$ꢇ5ꢄꢅꢒ$ꢋ  
+ꢆꢅ$ꢈꢉ$ꢞ$ꢆꢞ#'ꢍꢆ!ꢄ"ꢇ2ꢈ"  
ꢂꢐ  
#ꢐ  
9
5
?
ꢀꢁꢜꢏ  
ꢀꢁ)ꢏ  
ꢏꢁꢐꢏ  
ꢏꢁꢜꢏ  
ꢏꢁꢐꢏ  
ꢀꢁ))  
ꢀꢁꢑ)  
ꢏꢁꢜꢏ  
ꢏꢁ)ꢏ  
M
ꢏꢁꢕꢏ  
M
ꢝꢔꢊꢃꢉ  
ꢀꢁ 2ꢃꢅꢇꢀꢇ-ꢃ!%ꢈꢊꢇꢃꢅ"ꢄ'ꢇ&ꢄꢈ$%ꢌꢄꢇ ꢈꢗꢇ-ꢈꢌꢗ1ꢇ9%$ꢇ %!$ꢇ9ꢄꢇꢊꢆꢉꢈ$ꢄ"ꢇ.ꢃ$ꢋꢃꢅꢇ$ꢋꢄꢇꢋꢈ$ꢉꢋꢄ"ꢇꢈꢌꢄꢈꢁ  
ꢐꢁ 2ꢈꢉ0ꢈꢒꢄꢇ ꢈꢗꢇꢋꢈ-ꢄꢇꢆꢅꢄꢇꢆꢌꢇ ꢆꢌꢄꢇꢄ'ꢍꢆ!ꢄ"ꢇ$ꢃꢄꢇ9ꢈꢌ!ꢇꢈ$ꢇꢄꢅ"!ꢁ  
ꢜꢁ 2ꢈꢉ0ꢈꢒꢄꢇꢃ!ꢇ!ꢈ.ꢇ!ꢃꢅꢒ%ꢊꢈ$ꢄ"ꢁ  
ꢕꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅꢃꢅꢒꢇꢈꢅ"ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢃꢅꢒꢇꢍꢄꢌꢇꢓꢔꢎ#ꢇ(ꢀꢕꢁ)ꢎꢁ  
*ꢔ+, *ꢈ!ꢃꢉꢇꢂꢃ ꢄꢅ!ꢃꢆꢅꢁꢇꢖꢋꢄꢆꢌꢄ$ꢃꢉꢈꢊꢊꢗꢇꢄ'ꢈꢉ$ꢇ-ꢈꢊ%ꢄꢇ!ꢋꢆ.ꢅꢇ.ꢃ$ꢋꢆ%$ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢄ!ꢁ  
ꢙ#/, ꢙꢄ&ꢄꢌꢄꢅꢉꢄꢇꢂꢃ ꢄꢅ!ꢃꢆꢅ1ꢇ%!%ꢈꢊꢊꢗꢇ.ꢃ$ꢋꢆ%$ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢄ1ꢇ&ꢆꢌꢇꢃꢅ&ꢆꢌ ꢈ$ꢃꢆꢅꢇꢍ%ꢌꢍꢆ!ꢄ!ꢇꢆꢅꢊꢗꢁ  
ꢎꢃꢉꢌꢆꢉꢋꢃꢍ ꢉꢋꢅꢆꢊꢆꢒꢗ ꢂꢌꢈ.ꢃꢅꢒ +ꢏꢕꢞꢀꢐꢜ+  
DS22234A-page 24  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
!ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ"ꢐꢄꢈꢆ#ꢈꢄꢊ$ꢆꢝꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ%ꢄ&ꢃꢆꢕ'ꢖꢘꢆMꢆꢚ)ꢛ)*+,ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢙ"#ꢝꢜ  
ꢝꢔꢊꢃ  /ꢆꢌꢇ$ꢋꢄꢇ ꢆ!$ꢇꢉ%ꢌꢌꢄꢅ$ꢇꢍꢈꢉ0ꢈꢒꢄꢇ"ꢌꢈ.ꢃꢅꢒ!1ꢇꢍꢊꢄꢈ!ꢄꢇ!ꢄꢄꢇ$ꢋꢄꢇꢎꢃꢉꢌꢆꢉꢋꢃꢍꢇ2ꢈꢉ0ꢈꢒꢃꢅꢒꢇꢔꢍꢄꢉꢃ&ꢃꢉꢈ$ꢃꢆꢅꢇꢊꢆꢉꢈ$ꢄ"ꢇꢈ$ꢇ  
ꢋ$$ꢍ,33...ꢁ ꢃꢉꢌꢆꢉꢋꢃꢍꢁꢉꢆ 3ꢍꢈꢉ0ꢈꢒꢃꢅꢒ  
2010 Microchip Technology Inc.  
DS22234A-page 25  
MCP1640/B/C/D  
NOTES:  
DS22234A-page 26  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
APPENDIX A: REVISION HISTORY  
Revision A (February 2010)  
• Original Release of this Document.  
2010 Microchip Technology Inc.  
DS22234A-page 27  
MCP1640/B/C/D  
NOTES:  
DS22234A-page 28  
2010 Microchip Technology Inc.  
MCP1640/B/C/D  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
PART NO.  
Device  
X
/XX  
Examples:  
Tape  
and Reel  
Temperature  
Range  
Package  
a)  
MCP1640-I/MC:  
0.65V, Sync Reg.,  
8LD-DFN pkg.  
b)  
MCP1640T-I/MC:  
Tape and Reel,  
0.65V, Sync Reg.,  
8LD-DFN pkg.  
Device  
MCP1640:  
0.65V, PWM/PFM True Disconnect,  
Sync Boost Regulator  
MCP1640T: 0.65V, PWM/PFM True Disconnect,  
Sync Boost Regulator (Tape and Reel)  
MCP1640B: 0.65V, PWM Only True Disconnect,  
Sync Boost Regulator  
MCP1640BT: 0.65V, PWM Only True Disconnect,  
Sync Boost Regulator (Tape and Reel)  
c)  
d)  
MCP1640B-I/MC:  
0.65V, Sync Reg.,  
8LD-DFN pkg.  
MCP1640BT-I/MC: Tape and Reel,  
0.65V, Sync Reg.,  
8LD-DFN pkg.  
MCP1640C: 0.65V, PWM/PFM Input to Output Bypass,  
Sync Boost Regulator  
MCP1640CT: 0.65V, PWM/PFM Input to Output Bypass,  
Sync Boost Regulator (Tape and Reel)  
MCP1640D: 0.65V, PWM Only Input to Output Bypass,  
Sync Boost Regulator  
MCP1640DT: 0.65V, PWM Only Input to Output Bypass,  
Sync Boost Regulator (Tape and Reel)  
e)  
f)  
MCP1640C-I/MC:  
0.65V, Sync Reg.,  
8LD-DFN pkg.  
MCP1640CT-I/MC: Tape and Reel,  
0.65V, Sync Reg.,  
8LD-DFN pkg.  
g)  
h)  
MCP1640D-I/MC::  
0.65V, Sync Reg.,  
8LD-DFN pkg.  
MCP1640DT-I/MC:: Tape and Reel,  
0.65V, Sync Reg.,  
Temperature Range  
Package  
I
= -40C to +85C (Industrial)  
8LD-DFN pkg.  
CH  
MC  
=
=
Plastic Small Outline Transistor (SOT-23), 6-lead  
Plastic Dual Flat, No Lead (2x3 DFN), 8-lead  
i)  
MCP1640T-I/CHY: Tape and Reel,  
0.65V, Sync Reg.,  
6LD SOT-23 pkg.  
j)  
MCP1640BT-I/CHY: Tape and Reel,  
0.65V, Sync Reg.,  
6LD SOT-23 pkg.  
k)  
l)  
MCP1640CT-I/CHY: Tape and Reel,  
0.65V, Sync Reg.,  
6LD SOT-23 pkg.  
MCP1640DT-I/CHY: Tape and Reel,  
0.65V, Sync Reg.,  
6LD SOT-23 pkg.  
2010 Microchip Technology Inc.  
DS22234A-page 29  
MCP1640/B/C/D  
NOTES:  
DS22234A-page 30  
2010 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-019-5  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2010 Microchip Technology Inc.  
DS22234A-page 31  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/05/10  
DS22234A-page 32  
2010 Microchip Technology Inc.  

相关型号:

MCP1640T-ICH

0.65V START-UP SYNCHRONOUS BOOST REGULATOR WITH TRUE OUTPUT DISCONNECT OR INPUT/OUTPUT BYPASS OPTION
MICROCHIP

MCP1640T-ICHY

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP1640T-IMC

0.65V START-UP SYNCHRONOUS BOOST REGULATOR WITH TRUE OUTPUT DISCONNECT OR INPUT/OUTPUT BYPASS OPTION
MICROCHIP

MCP1640_11

0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP1640_13

0.65V START-UP SYNCHRONOUS BOOST REGULATOR WITH TRUE OUTPUT DISCONNECT OR INPUT/OUTPUT BYPASS OPTION
MICROCHIP

MCP1640_15

0.65V Start-Up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option
MICROCHIP

MCP16411-I/MN

Low IQ Boost Converter with Programmable Low Battery, UVLO and Automatic Input-to-Output Bypass Operation
MICROCHIP

MCP16411-I/UN

Low IQ Boost Converter with Programmable Low Battery, UVLO and Automatic Input-to-Output Bypass Operation
MICROCHIP

MCP16411T-I/MN

Low IQ Boost Converter with Programmable Low Battery, UVLO and Automatic Input-to-Output Bypass Operation
MICROCHIP

MCP16411T-I/UN

Low IQ Boost Converter with Programmable Low Battery, UVLO and Automatic Input-to-Output Bypass Operation
MICROCHIP

MCP16412-I/MN

Low IQ Boost Converter with Programmable Low Battery, UVLO and Automatic Input-to-Output Bypass Operation
MICROCHIP

MCP16412-I/UN

Low IQ Boost Converter with Programmable Low Battery, UVLO and Automatic Input-to-Output Bypass Operation
MICROCHIP