MCP1700-2802E/TT [MICROCHIP]

FIXED POSITIVE LDO REGULATOR;
MCP1700-2802E/TT
型号: MCP1700-2802E/TT
厂家: MICROCHIP    MICROCHIP
描述:

FIXED POSITIVE LDO REGULATOR

文件: 总28页 (文件大小:949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1700  
Low Quiescent Current LDO  
Features:  
General Description:  
• 1.6 µA Typical Quiescent Current  
The MCP1700 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 250 mA of  
current while consuming only 1.6 µA of quiescent  
current (typical). The input operating range is specified  
from 2.3V to 6.0V, making it an ideal choice for two and  
three primary cell battery-powered applications, as well  
as single cell Li-Ion-powered applications.  
• Input Operating Voltage Range: 2.3V to 6.0V  
• Output Voltage Range: 1.2V to 5.0V  
• 250 mA Output Current for Output  
Voltages 2.5V  
• 200 mA Output Current for Output  
Voltages < 2.5V  
The MCP1700 is capable of delivering 250 mA with  
only 178 mV of input to output voltage differential  
(VOUT = 2.8V). The output voltage tolerance of the  
MCP1700 is typically ±0.4% at +25°C and ±3%  
maximum over the operating junction temperature  
range of -40°C to +125°C.  
• Low Dropout (LDO) Voltage  
- 178 mV typical @ 250 mA for VOUT = 2.8V  
• 0.4% Typical Output Voltage Tolerance  
• Standard Output Voltage Options:  
- 1.2V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 5.0V  
• Stable with 1.0 µF Ceramic Output Capacitor  
• Short Circuit Protection  
Output voltages available for the MCP1700 range from  
1.2V to 5.0V. The LDO output is stable when using only  
1 µF output capacitance. Ceramic, tantalum or  
aluminum electrolytic capacitors can all be used for  
input and output. Overcurrent limit and overtemperature  
shutdown provide a robust solution for any application.  
• Overtemperature Protection  
Applications:  
• Battery-Powered Devices  
• Battery-Powered Alarm Circuits  
• Smoke Detectors  
Package options include SOT-23, SOT-89, TO-92 and  
2x2 DFN-6.  
Package Types  
• CO2 Detectors  
• Pagers and Cellular Phones  
• Smart Battery Packs  
• Low Quiescent Current Voltage Reference  
• PDAs  
3-Pin SOT-23  
3-Pin SOT-89  
VIN  
3
VIN  
MCP1700  
• Digital Cameras  
MCP1700  
• Microcontroller Power  
2
1
3
1
2
GND VIN VOUT  
GND VOUT  
Related Literature:  
3-Pin TO-92  
2x2 DFN-6*  
• AN765, “Using Microchip’s Micropower LDOs”  
(DS00765), Microchip Technology Inc., 2002  
V
IN  
V
OUT  
1
2
6
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs” (DS00766),  
Microchip Technology Inc., 2002  
MCP1700  
EP  
7
NC  
5
4
NC  
NC  
1
2 3  
3
GND  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”  
(DS00792), Microchip Technology Inc., 2001  
GND VIN VOUT  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 1  
MCP1700  
Functional Block Diagrams  
MCP1700  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
Typical Application Circuits  
MCP1700  
VIN  
GND  
(2.3V to 3.2V)  
VOUT  
1.8V  
VIN  
CIN  
VOUT  
1 µF Ceramic  
IOUT  
150 mA  
COUT  
1 µF Ceramic  
DS20001826C-page 2  
2005-2013 Microchip Technology Inc.  
MCP1700  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
............................................................................................+6.5V  
DD  
All inputs and outputs w.r.t. ......... (V - 0.3V) to (V + 0.3V)  
SS  
IN  
Peak Output Current ....................................Internally Limited  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature................................... 150°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD protection on all pins (HBM;MM)  4 kV; 400V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise specified, all limits are established for V = V + 1V, I  
= 100 µA,  
IN  
R
LOAD  
C
= 1 µF (X7R), C = 1 µF (X7R), T = +25°C.  
OUT  
IN A  
Boldface type applies for junction temperatures, T (Note 6) of -40°C to +125°C.  
J
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input / Output Characteristics  
Input Operating  
Voltage  
V
I
2.3  
6.0  
4
V
Note 1  
IN  
Input Quiescent  
Current  
1.6  
µA  
mA  
mA  
I = 0 mA, V = V + 1V  
q
L
IN  
R
Maximum Output  
Current  
I
250  
200  
For V 2.5V  
OUT_mA  
R
For V 2.5V  
R
Output Short  
I
408  
V
= V + 1V, V  
= GND  
OUT  
OUT_SC  
IN  
R
Circuit Current  
Current (peak current) measured 10 ms  
after short is applied.  
Output Voltage  
Regulation  
V
V
V
- 3.0%  
- 2.0%  
V
± 0.4%  
50  
V
V
+ 3.0%  
+ 2.0%  
V
ppm/°C  
%/V  
Note 2  
OUT  
R
R
R
R
R
V
Temperature  
TCV  
Note 3  
OUT  
OUT  
Coefficient  
Line Regulation  
V  
/
-1.0  
-1.5  
±0.75  
±1.0  
+1.0  
+1.5  
(V + 1)V V 6V  
OUT  
XV )  
IN  
R
IN  
(V  
OUT  
Load Regulation  
V  
/V  
%
I = 0.1 mA to 250 mA for V 2.5V  
L R  
OUT OUT  
I = 0.1 mA to 200 mA for V 2.5V  
L
R
Note 4  
Dropout Voltage  
V
V
- V  
- V  
178  
150  
500  
350  
350  
mV  
mV  
µs  
I = 250 mA, (Note 1, Note 5)  
L
IN  
OUT  
OUT  
V
2.5V  
R
Dropout Voltage  
2.5V  
I = 200 mA, (Note 1, Note 5)  
L
IN  
V
R
Output Rise Time  
T
10% V to 90% V  
V
= 0V to 6V,  
R
R
R
IN  
R = 50resistive  
L
Note 1: The minimum V must meet two conditions: V 2.3V and V  V + 3.0%  V .  
DROPOUT  
IN  
IN  
IN  
R
2:  
V is the nominal regulator output voltage. For example: V = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The  
R
R
input voltage V = V + 1.0V; I  
= 100 µA.  
IN  
R
OUT  
6
3: TCV  
= (V  
- V  
) *10 / (V * Temperature), V  
= highest voltage measured over the  
OUT-HIGH  
OUT  
OUT-HIGH  
OUT-LOW  
R
temperature range. V  
= lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCV  
.
OUT  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with a V + 1V differential applied.  
R
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 3  
MCP1700  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise specified, all limits are established for V = V + 1V, I = 100 µA,  
IN  
R
LOAD  
C
= 1 µF (X7R), C = 1 µF (X7R), T = +25°C.  
IN A  
OUT  
Boldface type applies for junction temperatures, T (Note 6) of -40°C to +125°C.  
J
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
I = 100 mA, f = 1 kHz, C = 1 µF  
OUT  
1/2  
Output Noise  
e
3
µV/(Hz)  
dB  
N
L
Power Supply  
Ripple Rejection  
Ratio  
PSRR  
44  
f = 100 Hz, C  
= 1 µF, I = 50 mA,  
OUT L  
V
V
= 100 mV pk-pk, C = 0 µF,  
= 1.2V  
INAC  
IN  
R
Thermal  
T
140  
°C  
V
= V + 1V, I = 100 µA  
SD  
IN  
R
L
Shutdown  
Protection  
Note 1: The minimum V must meet two conditions: V 2.3V and V  V + 3.0%  V  
.
IN  
IN  
IN  
R
DROPOUT  
2:  
V is the nominal regulator output voltage. For example: V = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The  
R
R
input voltage V = V + 1.0V; I  
= 100 µA.  
IN  
R
OUT  
6
3: TCV  
= (V  
- V  
) *10 / (V * Temperature), V  
= highest voltage measured over the  
OUT-HIGH  
OUT  
OUT-HIGH  
OUT-LOW  
R
temperature range. V  
= lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCV  
.
OUT  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with a V + 1V differential applied.  
R
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise specified, all limits are established for V = V + 1V, I  
= 100 µA,  
IN  
R
LOAD  
C
= 1 µF (X7R), C = 1 µF (X7R), T = +25°C.  
OUT  
IN A  
Boldface type applies for junction temperatures, T (Note 1) of -40°C to +125°C.  
J
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, 2x2 DFN  
T
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
A
T
J
T
A
®
JA  
JC  
JA  
JC  
JA  
JC  
JA  
JC  
91  
19  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
Thermal Resistance, SOT-23  
Thermal Resistance, SOT-89  
Thermal Resistance, TO-92  
336  
110  
180  
52  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
160  
66.3  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
DS20001826C-page 4  
2005-2013 Microchip Technology Inc.  
MCP1700  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
Note: Junction Temperature (T ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction  
J
temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.  
1.208  
1.206  
1.204  
1.202  
1.200  
1.198  
1.196  
1.194  
1.192  
1.190  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
VR = 1.2V  
VR = 1.2V  
IOUT = 0.1 mA  
IOUT = 0 µA  
TJ = +125°C  
TJ = +25°C  
TJ = +125°C  
TJ = - 40°C  
TJ = +25°C  
TJ = - 40°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Voltage (V)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
FIGURE 2-1:  
Input Quiescent Current vs.  
FIGURE 2-4:  
Output Voltage vs. Input  
Input Voltage.  
Voltage (VR = 1.2V).  
50  
45  
1.800  
1.795  
1.790  
TJ = - 40°C  
1.785  
VR = 2.8V  
VR = 1.8V  
TJ = +125°C  
IOUT = 0.1 mA  
40  
35  
30  
25  
20  
15  
10  
5
TJ = +25°C  
TJ = - 40°C  
TJ = +125°C  
1.780  
1.775  
1.770  
TJ = +25°C  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Voltage (V)  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
FIGURE 2-2:  
Ground Current vs. Load  
FIGURE 2-5:  
Output Voltage vs. Input  
Current.  
Voltage (VR = 1.8V).  
2.800  
2.798  
2.796  
2.794  
2.792  
2.790  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
VIN = VR + 1V  
IOUT = 0 µA  
VR = 2.8V  
IOUT = 0.1 mA  
TJ = +25°C  
VR = 5.0V  
TJ = - 40°C  
VR = 1.2V  
2.788  
2.786  
2.784  
2.782  
2.780  
2.778  
TJ = +125°C  
VR = 2.8V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
5.7  
6.0  
Input Voltage (V)  
FIGURE 2-3:  
Quiescent Current vs.  
FIGURE 2-6:  
Output Voltage vs. Input  
Junction Temperature.  
Voltage (VR = 2.8V).  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 5  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
TJ = +25°C  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
2.798  
2.796  
2.794  
2.792  
2.790  
2.788  
2.786  
2.784  
2.782  
2.780  
2.778  
VR = 5.0V  
TJ = +25°C  
TJ = - 40°C  
I
OUT = 0.1 mA  
VR = 2.8V  
IN = VR + 1V  
V
TJ = - 40°C  
TJ = +125°C  
TJ = +125°C  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
0
50  
100  
150  
200  
250  
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load  
Voltage (VR = 5.0V).  
Current (VR = 2.8V).  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
5.000  
VR = 1.2V  
TJ = - 40°C  
TJ = +25°C  
TJ = +25°C  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
VIN = VR + 1V  
TJ = - 40°C  
VR = 5.0V  
VIN = VR + 1V  
T
J
= +125°C  
TJ = +125°C  
0
25  
50  
75 100 125 150 175 200  
Load Current (mA)  
0
50  
100  
150  
200  
250  
Load Current (mA)  
FIGURE 2-8:  
Output Voltage vs. Load  
FIGURE 2-11:  
Output Voltage vs. Load  
Current (VR = 1.2V).  
Current (VR = 5.0V).  
0.25  
1.792  
1.790  
VR = 2.8V  
0.20  
0.15  
0.10  
0.05  
0.00  
TJ = +125°C  
TJ = +25°C  
TJ = +25°C  
1.788  
TJ = - 40°C  
1.786  
1.784  
TJ = +125°C  
TJ = - 40°C  
1.782  
VR = 1.8V  
VIN = VR + 1V  
1.780  
1.778  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
0
25  
50  
75 100 125 150 175 200  
Load Current (mA)  
FIGURE 2-9:  
Output Voltage vs. Load  
FIGURE 2-12:  
Dropout Voltage vs. Load  
Current (VR = 1.8V).  
Current (VR = 2.8V).  
DS20001826C-page 6  
2005-2013 Microchip Technology Inc.  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
0.16  
10.00  
VIN = 3.8V  
VR = 2.8V  
VR = 5.0V  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
IOUT = 50 mA  
TJ = +125°C  
TJ = - 40°C  
VIN = 2.5V  
VR = 1.2V  
VIN = 2.8V  
VR = 1.8V  
1.00  
0.10  
0.01  
TJ = +25°C  
IOUT = 50 mA IOUT = 50 mA  
0.01  
0.1  
1
10  
100  
1000  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
Frequency (kHz)  
FIGURE 2-13:  
Current (VR = 5.0V).  
Dropout Voltage vs. Load  
FIGURE 2-16:  
VIN = 2.2V  
Noise vs. Frequency.  
+20  
+10  
CIN = 1µF Ceramic  
COUT = 1µF Ceramic  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
VR = 1.2V  
I = 100 mA  
Load  
Step  
0.01  
0.10  
1.00  
10.0  
Frequency (KHz)  
100  
1000  
FIGURE 2-14:  
Power Supply Ripple  
FIGURE 2-17:  
Dynamic Load Step  
Rejection vs. Frequency (VR = 1.2V).  
(VR = 1.2V).  
+20  
+10  
0
VIN = 2.8V  
CIN = 1µF Ceramic  
COUT = 1µF Ceramic  
-10  
-20  
-30  
-40  
-50  
-60  
V
R = 1.8V  
I = 100 mA  
Load  
Step  
0.01  
0.01  
10.00  
1ꢀꢁꢁ  
Frequency (KHz)  
100  
1000  
FIGURE 2-15:  
Power Supply Ripple  
FIGURE 2-18:  
Dynamic Load Step  
Rejection vs. Frequency (VR = 2.8V).  
(VR = 1.8V).  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 7  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
VIN = 6V  
C
IN = 1 µF Ceramic  
VIN = 3.8V  
VR = 2.8V  
COUT = 22 µF (1ESR)  
VR = 5V  
CIN = 1µF Ceramic  
OUT = 1µF Ceramic  
C
I = 100 mA  
Load  
Step  
IOUT= 200 mA  
Load Step  
FIGURE 2-19:  
Dynamic Load Step  
FIGURE 2-22:  
Dynamic Load Step  
(VR = 2.8V).  
(VR = 5.0V).  
VIN = 3.8V to  
4.8V  
VIN = 2.8V  
VR = 1.8V  
CIN = 1 µF Ceramic  
COUT = 22 µF (1ESR)  
COUT = 1 µF Ceramic  
V
R = 2.8V  
I
OUT= 200 mA  
IOUT  
100 mA  
Load Step  
FIGURE 2-20:  
Dynamic Load Step  
FIGURE 2-23:  
Dynamic Line Step  
(VR = 1.8V).  
(VR = 2.8V).  
VIN = 0V to  
2.2V  
VIN = 3.8V  
VR = 2.8V  
C
OUT = 1 µF Ceramic  
CIN = 1 µF Ceramic  
RLOAD = 25  
COUT = 22 µF (1ESR)  
V
R = 1.2V  
IOUT= 200 mA  
Load Step  
FIGURE 2-21:  
Dynamic Load Step  
FIGURE 2-24:  
Start-up from VIN  
(VR = 2.8V).  
(VR = 1.2V).  
DS20001826C-page 8  
2005-2013 Microchip Technology Inc.  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
VIN = 0V to  
2.8V  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
COUT = 1 µF Ceramic  
RLOAD = 25  
VR = 2.8V  
IOUT = 0 to 250 mA  
VIN = 5.0V  
VIN = 4.3V  
V
IN
= 3.3V  
V
R = 1.8V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
FIGURE 2-25:  
Start-up from VIN  
FIGURE 2-28:  
Load Regulation vs.  
(VR = 1.8V).  
Junction Temperature (VR = 2.8V).  
VIN = 0V to  
3.8V  
C
OUT = 1 µF Ceramic  
0.10  
VR = 5.0V  
OUT = 0 to 250 mA  
RLOAD = 25  
I
0.05  
0.00  
VIN = 6.0V  
V
IN
= 5.5V  
-0.05  
-0.10  
-0.15  
-0.20  
V
R = 2.8V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
FIGURE 2-26:  
Start-up from VIN  
FIGURE 2-29:  
Load Regulation vs.  
(VR = 2.8V).  
Junction Temperature (VR = 5.0V).  
0.3  
0.2  
0.10  
0.05  
VR = 1.8V  
IOUT = 0 to 200 mA  
VIN = 5.0V  
0.1  
0.0  
0.00  
VR = 2.8V  
VIN = 3.5V  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
VR = 1.8V  
-0.1  
-0.2  
-0.3  
-0.4  
VIN = 2.2V  
VR = 1.2V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-27:  
Load Regulation vs.  
FIGURE 2-30:  
Line Regulation vs.  
Junction Temperature (VR = 1.8V).  
Temperature (VR = 1.2V, 1.8V, 2.8V).  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 9  
MCP1700  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
SOT-23  
Pin No.  
SOT-89  
Pin No.  
TO-92  
Pin No.  
2x2 DFN-6  
Name  
Function  
1
2
1
3
1
3
3
GND  
VOUT  
VIN  
Ground Terminal  
6
Regulated Voltage Output  
Unregulated Supply Voltage  
No Connect  
3
2
2
1
2, 4, 5  
7
NC  
EP  
Exposed Thermal Pad  
3.1  
Ground Terminal (GND)  
3.4  
No Connect (NC)  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (1.6 µA typical) flows out of  
this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
No internal connection. The pins marked NC are true  
“No Connect” pins.  
3.5  
Exposed Thermal Pad (EP)  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the GND pin; they  
must be connected to the same potential on the Printed  
Circuit Board (PCB).  
3.2  
Regulated Output Voltage (V  
)
OUT  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current.  
3.3  
Unregulated Input Voltage Pin  
(V )  
IN  
Connect VIN to the input unregulated source voltage.  
As with all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 1 µF of capacitance will ensure stable  
operation of the LDO circuit. For applications that have  
load currents below 100 mA, the input capacitance  
requirement can be lowered. The type of capacitor  
used can be ceramic, tantalum or aluminum  
electrolytic. The low ESR characteristics of the ceramic  
will yield better noise and PSRR performance at high  
frequency.  
DS20001826C-page 10  
2005-2013 Microchip Technology Inc.  
MCP1700  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
4.3  
Overtemperature  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal bandgap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
The internal power dissipation within the LDO is a  
function of input-to-output voltage differential and load  
current. If the power dissipation within the LDO is  
excessive, the internal junction temperature will rise  
above the typical shutdown threshold of 140°C. At that  
point, the LDO will shut down and begin to cool to the  
typical turn-on junction temperature of 130°C. If the  
power dissipation is low enough, the device will  
continue to cool and operate normally. If the power  
dissipation remains high, the thermal shutdown  
protection circuitry will again turn off the LDO,  
protecting it from catastrophic failure.  
4.2  
Overcurrent  
The MCP1700 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event of a short circuit or excessive output  
current, the MCP1700 will turn off the P-Channel  
device for a short period, after which the LDO will  
attempt to restart. If the excessive current remains, the  
cycle will repeat itself.  
MCP1700  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
FIGURE 4-1:  
Block Diagram.  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 11  
MCP1700  
5.0  
FUNCTIONAL DESCRIPTION  
The MCP1700 CMOS low dropout linear regulator is  
intended for applications that need the lowest current  
consumption while maintaining output voltage  
regulation. The operating continuous load of the  
MCP1700 ranges from 0 mA to 250 mA (VR 2.5V).  
The input operating voltage ranges from 2.3V to 6.0V,  
making it capable of operating from two, three or four  
alkaline cells or a single Li-Ion cell battery input.  
5.1  
Input  
The input of the MCP1700 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance (10)  
is needed to prevent the input impedance from causing  
the LDO to become unstable. The size and type of the  
required capacitor depend heavily on the input source  
type (battery, power supply) and the output current  
range of the application. For most applications (up to  
100 mA), a 1 µF ceramic capacitor will be sufficient to  
ensure circuit stability. Larger values can be used to  
improve circuit AC performance.  
5.2  
Output  
The maximum rated continuous output current for the  
MCP1700 is 250 mA (VR 2.5V). For applications  
where VR < 2.5V, the maximum output current is  
200 mA.  
A minimum output capacitance of 1.0 µF is required for  
small signal stability in applications that have up to  
250 mA output current capability. The capacitor type  
can be ceramic, tantalum or aluminum electrolytic. The  
ESR range on the output capacitor can range from 0  
to 2.0.  
5.3  
Output Rise time  
When powering up the internal reference output, the  
typical output rise time of 500 µs is controlled to  
prevent overshoot of the output voltage.  
DS20001826C-page 12  
2005-2013 Microchip Technology Inc.  
MCP1700  
The maximum continuous operating junction  
temperature specified for the MCP1700 is +125°C. To  
estimate the internal junction temperature of the  
MCP1700, the total internal power dissipation is  
multiplied by the thermal resistance from junction to  
ambient (RJA). The thermal resistance from junction to  
ambient for the SOT-23 pin package is estimated at  
230°C/W.  
6.0  
6.1  
APPLICATION CIRCUITS AND  
ISSUES  
Typical Application  
The MCP1700 is most commonly used as a voltage  
regulator. Its low quiescent current and low dropout  
voltage make it ideal for many battery-powered  
applications.  
EQUATION 6-2:  
MCP1700  
TJMAX= PTOTAL RJA + TAMAX  
VIN  
GND  
(2.3V to 3.2V)  
VOUT  
1.8V  
TJ(MAX)  
=
Maximum continuous junction  
temperature  
VIN  
CIN  
VOUT  
1 µF Ceramic  
IOUT  
150 mA  
PTOTAL  
=
=
Total power dissipation of the device  
COUT  
1 µF Ceramic  
RJA  
Thermal resistance from junction to  
ambient  
TA(MAX)  
=
Maximum ambient temperature  
FIGURE 6-1:  
Typical Application Circuit.  
6.1.1  
APPLICATION INPUT CONDITIONS  
Package Type = SOT-23  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the maximum internal power  
dissipation of the package.  
Input Voltage Range = 2.3V to 3.2V  
VIN maximum = 3.2V  
VOUT typical = 1.8V  
IOUT = 150 mA maximum  
EQUATION 6-3:  
TJMAXTAMAX  
6.2  
6.2.1  
Power Calculations  
PDMAX= ---------------------------------------------------  
RJA  
POWER DISSIPATION  
PD(MAX)  
TJ(MAX)  
=
=
Maximum power dissipation of the  
device  
The internal power dissipation of the MCP1700 is a  
function of input voltage, output voltage and output  
current. The power dissipation resulting from the  
quiescent current draw is so low it is insignificant  
(1.6 µA x VIN). The following equation can be used to  
calculate the internal power dissipation of the LDO.  
Maximum continuous junction  
temperature  
TA(MAX)  
=
=
Maximum ambient temperature  
RJA  
Thermal resistance from junction to  
ambient  
EQUATION 6-1:  
PLDO = VINMAXVOUTMIN  IOUTMAX  
EQUATION 6-4:  
TJRISE= PDMAXRJA  
PLDO = Internal power dissipation of the  
LDO Pass device  
TJ(RISE)  
=
Rise in the device’s junction  
temperature over the ambient  
temperature  
VIN(MAX) = Maximum input voltage  
VOUT(MIN) = Minimum output voltage of the  
LDO  
PTOTAL  
=
=
Maximum power dissipation of the  
device  
RJA  
Thermal resistance from junction to  
ambient  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 13  
MCP1700  
EQUATION 6-5:  
TJ(RISE) = PTOTAL x RJA  
TJ = TJRISE+ TA  
TJ(RISE) = 218.1 milli-Watts x 230.0°C/Watt  
TJ(RISE) = 50.2°C  
TJ  
=
=
Junction Temperature  
Junction Temperature Estimate  
TJ(RISE)  
Rise in the device’s junction  
temperature over the ambient  
temperature  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
TA  
=
Ambient temperature  
6.3  
Voltage Regulator  
TJ = TJ(RISE) + TA(MAX)  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation resulting from ground current is small  
enough to be neglected.  
TJ = 90.2°C  
Maximum Package Power Dissipation at +40°C  
Ambient Temperature  
2x2 DFN-6 (91°C/Watt = RJA  
PD(MAX) = (125°C - 40°C) / 91°C/W  
D(MAX) = 934 milli-Watts  
SOT-23 (230.0°C/Watt = RJA  
)
6.3.1  
POWER DISSIPATION EXAMPLE  
P
Package  
)
Package Type = SOT-23  
Input Voltage  
PD(MAX) = (125°C - 40°C) / 230°C/W  
PD(MAX) = 369.6 milli-Watts  
VIN = 2.3V to 3.2V  
SOT-89 (52°C/Watt = RJA  
)
LDO Output Voltages and Currents  
VOUT = 1.8V  
PD(MAX) = (125°C - 40°C) / 52°C/W  
PD(MAX) = 1.635 Watts  
IOUT = 150 mA  
TO-92 (131.9°C/Watt = RJA  
)
Maximum Ambient Temperature  
TA(MAX) = +40°C  
PD(MAX) = (125°C - 40°C) / 131.9°C/W  
PD(MAX) = 644 milli-Watts  
Internal Power Dissipation  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX)  
PLDO = (3.2V - (0.97 x 1.8V)) x 150 mA  
PLDO = 218.1 milli-Watts  
Device Junction Temperature Rise  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The thermal  
resistance from junction to ambient (RJA) is derived  
from an EIA/JEDEC® standard for measuring thermal  
resistance for small surface mount packages. The EIA/  
JEDEC specification is JESD51-7, “High Effective  
Thermal Conductivity Test Board for Leaded Surface  
Mount Packages”. The standard describes the test  
method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT-23 Can Dissipate in an  
Application” (DS00792), for more information regarding  
this subject.  
DS20001826C-page 14  
2005-2013 Microchip Technology Inc.  
MCP1700  
6.4  
Voltage Reference  
The MCP1700 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1700 LDO. The low cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1700 as a voltage  
reference.  
Ratio Metric Reference  
®
1 µA Bias  
PIC  
MCP1700  
Microcontroller  
V
IN  
C
1 µF  
IN  
V
V
REF  
OUT  
C
1 µF  
OUT  
GND  
AD0  
AD1  
Bridge Sensor  
FIGURE 6-2:  
Using the MCP1700 as a  
voltage reference.  
6.5  
Pulsed Load Applications  
For some applications, there are pulsed load current  
events that may exceed the specified 250 mA  
maximum specification of the MCP1700. The internal  
current limit of the MCP1700 will prevent high peak  
load demands from causing non-recoverable damage.  
The 250 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
250 mA, pulsed higher load currents can be applied to  
the MCP1700. The typical current limit for the  
MCP1700 is 550 mA (TA + 25°C).  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 15  
MCP1700  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Pin SOT-23  
Standard  
Extended Temp  
Symbol  
CK  
Voltage *  
1.2  
CKNN  
CM  
CP  
CQ  
CR  
CS  
CU  
1.8  
2.5  
2.8  
3.0  
3.3  
5.0  
3-Pin SOT-89  
CUYYWW  
NNN  
* Custom output voltages available upon request.  
Contact your local Microchip sales office for more  
information.  
Example  
3-Pin TO-92  
1700  
XXXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
1202E  
e
3
TO^
322256  
6-Lead DFN (2x2x0.9 mm)  
Example  
Part Number  
Code  
ABB  
256  
ABB  
ABC  
ABD  
ABF  
ABE  
AAZ  
ABA  
MCP1700T-1202E/MAY  
MCP1700T-1802E/MAY  
MCP1700T-2502E/MAY  
MCP1700T-2802E/MAY  
MCP1700T-3002E/MAY  
MCP1700T-3302E/MAY  
MCP1700T-5002E/MAY  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20001826C-page 16  
2005-2013 Microchip Technology Inc.  
MCP1700  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢒꢒꢖꢆꢗꢍꢏꢒꢁꢘꢀꢙ  
ꢚꢔꢊꢃꢛ ꢦꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢧꢊꢚꢅꢉꢋꢓꢊꢥꢃꢆꢚꢇꢨꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢩꢊꢎꢧꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢡꢪꢪꢥꢥꢥꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢪꢔꢊꢎꢧꢊꢚꢃꢆꢚ  
b
N
E
E1  
2
1
e
e1  
D
c
A
A2  
φ
A1  
L
ꢫꢆꢃꢍꢇꢕꢬꢭꢭꢬꢕꢌꢢꢌꢮꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢭꢃꢄꢃꢍꢇ  
ꢕꢬꢯ  
ꢯꢰꢕ  
ꢕꢛꢱ  
ꢯꢐꢄꢲꢅꢓꢉꢈꢑꢉꢩꢃꢆꢇꢯ  
ꢭꢅꢊꢋꢉꢩꢃꢍꢎꢒ  
ꢗꢁꢴꢙꢉꢟꢜꢠ  
ꢰꢐꢍꢇꢃꢋꢅꢉꢭꢅꢊꢋꢉꢩꢃꢍꢎꢒ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢩꢊꢎꢧꢊꢚꢅꢉꢢꢒꢃꢎꢧꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢴꢗꢉꢟꢜꢠ  
ꢗꢁꢶꢴ  
ꢗꢁꢸꢴ  
ꢗꢁꢗꢀ  
ꢘꢁꢀꢗ  
ꢀꢁꢀꢺ  
ꢘꢁꢺꢸ  
ꢗꢁꢀꢳ  
ꢗꢻ  
ꢗꢁꢴꢙ  
ꢀꢁꢀꢘ  
ꢀꢁꢗꢘ  
ꢗꢁꢀꢗ  
ꢘꢁꢺꢞ  
ꢀꢁꢞꢗ  
ꢳꢁꢗꢙ  
ꢗꢁꢺꢗ  
ꢀꢗꢻ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢩꢊꢎꢧꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢭꢅꢆꢚꢍꢒ  
ꢦꢈꢈꢍꢉꢭꢅꢆꢚꢍꢒ  
ꢀꢁꢳꢗ  
ꢘꢁꢴꢗ  
ꢗꢁꢙꢗ  
ꢦꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢭꢅꢊꢋꢉꢢꢒꢃꢎꢧꢆꢅꢇꢇ  
ꢭꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢗꢁꢗꢶ  
ꢗꢁꢳꢗ  
ꢗꢁꢘꢗ  
ꢗꢁꢙꢞ  
ꢚꢔꢊꢃꢉꢛ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢙꢕꢁ  
ꢟꢜꢠꢡ ꢟꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢢꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢣꢉꢅꢖꢊꢎꢍꢉꢤꢊꢏꢐꢅꢉꢇꢒꢈꢥꢆꢉꢥꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢣ ꢂꢓꢊꢥꢃꢆꢚ ꢠꢗꢞꢼꢀꢗꢞꢟ  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 17  
MCP1700  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001826C-page 18  
2005-2013 Microchip Technology Inc.  
MCP1700  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢜꢃꢄꢅꢃꢓꢆꢕꢝ ꢖꢆꢗꢍꢏꢒꢁ!"ꢙ  
ꢚꢔꢊꢃꢛ ꢦꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢧꢊꢚꢅꢉꢋꢓꢊꢥꢃꢆꢚꢇꢨꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢩꢊꢎꢧꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢡꢪꢪꢥꢥꢥꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢪꢔꢊꢎꢧꢊꢚꢃꢆꢚ  
D
D1  
E
H
L
N
1
2
b
b1  
b1  
e
E1  
e1  
A
C
ꢫꢆꢃꢍꢇꢕꢬꢭꢭꢬꢕꢌꢢꢌꢮꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢭꢃꢄꢃꢍꢇ  
ꢕꢬꢯ  
ꢕꢛꢱ  
ꢯꢐꢄꢲꢅꢓꢉꢈꢑꢉꢭꢅꢊꢋꢇꢯ  
ꢩꢃꢍꢎꢒ  
ꢰꢐꢍꢇꢃꢋꢅꢉꢭꢅꢊꢋꢉꢩꢃꢍꢎꢒ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢩꢊꢎꢧꢊꢚꢅꢉꢹꢃꢋꢍꢒꢉꢊꢍꢉꢟꢊꢇꢅ  
ꢕꢈꢏꢋꢅꢋꢉꢩꢊꢎꢧꢊꢚꢅꢉꢹꢃꢋꢍꢒꢉꢊꢍꢉꢔ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢭꢅꢆꢚꢍꢒ  
ꢲꢉꢭꢅꢆꢚꢍꢒ  
ꢦꢈꢈꢍꢉꢭꢅꢆꢚꢍꢒ  
ꢭꢅꢊꢋꢉꢢꢒꢃꢎꢧꢆꢅꢇꢇ  
ꢭꢅꢊꢋꢉꢘꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢌꢀ  
ꢂꢀ  
ꢀꢁꢙꢗꢉꢟꢜꢠ  
ꢳꢁꢗꢗꢉꢟꢜꢠ  
ꢀꢁꢞꢗ  
ꢳꢁꢴꢞ  
ꢘꢁꢘꢴ  
ꢘꢁꢀꢳ  
ꢞꢁꢳꢴ  
ꢀꢁꢞꢗ  
ꢗꢁꢸꢴ  
ꢗꢁꢳꢙ  
ꢗꢁꢞꢀ  
ꢗꢁꢳꢺ  
ꢀꢁꢺꢗ  
ꢞꢁꢘꢙ  
ꢘꢁꢺꢗ  
ꢘꢁꢘꢴ  
ꢞꢁꢺꢗ  
ꢀꢁꢶꢳ  
ꢀꢁꢘꢗ  
ꢗꢁꢞꢞ  
ꢗꢁꢙꢺ  
ꢗꢁꢞꢶ  
ꢲꢀ  
ꢭꢅꢊꢋꢇꢉꢀꢉꢽꢉꢳꢉꢹꢃꢋꢍꢒ  
ꢚꢔꢊꢃꢉꢛ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢸꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢙꢕꢁ  
ꢟꢜꢠꢡ ꢟꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢢꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢣꢉꢅꢖꢊꢎꢍꢉꢤꢊꢏꢐꢅꢉꢇꢒꢈꢥꢆꢉꢥꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢣ ꢂꢓꢊꢥꢃꢆꢚ ꢠꢗꢞꢼꢗꢘꢴꢟ  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 19  
MCP1700  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001826C-page 20  
2005-2013 Microchip Technology Inc.  
MCP1700  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢒꢏꢖꢆꢗꢒꢏꢁ"ꢘꢙ  
ꢚꢔꢊꢃꢛ ꢦꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢧꢊꢚꢅꢉꢋꢓꢊꢥꢃꢆꢚꢇꢨꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢩꢊꢎꢧꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢡꢪꢪꢥꢥꢥꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢪꢔꢊꢎꢧꢊꢚꢃꢆꢚ  
E
A
N
1
L
1
2
3
b
e
c
D
R
ꢫꢆꢃꢍꢇꢬꢯꢠꢵꢌꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢭꢃꢄꢃꢍꢇ  
ꢕꢬꢯ  
ꢕꢛꢱ  
ꢯꢐꢄꢲꢅꢓꢉꢈꢑꢉꢩꢃꢆꢇꢯ  
ꢩꢃꢍꢎꢒ  
ꢟꢈꢍꢍꢈꢄꢉꢍꢈꢉꢩꢊꢎꢧꢊꢚꢅꢉꢦꢏꢊꢍ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢭꢅꢆꢚꢍꢒ  
ꢁꢗꢙꢗꢉꢟꢜꢠ  
ꢁꢀꢘꢙ  
ꢁꢀꢸꢙ  
ꢁꢀꢸꢗ  
ꢁꢀꢺꢙ  
ꢁꢘꢗꢙ  
ꢁꢘꢀꢗ  
ꢕꢈꢏꢋꢅꢋꢉꢩꢊꢎꢧꢊꢚꢅꢉꢮꢊꢋꢃꢐꢇꢮ  
ꢢꢃꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉꢩꢏꢊꢆꢅ  
ꢭꢅꢊꢋꢉꢢꢒꢃꢎꢧꢆꢅꢇꢇ  
ꢁꢗꢶꢗ  
ꢁꢀꢗꢙ  
ꢁꢙꢗꢗ  
ꢁꢗꢀꢞ  
ꢁꢗꢀꢞ  
ꢁꢗꢘꢀ  
ꢁꢗꢘꢘ  
ꢭꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢚꢔꢊꢃꢉꢛ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢛꢉꢊꢆꢋꢉꢌꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢁꢗꢗꢙꢾꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢙꢕꢁ  
ꢟꢜꢠꢡ ꢟꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢢꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢣꢉꢅꢖꢊꢎꢍꢉꢤꢊꢏꢐꢅꢉꢇꢒꢈꢥꢆꢉꢥꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢣ ꢂꢓꢊꢥꢃꢆꢚ ꢠꢗꢞꢼꢀꢗꢀꢟ  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 21  
MCP1700  
DS20001826C-page 22  
2005-2013 Microchip Technology Inc.  
MCP1700  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 23  
MCP1700  
NOTES:  
DS20001826C-page 24  
2005-2013 Microchip Technology Inc.  
MCP1700  
APPENDIX A: REVISION HISTORY  
Revision C (October 2013)  
The following is the list of modifications:  
1. Added new package to the family (2x2 DFN-6)  
and related information throughout the  
document.  
2. Updated  
thermal  
package  
resistance  
information in Temperature Specifications.  
3. Updated Section 3.0, Pin Descriptions.  
4. Added package markings and drawings for the  
2x2 DFN-6 package.  
5. Added information related to the 2.8V option  
throughout the document.  
6. Updated Product Identification System.  
7. Minor typographical changes.  
Revision B (February 2007)  
• Updated Packaging Information.  
• Corrected Product Identification System.  
• Changed X5R to X7R in Notes to DC  
Characteristics, Temperature Specifications, and  
Section 2.0, Typical Performance Curves.  
Revision A (November 2005)  
• Original Release of this Document.  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 25  
MCP1700  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
MCP1700  
X-  
XXX  
X
X
/XX  
Examples:  
2x2 DFN-6 Package:  
Tape & Voltage Tolerance Temp. Package  
Output  
Reel  
Range  
a) MCP1700T-1202E/MAY:1.2V VOUT  
b) MCP1700T-1802E/MAY:1.8V VOUT  
c) MCP1700T-2502E/MAY:2.5V VOUT  
d) MCP1700T-2802E/MAY:2.8V VOUT  
e) MCP1700T-3002E/MAY:3.0V VOUT  
f) MCP1700T-3302E/MAY:3.3V VOUT  
g) MCP1700T-5002E/MAY:5.0V VOUT  
SOT-89 Package:  
Device:  
MCP1700: Low Quiescent Current LDO  
Tape and Reel:  
T:  
Tape and Reel only applies to SOT-23 and SOT-89  
devices  
Standard Output  
Voltage: *  
120 = 1.2V  
180 = 1.8V  
250 = 2.5V  
280 = 2.8V  
300 = 3.0V  
330 = 3.3V  
500 = 5.0V  
a) MCP1700T-1202E/MB:1.2V VOUT  
b) MCP1700T-1802E/MB:1.8V VOUT  
c) MCP1700T-2502E/MB:2.5V VOUT  
d) MCP1700T-2802E/MB:2.8V VOUT  
e) MCP1700T-3002E/MB:3.0V VOUT  
f) MCP1700T-3302E/MB:3.3V VOUT  
g) MCP1700T-5002E/MB:5.0V VOUT  
TO-92 Package:  
* Custom output voltages available upon request. Contact  
your local Microchip sales office for more information  
Tolerance:  
2
=
=
2%  
Temperature Range:  
Package:  
E
-40°C to +125°C (Extended)  
a) MCP1700-1202E/TO:1.2V VOUT  
b) MCP1700-1802E/TO:1.8V VOUT  
c) MCP1700-2502E/TO:2.5V VOUT  
d) MCP1700-2802E/TO:2.8V VOUT  
e) MCP1700-3002E/TO:3.0V VOUT  
f) MCP1700-3302E/TO:3.3V VOUT  
g) MCP1700-5002E/TO:5.0V VOUT  
SOT-23 Package:  
MAY = Plastic Small Outline Transistor (DFN), 6-lead  
MB  
TO  
TT  
=
=
=
Plastic Small Outline Transistor (SOT-89), 3-lead  
Plastic Small Outline Transistor (TO-92), 3-lead  
Plastic Small Outline Transistor (SOT-23), 3-lead  
a) MCP1700T-1202E/TT:1.2V VOUT  
b) MCP1700T-1802E/TT:1.8V VOUT  
c) MCP1700T-2502E/TT:2.5V VOUT  
d) MCP1700T-2802E/TT:2.8V VOUT  
e) MCP1700T-3002E/TT:3.0V VOUT  
f) MCP1700T-3302E/TT:3.3V VOUT  
g) MCP1700T-5002E/TT:5.0V VOUT  
DS20001826C-page 26  
2005-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62077-526-4  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2005-2013 Microchip Technology Inc.  
DS20001826C-page 27  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Seoul  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Taiwan - Taipei  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/20/13  
DS20001826C-page 28  
2005-2013 Microchip Technology Inc.  

相关型号:

MCP1700-3002E

Low Quiescent Current LDO
MICROCHIP

MCP1700-3002E/MAY

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MCP1700-3002E/MB

3 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PSSO3, PLASTIC, TO-243, SOT-89, 3 PIN
MICROCHIP

MCP1700-3002E/TO

3 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PBCY3, LEAD FREE, TO-92, 3 PIN
MICROCHIP

MCP1700-3002E/TT

3 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PDSO3, PLASTIC, TO-236, SOT-23, 3 PIN
MICROCHIP

MCP1700-3002EMB

Low Quiescent Current LDO
MICROCHIP

MCP1700-3002ETO

Low Quiescent Current LDO
MICROCHIP

MCP1700-3002ETT

Low Quiescent Current LDO
MICROCHIP

MCP1700-3102E/TO

Low Quiescent Current LDO, -40C to +125C, 3-TO-92, BAG
MICROCHIP

MCP1700-3302E

Low Quiescent Current LDO
MICROCHIP

MCP1700-3302E/MAY

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MCP1700-3302E/MB

3.3 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PSSO3, PLASTIC, TO-243, SOT-89, 3 PIN
MICROCHIP