MCP1700T-2002E/MB [MICROCHIP]

250MA CMOS LDO, ISUPPLY 1UA & 2% VOUT ACCURACY, -40C to +125C, 3-SOT-89, T/R;
MCP1700T-2002E/MB
型号: MCP1700T-2002E/MB
厂家: MICROCHIP    MICROCHIP
描述:

250MA CMOS LDO, ISUPPLY 1UA & 2% VOUT ACCURACY, -40C to +125C, 3-SOT-89, T/R

文件: 总30页 (文件大小:1266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1700  
Low Quiescent Current LDO  
Features  
General Description  
• AEC-Q100 Qualified and PPAP Capable  
• 1.6 µA Typical Quiescent Current  
The MCP1700 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 250 mA of  
current while consuming only 1.6 µA of quiescent  
current (typical). The input operating range is specified  
from 2.3V to 6.0V, making it an ideal choice for two and  
three primary cell battery-powered applications, as well  
as single cell Li-Ion-powered applications.  
• Input Operating Voltage Range: 2.3V to 6.0V  
• Output Voltage Range: 1.2V to 5.0V  
• 250 mA Output Current for Output  
Voltages 2.5V  
• 200 mA Output Current for Output  
Voltages < 2.5V  
The MCP1700 is capable of delivering 250 mA with  
only 178 mV of input to output voltage differential  
(VOUT = 2.8V). The output voltage tolerance of the  
MCP1700 is typically ±0.4% at +25°C and ±3%  
maximum over the operating junction temperature  
range of -40°C to +125°C.  
• Low Dropout (LDO) Voltage  
- 178 mV Typical @ 250 mA for VOUT = 2.8V  
• 0.4% Typical Output Voltage Tolerance  
• Standard Output Voltage Options:  
- 1.2V, 1.8V, 2.5V, 2.8V, 2.9V, 3.0V, 3.3V, 5.0V  
• Stable with 1.0 µF Ceramic Output Capacitor  
• Short Circuit Protection  
Output voltages available for the MCP1700 range from  
1.2V to 5.0V. The LDO output is stable when using only  
1 µF output capacitance. Ceramic, tantalum or  
aluminum electrolytic capacitors can all be used for  
input and output. Overcurrent limit and overtemperature  
shutdown provide a robust solution for any application.  
• Overtemperature Protection  
Applications  
Package options include SOT-23, SOT-89, TO-92 and  
2x2 DFN-6.  
• Battery-Powered Devices  
• Battery-Powered Alarm Circuits  
• Smoke Detectors  
Package Types  
• CO2 Detectors  
3-Pin SOT-23  
3-Pin SOT-89  
• Pagers and Cellular Phones  
• Smart Battery Packs  
• Low Quiescent Current Voltage Reference  
• PDAs  
VIN  
3
VIN  
MCP1700  
MCP1700  
• Digital Cameras  
2
1
3
1
2
• Microcontroller Power  
GNDVIN VOUT  
GND VOUT  
Related Literature  
3-Pin TO-92  
2x2 DFN-6*  
• AN765, “Using Microchip’s Micropower LDOs”  
(DS00765), Microchip Technology Inc., 2002  
VIN  
NC  
VOUT  
NC  
1
2
6
MCP1700  
EP  
7
5
4
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs” (DS00766),  
1
2 3  
NC  
3
GND  
Microchip Technology Inc., 2002  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”  
(DS00792), Microchip Technology Inc., 2001  
GND VIN VOUT  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 1  
MCP1700  
Functional Block Diagrams  
MCP1700  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
Typical Application Circuits  
MCP1700  
VIN  
GND  
(2.3V to 3.2V)  
VOUT  
1.8V  
VIN  
CIN  
VOUT  
1 µF Ceramic  
IOUT  
150 mA  
COUT  
1 µF Ceramic  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 2  
MCP1700  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only, and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
............................................................................................+6.5V  
DD  
All inputs and outputs w.r.t. ......... (VSS - 0.3V) to (VIN + 0.3V)  
Peak Output Current....................................Internally Limited  
Storage Temperature ....................................-65°C to +150°C  
Maximum Junction Temperature................................... 150°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD protection on all pins (HBM;MM)  4 kV; 400V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1V, ILOAD = 100 µA,  
OUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.  
C
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input/Output Characteristics  
Input Operating  
Voltage  
VIN  
Iq  
IOUT_mA  
IOUT_SC  
2.3  
6.0  
4
V
Note 1  
Input Quiescent  
Current  
1.6  
µA  
mA  
mA  
IL = 0 mA, VIN = VR + 1V  
Maximum Output  
Current  
250  
200  
For VR 2.5V  
For VR 2.5V  
Output Short  
Circuit Current  
408  
VIN = VR + 1V, VOUT = GND  
Current (peak current) measured 10 ms  
after short is applied.  
Output Voltage  
Regulation  
VOUT  
VR - 2.0% VR ± 0.4% VR + 2.0%  
V
ppm/°C  
%/V  
%
Note 2  
VR - 3.0%  
V
R + 3.0%  
VOUT Temperature  
Coefficient  
TCVOUT  
50  
Note 3  
Line Regulation  
VOUT  
(VOUTXVIN  
/
-1.0  
-1.5  
±0.75  
±1.0  
+1.0  
+1.5  
(VR + 1)V VIN 6V  
)
Load Regulation  
VOUT/VOUT  
IL = 0.1 mA to 250 mA for VR 2.5V  
IL = 0.1 mA to 200 mA for VR 2.5V  
Note 4  
Dropout Voltage  
VR 2.5V  
VIN - VOUT  
VIN - VOUT  
TR  
178  
150  
500  
350  
350  
mV  
mV  
µs  
IL = 250 mA, (Note 1, Note 5)  
Dropout Voltage  
VR 2.5V  
IL = 200 mA, (Note 1, Note 5)  
Output Rise Time  
10% VR to 90% VR VIN = 0V to 6V,  
RL = 50resistive  
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN  VR + 3.0%  VDROPOUT  
.
2: VR is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 2.9V, 3.0V, 3.3V, 4.0V, 5.0V.  
The input voltage VIN = VR + 1.0V; IOUT = 100 µA.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * Temperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with a VR + 1V differential applied.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 3  
MCP1700  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1V, ILOAD = 100 µA,  
OUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.  
C
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Output Noise  
eN  
3
µV/(Hz)1/2 IL = 100 mA, f = 1 kHz, COUT = 1 µF  
Power Supply  
Ripple Rejection  
Ratio  
PSRR  
44  
dB  
°C  
f = 100 Hz, COUT = 1 µF, IL = 50 mA,  
V
V
INAC = 100 mV pk-pk, CIN = 0 µF,  
R = 1.2V  
Thermal  
TSD  
140  
VIN = VR + 1V, IL = 100 µA  
Shutdown  
Protection  
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN  VR + 3.0%  VDROPOUT  
.
2: R is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 2.9V, 3.0V, 3.3V, 4.0V, 5.0V.  
V
The input voltage VIN = VR + 1.0V; IOUT = 100 µA.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * Temperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with a VR + 1V differential applied.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1V, ILOAD = 100 µA,  
COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 1) of -40°C to +125°C.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, 2x2 DFN  
TA  
TJ  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
EIA/JEDEC® JESD51-7  
FR-4 4-Layer Board  
JA  
JC(Top)  
JC(Bottom)  
JT  
91  
286  
28.57  
8.95  
212  
139  
11.95  
6.15  
104  
74  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, SOT-23  
Thermal Resistance, SOT-89  
JA  
EIA/JEDEC JESD51-7  
FR-4 4-Layer Board  
JC(Top)  
JC(Bottom)  
JT  
JA  
EIA/JEDEC JESD51-7  
FR-4 4-Layer Board  
JC(Top)  
JT  
30  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 4  
MCP1700  
TEMPERATURE SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1V, ILOAD = 100 µA,  
OUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 1) of -40°C to +125°C.  
C
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Thermal Resistance, TO-92  
JA  
92  
74  
°C/W  
°C/W  
EIA/JEDEC JESD51-7  
FR-4 4-Layer Board  
JC(Top)  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 5  
MCP1700  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
Note: Junction Temperature (T ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction  
J
temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.  
1.208  
1.206  
1.204  
1.202  
1.200  
1.198  
1.196  
1.194  
1.192  
1.190  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
VR = 1.2V  
VR = 1.2V  
IOUT = 0.1 mA  
IOUT = 0 µA  
TJ = +125°C  
TJ = +25°C  
TJ = +125°C  
TJ = - 40°C  
TJ = +25°C  
TJ = - 40°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Voltage (V)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
FIGURE 2-1:  
Input Quiescent Current vs.  
FIGURE 2-4:  
Output Voltage vs. Input  
Input Voltage.  
Voltage (V = 1.2V).  
R
50  
45  
1.800  
1.795  
1.790  
TJ = - 40°C  
1.785  
VR = 2.8V  
VR = 1.8V  
TJ = +125°C  
IOUT = 0.1 mA  
40  
35  
30  
25  
20  
15  
10  
5
TJ = +25°C  
TJ = - 40°C  
TJ = +125°C  
1.780  
1.775  
1.770  
TJ = +25°C  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Voltage (V)  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
FIGURE 2-2:  
Ground Current vs. Load  
FIGURE 2-5:  
Output Voltage vs. Input  
Current.  
Voltage (V = 1.8V).  
R
2.800  
2.798  
2.796  
2.794  
2.792  
2.790  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
VIN = VR + 1V  
IOUT = 0 µA  
VR = 2.8V  
IOUT = 0.1 mA  
TJ = +25°C  
VR = 5.0V  
TJ = - 40°C  
VR = 1.2V  
2.788  
2.786  
2.784  
2.782  
2.780  
2.778  
TJ = +125°C  
VR = 2.8V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
5.7  
6.0  
Input Voltage (V)  
FIGURE 2-3:  
Quiescent Current vs.  
FIGURE 2-6:  
Output Voltage vs. Input  
Junction Temperature.  
Voltage (V = 2.8V).  
R
2005-2018 Microchip Technology Inc.  
DS20001826E-page 6  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
TJ = +25°C  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
2.798  
2.796  
2.794  
2.792  
2.790  
2.788  
2.786  
2.784  
2.782  
2.780  
2.778  
VR = 5.0V  
TJ = +25°C  
TJ = - 40°C  
IOUT = 0.1 mA  
VR = 2.8V  
IN = VR + 1V  
V
TJ = - 40°C  
TJ = +125°C  
TJ = +125°C  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
0
50  
100  
150  
200  
250  
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load  
Voltage (V = 5.0V).  
Current (V = 2.8V).  
R
R
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
5.000  
VR = 1.2V  
TJ = - 40°C  
TJ = +25°C  
TJ = +25°C  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
VIN = VR + 1V  
TJ = - 40°C  
VR = 5.0V  
VIN = VR + 1V  
T
J
= +125°C  
TJ = +125°C  
0
25  
50  
75 100 125 150 175 200  
Load Current (mA)  
0
50  
100  
150  
200  
250  
Load Current (mA)  
FIGURE 2-8:  
Output Voltage vs. Load  
FIGURE 2-11:  
Output Voltage vs. Load  
Current (V = 1.2V).  
Current (V = 5.0V).  
R
R
0.25  
1.792  
1.790  
VR = 2.8V  
0.20  
0.15  
0.10  
0.05  
0.00  
TJ = +125°C  
TJ = +25°C  
TJ = +25°C  
1.788  
TJ = - 40°C  
1.786  
1.784  
TJ = +125°C  
TJ = - 40°C  
1.782  
VR = 1.8V  
VIN = VR + 1V  
1.780  
1.778  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
0
25  
50  
75 100 125 150 175 200  
Load Current (mA)  
FIGURE 2-9:  
Current (V = 1.8V).  
Output Voltage vs. Load  
FIGURE 2-12:  
Current (V = 2.8V).  
Dropout Voltage vs. Load  
R
R
2005-2018 Microchip Technology Inc.  
DS20001826E-page 7  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
0.16  
10.00  
VIN = 3.8V  
VR = 2.8V  
VR = 5.0V  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
IOUT = 50 mA  
TJ = +125°C  
TJ = - 40°C  
VIN = 2.5V  
VR = 1.2V  
VIN = 2.8V  
VR = 1.8V  
1.00  
0.10  
0.01  
TJ = +25°C  
IOUT = 50 mA IOUT = 50 mA  
0.01  
0.1  
1
10  
100  
1000  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
Frequency (kHz)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Noise vs. Frequency.  
Current (V = 5.0V).  
R
V
= 2.2V  
= 1.2V  
IN  
+20  
+10  
C
C
= 1µF Ceramic  
IN  
= 1µF Ceramic  
0
OUT  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
V
R
I = 100 mA  
Load  
Step  
0.01  
0.10  
1.00  
10.0  
Frequency (KHz)  
100  
1000  
FIGURE 2-14:  
Power Supply Ripple  
FIGURE 2-17:  
Dynamic Load Step  
Rejection vs. Frequency (V = 1.2V).  
(V = 1.2V).  
R
R
+20  
+10  
0
V
= 2.8V  
IN  
C
C
= 1µF Ceramic  
OUT  
IN  
= 1µF Ceramic  
-10  
-20  
-30  
-40  
-50  
-60  
V
= 1.8V  
R
I = 100 mA  
Load  
Step  
0.01  
0.01  
10.00  
1ꢀꢁꢁ  
Frequency (KHz)  
100  
1000  
FIGURE 2-15:  
Power Supply Ripple  
FIGURE 2-18:  
Dynamic Load Step  
Rejection vs. Frequency (V = 2.8V).  
(V = 1.8V).  
R
R
2005-2018 Microchip Technology Inc.  
DS20001826E-page 8  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
V
= 6V  
= 5V  
IN  
C
C
= 1 µF Ceramic  
IN  
V
= 3.8V  
= 2.8V  
IN  
= 22 µF (1ESR)  
OUT  
V
R
C
C
= 1µF Ceramic  
OUT  
IN  
= 1µF Ceramic  
V
R
I = 100 mA  
Load  
Step  
I
= 200 mA  
OUT  
Load Step  
FIGURE 2-19:  
Dynamic Load Step  
FIGURE 2-22:  
Dynamic Load Step  
(V = 2.8V).  
(V = 5.0V).  
R
R
V
4.8V  
= 3.8V to  
V
= 2.8V  
= 1.8V  
IN  
IN  
C
C
= 1 µF Ceramic  
C
= 1 µF Ceramic  
IN  
OUT  
= 22 µF (1ESR)  
OUT  
V
R
V
= 2.8V  
OUT  
R
I
= 200 mA  
OUT  
I
Load Step  
100 mA  
FIGURE 2-20:  
Dynamic Load Step  
FIGURE 2-23:  
Dynamic Line Step  
(V = 1.8V).  
(V = 2.8V).  
R
R
V
2.2V  
= 0V to  
V
= 3.8V  
= 2.8V  
IN  
IN  
C
R
= 1 µF Ceramic  
OUT  
C
C
= 1 µF Ceramic  
IN  
= 25  
LOAD  
= 22 µF (1ESR)  
OUT  
V
R
V
R
= 1.2V  
I
= 200 mA  
OUT  
Load Step  
FIGURE 2-21:  
Dynamic Load Step  
FIGURE 2-24:  
Start-up from V  
IN  
(V = 2.8V).  
(V = 1.2V).  
R
R
2005-2018 Microchip Technology Inc.  
DS20001826E-page 9  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1V.  
V
2.8V  
= 0V to  
IN  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
C
R
= 1 µF Ceramic  
OUT  
VR = 2.8V  
IOUT = 0 to 250 mA  
= 25  
LOAD  
VIN = 5.0V  
VIN = 4.3V  
V
IN
= 3.3V  
V
= 1.8V  
R
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
FIGURE 2-25:  
(V = 1.8V).  
Start-up from V  
FIGURE 2-28:  
Junction Temperature (V = 2.8V).  
Load Regulation vs.  
IN  
R
R
V
3.8V  
= 0V to  
IN  
C
R
= 1 µF Ceramic  
0.10  
OUT  
VR = 5.0V  
= 25  
LOAD  
IOUT = 0 to 250 mA  
0.05  
0.00  
VIN = 6.0V  
VIN = 5.5V  
-0.05  
-0.10  
-0.15  
-0.20  
V
= 2.8V  
R
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
FIGURE 2-26:  
Start-up from V  
FIGURE 2-29:  
Load Regulation vs.  
IN  
(V = 2.8V).  
Junction Temperature (V = 5.0V).  
R
R
0.3  
0.2  
0.10  
0.05  
VR = 1.8V  
OUT = 0 to 200 mA  
I
VIN = 5.0V  
0.1  
0.0  
0.00  
VR = 2.8V  
VIN = 3.5V  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
VR = 1.8V  
-0.1  
-0.2  
-0.3  
-0.4  
VIN = 2.2V  
VR = 1.2V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-27:  
Load Regulation vs.  
FIGURE 2-30:  
Line Regulation vs.  
Junction Temperature (V = 1.8V).  
Temperature (V = 1.2V, 1.8V, 2.8V).  
R
R
2005-2018 Microchip Technology Inc.  
DS20001826E-page 10  
MCP1700  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
SOT-23  
Pin No.  
SOT-89  
Pin No.  
TO-92  
Pin No.  
2x2 DFN-6  
Name  
Function  
1
2
1
3
1
3
3
GND  
VOUT  
VIN  
Ground Terminal  
6
Regulated Voltage Output  
Unregulated Supply Voltage  
No Connect  
3
2
2
1
2, 4, 5  
7
NC  
EP  
Exposed Thermal Pad  
3.1  
Ground Terminal (GND)  
3.4  
No Connect (NC)  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (1.6 µA typical) flows out of  
this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
No internal connection. The pins marked NC are true  
“No Connect” pins.  
3.5  
Exposed Thermal Pad (EP)  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the GND pin; they  
must be connected to the same potential on the Printed  
Circuit Board (PCB).  
3.2  
Regulated Output Voltage (VOUT)  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current.  
3.3  
Unregulated Input Voltage Pin  
(VIN)  
Connect VIN to the input unregulated source voltage.  
As with all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 1 µF of capacitance will ensure stable  
operation of the LDO circuit. For applications that have  
load currents below 100 mA, the input capacitance  
requirement can be lowered. The type of capacitor  
used can be ceramic, tantalum or aluminum  
electrolytic. The low ESR characteristics of the ceramic  
will yield better noise and PSRR performance at high  
frequency.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 11  
MCP1700  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
4.3  
Overtemperature  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal bandgap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
The internal power dissipation within the LDO is a  
function of input-to-output voltage differential and load  
current. If the power dissipation within the LDO is  
excessive, the internal junction temperature will rise  
above the typical shutdown threshold of 140°C. At that  
point, the LDO will shut down and begin to cool to the  
typical turn-on junction temperature of 130°C. If the  
power dissipation is low enough, the device will  
continue to cool and operate normally. If the power  
dissipation remains high, the thermal shutdown  
protection circuitry will again turn off the LDO,  
protecting it from catastrophic failure.  
4.2  
Overcurrent  
The MCP1700 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event of a short circuit or excessive output  
current, the MCP1700 will turn off the P-Channel  
device for a short period, after which the LDO will  
attempt to restart. If the excessive current remains, the  
cycle will repeat itself.  
MCP1700  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
FIGURE 4-1:  
Block Diagram.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 12  
MCP1700  
5.0  
FUNCTIONAL DESCRIPTION  
The MCP1700 CMOS low dropout linear regulator is  
intended for applications that need the lowest current  
consumption while maintaining output voltage  
regulation. The operating continuous load of the  
MCP1700 ranges from 0 mA to 250 mA (VR 2.5V).  
The input operating voltage ranges from 2.3V to 6.0V,  
making it capable of operating from two, three or four  
alkaline cells or a single Li-Ion cell battery input.  
5.1  
Input  
The input of the MCP1700 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance (10)  
is needed to prevent the input impedance from causing  
the LDO to become unstable. The size and type of the  
required capacitor depend heavily on the input source  
type (battery, power supply) and the output current  
range of the application. For most applications (up to  
100 mA), a 1 µF ceramic capacitor will be sufficient to  
ensure circuit stability. Larger values can be used to  
improve circuit AC performance.  
5.2  
Output  
The maximum rated continuous output current for the  
MCP1700 is 250 mA (VR 2.5V). For applications  
where VR < 2.5V, the maximum output current is  
200 mA.  
A minimum output capacitance of 1.0 µF is required for  
small signal stability in applications that have up to  
250 mA output current capability. The capacitor type  
can be ceramic, tantalum or aluminum electrolytic. The  
ESR range on the output capacitor can range from 0  
to 2.0.  
5.3  
Output Rise time  
When powering up the internal reference output, the  
typical output rise time of 500 µs is controlled to  
prevent overshoot of the output voltage.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 13  
MCP1700  
The maximum continuous operating junction  
temperature specified for the MCP1700 is +125°C. To  
estimate the internal junction temperature of the  
MCP1700, the total internal power dissipation is  
multiplied by the thermal resistance from junction to  
ambient (RJA). The thermal resistance from junction to  
ambient for the SOT-23 pin package is estimated at  
230°C/W.  
6.0  
6.1  
APPLICATION CIRCUITS AND  
ISSUES  
Typical Application  
The MCP1700 is most commonly used as a voltage  
regulator. Its low quiescent current and low dropout  
voltage make it ideal for many battery-powered  
applications.  
EQUATION 6-2:  
MCP1700  
TJMAX= PTOTAL RJA + TAMAX  
VIN  
GND  
(2.3V to 3.2V)  
VOUT  
1.8V  
TJ(MAX)  
=
Maximum continuous junction  
temperature  
VIN  
CIN  
V
OUT  
1 µF Ceramic  
IOUT  
150 mA  
PTOTAL  
=
=
Total power dissipation of the device  
COUT  
1 µF Ceramic  
RJA  
Thermal resistance from junction to  
ambient  
TA(MAX)  
=
Maximum ambient temperature  
FIGURE 6-1:  
Typical Application Circuit.  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the maximum internal power  
dissipation of the package.  
6.1.1  
APPLICATION INPUT CONDITIONS  
Package Type = SOT-23  
Input Voltage Range = 2.3V to 3.2V  
IN maximum = 3.2V  
OUT typical = 1.8V  
IOUT = 150 mA maximum  
V
V
EQUATION 6-3:  
TJMAXTAMAX  
PDMAX= ---------------------------------------------------  
RJA  
6.2  
Power Calculations  
6.2.1  
POWER DISSIPATION  
PD(MAX)  
TJ(MAX)  
=
=
Maximum power dissipation of the  
device  
The internal power dissipation of the MCP1700 is a  
function of input voltage, output voltage and output  
current. The power dissipation resulting from the  
quiescent current draw is so low it is insignificant  
(1.6 µA x VIN). The following equation can be used to  
calculate the internal power dissipation of the LDO.  
Maximum continuous junction  
temperature  
TA(MAX)  
=
=
Maximum ambient temperature  
RJA  
Thermal resistance from junction to  
ambient  
EQUATION 6-1:  
PLDO = VINMAXVOUTMIN  IOUTMAX  
EQUATION 6-4:  
TJRISE= PDMAXRJA  
PLDO = Internal power dissipation of the  
LDO Pass device  
TJ(RISE) = Rise in the device’s junction  
temperature over the ambient  
temperature  
VIN(MAX) = Maximum input voltage  
VOUT(MIN) = Minimum output voltage of the  
LDO  
PTOTAL = Maximum power dissipation of the  
device  
RJA = Thermal resistance from junction to  
ambient  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 14  
MCP1700  
EQUATION 6-5:  
TJ = TJRISE+ TA  
TJ(RISE) = PTOTAL x RJA  
TJ(RISE) = 218.1 milliwatts x 212.0°C/Watt  
TJ(RISE) = 46.2°C  
TJ = Junction Temperature  
Junction Temperature Estimate  
TJ(RISE) = Rise in the device’s junction  
temperature over the ambient  
temperature  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
TA = Ambient temperature  
6.3  
Voltage Regulator  
TJ = TJ(RISE) + TA(MAX)  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation resulting from ground current is small  
enough to be neglected.  
TJ = 86.2°C  
Maximum Package Power Dissipation at +40°C  
Ambient Temperature  
2x2 DFN-6 (91°C/Watt = JA  
)
P
D(MAX) = (125°C - 40°C) / 91°C/W  
D(MAX) = 934 milliwatts  
6.3.1  
POWER DISSIPATION EXAMPLE  
P
Package  
SOT-23 (212.0°C/Watt = JA  
PD(MAX) = (125°C - 40°C) / 212°C/W  
D(MAX) = 401 milliwatts  
SOT-89 (104°C/Watt = JA  
PD(MAX) = (125°C - 40°C) / 104°C/W  
D(MAX) = 817 milliwatts  
TO-92 (92°C/Watt = JA  
PD(MAX) = (125°C - 40°C) / 92°C/W  
D(MAX) = 924 milliwatts  
)
Package Type = SOT-23  
Input Voltage  
P
VIN = 2.3V to 3.2V  
)
LDO Output Voltages and Currents  
V
OUT = 1.8V  
P
I
OUT = 150 mA  
)
Maximum Ambient Temperature  
A(MAX) = +40°C  
T
P
Internal Power Dissipation  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX)  
PLDO = (3.2V - (0.97 x 1.8V)) x 150 mA  
PLDO = 218.1 milliwatts  
Device Junction Temperature Rise  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The thermal  
resistance from junction to ambient (RJA) is derived  
from an EIA/JEDEC® standard for measuring thermal  
resistance for small surface mount packages. The EIA/  
JEDEC specification is JESD51-7, “High Effective  
Thermal Conductivity Test Board for Leaded Surface  
Mount Packages”. The standard describes the test  
method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT-23 Can Dissipate in an  
Application” (DS00792), for more information regarding  
this subject.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 15  
MCP1700  
6.4  
Voltage Reference  
The MCP1700 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1700 LDO. The low cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1700 as a voltage  
reference.  
Ratio Metric Reference  
PIC®  
Microcontroller  
1 µA Bias  
MCP1700  
VIN  
CIN  
1 µF  
VREF  
VOUT  
COUT  
1 µF  
GND  
AD0  
AD1  
Bridge Sensor  
FIGURE 6-2:  
Using the MCP1700 as a  
voltage reference.  
6.5  
Pulsed Load Applications  
For some applications, there are pulsed load current  
events that may exceed the specified 250 mA  
maximum specification of the MCP1700. The internal  
current limit of the MCP1700 will prevent high peak  
load demands from causing non-recoverable damage.  
The 250 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
250 mA, pulsed higher load currents can be applied to  
the MCP1700. The typical current limit for the  
MCP1700 is 550 mA (TA + 25°C).  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 16  
MCP1700  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Pin SOT-23  
Standard  
Extended Temp  
Symbol  
CK  
Voltage *  
1.2  
CKNN  
CM  
CP  
CQ  
GC  
CR  
CS  
CU  
1.8  
2.5  
2.8  
2.9  
3.0  
3.3  
5.0  
3-Pin SOT-89  
CUYYWW  
NNN  
* Custom output voltages available upon request.  
Contact your local Microchip sales office for more  
information.  
Example  
3-Pin TO-92  
1700  
XXXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
1202E  
e
3
TO^
322256  
6-Lead DFN (2x2x0.9 mm)  
Example  
Part Number  
Code  
ABB  
256  
MCP1700T-1202E/MAY  
MCP1700T-1802E/MAY  
MCP1700T-2502E/MAY  
MCP1700T-2802E/MAY  
MCP1700T-3002E/MAY  
MCP1700T-3302E/MAY  
MCP1700T-5002E/MAY  
ABB  
ABC  
ABD  
ABF  
ABE  
AAZ  
ABA  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 17  
MCP1700  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢒꢒꢖꢆꢗꢍꢏꢒꢁꢘꢀꢙ  
ꢚꢔꢊꢃꢛ ꢦꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢧꢊꢚꢅꢉꢋꢓꢊꢥꢃꢆꢚꢇꢨꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢩꢊꢎꢧꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢡꢪꢪꢥꢥꢥꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢪꢔꢊꢎꢧꢊꢚꢃꢆꢚ  
b
N
E
E1  
2
1
e
e1  
D
c
A
A2  
φ
A1  
L
ꢫꢆꢃꢍꢇꢕꢬꢭꢭꢬꢕꢌꢢꢌꢮꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢭꢃꢄꢃꢍꢇ  
ꢕꢬꢯ  
ꢯꢰꢕ  
ꢕꢛꢱ  
ꢯꢐꢄꢲꢅꢓꢉꢈꢑꢉꢩꢃꢆꢇꢯ  
ꢭꢅꢊꢋꢉꢩꢃꢍꢎꢒ  
ꢗꢁꢴꢙꢉꢟꢜꢠ  
ꢰꢐꢍꢇꢃꢋꢅꢉꢭꢅꢊꢋꢉꢩꢃꢍꢎꢒ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢩꢊꢎꢧꢊꢚꢅꢉꢢꢒꢃꢎꢧꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢴꢗꢉꢟꢜꢠ  
ꢗꢁꢶꢴ  
ꢗꢁꢸꢴ  
ꢗꢁꢗꢀ  
ꢘꢁꢀꢗ  
ꢀꢁꢀꢺ  
ꢘꢁꢺꢸ  
ꢗꢁꢀꢳ  
ꢗꢻ  
ꢗꢁꢴꢙ  
ꢀꢁꢀꢘ  
ꢀꢁꢗꢘ  
ꢗꢁꢀꢗ  
ꢘꢁꢺꢞ  
ꢀꢁꢞꢗ  
ꢳꢁꢗꢙ  
ꢗꢁꢺꢗ  
ꢀꢗꢻ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢩꢊꢎꢧꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢰꢤꢅꢓꢊꢏꢏꢉꢭꢅꢆꢚꢍꢒ  
ꢦꢈꢈꢍꢉꢭꢅꢆꢚꢍꢒ  
ꢀꢁꢳꢗ  
ꢘꢁꢴꢗ  
ꢗꢁꢙꢗ  
ꢦꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢭꢅꢊꢋꢉꢢꢒꢃꢎꢧꢆꢅꢇꢇ  
ꢭꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢗꢁꢗꢶ  
ꢗꢁꢳꢗ  
ꢗꢁꢘꢗ  
ꢗꢁꢙꢞ  
ꢚꢔꢊꢃꢉꢛ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢙꢕꢁ  
ꢟꢜꢠꢡ ꢟꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢢꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢣꢉꢅꢖꢊꢎꢍꢉꢤꢊꢏꢐꢅꢉꢇꢒꢈꢥꢆꢉꢥꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢣ ꢂꢓꢊꢥꢃꢆꢚ ꢠꢗꢞꢼꢀꢗꢞꢟ  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 18  
MCP1700  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 19  
MCP1700  
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]  
Note: )RUꢀWKHꢀPRVWꢀFXUUHQWꢀSDFNDJHꢀGUDZLQJVꢇꢀSOHDVHꢀVHHꢀWKHꢀ0LFURFKLSꢀ3DFNDJLQJꢀ6SHFLILFDWLRQꢀORFDWHGꢀDW  
KWWSꢈꢉꢉZZZꢊPLFURFKLSꢊFRPꢉSDFNDJLQJ  
'
$
%
+
ꢄ;  
ꢁꢊꢆꢋ &  
(ꢆ  
(
ꢁꢊꢆꢋ &  
ꢄ;  
H
ꢁꢊꢆꢋ &  
H
Hꢆ  
&
$
SEATING  
PLANE  
F
ꢌ;E  
ꢁꢊꢆꢁ  
& $ %  
Eꢆ  
/
'ꢆ$  
'ꢆ%  
'ꢆ&  
237,21$/ꢀ%$&.6,'(ꢀ3$77(516ꢀ²  
3$576ꢀ0$<ꢀ%(ꢀ6833/,('ꢀ:,7+  
$1<ꢀ3$77(51ꢀ6+2:1  
0LFURFKLSꢀ7HFKQRORJ\ꢀ'UDZLQJꢀꢀ&ꢁꢂꢃꢁꢄꢅ&ꢀ6KHHWꢀꢆꢀRIꢀꢄ  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 20  
MCP1700  
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]  
Note: )RUꢀWKHꢀPRVWꢀFXUUHQWꢀSDFNDJHꢀGUDZLQJVꢇꢀSOHDVHꢀVHHꢀWKHꢀ0LFURFKLSꢀ3DFNDJLQJꢀ6SHFLILFDWLRQꢀORFDWHGꢀDW  
KWWSꢈꢉꢉZZZꢊPLFURFKLSꢊFRPꢉSDFNDJLQJ  
8QLWV  
0,//,0(7(56  
'LPHQVLRQꢀ/LPLWV  
0,1  
120  
0$;  
1XPEHUꢀRIꢀ/HDGV  
3LWFK  
2XWVLGHꢀ/HDGꢀ3LWFK  
2YHUDOOꢀ+HLJKW  
2YHUDOOꢀ:LGWK  
1
ꢆꢊꢍꢁꢀ%6&  
ꢌꢊꢁꢁꢀ%6&  
ꢆꢊꢍꢁ  
H
Hꢆ  
$
+
ꢆꢊꢂꢁ  
ꢌꢊꢅꢂ  
ꢆꢊꢋꢁ  
ꢂꢊꢄꢍ  
ꢂꢊꢆꢁ  
0ROGHGꢀ3DFNDJHꢀ:LGWKꢀDWꢀ%DVH  
0ROGHGꢀ3DFNDJHꢀ:LGWKꢀDWꢀ7RS  
2YHUDOOꢀ/HQJWK  
7DEꢀ/HQJWKꢀꢏ2SWLRQꢀ$ꢐ  
7DEꢀ/HQJWKꢀꢏ2SWLRQꢀ%ꢐ  
7DEꢀ/HQJWKꢀꢏ2SWLRQꢀ&ꢐ  
)RRWꢀ/HQJWK  
/HDGꢀ7KLFNQHVV  
/HDGꢀꢄꢀ:LGWK  
/HDGVꢀꢆꢀꢒꢀꢌꢀ:LGWK  
(
(ꢆ  
'
'ꢆ$  
'ꢆ%  
'ꢆ&  
/
F
E
Eꢆ  
ꢄꢊꢍꢁꢀ%6&  
ꢄꢊꢄꢁ  
ꢂꢊꢍꢁꢀ%6&  
ꢆꢊꢑꢌ  
ꢄꢊꢆꢌ  
ꢄꢊꢄꢅ  
ꢆꢊꢋꢌ  
ꢆꢊꢂꢁ  
ꢆꢊꢋꢄ  
ꢁꢊꢑꢅ  
ꢁꢊꢌꢍ  
ꢁꢊꢂꢆ  
ꢁꢊꢌꢋ  
ꢆꢊꢎꢌ  
ꢆꢊꢑꢍ  
ꢆꢊꢎꢌ  
ꢆꢊꢄꢁ  
ꢁꢊꢂꢂ  
ꢁꢊꢍꢋ  
ꢁꢊꢂꢎ  
ꢆꢊꢋꢁ  
ꢆꢊꢑꢌ  
ꢆꢊꢆꢁ  
ꢁꢊꢂꢁ  
ꢁꢊꢍꢁ  
ꢁꢊꢂꢄ  
Notes:  
ꢆꢊ 'LPHQVLRQVꢀ'ꢀDQGꢀ(ꢀGRꢀQRWꢀLQFOXGHꢀPROGꢀIODVKꢀRUꢀSURWUXVLRQVꢊꢀ0ROGꢀIODVKꢀRU  
SURWUXVLRQVꢀVKDOOꢀQRWꢀH[FHHGꢀꢁꢊꢆꢄꢑPPꢀSHUꢀVLGHꢊ  
ꢄꢊ 'LPHQVLRQLQJꢀDQGꢀWROHUDQFLQJꢀSHUꢀ$60(ꢀ<ꢆꢂꢊꢍ0  
%6&ꢈꢀ%DVLFꢀ'LPHQVLRQꢊꢀ7KHRUHWLFDOO\ꢀH[DFWꢀYDOXHꢀVKRZQꢀZLWKRXWꢀWROHUDQFHVꢊ  
0LFURFKLSꢀ7HFKQRORJ\ꢀ'UDZLQJꢀꢀ&ꢁꢂꢃꢁꢄꢅ&ꢀ6KHHWꢀꢄꢀRIꢀ2  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 21  
MCP1700  
3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X1  
X2  
Y1  
Y3  
Y4  
Y2  
Y
G
X
SILK SCREEN  
C
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
C
1.50 (BSC)  
0.900  
X (3 PLACES)  
X1  
1.733  
X2 (2 PLACES)  
0.416  
G (2 PLACES)  
0.600  
Y (2 PLACES)  
1.300  
Y1  
Y2  
Y3  
Y4  
3.125  
1.475  
0.825  
1.000  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2029C  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 22  
MCP1700  
ꢁꢂ/HDGꢃ3ODVWLFꢃ7UDQVLVWRUꢃ2XWOLQHꢃꢄ72ꢅꢃ>72ꢂꢆꢇ@  
1RWHꢀ )RUꢀWKHꢀPRVWꢀFXUUHQWꢀSDFNDJHꢀGUDZLQJVꢆꢀSOHDVHꢀVHHꢀWKHꢀ0LFURFKLSꢀ3DFNDJLQJꢀ6SHFLILFDWLRQꢀORFDWHGꢀDW  
KWWSꢇꢈꢈZZZꢉPLFURFKLSꢉFRPꢈSDFNDJLQJ  
/
$
H
(
1
ꢌ;ꢀE  
ꢊ'$780ꢀ$ꢋ  
ꢊ'$780ꢀ%ꢋ  
723ꢀ9,(:  
$
$
'
F
6,'(ꢀ9,(:  
5
9,(:ꢀ$ꢃ$  
0LFURFKLSꢀ7HFKQRORJ\ꢀ'UDZLQJꢀꢀ&ꢁꢂꢃꢄꢁꢄꢀ5HYꢀ&ꢀ6KHHWꢀꢄꢀRIꢀꢅ  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 23  
MCP1700  
ꢁꢂ/HDGꢃ3ODVWLFꢃ7UDQVLVWRUꢃ2XWOLQHꢃꢄ72ꢅꢃ>72ꢂꢆꢇ@  
1RWHꢀ )RUꢀWKHꢀPRVWꢀFXUUHQWꢀSDFNDJHꢀGUDZLQJVꢆꢀSOHDVHꢀVHHꢀWKHꢀ0LFURFKLSꢀ3DFNDJLQJꢀ6SHFLILFDWLRQꢀORFDWHGꢀDW  
KWWSꢇꢈꢈZZZꢉPLFURFKLSꢉFRPꢈSDFNDJLQJ  
8QLWV  
'LPHQVLRQꢀ/LPLWV  
,1&+(6  
0,1  
120  
0$;  
1XPEHUꢀRIꢀ3LQV  
3LWFK  
%RWWRPꢀWRꢀ3DFNDJHꢀ)ODW  
2YHUDOOꢀ:LGWK  
2YHUDOOꢀ/HQJWK  
0ROGHGꢀ3DFNDJHꢀ5DGLXV  
7LSꢀWRꢀ6HDWLQJꢀ3ODQH  
/HDGꢀ7KLFNQHVV  
1
H
ꢉꢁꢍꢁꢀ%6&  
'
(
$
5
/
F
ꢉꢄꢅꢍ  
ꢉꢄꢐꢍ  
ꢉꢄꢐꢁ  
ꢉꢁꢏꢁ  
ꢉꢍꢁꢁ  
ꢉꢁꢄꢂ  
ꢉꢁꢄꢂ  
ꢉꢄꢑꢍ  
ꢉꢅꢁꢍ  
ꢉꢅꢄꢁ  
ꢉꢄꢁꢍ  
ꢉꢁꢅꢄ  
ꢉꢁꢅꢅ  
/HDGꢀ:LGWK  
E
Notes:  
ꢄꢉꢀ'LPHQVLRQVꢀ'ꢀDQGꢀ(ꢀGRꢀQRWꢀLQFOXGHꢀPROGꢀIODVKꢀRUꢀSURWUXVLRQVꢉꢀꢀ0ROGꢀIODVKꢀRU  
SURWUXVLRQVꢀVKDOOꢀQRWꢀH[FHHGꢀꢉꢁꢁꢍꢎꢀSHUꢀVLGHꢉ  
ꢅꢉꢀ'LPHQVLRQLQJꢀDQGꢀWROHUDQFLQJꢀSHUꢀ$60(ꢀ<ꢄꢂꢉꢍ0  
%6&ꢇꢀ%DVLFꢀ'LPHQVLRQꢉꢀ7KHRUHWLFDOO\ꢀH[DFWꢀYDOXHꢀVKRZQꢀZLWKRXWꢀWROHUDQFHVꢉ  
0LFURFKLSꢀ7HFKQRORJ\ꢀ'UDZLQJꢀꢀ&ꢁꢂꢃꢄꢁꢄꢀ5HYꢀ&ꢀ6KHHWꢀꢅꢀRIꢀꢅ  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 24  
MCP1700  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 25  
MCP1700  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 26  
MCP1700  
APPENDIX A: REVISION HISTORY  
Revision E (November 2018)  
The following is the list of modifications:  
• Added information related to the 2.9V option  
throughout the document  
• Updated Features.  
• Updated DC Characteristics.  
• Updated Temperature Specifications.  
• Updated Power Dissipation example in  
Section 6.3 “Voltage Regulator”.  
• Updated Package Marking Information in  
Section 7.0 “Packaging Information”.  
• Updated Product Identification System.  
Revision D (September 2016)  
The following is the list of modifications:  
• Updated DC Characteristics.  
• Updated Product Identification System.  
• Minor typographical changes.  
Revision C (October 2013)  
The following is the list of modifications:  
• Added new package to the family (2x2 DFN-6)  
and related information throughout the document.  
• Updated thermal package resistance information  
in Temperature Specifications.  
• Updated Section 3.0 “Pin Descriptions”.  
• Added package markings and drawings for the  
2x2 DFN-6 package.  
• Added information related to the 2.8V option  
throughout the document.  
• Updated Product Identification System.  
• Minor typographical changes.  
Revision B (February 2007)  
• Updated Packaging Information.  
• Corrected Product Identification System.  
• Changed X5R to X7R in Notes to DC  
Characteristics, Temperature Specifications, and  
Section 2.0 “Typical Performance Curves”.  
Revision A (November 2005)  
• Original release of this document.  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 27  
MCP1700  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
MCP1700  
X-  
XXX  
X
X
/XX  
Examples:  
2x2 DFN-6 Package:  
Tape & Voltage Tolerance Temp. Package  
Output  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1700T-1202E/MAY:  
1.2V V  
1.8V V  
Reel  
Range  
OUT  
OUT  
OUT  
MCP1700T-1802E/MAY:  
MCP1700T-2502E/MAY:  
MCP1700T-2802E/MAY:  
MCP1700T-3002E/MAY:  
MCP1700T-3302E/MAY:  
MCP1700T-5002E/MAY:  
2.5V V  
2.8V V  
OUT  
3.0V V  
3.3V V  
Device:  
MCP1700: Low Quiescent Current LDO  
OUT  
OUT  
g)  
5.0V V  
OUT  
Tape and Reel:  
T:  
Tape and Reel only applies to SOT-23 and SOT-89  
devices  
SOT-89 Package:  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1700T-1202E/MB:  
1.2V V  
1.8V V  
2.5V V  
2.8V V  
3.0V V  
3.3V V  
5.0V V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MCP1700T-1802E/MB:  
MCP1700T-2502E/MB:  
MCP1700T-2802E/MB:  
MCP1700T-3002E/MB:  
MCP1700T-3302E/MB:  
MCP1700T-5002E/MB:  
Standard Output  
Voltage: *  
120 = 1.2V  
180 = 1.8V  
250 = 2.5V  
280 = 2.8V  
290 = 2.9V  
300 = 3.0V  
330 = 3.3V  
500 = 5.0V  
g)  
TO-92 Package:  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1700-1202E/TO:  
1.2V V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MCP1700-1802E/TO:  
MCP1700-2502E/TO:  
MCP1700-2802E/TO:  
MCP1700-3002E/TO:  
MCP1700-3302E/TO:  
MCP1700-5002E/TO:  
1.8V V  
2.5V V  
2.8V V  
3.0V V  
3.3V V  
5.0V V  
* Custom output voltages available upon request. Contact  
your local Microchip sales office for more information  
Tolerance:  
2
=
=
2% (Standard)  
g)  
SOT-23 Package:  
Temperature Range:  
Package:  
E
-40°C to +125°C (Extended)  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1700T-1202E/TT:  
1.2V V  
1.8V V  
2.5V V  
2.8V V  
2.9V V  
3.0V V  
3.3V V  
5.0V V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MCP1700T-1802E/TT:  
MCP1700T-2502E/TT:  
MCP1700T-2802E/TT:  
MCP1700T-2902E/TT:  
MCP1700T-3002E/TT:  
MCP1700T-3302E/TT:  
MCP1700T-5002E/TT:  
MAY = Plastic Small Outline Transistor (DFN), 6-lead  
MB  
TO  
TT  
=
=
=
Plastic Small Outline Transistor (SOT-89), 3-lead  
Plastic Small Outline Transistor (TO-92), 3-lead  
Plastic Small Outline Transistor (SOT-23), 3-lead  
g)  
h)  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 28  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,  
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,  
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo,  
SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity,  
JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,  
PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon,  
QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O,  
SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2018, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-3876-2  
== ISO/TS16949==ꢀ  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 29  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
2005-2018 Microchip Technology Inc.  
DS20001826E-page 30  
08/15/18  

相关型号:

MCP1700T-2052E/TT

Fixed Positive LDO Regulator, 2.05V, 0.35V Dropout, CMOS, PDSO3
MICROCHIP

MCP1700T-2202E/MB

250mA CMOS LDO, lsupply 1uA &amp; 2% Vout Accuracy, -40C to +125C, 3-SOT-89, T/R
MICROCHIP

MCP1700T-2202E/TT

250mA CMOS LDO, lsupply 1uA &amp; 2% Vout Accuracy, -40C to +125C, 3-SOT-23, T/R
MICROCHIP

MCP1700T-2301E/TT

250MA CMOS LDO, ISUPPLY 1UA AND 2% VOUT ACCURACY
MICROCHIP

MCP1700T-2502E

Low Quiescent Current LDO
MICROCHIP

MCP1700T-2502E/MAY

Low Quiescent Current LDO
MICROCHIP

MCP1700T-2502E/MB

Low Quiescent Current LDO
MICROCHIP

MCP1700T-2502E/TT

2.5 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PDSO3, PLASTIC, TO-236, SOT-23, 3 PIN
MICROCHIP

MCP1700T-2502EMB

Low Quiescent Current LDO
MICROCHIP

MCP1700T-2502ETO

Low Quiescent Current LDO
MICROCHIP

MCP1700T-2502ETT

Low Quiescent Current LDO
MICROCHIP

MCP1700T-2702E/MB

250mA CMOS LDO, Isupply 1uA and 2% Vout Accuracy, -40C to +125C, 3-SOT-89, T/R
MICROCHIP