MCP1701A-1802I/CB [MICROCHIP]

2レA Low-Dropout Positive Voltage Regulator; 2レ低压差正电压稳压器
MCP1701A-1802I/CB
型号: MCP1701A-1802I/CB
厂家: MICROCHIP    MICROCHIP
描述:

2レA Low-Dropout Positive Voltage Regulator
2レ低压差正电压稳压器

稳压器
文件: 总22页 (文件大小:593K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1701A  
2 µA Low-Dropout Positive Voltage Regulator  
Features  
General Description  
• 2.0 µA Typical Quiescent Current  
The MCP1701A is a family of CMOS low-dropout,  
positive voltage regulators that can deliver up to  
250 mA of current while consuming only 2.0 µA of  
quiescent current (typ.). The input operating range is  
specified up to 10V, making it ideal for lithium-ion (one  
or two cells), 9V alkaline and other two and three  
primary cell battery-powered applications.  
• Input Operating Voltage Range up to 10.0V  
• Low-Dropout Voltage (LDO):  
- 120 mV (typical) @ 100 mA  
- 380 mV (typical) @ 200 mA  
• High Output Current: 250 mA (VOUT = 5.0V)  
• High-Accuracy Output Voltage: ±2% (max)  
• Low Temperature Drift: ±100 ppm/°C (typical)  
• Excellent Line Regulation: 0.2%/V (typical)  
The MCP1701A is capable of delivering 250 mA with  
an input-to-output voltage differential (dropout voltage)  
of 650 mV. The low-dropout voltage extends the battery  
operating lifetime. It also permits high currents in small  
packages when operated with minimum VIN – VOUT  
differentials. The MCP1701A offers improved startup  
and transient response.  
• Package Options: 3-Pin SOT-23A, 3-Pin SOT-89,  
and 3-Pin TO-92  
• Short Circuit Protection  
• Standard Output Voltage Options:  
- 1.8V, 2.5V, 3.0V, 3.3V, 5.0V  
The MCP1701A has a tight tolerance output voltage  
regulation of ±0.5% (typ.) and very good line regulation  
at ±0.2%. The LDO output is stable when using only  
1 µF of output capacitance of either tantalum or  
aluminum-electrolytic style capacitors. The MCP1701A  
LDO also incorporates short circuit protection to ensure  
maximum reliability.  
Applications  
• Battery-Powered Devices  
• Battery-Powered Alarm Circuits  
• Smoke Detectors  
Package options include the 3-pin SOT-23A, 3-pin  
SOT-89 and 3-Pin TO-92.  
• CO2 Detectors  
• Smart Battery Packs  
• PDAs  
Package Types  
• Low-Quiescent Current Voltage Reference  
• Cameras and Portable Video Equipment  
• Pagers and Cellular Phones  
• Solar-Powered Instruments  
• Consumer Products  
3-Pin SOT-23A  
3-Pin SOT-89  
VIN  
3
VIN  
MCP1701A  
MCP1701A  
• Microcontroller Power  
1
2
1
2
3
GND  
VOUT  
GND VIN VOUT  
3-Pin TO-92  
1 2 3  
Bottom  
View  
GND VIN VOUT  
Note: 3-Pin SOT-23A is equivalent to the EIAJ  
SC-59.  
© 2007 Microchip Technology Inc.  
DS21991C-page 1  
MCP1701A  
Functional Block Diagram  
MCP1701A  
VIN  
VOUT  
Short-Circuit  
Protection  
+
Voltage  
Reference  
GND  
Typical Application Circuits  
MCP1701A  
VIN  
GND  
VOUT  
9V Alkaline Battery  
VOUT  
3.3V  
VIN  
CIN  
1 µF Tantalum  
IOUT  
50 mA  
COUT  
1 µF Tantalum  
DS21991C-page 2  
© 2007 Microchip Technology Inc.  
MCP1701A  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. These are stress ratings only and functional operation  
of the device at these or any other conditions above those  
indicated in the operation sections of the specifications is not  
implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage ........................................................+12V  
Output Current (Continuous)..........PD/(VIN – VOUT)mA  
Output Current (peak)..................................... 500 mA  
Output Voltage ............... (GND – 0.3V) to (VIN + 0.3V)  
Continuous Power Dissipation:  
3-Pin SOT-23A ............................................150 mW  
3-Pin SOT-89...............................................500 mW  
3-Pin TO-92.................................................300 mW  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for an ambient temperature of TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Output Voltage Regulation  
Maximum Output Current  
VOUT  
VR - 2% VR±0.5% VR + 2%  
IOUT = 40 mA (Note 1)  
V
IOUTMAX  
250  
200  
150  
150  
125  
110  
-1.60  
-2.25  
-2.72  
-3.00  
-3.60  
-1.60  
mA  
VOUT = 5.0V (VIN = VR + 1.0V)  
VOUT = 4.0V  
VOUT = 3.3V  
VOUT = 3.0V  
VOUT = 2.5V  
VOUT = 1.8V  
Load Regulation (Note 3)  
ΔVOUT/ VOUT  
±0.8  
±1.1  
±1.3  
±1.5  
±1.8  
±0.8  
380  
400  
400  
400  
400  
180  
2.0  
+1.60  
+2.25  
+2.72  
+3.00  
+3.60  
+1.60  
600  
630  
700  
700  
700  
300  
4.5  
%
mV  
µA  
VOUT = 5.0V, 1 mA IOUT 100 mA  
VOUT = 4.0V, 1 mA IOUT 100 mA  
VOUT = 3.3V, 1 mA IOUT 80 mA  
VOUT = 3.0V, 1 mA IOUT 80 mA  
VOUT = 2.5V, 1 mA IOUT 60 mA  
VOUT = 1.8V, 1 mA IOUT 30 mA  
IOUT = 200 mA, VR = 5.0V  
IOUT = 200 mA, VR = 4.0V  
IOUT = 150 mA, VR = 3.3V  
IOUT = 150 mA, VR = 3.0V  
IOUT = 120 mA, VR = 2.5V  
IOUT = 20 mA, VR = 1.8V  
VIN = VR + 1.0V  
Dropout Voltage  
VIN - VOUT  
Input Quiescent Current  
Line Regulation  
IQ  
ΔVOUT•100  
ΔVIN•VOUT  
VIN  
0.2  
0.3  
%/V IOUT = 40 mA, (VR +1) VIN 10.0V  
Input Voltage  
10  
V
Temperature Coefficient of  
Output Voltage  
TCVOUT  
±100  
ppm/ IOUT = 40 mA, -40°C TA ≤ +85°C  
°C  
(Note 2)  
Output Rise Time  
TR  
200  
µs  
10% VR to 90% VR, VIN = 0V to VR +1V,  
RL = 25Ω resistive  
1: VR is the nominal regulator output voltage. For example: VR = 1.8V, 2.5V, 3.3V, 4.0V, 5.0V.  
The input voltage VIN = VR + 1.0V, IOUT = 40 mA.  
2: TCVOUT = (VOUT-HIGH – VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = Highest voltage measured  
over the temperature range. VOUT-LOW = Lowest voltage measured over the temperature range.  
3: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.  
© 2007 Microchip Technology Inc.  
DS21991C-page 3  
MCP1701A  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range (I)  
Storage Temperature Range  
Package Thermal Resistances  
Thermal Resistance, 3L-SOT-23A  
TA  
TA  
-40  
-40  
+85  
°C  
°C  
+125  
θJA  
335  
230  
°C/W Minimum trace width single  
layer application  
°C/W Typical FR4, 4-layer  
application  
Thermal Resistance, 3L-SOT-89  
Thermal Resistance, 3L-TO-92  
θJA  
θJA  
52  
°C/W Typical, when mounted on 1  
square inch of copper  
131.9  
°C/W EIA/JEDEC JESD51-751-7  
4-layer board  
DS21991C-page 4  
© 2007 Microchip Technology Inc.  
MCP1701A  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Notes: Unless otherwise specified, VOUT = 1.8V, 3.3V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.  
3
2.8  
2.6  
2.4  
2.2  
2
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
VR = 1.8V  
+90°C  
VIN = 4.3V  
VR = 3.3V  
+90°C  
+25°C  
+25°C  
-45°C  
1.8  
1.6  
1.4  
1.2  
1
-45°C  
3
5
7
9
11  
0
50  
100  
150  
200  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-1:  
Supply Current vs. Input  
FIGURE 2-4:  
Supply Current vs. Load  
Voltage (V = 1.8V).  
Current (V = 3.3V).  
R
R
1.8  
1.7  
2.2  
2
VR = 3.3V  
VIN = 6.0V  
VR = 5.0V  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
+90°C  
+25°C  
+90°C  
+25°C  
1.8  
1.6  
1.4  
1.2  
1
-45°C  
-45°C  
4
6
8
10  
12  
0
50  
100  
150  
200  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-2:  
Supply Current vs. Input  
FIGURE 2-5:  
Supply Current vs. Load  
Voltage (V = 3.3V).  
Current (V = 5.0V).  
R
R
2.4  
2.2  
2.2  
2
VIN = VR + 1.0V  
IOUT = 0 μA  
VR = 5.0V  
+90°C  
VR = 5.0V  
2
+25°C  
1.8  
1.6  
1.4  
1.2  
1.8  
1.6  
VR = 3.3V  
1.4  
1.2  
1
-45°C  
VR = 1.8V  
-45  
-25  
-5  
15  
35  
55  
75  
95  
6
7
8
9
10  
11  
12  
Temperature (°C)  
Input Voltage (V)  
FIGURE 2-3:  
Voltage (V = 5.0V).  
Supply Current vs. Input  
FIGURE 2-6:  
Temperature.  
Supply Current vs.  
R
© 2007 Microchip Technology Inc.  
DS21991C-page 5  
MCP1701A  
Note: Unless otherwise indicated, VOUT = 1.8V, 3.3V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.  
1.88  
1.86  
1.84  
1.82  
1.8  
1.82  
1.81  
1.8  
VR = 1.8V  
IOUT = 0.1 mA  
VR = 1.8V  
IN = 3.0V  
+25°C  
V
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
1.73  
1.72  
1.71  
+25°C  
+90°C  
-45°C  
1.78  
1.76  
1.74  
1.72  
+90°C  
-45°C  
4
3
5
6
7
8
9
10 11 12  
0
20  
40  
60  
80  
100  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load  
Voltage (V = 1.8V).  
Current (V = 1.8V).  
R
R
3.4  
3.38  
3.36  
3.33  
VR = 3.3V  
VR = 3.3V  
VIN = 4.3V  
+90°C  
3.32  
IOUT = 0.1 mA  
3.31  
+25°C  
3.3  
3.34  
3.32  
3.3  
+90°C  
+25°C  
-45°C  
3.29  
3.28  
-45°C  
3.28  
3.26  
3.24  
3.27  
3.26  
3.25  
4
5
6
7
8
9
10  
11  
12  
0
30  
60  
90  
120  
150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-8:  
Output Voltage vs. Input  
FIGURE 2-11:  
Output Voltage vs. Load  
Voltage (V = 3.3V).  
Current (V = 3.3V).  
R
R
5.12  
5.1  
5.04  
VR = 5.0V  
VR = 5.0V  
+90°C  
IOUT = 0.1 mA  
5.03  
VIN = 6.0V  
+25°C  
5.02  
5.08  
5.06  
5.01  
+90°C  
5.04  
+25°C  
5.02  
5
-45°C  
4.99  
4.98  
4.97  
-45°C  
5
4.98  
6
7
8
9
10  
11  
12  
0
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-9:  
Output Voltage vs. Input  
FIGURE 2-12:  
Output Voltage vs. Load  
Voltage (V = 5.0V).  
Current (V = 5.0V).  
R
R
DS21991C-page 6  
© 2007 Microchip Technology Inc.  
MCP1701A  
Note: Unless otherwise indicated, VOUT = 1.8V, 3.3V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.  
0.7  
VR = 1.8V  
0.6  
+25°C  
0.5  
0.4  
0.3  
+90°C  
-45°C  
0.2  
0.1  
0.0  
0
20  
40  
60  
80  
100  
Load Current (mA)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Start-up From V  
Start-up From V  
Start-up From V  
IN  
IN  
IN  
Current (V = 1.8V).  
(V = 1.8V).  
R
R
0
0.50  
VR = 3.3V  
0.40  
0.30  
0.20  
0.10  
0.00  
+25°C  
+90°C  
-45°C  
0
25  
50  
75  
100  
125  
150  
Load Current (mA)  
FIGURE 2-14:  
Dropout Voltage vs. Load  
FIGURE 2-17:  
Current (V = 3.3V).  
(V = 3.3V).  
R
R
0.6  
VR = 5.0V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+25°C  
+90°C  
-45°C  
0
50  
100  
150  
200  
250  
Load Current (mA)  
FIGURE 2-15:  
Dropout Voltage vs. Load  
FIGURE 2-18:  
Current (V = 5.0V).  
(V = 5.0V).  
R
R
© 2007 Microchip Technology Inc.  
DS21991C-page 7  
MCP1701A  
Note: Unless otherwise indicated, VOUT = 1.8V, 3.3V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.35  
-0.40  
VR = 1.8V  
VIN = 2.8V to 10V  
VR = 1.8V  
OUT = 1 to 30 mA  
IOUT = 0 mA  
IOUT = 0.1 mA  
I
VIN = 6.0V  
VIN = 3.0V  
VIN = 8.0V  
IOUT = 1.0 mA  
IOUT = 10 mA  
VIN = 10.0V  
IOUT = 100 mA  
VIN = 12.0V  
-45 -30 -15  
0
15 30 45 60 75 90  
-45 -30 -15  
0
15 30 45 60 75 90  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19:  
Load Regulation vs.  
FIGURE 2-22:  
Line Regulation vs.  
Temperature (V = 1.8V).  
Temperature (V = 1.8V).  
R
R
0.18  
-0.35  
-0.40  
IOUT = 0 mA  
VR = 3.3V  
VIN = 4.3V to 10V  
VR = 3.3V  
IOUT = 1 to 80 mA  
0.16  
VIN = 4.3V  
VIN = 8.0V  
IOUT = 10 mA  
IOUT = 100 mA  
-0.45  
-0.50  
-0.55  
-0.60  
-0.65  
-0.70  
-0.75  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
VIN = 10.0V  
IOUT = 200 mA  
VIN = 12.0V  
IOUT = 300 mA  
-45  
-25  
-5  
15  
35  
55  
75  
-45 -30 -15  
0
15 30 45 60 75 90  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-20:  
Load Regulation vs.  
FIGURE 2-23:  
Line Regulation vs.  
Temperature (V = 3.3V).  
Temperature (V = 3.3V).  
R
R
0.18  
-0.20  
VR = 5.0V  
VIN = 6.0V to 10V  
VR = 5.0V  
IN = 6.0V to 12V  
VIN = 6.0V  
IOUT = 0 mA  
-0.25  
V
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
-0.30  
-0.35  
-0.40  
-0.45  
IOUT = 1 mA  
IOUT = 10 mA  
VIN = 8.0V  
VIN = 10.0V  
-0.50  
-0.55  
-0.60  
-0.65  
IOUT = 100 mA  
VIN = 12.0V  
IOUT = 200 mA  
IOUT = 300 mA  
-45  
-25  
-5  
15  
35  
55  
75  
-45 -30 -15  
0
15 30 45 60 75 90  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-21:  
Load Regulation vs.  
FIGURE 2-24:  
Line Regulation vs.  
Temperature (V = 5.0V).  
Temperature (V = 5.0V).  
R
R
DS21991C-page 8  
© 2007 Microchip Technology Inc.  
MCP1701A  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
SOT-23A  
Pin No.  
SOT-89  
Pin No.  
TO-92  
Name  
Function  
1
2
3
1
3
2
1
3
2
GND  
VOUT  
VIN  
Ground Terminal  
Regulated Voltage Output  
Unregulated Supply Input  
3.1  
Ground Terminal (GND)  
3.3  
Unregulated Supply Input (VIN)  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (2 µA, typ.) flows out of this  
pin, there is no high current. The LDO output regulation  
is referenced to this pin. Minimize voltage drops  
between this pin and the negative side of the load.  
Connect the input supply voltage and the positive side  
of the input capacitor to VIN. Like all low-dropout linear  
regulators, low source impedance is necessary for the  
stable operation of the LDO. The amount of  
capacitance required to ensure low source impedance  
will depend on the proximity of the input source  
capacitors or battery type. The input capacitor should  
be physically located as close as possible to the VIN  
pin. For most applications, 1 µF of capacitance will  
ensure stable operation of the LDO circuit. For  
applications that have load currents below 100 mA, the  
input capacitance requirement can be lowered. The  
type of capacitor used can be ceramic, tantalum or  
aluminum electrolytic. The low equivalent series  
resistance characteristics of the ceramic will yield  
better noise and PSRR performance at high frequency.  
The current flow into this pin is equal to the DC load  
current, plus the LDO bias current (2 µA, typical).  
3.2  
Regulated Voltage Output (VOUT)  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close as possible to the LDO VOUT pin. The  
current flowing out of this pin is equal to the DC load  
current.  
© 2007 Microchip Technology Inc.  
DS21991C-page 9  
MCP1701A  
4.2  
Input Capacitor  
4.0  
DETAILED DESCRIPTION  
A 1 µF input capacitor is recommended for most  
applications when the input impedance is on the order  
of 10Ω. Larger input capacitance may be required for  
stability when operating from a battery input, or if there  
is a large distance from the input source to the LDO.  
When large values of output capacitance are used, the  
input capacitance should be increased to prevent high  
source impedance oscillations.  
The MCP1701A is a low-quiescent current, precision,  
fixed-output voltage LDO. Unlike bipolar regulators,  
the MCP1701A supply current does not increase  
proportionally with load current.  
4.1  
Output Capacitor  
A minimum of 1 µF output capacitor is required. The  
output capacitor should have an ESR greater than  
0.1Ω and less than 5Ω, plus a resonant frequency  
above 1 MHz. Larger output capacitors can be used to  
improve supply noise rejection and transient response.  
Care should be taken when increasing COUT to ensure  
that the input impedance is not high enough to cause  
high input impedance oscillation.  
4.3  
Overcurrent  
The MCP1701 internal circuitry monitors the amount of  
current flowing through the P-channel pass transistor.  
In the event of a short circuit or excessive output  
current, the MCP1701 will act to limit the output current.  
VIN  
VOUT  
Short Circuit  
Protection  
+
Voltage  
Reference  
GND  
FIGURE 4-1:  
MCP1701A Block Diagram.  
DS21991C-page 10  
© 2007 Microchip Technology Inc.  
MCP1701A  
To determine the junction temperature of the device, the  
thermal resistance from junction-to-ambient must be  
known. The 3-pin SOT-23A thermal resistance from  
junction-to-air (RθJA) is estimated to be approximately  
335°C/W. The SOT-89 RθJA is estimated to be  
approximately 52°C/W when mounted on 1 square inch  
of copper. The RθJA will vary with physical layout, airflow  
and other application-specific conditions.  
5.0  
5.1  
THERMAL CONSIDERATIONS  
Power Dissipation  
The amount of power dissipated internal to the LDO  
linear regulator is the sum of the power dissipation  
within the linear pass device (P-channel MOSFET) and  
the quiescent current required to bias the internal  
reference and error amplifier. The internal linear pass  
device power dissipation is calculated as shown in  
Equation 5-1.  
The device junction temperature is determined by  
calculating the junction temperature rise above  
ambient, then adding the rise to the ambient  
temperature.  
EQUATION 5-1:  
PD (Pass Device) = (VIN – VOUT) x IOUT  
EQUATION 5-5: JUNCTION TEMPERATURE  
– SOT-23A EXAMPLE:  
The internal power dissipation, as a result of the bias  
current for the LDO internal reference and error  
amplifier, is calculated as shown in Equation 5-2.  
TJ = PDMAX × RθJA + TA  
TJ = 116.0 milliwatts× 335°C/W + 55°C  
TJ = 93.9°C  
EQUATION 5-2:  
PD (Bias) = VIN x IGND  
EQUATION 5-6: JUNCTION TEMPERATURE  
– SOT-89 EXAMPLE:  
The total internal power dissipation is the sum of PD  
(pass device) and PD (bias).  
TJ = 116.0 milliwatts× 52°C/W + 55°C  
TJ = 61°C  
EQUATION 5-3:  
PTOTAL = PD (Pass Device) + PD (Bias)  
For the MCP1701A, the internal quiescent bias current  
is so low (2 µA, typ.) that the PD (bias) term of the  
power dissipation equation can be ignored. The  
maximum power dissipation can be estimated by using  
the maximum input voltage and the minimum output  
voltage to obtain a maximum voltage differential  
between input and output. The next step would be to  
multiply the maximum voltage differential by the  
maximum output current.  
EQUATION 5-4:  
PD = (VINMAX VOUTMIN) x IOUTMAX  
Given:  
VIN  
VOUT  
IOUT  
=
=
=
=
=
3.3V to 4.1V  
3.0V ± 2%  
1 mA to 100 mA  
55°C  
TAMAX  
PMAX  
(4.1V – (3.0V x 0.98)) x 100 mA  
© 2007 Microchip Technology Inc.  
DS21991C-page 11  
MCP1701A  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Pin TO-92  
3-Pin SOT-23A  
3-Pin SOT-89  
1
2
1 2 3 4  
5 6 7 8  
9 10 1112  
Line 1  
Line 2  
1
2
3
4
3
4
4
3 &  
1 , 2 ,  
= 701A (fixed)  
1
represents first voltage digit  
1V, 2V, 3V, 4V, 5V, 6V  
5
represents first voltage digit (1-6)  
3
Ex: 3.xV =  
6 represents first voltage decimal (0-9)  
7 represents extra feature code: fixed: 0  
2 represents first decimal place voltage (x.0 - x.9)  
3
E
Ex: 3.4V =  
Symbol  
Voltage  
Symbol  
Voltage  
8 represents regulation accuracy  
2 = ±2.0% (standard)  
A
B
C
D
E
x.0  
x.1  
x.2  
x.3  
x.4  
F
H
K
L
x.5  
x.6  
x.7  
x.8  
x.9  
9 , 10, 11 & 12  
represents assembly lot number  
M
3
4
represents polarity  
0 = Positive (fixed)  
represents assembly lot number  
DS21991C-page 12  
© 2007 Microchip Technology Inc.  
MCP1701A  
3-Lead Plastic Small Outline Transistor (CB) [SOT-23A]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
e1  
e
2
1
E
E1  
N
b
c
A
φ
A2  
L
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Lead Pitch  
N
e
3
0.95 BSC  
Outside Lead Pitch  
Overall Height  
e1  
A
1.90 BSC  
0.89  
0.90  
0.00  
2.10  
1.20  
2.70  
0.15  
0°  
1.45  
1.30  
0.15  
3.00  
1.80  
3.10  
0.60  
30°  
Molded Package Thickness  
Standoff  
A2  
A1  
E
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
Foot Angle  
φ
c
Lead Thickness  
Lead Width  
0.09  
0.30  
0.26  
0.51  
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-130B  
© 2007 Microchip Technology Inc.  
DS21991C-page 13  
MCP1701A  
3-Lead Plastic Small Outline Transistor Header (MB) [SOT-89]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
H
L
N
1
2
b
b1  
b1  
e
E1  
e1  
A
C
Units  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
Number of Leads  
Pitch  
N
e
3
1.50 BSC  
3.00 BSC  
Outside Lead Pitch  
Overall Height  
Overall Width  
e1  
A
1.40  
3.94  
2.29  
2.13  
4.39  
1.40  
0.79  
0.35  
0.41  
0.36  
1.60  
4.25  
2.60  
2.29  
4.60  
1.83  
1.20  
0.44  
0.56  
0.48  
H
Molded Package Width at Base  
Molded Package Width at Top  
Overall Length  
E
E1  
D
Tab Length  
D1  
L
Foot Length  
Lead Thickness  
c
Lead 2 Width  
b
Leads 1 & 3 Width  
b1  
Notes:  
1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-029B  
DS21991C-page 14  
© 2007 Microchip Technology Inc.  
MCP1701A  
3-Lead Plastic Transistor Outline (TO) [TO-92]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
A
N
1
L
1
2
3
b
e
c
D
R
Units  
INCHES  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
3
.050 BSC  
Bottom to Package Flat  
Overall Width  
Overall Length  
D
E
A
R
L
.125  
.175  
.170  
.080  
.500  
.014  
.014  
.165  
.205  
.210  
.105  
Molded Package Radius  
Tip to Seating Plane  
Lead Thickness  
c
.021  
.022  
Lead Width  
b
Notes:  
1. Dimensions A and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-101B  
© 2007 Microchip Technology Inc.  
DS21991C-page 15  
MCP1701A  
NOTES:  
DS21991C-page 16  
© 2007 Microchip Technology Inc.  
MCP1701A  
APPENDIX A: REVISION HISTORY  
Revisions C (February 2007)  
• Updated Packaging Information  
Revision B (September 2006)  
• Numerous changes to Section 1.0. Electrical  
Characteristics  
• Added disclaimer to package outline drawings.  
Revision A (February 2006)  
• Original Release of this Document.  
© 2007 Microchip Technology Inc.  
DS21991C-page 17  
MCP1701A  
NOTES:  
DS21991C-page 18  
© 2007 Microchip Technology Inc.  
MCP1701A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X-  
XX  
X
X
X
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1701AT-1802I/CB: 1.8V LDO Positive  
Voltage Regulator,  
Tape  
and Reel Voltage  
Output Feature Tolerance Temp. Package  
Code  
SOT-23A-3 pkg.  
MCP1701AT-1802I/MB: 1.8V LDO Positive  
Voltage Regulator,  
Device:  
MCP1701A: 2 µA Low-Dropout Positive Voltage Regulator  
SOT89-3 pkg.  
MCP1701A-1802I/TO: 1.8V LDO Positive  
Voltage Regulator,  
Tape and Reel:  
Output Voltage:  
T
=
Tape and Reel  
TO-92 pkg.  
MCP1701AT-2502I/CB: 2.5V LDO Positive  
Voltage Regulator,  
18  
25  
30  
33  
50  
=
=
=
=
=
1.8V “Standard”  
2.5V “Standard”  
3.0V “Standard”  
3.3V “Standard”  
5.0V “Standard”  
SOT-23A-3 pkg.  
MCP1701A-2502I/TO: 2.5V LDO Positive  
Voltage Regulator,  
*Contact factory for other output voltage options.  
TO-92 pkg.  
MCP1701AT-3002I/CB: 3.0V LDO Positive  
Voltage Regulator,  
Extra Feature Code:  
Tolerance:  
0
2
I
=
=
=
Fixed  
SOT-23A-3 pkg.  
2.0% (Standard)  
-40°C to +85°C  
g)  
h)  
i)  
MCP1701AT-3002I/MB: 3.0V LDO Positive  
Voltage Regulator,  
SOT89-3 pkg.  
Temperature:  
MCP1701A-3002I/TO: 3.0V LDO Positive  
Voltage Regulator,  
Package Type:  
CB  
MB  
TO  
=
=
=
3-Pin SOT-23A (equivalent to EIAJ SC-59)  
3-Pin SOT-89  
3-Pin TO-92  
TO-92 pkg.  
MCP1701AT-3302I/CB: 3.3V LDO Positive  
Voltage Regulator,  
SOT-23A-3 pkg.  
j)  
MCP1701AT-3302I/MB: 3.3V LDO Positive  
Voltage Regulator,  
SOT89-3 pkg.  
k)  
l)  
MCP1701AT-5002I/CB: 5.0V LDO Positive  
Voltage Regulator,  
SOT-23A-3 pkg.  
MCP1701AT-5002I/MB: 5.0V LDO Positive  
Voltage Regulator,  
SOT89-3 pkg.  
m) MCP1701A-5002I/TO: 5.0V LDO Positive  
Voltage Regulator,  
TO-92 pkg.  
© 2007 Microchip Technology Inc.  
DS21991C-page 19  
MCP1701A  
NOTES:  
DS21991C-page 20  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS21991C-page 21  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS21991C-page 22  
© 2007 Microchip Technology Inc.  

相关型号:

MCP1701A-1802I/MB

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-1802I/TO

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-2502I/CB

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-2502I/MB

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-2502I/TO

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-3002I/CB

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-3002I/MB

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-3002I/TO

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-3302I/CB

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-3302I/MB

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-3302I/TO

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP

MCP1701A-5002I/CB

2レA Low-Dropout Positive Voltage Regulator
MICROCHIP