MCP1703-3002E/DB [MICROCHIP]

250 mA, 16V, Low Quiescent Current; 250毫安, 16V ,低静态电流
MCP1703-3002E/DB
型号: MCP1703-3002E/DB
厂家: MICROCHIP    MICROCHIP
描述:

250 mA, 16V, Low Quiescent Current
250毫安, 16V ,低静态电流

文件: 总24页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1703  
250 mA, 16V, Low Quiescent Current  
Features  
Description  
• 2.0 µA Typical Quiescent Current  
The MCP1703 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 250 mA of  
current while consuming only 2.0 µA of quiescent  
current (typical). The input operating range is specified  
from 2.7V to 16.0V, making it an ideal choice for two to  
six primary cell battery-powered applications, 9V alka-  
line and one or two cell Li-Ion-powered applications.  
• Input Operating Voltage Range: 2.7V to16.0V  
• 250 mA Output Current for Output Voltages 2.5V  
• 200 mA Output Current for Output Voltages < 2.5V  
• Low Drop Out Voltage, 625 mV typical @ 250 mA  
for VR = 2.8V  
• 0.4% Typical Output Voltage Tolerance  
The MCP1703 is capable of delivering 250 mA with  
only 625 mV (typical) of input to output voltage differen-  
tial (VOUT = 2.8V). The output voltage tolerance of the  
MCP1703 is typically ±0.4% at +25°C and ±3%  
maximum over the operating junction temperature  
range of -40°C to +125°C. Line regulation is ±0.1%  
typical at +25°C.  
• Standard Output Voltage Options (1.2V, 1.5V,  
1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V)  
• Output voltage range 1.2V to 5.5V in 0.1V  
increments (50 mV increments available upon  
request)  
• Stable with 1.0 µF to 22 µF output capacitance  
• Short-Circuit Protection  
Output voltages available for the MCP1703 range from  
1.2V to 5.5V. The LDO output is stable when using only  
1 µF of output capacitance. Ceramic, tantalum or  
aluminum electrolytic capacitors can all be used for  
input and output. Overcurrent limit and overtemperature  
shutdown provide a robust solution for any application.  
• Overtemperature Protection  
Applications  
• Battery-powered Devices  
• Battery-powered Alarm Circuits  
• Smoke Detectors  
Package options include the SOT-223-3, SOT-23A,  
and SOT-89-3.  
• CO2 Detectors  
Related Literature  
• Pagers and Cellular Phones  
• Smart Battery Packs  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., 2002  
• Low Quiescent Current Voltage Reference  
• PDAs  
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs”, DS00766,  
• Digital Cameras  
Microchip Technology Inc., 2002  
• Microcontroller Power  
• Solar-Powered Instruments  
• Consumer Products  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”,  
DS00792, Microchip Technology Inc., 2001  
• Battery Powered Data Loggers  
Package Types  
SOT-223-3  
3-Pin SOT-23A  
3-Pin SOT-89  
VIN  
VIN  
4
3
2
GND VIN VOUT  
1
3
1
2
3
1
2
VIN  
GND VOUT  
GND VOUT  
© 2007 Microchip Technology Inc.  
DS22049A-page 1  
MCP1703  
Functional Block Diagrams  
MCP1703  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
Typical Application Circuits  
MCP1703  
VOUT  
3.3V  
VOUT  
IOUT  
COUT  
1 µF Ceramic  
50 mA  
V
IN  
VIN  
VIN  
+
9V  
Battery  
CIN  
1 µF Ceramic  
GND  
DS22049A-page 2  
© 2007 Microchip Technology Inc.  
MCP1703  
† Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD..................................................................................+18V  
All inputs and outputs w.r.t. .............(VSS-0.3V) to (VIN+0.3V)  
Peak Output Current...................................................500 mA  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature.................................+150°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD protection on all pins (HBM;MM)............... ≥ 4 kV; 400V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VOUT(MAX) + VDROPOUT(MAX), Note 1,  
LOAD = 100 µA, COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C.  
I
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Input / Output Characteristics  
Input Operating Voltage  
VIN  
Iq  
2.7  
16.0  
5
V
Note 1  
Input Quiescent Current  
Maximum Output Current  
2.0  
µA  
IL = 0 mA  
IOUT_mA  
250  
50  
mA  
mA  
mA  
mA  
mA  
mA  
For VR 2.5V  
100  
130  
200  
250  
400  
For VR < 2.5V, VIN 2.7V  
For VR < 2.5V, VIN 2.95V  
For VR < 2.5V, VIN 3.2V  
For VR < 2.5V, VIN 3.45V  
100  
150  
200  
Output Short Circuit Current  
Output Voltage Regulation  
IOUT_SC  
VIN = VIN(MIN) (Note 1), VOUT = GND,  
Current (average current) measured  
10 ms after short is applied.  
VOUT  
VR-3.0% VR±0.4 VR+3.0%  
V
Note 2  
VR-2.0%  
%
VR+2.0%  
VOUT Temperature Coefficient  
Line Regulation  
TCVOUT  
50  
150  
ppm/°C  
%/V  
Note 3  
ΔVOUT  
(VOUTXΔVIN  
ΔVOUT/VOUT  
/
-0.3  
±0.1  
+0.3  
(VOUT(MAX) + VDROPOUT(MAX)) VIN  
16V, Note 1  
)
Load Regulation  
-2.5  
±1.0  
+2.5  
%
IL = 1.0 mA to 250 mA for VR >= 2.5V  
IL = 1.0 mA to 200 mA for VR < 2.5V  
V
IN = 3.65V, Note 4  
Note 1: The minimum VIN must meet two conditions: VIN 2.7V and VIN (VOUT(MAX) + VDROPOUT(MAX)).  
2: R is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V.  
V
The input voltage VIN = VOUT(MAX) + VDROPOUT(MAX) or ViIN = 2.7V (whichever is greater); IOUT = 100 µA.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the temper-  
ature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
© 2007 Microchip Technology Inc.  
DS22049A-page 3  
MCP1703  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VOUT(MAX) + VDROPOUT(MAX), Note 1,  
I
LOAD = 100 µA, COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C.  
Parameters  
Dropout Voltage  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
VDROPOUT  
330  
525  
625  
750  
650  
725  
975  
1100  
mV  
mV  
mV  
mV  
mV  
IL = 250 mA, VR = 5.0V  
Note 1, Note 5  
IL = 250 mA, 3.3V VR < 5.0V  
IL = 250 mA, 2.8V VR < 3.3V  
IL = 250 mA, 2.5V VR < 2.8V  
VR < 2.5V, See Maximum Output  
Current Parameter  
Output Delay Time  
Output Noise  
TDELAY  
1000  
µs  
VIN = 0V to 6V, VOUT = 90% VR,  
RL = 50Ω resistive  
eN  
8
µV/(Hz)1/2 IL = 50 mA, f = 1 kHz, COUT = 1 µF  
Power Supply Ripple  
Rejection Ratio  
PSRR  
44  
dB  
f = 100 Hz, COUT = 1 µF, IL = 100 µA,  
V
V
INAC = 100 mV pk-pk, CIN = 0 µF,  
R = 1.2V  
Thermal Shutdown Protection  
TSD  
150  
°C  
Note 1: The minimum VIN must meet two conditions: VIN 2.7V and VIN (VOUT(MAX) + VDROPOUT(MAX)).  
2: R is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V.  
V
The input voltage VIN = VOUT(MAX) + VDROPOUT(MAX) or ViIN = 2.7V (whichever is greater); IOUT = 100 µA.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the temper-  
ature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
TEMPERATURE SPECIFICATIONS  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, 3LD-SOT-223  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
θJA  
θJC  
62  
15  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
°C/W  
°C/W  
°C/W  
Thermal Resistance, 3LD-SOT-23A  
Thermal Resistance, 3LD-SOT-89  
θJA  
θJC  
336  
110  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
θJA  
θJC  
75  
10  
0.100 sq in copper on both sides of 2  
sided board, with vias  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
DS22049A-page 4  
© 2007 Microchip Technology Inc.  
MCP1703  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
Note: Junction Temperature (T ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction  
J
temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
120  
100  
80  
60  
40  
20  
0
VOUT = 1.2V  
IOUT = 0 µA  
VOUT = 1.2V  
VIN = 2.7V  
+130°C  
-45°C  
+90°C  
+25°C  
0°C  
2
4
6
8
10  
12  
14  
16  
18  
0
40  
80  
120  
160  
200  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-1:  
Quiescent Current vs. Input  
FIGURE 2-4:  
Ground Current vs. Load  
Voltage.  
Current.  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
120  
100  
80  
VOUT = 2.5V  
IOUT = 0 µA  
VOUT = 5.0V  
VIN = 6.0V  
+130°C  
+90°C  
60  
VOUT = 2.5V  
VIN = 3.5V  
40  
+25°C  
-45°C  
20  
0°C  
0.00  
2
0
0
4
6
8
10  
12  
14  
16  
18  
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-2:  
Quiescent Current vs. Input  
FIGURE 2-5:  
Ground Current vs. Load  
Voltage.  
Current.  
6.00  
5.00  
4.00  
3.00  
2.00  
3.00  
VOUT = 5.0V  
IOUT = 0 mA  
VOUT = 1.2V  
VIN = 2.7V  
VOUT = 2.5V  
VIN = 3.5V  
IOUT = 0 µA  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
0°C  
-45°C  
+130°C  
+25°C  
VOUT = 5.0V  
VIN = 6.0V  
+90°C  
1.00  
6
8
10  
12  
14  
16  
18  
-45  
-20  
5
30  
55  
80  
105  
130  
Input Voltage (V)  
Junction Temperature (°C)  
FIGURE 2-3:  
Quiescent Current vs. Input  
FIGURE 2-6:  
Quiescent Current vs.  
Voltage.  
Junction Temperature.  
© 2007 Microchip Technology Inc.  
DS22049A-page 5  
MCP1703  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
1.240  
1.230  
1.220  
1.210  
1.200  
1.190  
1.180  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
VOUT = 1.2V  
ILOAD = 0.1 mA  
0°C  
+25°C  
-45°C  
-45°C  
0°C  
+90°C  
+130°C  
+130°C  
+90°C  
+25°C  
VIN = 3.0V  
VOUT = 1.2V  
2
4
6
8
10  
12  
14  
16  
18  
0
20 40 60 80 100 120 140 160 180 200  
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load  
Voltage.  
Current.  
2.58  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
VIN = 3.5V  
VOUT = 2.5V  
V
OUT = 2.5V  
ILOAD = 0.1 mA  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
+25°C  
+90°C  
+90°C  
+130°C  
0°C  
-45°C  
0°C  
+130°C  
+25°C  
-45°C  
2.47  
2.46  
2
4
6
8
10  
12  
14  
16  
18  
0
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-8:  
Output Voltage vs. Input  
FIGURE 2-11:  
Output Voltage vs. Load  
Voltage.  
Current.  
5.16  
5.06  
5.04  
VIN = 6V  
VOUT = 5.0V  
VOUT = 5.0V  
ILOAD = 0.1 mA  
5.12  
5.08  
5.04  
5.00  
4.96  
4.92  
4.88  
+90°C  
+130°C  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
+90°C  
+130°C  
-45°C  
0°C  
0°C  
-45°C  
+25°C  
+25°C  
6
8
10  
12  
14  
16  
18  
0
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-9:  
Output Voltage vs. Input  
FIGURE 2-12:  
Output Voltage vs. Load  
Voltage.  
Current.  
DS22049A-page 6  
© 2007 Microchip Technology Inc.  
MCP1703  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
1.00  
0.90  
VOUT = 2.5V  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
+130°C  
+90°C  
+25°C  
+0°C  
-45°C  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Dynamic Line Response.  
Current.  
0.50  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VOUT = 2.5V  
VOUT = 5.0V  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
ROUT < 0.1?  
+130°C  
+90°C  
+25°C  
+0°C  
-45°C  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
2
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
FIGURE 2-14:  
Dropout Voltage vs. Load  
FIGURE 2-17:  
Short Circuit Current vs.  
Current.  
Input Voltage.  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
VOUT = 1.2V  
OUT = 1 mA to 200 mA  
VIN = 6V  
VIN = 12V  
I
VIN = 16V  
VIN = 14V  
VIN = 3.8V  
0.30  
0.20  
VIN = 3.2V  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
FIGURE 2-15:  
Dynamic Line Response.  
FIGURE 2-18:  
Load Regulation vs.  
Temperature.  
© 2007 Microchip Technology Inc.  
DS22049A-page 7  
MCP1703  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
0.20  
0.16  
0.12  
0.08  
0.04  
0.00  
VOUT = 2.5V  
VIN = 3.5V to 16V  
VOUT = 2.5V  
IOUT = 1 mA to 250 mA  
VIN = 16V  
200 mA  
100 mA  
250 mA  
VIN = 6V  
VIN = 3.5V  
0 mA  
VIN = 12V  
VIN = 14V  
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19:  
Load Regulation vs.  
FIGURE 2-22:  
Line Regulation vs.  
Temperature.  
Temperature.  
1.00  
0.80  
0.18  
0.16  
VOUT = 5.0V  
IOUT = 1 to 250 mA  
VOUT = 5.0V  
VIN = 6.0V to 16.0V  
VIN = 16V  
VIN = 6V  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
200mA  
0.14  
VIN = 12V  
250 mA  
0.12  
VIN = 8V  
0.10  
0 mA  
100 mA  
0.08  
VIN = 14V  
0.06  
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-20:  
Load Regulation vs.  
FIGURE 2-23:  
Line Regulation vs.  
Temperature.  
Temperature.  
0.16  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VIN = 3.0 to 16.0V  
VOUT = 1.2V  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
200 mA  
1 mA  
VR=1.2V  
VIN=2.7V  
0 mA  
V
INAC = 100 mV p-p  
IN=0 μF  
IOUT=100 µA  
100 mA  
C
-45  
-20  
5
30  
55  
80  
105  
130  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Temperature (°C)  
FIGURE 2-21:  
Line Regulation vs.  
FIGURE 2-24:  
PSRR vs. Frequency.  
Temperature.  
DS22049A-page 8  
© 2007 Microchip Technology Inc.  
MCP1703  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
0
-10  
-20  
-30  
-40  
VR=5.0V  
-50  
V
IN=6.0V  
-60  
-70  
-80  
-90  
VINAC = 100 mV p-p  
IN=0 μF  
IOUT=100 µA  
C
0.01  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
FIGURE 2-25:  
PSRR vs. Frequency.  
FIGURE 2-28:  
Dynamic Load Response.  
100  
10  
IOUT=50 mA  
VR=5.0V, VIN=6.0V  
VR=2.8V, VIN=3.8V  
1
0.1  
VR=1.2V, VIN=2.7V  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-26:  
Output Noise vs. Frequency.  
FIGURE 2-29:  
Dynamic Load Response.  
FIGURE 2-27:  
Power Up Timing.  
© 2007 Microchip Technology Inc.  
DS22049A-page 9  
MCP1703  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP1703 PIN FUNCTION TABLE  
Pin No.  
SOT-223-3  
Pin No.  
SOT-23A  
Pin No.  
SOT-89-3  
Name  
Function  
2
3
1
1
2
3
-
1
GND  
VOUT  
VIN  
Ground Terminal  
3
2,Tab  
-
Regulated Voltage Output  
Unregulated Supply Voltage  
No connection  
NC  
3.1  
Ground Terminal (GND)  
3.3  
Unregulated Input Voltage (VIN)  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (2.0 µA typical) flows out of  
this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
Connect VIN to the input unregulated source voltage.  
Like all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 1 µF of capacitance will ensure stable  
operation of the LDO circuit. For applications that have  
load currents below 100 mA, the input capacitance  
requirement can be lowered. The type of capacitor  
used can be ceramic, tantalum or aluminum electro-  
lytic. The low ESR characteristics of the ceramic will  
yield better noise and PSRR performance at high-  
frequency.  
3.2  
Regulated Output Voltage (VOUT)  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current.  
DS22049A-page 10  
© 2007 Microchip Technology Inc.  
MCP1703  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
4.3  
Overtemperature  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal band-gap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
The internal power dissipation within the LDO is a  
function of input-to-output voltage differential and load  
current. If the power dissipation within the LDO is  
excessive, the internal junction temperature will rise  
above the typical shutdown threshold of 150°C. At that  
point, the LDO will shut down and begin to cool to the  
typical turn-on junction temperature of 130°C. If the  
power dissipation is low enough, the device will  
continue to cool and operate normally. If the power  
dissipation remains high, the thermal shutdown  
protection circuitry will again turn off the LDO,  
protecting it from catastrophic failure.  
4.2  
Overcurrent  
The MCP1703 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event of a short-circuit or excessive output  
current, the MCP1703 will turn off the P-Channel  
device for a short period, after which the LDO will  
attempt to restart. If the excessive current remains, the  
cycle will repeat itself.  
MCP1703  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
FIGURE 4-1: Block Diagram.  
© 2007 Microchip Technology Inc.  
DS22049A-page 11  
MCP1703  
5.2  
Output  
5.0  
FUNCTIONAL DESCRIPTION  
The maximum rated continuous output current for the  
MCP1703 is 250 mA (VR 2.5V). For applications  
where VR < 2.5V, the maximum output current is  
200 mA.  
The MCP1703 CMOS low dropout linear regulator is  
intended for applications that need the lowest current  
consumption while maintaining output voltage  
regulation. The operating continuous load range of the  
MCP1703 is from 0 mA to 250 mA (VR 2.5V). The  
input operating voltage range is from 2.7V to 16.0V,  
making it capable of operating from two or more alka-  
line cells or single and multiple Li-Ion cell batteries.  
A minimum output capacitance of 1.0 µF is required for  
small signal stability in applications that have up to  
250 mA output current capability. The capacitor type  
can be ceramic, tantalum or aluminum electrolytic. The  
esr range on the output capacitor can range from 0Ω to  
2.0Ω.  
5.1  
Input  
The input of the MCP1703 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance (10Ω)  
is needed to prevent the input impedance from causing  
the LDO to become unstable. The size and type of the  
capacitor needed depends heavily on the input source  
type (battery, power supply) and the output current  
range of the application. For most applications (up to  
100 mA), a 1 µF ceramic capacitor will be sufficient to  
ensure circuit stability. Larger values can be used to  
improve circuit AC performance.  
5.3  
Output Rise time  
When powering up the internal reference output, the  
typical output rise time of 1000 µs is controlled to  
prevent overshoot of the output voltage.  
DS22049A-page 12  
© 2007 Microchip Technology Inc.  
MCP1703  
EQUATION 6-2:  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
6.0  
6.1  
APPLICATION CIRCUITS &  
ISSUES  
Where:  
TJ(MAX)  
Typical Application  
=
Maximum continuous junction  
The MCP1703 is most commonly used as a voltage  
regulator. Its low quiescent current and low dropout  
voltage make it ideal for many battery-powered  
applications.  
temperature  
PTOTAL  
=
=
Total device power dissipation  
RθJA  
Thermal resistance from junction-  
to-ambient  
TAMAX  
=
Maximum ambient temperature  
MCP1703  
VIN  
2.7V to 4.8V  
GND  
VOUT  
1.8V  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package maximum  
internal power dissipation.  
VIN  
CIN  
VOUT  
COUT  
1 µF Ceramic  
1 µF Ceramic  
IOUT  
50 mA  
FIGURE 6-1: Typical Application Circuit.  
EQUATION 6-3:  
6.1.1  
APPLICATION INPUT CONDITIONS  
Package Type = SOT-23A  
(TJ(MAX) TA(MAX)  
PD(MAX) = ---------------------------------------------------  
RθJA  
)
Input Voltage Range = 2.7V to 4.8V  
IN maximum = 4.8V  
OUT typical = 1.8V  
IOUT 50 mA maximum  
Where:  
V
PD(MAX)  
TJ(MAX)  
=
=
Maximum device power dissipation  
V
Maximum continuous junction  
temperature  
=
TA(MAX)  
=
=
Maximum ambient temperature  
6.2  
Power Calculations  
RθJA  
Thermal resistance from junction-  
to-ambient  
6.2.1  
POWER DISSIPATION  
The internal power dissipation of the MCP1703 is a  
function of input voltage, output voltage and output  
current. The power dissipation, as a result of the  
quiescent current draw, is so low, it is insignificant  
(2.0 µA x VIN). The following equation can be used to  
calculate the internal power dissipation of the LDO.  
EQUATION 6-4:  
TJ(RISE) = PD(MAX) × RθJA  
Where:  
TJ(RISE)  
=
Rise in device junction temperature  
over the ambient temperature  
EQUATION 6-1:  
PTOTAL  
=
=
Maximum device power dissipation  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX))  
RθJA  
Thermal resistance from junction to  
ambient  
P
LDO = LDO Pass device internal power dissipation  
VIN(MAX) = Maximum input voltage  
EQUATION 6-5:  
VOUT(MIN) = LDO minimum output voltage  
TJ = TJ(RISE) + TA  
Where:  
The maximum continuous operating junction  
temperature specified for the MCP1703 is +125°C. To  
estimate the internal junction temperature of the  
MCP1703, the total internal power dissipation is  
multiplied by the thermal resistance from junction to  
ambient (RθJA). The thermal resistance from junction to  
ambient for the SOT-23A pin package is estimated at  
336°C/W.  
TJ  
=
=
Junction Temperature  
TJ(RISE)  
Rise in device junction temperature  
over the ambient temperature  
TA  
=
Ambient temperature  
© 2007 Microchip Technology Inc.  
DS22049A-page 13  
MCP1703  
6.3  
Voltage Regulator  
TJ = TJRISE + TA(MAX)  
TJ = 91.3°C  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation, as a result of ground current, is small  
enough to be neglected.  
Maximum Package Power Dissipation at +40°C  
Ambient Temperature  
SOT-23A (336.0°C/Watt = RθJA  
)
P
D(MAX) = (125°C - 40°C) / 336°C/W  
D(MAX) = 253 milli-Watts  
6.3.1  
POWER DISSIPATION EXAMPLE  
P
Package  
SOT-89 (75°C/Watt = RθJA  
)
Package Type = SOT-23A  
Input Voltage  
P
D(MAX) = (125°C - 40°C) / 75°C/W  
D(MAX) = 1.133 Watts  
P
V
IN = 2.7V to 4.8V  
SOT-223 (62.9°C/Watt = RθJA  
)
LDO Output Voltages and Currents  
PD(MAX) = (125°C - 40°C) / 62.9°C/W  
VOUT = 1.8V  
PD(MAX) = 1.35 Watts  
IOUT = 50 mA  
Maximum Ambient Temperature  
A(MAX) = +40°C  
6.4  
Voltage Reference  
T
The MCP1703 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1703 LDO. The low-cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1703 as a voltage  
reference.  
Internal Power Dissipation  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX)  
PLDO = (4.8V - (0.97 x 1.8V)) x 50 mA  
PLDO = 152.7 milli-Watts  
Device Junction Temperature Rise  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The thermal  
resistance from junction to ambient (RθJA) is derived  
from an EIA/JEDEC standard for measuring thermal  
resistance for small surface mount packages. The EIA/  
JEDEC specification is JESD51-7, “High Effective Ther-  
mal Conductivity Test Board for Leaded Surface Mount  
Packages”. The standard describes the test method  
and board specifications for measuring the thermal  
resistance from junction to ambient. The actual thermal  
resistance for a particular application can vary depend-  
ing on many factors, such as copper area and thick-  
ness. Refer to AN792, “A Method to Determine How  
Much Power a SOT23 Can Dissipate in an Application”,  
(DS00792), for more information regarding this  
subject.  
Ratio Metric Reference  
PIC®  
MCP1703  
Microcontroller  
2 µA Bias  
VIN  
VOUT  
CIN  
1 µF  
VREF  
COUT  
1 µF  
GND  
ADO  
AD1  
Bridge Sensor  
FIGURE 6-2: Using the MCP1703 as a  
Voltage Reference.  
6.5  
Pulsed Load Applications  
TJ(RISE) = PTOTAL x RqJA  
For some applications, there are pulsed load current  
events that may exceed the specified 250 mA  
maximum specification of the MCP1703. The internal  
current limit of the MCP1703 will prevent high peak  
load demands from causing non-recoverable damage.  
The 250 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
250 mA, pulsed higher load currents can be applied to  
the MCP1703. The typical current limit for the  
MCP1703 is 500 mA (TA +25°C).  
TJRISE = 152.7 milli-Watts x 336.0°C/Watt  
T
JRISE = 51.3°C  
Junction Temperature Estimate  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
DS22049A-page 14  
© 2007 Microchip Technology Inc.  
MCP1703  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Pin SOT-23A  
Example:  
Standard Options for SOT-23A and SOT-89  
Extended Temp  
Voltage * Symbol  
1.2 HT  
HWNN  
XXNN  
Symbol  
Voltage *  
HM  
HP  
HQ  
HR  
HS  
3.0  
3.3  
4.0  
5.0  
3-Lead SOT-89  
Example  
1.5  
1.8  
2.5  
2.8  
HU  
HV  
HW  
XXXYYWW  
NNN  
HM0719  
256  
* Custom output voltages available upon request.  
Contact your local Microchip sales office for more  
information.  
3-Lead SOT-223  
Example:  
Tab is GND  
Tab is GND  
Standard Options for SOT-223  
Extended Temp  
MCP1703  
15E0719  
XXXXXXX  
XXXYYWW  
256  
NNN  
Symbol  
Voltage *  
Symbol  
Voltage *  
12  
15  
18  
25  
28  
1.2  
1.5  
1.8  
2.5  
2.8  
30  
33  
40  
50  
3.0  
3.3  
4.0  
5.0  
1
2
3
* Custom output voltages available upon request.  
Contact your local Microchip sales office for more  
information.  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
DS22049A-page 15  
MCP1703  
3-Lead Plastic Small Outline Transistor (CB) [SOT-23A]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
e1  
e
2
1
E
E1  
N
b
c
A
φ
A2  
L
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Lead Pitch  
N
e
3
0.95 BSC  
Outside Lead Pitch  
Overall Height  
e1  
A
1.90 BSC  
0.89  
0.90  
0.00  
2.10  
1.20  
2.70  
0.15  
0°  
1.45  
1.30  
0.15  
3.00  
1.80  
3.10  
0.60  
30°  
Molded Package Thickness  
Standoff  
A2  
A1  
E
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
Foot Angle  
φ
c
Lead Thickness  
Lead Width  
0.09  
0.30  
0.26  
0.51  
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-130B  
DS22049A-page 16  
© 2007 Microchip Technology Inc.  
MCP1703  
3-Lead Plastic Small Outline Transistor Header (MB) [SOT-89]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
H
L
N
1
2
b
b1  
b1  
e
E1  
e1  
A
C
Units  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
Number of Leads  
Pitch  
N
e
3
1.50 BSC  
3.00 BSC  
Outside Lead Pitch  
Overall Height  
Overall Width  
e1  
A
1.40  
3.94  
2.29  
2.13  
4.39  
1.40  
0.79  
0.35  
0.41  
0.36  
1.60  
4.25  
2.60  
2.29  
4.60  
1.83  
1.20  
0.44  
0.56  
0.48  
H
Molded Package Width at Base  
Molded Package Width at Top  
Overall Length  
E
E1  
D
Tab Length  
D1  
L
Foot Length  
Lead Thickness  
c
Lead 2 Width  
b
Leads 1 & 3 Width  
b1  
Notes:  
1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-029B  
© 2007 Microchip Technology Inc.  
DS22049A-page 17  
MCP1703  
3-Lead Plastic Small Outline Transistor (DB) [SOT-223]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
b2  
E1  
E
3
2
1
e
e1  
A2  
c
A
φ
b
L
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Leads  
Lead Pitch  
N
e
3
2.30 BSC  
4.60 BSC  
Outside Lead Pitch  
Overall Height  
Standoff  
e1  
A
1.80  
0.10  
1.70  
7.30  
3.70  
6.70  
0.35  
0.84  
3.10  
A1  
A2  
E
0.02  
1.50  
6.70  
3.30  
6.30  
0.23  
0.60  
2.90  
0.75  
0°  
Molded Package Height  
Overall Width  
1.60  
7.00  
3.50  
6.50  
0.30  
0.76  
3.00  
Molded Package Width  
Overall Length  
Lead Thickness  
Lead Width  
E1  
D
c
b
Tab Lead Width  
Foot Length  
b2  
L
Lead Angle  
φ
10°  
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-032B  
DS22049A-page 18  
© 2007 Microchip Technology Inc.  
MCP1703  
APPENDIX A: REVISION HISTORY  
Revision A (June 2007)  
• Original Release of this Document.  
© 2007 Microchip Technology Inc.  
DS22049A-page 19  
MCP1703  
NOTES:  
DS22049A-page 20  
© 2007 Microchip Technology Inc.  
MCP1703  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X-  
XX  
X
X
X/  
XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1703T-1202E/XX: Tape and Reel, 1.2V  
Tape  
and Reel Voltage  
Output Feature Tolerance Temp. Package  
Code  
MCP1703T-1502E/XX: Tape and Reel, 1.5V  
MCP1703T-1802E/XX: Tape and Reel, 1.8V  
MCP1703T-2502E/XX: Tape and Reel, 2.5V  
MCP1703T-2802E/XX: Tape and Reel, 2.8V  
MCP1703T-3002E/XX: Tape and Reel, 3.0V  
MCP1703T-3302E/XX: Tape and Reel, 3.3V  
MCP1703T-3602E/XX: Tape and Reel, 3.6V  
MCP1703T-4002E/XX: Tape and Reel, 4.0V  
MCP1703T-5002E/XX: Tape and Reel, 5.0V  
Device:  
MCP1703: 250 mA, 16V Low Quiescent Current LDO  
Tape and Reel:  
Output Voltage *:  
T
=
Tape and Reel  
12  
15  
18  
25  
28  
30  
33  
40  
50  
=
=
=
=
=
=
=
=
=
1.2V “Standard”  
1.5V “Standard”  
1.8V “Standard”  
2.5V “Standard”  
2.8V “Standard”  
3.0V “Standard”  
3.3V “Standard”  
4.0V “Standard”  
5.0V “Standard”  
g)  
h)  
i)  
j)  
*Contact factory for other output voltage options.  
XX  
=
=
=
CB for 3LD SOT-23A package  
DB for 3LD SOT-223 package  
MB for 3LD SOT-89 package  
Extra Feature Code:  
Tolerance:  
0
2
E
=
=
=
Fixed  
2.0% (Standard)  
-40°C to +125°C  
Temperature:  
Package Type:  
CB  
DB  
MB  
=
=
=
Plastic Small Outline Transistor (SOT-23A) 3-lead,  
Plastic Small Outline Transistor (SOT-223) 3-lead,  
Plastic Small Outline Transistor (SOT-89) 3-lead,  
© 2007 Microchip Technology Inc.  
DS22049A-page 21  
MCP1703  
NOTES:  
DS22049A-page 22  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The  
Embedded Control Solutions Company are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS22049A-page 23  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS22049A-page 24  
© 2007 Microchip Technology Inc.  

相关型号:

MCP1703-3002E/MB

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703-3002E/MC

IC,VOLT REGULATOR,FIXED,+3V,CMOS,LLCC,8PIN,PLASTIC
MICROCHIP

MCP1703-3302E/CB

IC,VOLT REGULATOR,FIXED,+3.3V,CMOS,TO-236,3PIN,PLASTIC
MICROCHIP

MCP1703-3302E/CD

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703-3302E/DB

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703-3302E/MB

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703-3302E/MC

IC,VOLT REGULATOR,FIXED,+3.3V,CMOS,LLCC,8PIN,PLASTIC
MICROCHIP

MCP1703-4002E/CB

IC,VOLT REGULATOR,FIXED,+4V,CMOS,TO-236,3PIN,PLASTIC
MICROCHIP

MCP1703-4002E/CD

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703-4002E/DB

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703-4002E/MB

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703-4002E/MC

IC,VOLT REGULATOR,FIXED,+4V,CMOS,LLCC,8PIN,PLASTIC
MICROCHIP