MCP1703T-2402E/CB [MICROCHIP]

IC REG LDO 2.4V 0.2A SOT23A-3;
MCP1703T-2402E/CB
型号: MCP1703T-2402E/CB
厂家: MICROCHIP    MICROCHIP
描述:

IC REG LDO 2.4V 0.2A SOT23A-3

文件: 总32页 (文件大小:721K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1703  
250 mA, 16V, Low Quiescent Current LDO Regulator  
Features:  
Description:  
• 2.0 µA Typical Quiescent Current  
The MCP1703 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 250 mA of  
current while consuming only 2.0 µA of quiescent  
current (typical). The input operating range is specified  
from 2.7V to 16.0V, making it an ideal choice for two to  
six primary cell battery-powered applications, 9V  
alkaline and one or two cell Li-Ion-powered  
applications.  
• Input Operating Voltage Range: 2.7V to16.0V  
• 250 mA Output Current for Output Voltages 2.5V  
• 200 mA Output Current for Output Voltages < 2.5V  
• Low Dropout Voltage, 625 mV typical @ 250 mA  
for VR = 2.8V  
• 0.4% Typical Output Voltage Tolerance  
• Standard Output Voltage Options:  
The MCP1703 is capable of delivering 250 mA with  
only 625 mV (typical) of input to output voltage  
differential (VOUT = 2.8V). The output voltage tolerance  
of the MCP1703 is typically ±0.4% at +25°C and ±3%  
maximum over the operating junction temperature  
range of -40°C to +125°C. Line regulation is ±0.1%  
typical at +25°C.  
- 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V,  
5.0V  
• Output Voltage Range: 1.2V to 5.5V in 0.1V  
Increments (50 mV increments available upon  
request)  
• Stable with 1.0 µF to 22 µF Ceramic Output  
Capacitance  
Output voltages available for the MCP1703 range from  
1.2V to 5.5V. The LDO output is stable when using only  
1 µF of output capacitance. Ceramic, tantalum, or  
aluminum electrolytic capacitors can all be used for  
input and output. Overcurrent limit and overtemperature  
shutdown provide a robust solution for any application.  
Package options include the SOT-223-3, SOT-23A,  
2x3 DFN-8, and SOT-89-3.  
• Short-Circuit Protection  
• Overtemperature Protection  
Applications:  
• Battery-Powered Devices  
• Battery-Powered Alarm Circuits  
• Smoke Detectors  
Package Types  
• CO2 Detectors  
• Pagers and Cellular Phones  
• Smart Battery Packs  
2x3 DFN-8 *  
3-Pin SOT-23A  
V
IN  
V
1
2
8 V  
OUT  
IN  
• Low Quiescent Current Voltage Reference  
• PDAs  
3
NC  
NC  
7
EP  
9
NC  
NC  
NC  
3
4
6
5
• Digital Cameras  
GND  
• Microcontroller Power  
• Solar-Powered Instruments  
• Consumer Products  
1
2
GND V  
OUT  
• Battery-Powered Data Loggers  
SOT-223-3  
3-Pin SOT-89  
V
Related Literature:  
IN  
• AN765, Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., 2002  
• AN766, Pin-Compatible CMOS Upgrades to  
Bipolar LDOs”, DS00766,  
2
1
3
1
2
3
Microchip Technology Inc., 2002  
GND V  
V
V
IN OUT  
IN  
GND V  
OUT  
• AN792, A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”,  
DS00792, Microchip Technology Inc., 2001  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2011 Microchip Technology Inc.  
DS22049F-page 1  
MCP1703  
Functional Block Diagrams  
MCP1703  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
Typical Application Circuits  
MCP1703  
VOUT  
3.3V  
VOUT  
IOUT  
COUT  
1 µF Ceramic  
50 mA  
V
IN  
VIN  
VIN  
+
9V  
Battery  
CIN  
1 µF Ceramic  
GND  
DS22049F-page 2  
© 2011 Microchip Technology Inc.  
MCP1703  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
..................................................................................+18V  
DD  
All inputs and outputs w.r.t. .............(V -0.3V) to (V +0.3V)  
SS  
IN  
Peak Output Current ...................................................500 mA  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature.................................+150°C  
ESD protection on all pins (HBM;MM)............... ≥ 4 kV; 400V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for V = V  
+ V  
, Note 1,  
IN  
OUT(MAX)  
DROPOUT(MAX)  
I
= 100 µA, C  
= 1 µF (X7R), C = 1 µF (X7R), T = +25°C.  
LOAD  
OUT IN A  
Boldface type applies for junction temperatures, T (Note 7) of -40°C to +125°C.  
J
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Input / Output Characteristics  
Input Operating Voltage  
V
I
2.7  
16.0  
5
V
Note 1  
IN  
Input Quiescent Current  
Maximum Output Current  
2.0  
µA  
I = 0 mA  
L
q
I
250  
50  
mA  
mA  
mA  
mA  
mA  
mA  
For V 2.5V  
R
OUT_mA  
100  
130  
200  
250  
400  
For V < 2.5V, V 2.7V  
R IN  
100  
150  
200  
For V < 2.5V, V 2.95V  
R IN  
For V < 2.5V, V 3.2V  
R
IN  
For V < 2.5V, V 3.45V  
R
IN  
Output Short Circuit Current  
Output Voltage Regulation  
I
V
= V  
(Note 1), V  
= GND,  
OUT  
OUT_SC  
IN  
IN(MIN)  
Current (average current) measured  
10 ms after short is applied.  
V
V -3.0% V ±0.4% V +3.0%  
V
V
Note 2  
OUT  
R
R
R
V -2.0% V ±0.4% V +2.0%  
R
R
R
V -1.0% V ±0.4% V +1.0%  
V
1% Custom  
R
R
R
V
Temperature Coefficient  
TCV  
50  
ppm/°C  
%/V  
Note 3  
OUT  
OUT  
Line Regulation  
ΔV  
/
-0.3  
±0.1  
+0.3  
(V  
+ V  
) V  
OUT  
OUT(MAX)  
DROPOUT(MAX) IN  
(V  
XΔV  
)
IN  
16V, Note 1  
OUT  
Load Regulation  
ΔV  
/V  
-2.5  
±1.0  
+2.5  
%
I = 1.0 mA to 250 mA for V >= 2.5V  
OUT OUT  
L
R
I = 1.0 mA to 200 mA for V < 2.5V  
L
R
V
= 3.65V, Note 4  
IN  
Note 1: The minimum V must meet two conditions: V 2.7V and V (V  
+ V  
).  
IN  
IN  
IN  
OUT(MAX)  
DROPOUT(MAX)  
2:  
V is the nominal regulator output voltage. For example: V = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V.  
R
R
The input voltage V = V  
+ V  
or Vi = 2.7V (whichever is greater); I  
= 100 µA.  
IN  
OUT(MAX)  
DROPOUT(MAX)  
6
IN  
OUT  
3: TCV  
= (V  
- V  
) *10 / (V * ΔTemperature), V  
= highest voltage measured over the  
OUT  
OUT-HIGH  
OUT-LOW  
R
OUT-HIGH  
temperature range. V  
= lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCV  
.
OUT  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of V + V or 2.7V, whichever is greater.  
OUT(MAX)  
DROPOUT(MAX)  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the  
ambient temperature is not significant.  
© 2011 Microchip Technology Inc.  
DS22049F-page 3  
MCP1703  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for V = V  
+ V  
, Note 1,  
IN  
OUT(MAX)  
DROPOUT(MAX)  
I
= 100 µA, C  
= 1 µF (X7R), C = 1 µF (X7R), T = +25°C.  
LOAD  
OUT IN A  
Boldface type applies for junction temperatures, T (Note 7) of -40°C to +125°C.  
J
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Dropout Voltage  
Note 1, Note 5  
V
330  
525  
625  
750  
650  
725  
975  
1100  
mV  
mV  
mV  
mV  
mV  
I = 250 mA, V = 5.0V  
L R  
DROPOUT  
I = 250 mA, 3.3V V < 5.0V  
L
R
I = 250 mA, 2.8V V < 3.3V  
L
R
I = 250 mA, 2.5V V < 2.8V  
L
R
V
< 2.5V, See Maximum Output  
R
Current Parameter  
Output Delay Time  
Output Noise  
T
1000  
µs  
V
= 0V to 6V, V  
= 90% V ,  
OUT R  
DELAY  
IN  
R = 50Ω resistive  
L
1/2  
e
8
µV/(Hz)  
dB  
I = 50 mA, f = 1 kHz, C  
= 1 µF  
OUT  
N
L
Power Supply Ripple  
Rejection Ratio  
PSRR  
44  
f = 100 Hz, C  
V
V
= 1 µF, I = 100 µA,  
OUT L  
= 100 mV pk-pk, C = 0 µF,  
INAC  
IN  
= 1.2V  
R
Thermal Shutdown Protection  
T
150  
°C  
SD  
Note 1: The minimum V must meet two conditions: V 2.7V and V (V  
+ V  
).  
IN  
IN  
IN  
OUT(MAX)  
DROPOUT(MAX)  
2:  
V is the nominal regulator output voltage. For example: V = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V.  
R
R
The input voltage V = V  
+ V  
or Vi = 2.7V (whichever is greater); I  
= 100 µA.  
IN  
OUT(MAX)  
DROPOUT(MAX)  
6
IN  
OUT  
3: TCV  
= (V  
- V  
) *10 / (V * ΔTemperature), V  
= highest voltage measured over the  
OUT-HIGH  
OUT  
OUT-HIGH  
OUT-LOW  
R
temperature range. V  
= lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCV  
.
OUT  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of V + V or 2.7V, whichever is greater.  
OUT(MAX)  
DROPOUT(MAX)  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the  
ambient temperature is not significant.  
(1)  
TEMPERATURE SPECIFICATIONS  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Junction Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
T
T
-40  
+125  
+150  
+150  
°C  
°C  
°C  
Steady State  
Transient  
J
J
T
-65  
A
Thermal Package Resistance (Note 2)  
Thermal Resistance, 3LD SOT-223  
θ
θ
62  
15  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
JA  
JC  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, 3LD SOT-23A  
Thermal Resistance, 3LD SOT-89  
Thermal Resistance, 8LD 2x3 DFN  
θ
θ
336  
110  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
JA  
JC  
θ
θ
153,3  
100  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
JA  
JC  
θ
θ
93  
26  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
JA  
JC  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
2: Thermal Resistance values are subject to change. Please visit the Microchip web site for the latest packaging  
information.  
DS22049F-page 4  
© 2011 Microchip Technology Inc.  
MCP1703  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
Note: Junction Temperature (T ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction  
J
temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
120  
100  
80  
60  
40  
20  
0
VOUT = 1.2V  
IOUT = 0 µA  
VOUT = 1.2V  
IN = 2.7V  
V
+130°C  
-45°C  
+90°C  
+25°C  
0°C  
2
4
6
8
10  
12  
14  
16  
18  
0
40  
80  
120  
160  
200  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-1:  
Quiescent Current vs. Input  
FIGURE 2-4:  
Ground Current vs. Load  
Voltage.  
Current.  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
120  
100  
80  
VOUT = 2.5V  
VOUT = 5.0V  
VIN = 6.0V  
IOUT = 0 µA  
+130°C  
+90°C  
60  
VOUT = 2.5V  
VIN = 3.5V  
40  
+25°C  
-45°C  
20  
0°C  
0.00  
2
0
0
4
6
8
10  
12  
14  
16  
18  
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-2:  
Quiescent Current vs. Input  
FIGURE 2-5:  
Ground Current vs. Load  
Voltage.  
Current.  
6.00  
5.00  
4.00  
3.00  
2.00  
3.00  
VOUT = 5.0V  
IOUT = 0 µA  
IOUT = 0 mA  
VOUT = 1.2V  
VOUT = 2.5V  
VIN = 3.5V  
V
IN = 2.7V  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
0°C  
-45°C  
+130°C  
+25°C  
VOUT = 5.0V  
IN = 6.0V  
+90°C  
14  
V
1.00  
6
8
10  
12  
16  
18  
-45  
-20  
5
30  
55  
80  
105  
130  
Input Voltage (V)  
Junction Temperature (°C)  
FIGURE 2-3:  
Quiescent Current vs. Input  
FIGURE 2-6:  
Quiescent Current vs.  
Voltage.  
Junction Temperature.  
© 2011 Microchip Technology Inc.  
DS22049F-page 5  
MCP1703  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
1.240  
1.230  
1.220  
1.210  
1.200  
1.190  
1.180  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
VOUT = 1.2V  
ILOAD = 0.1 mA  
0°C  
+25°C  
-45°C  
-45°C  
0°C  
+90°C  
+130°C  
+130°C  
+90°C  
+25°C  
VIN = 3.0V  
VOUT = 1.2V  
2
4
6
8
10  
12  
14  
16  
18  
0
20 40 60 80 100 120 140 160 180 200  
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load  
Voltage.  
Current.  
2.58  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
VIN = 3.5V  
VOUT = 2.5V  
V
OUT = 2.5V  
ILOAD = 0.1 mA  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
+25°C  
+90°C  
+90°C  
+130°C  
0°C  
-45°C  
0°C  
+130°C  
+25°C  
-45°C  
2.47  
2.46  
2
4
6
8
10  
12  
14  
16  
18  
0
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-8:  
Output Voltage vs. Input  
FIGURE 2-11:  
Output Voltage vs. Load  
Voltage.  
Current.  
5.16  
5.06  
5.04  
VIN = 6V  
VOUT = 5.0V  
VOUT = 5.0V  
5.12  
5.08  
5.04  
5.00  
4.96  
4.92  
4.88  
+90°C  
ILOAD = 0.1 mA  
+130°C  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
+90°C  
+130°C  
-45°C  
0°C  
0°C  
-45°C  
+25°C  
+25°C  
6
8
10  
12  
14  
16  
18  
0
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-9:  
Output Voltage vs. Input  
FIGURE 2-12:  
Output Voltage vs. Load  
Voltage.  
Current.  
DS22049F-page 6  
© 2011 Microchip Technology Inc.  
MCP1703  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
1.00  
VOUT = 2.5V  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
+130°C  
+90°C  
+25°C  
+0°C  
-45°C  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Dynamic Line Response.  
Current.  
0.50  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VOUT = 2.5V  
ROUT < 0.1?  
VOUT = 5.0V  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
+130°C  
+90°C  
+25°C  
+0°C  
-45°C  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
2
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
FIGURE 2-14:  
Dropout Voltage vs. Load  
FIGURE 2-17:  
Short Circuit Current vs.  
Current.  
Input Voltage.  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
VOUT = 1.2V  
IOUT = 1 mA to 200 mA  
VIN = 6V  
VIN = 12V  
VIN = 16V  
VIN = 14V  
VIN = 3.8V  
0.30  
0.20  
VIN = 3.2V  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
FIGURE 2-15:  
Dynamic Line Response.  
FIGURE 2-18:  
Load Regulation vs.  
Temperature.  
© 2011 Microchip Technology Inc.  
DS22049F-page 7  
MCP1703  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
0.20  
0.16  
0.12  
0.08  
0.04  
0.00  
VOUT = 2.5V  
VIN = 3.5V to 16V  
VOUT = 2.5V  
IOUT = 1 mA to 250 mA  
VIN = 16V  
200 mA  
100 mA  
250 mA  
VIN = 6V  
VIN = 3.5V  
0 mA  
VIN = 12V  
VIN = 14V  
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19:  
Load Regulation vs.  
FIGURE 2-22:  
Line Regulation vs.  
Temperature.  
Temperature.  
1.00  
0.80  
0.18  
0.16  
VOUT = 5.0V  
VOUT = 5.0V  
IOUT = 1 to 250 mA  
V
IN = 6.0V to 16.0V  
VIN = 16V  
VIN = 6V  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
200mA  
0.14  
VIN = 12V  
250 mA  
0.12  
VIN = 8V  
0.10  
0 mA  
100 mA  
0.08  
VIN = 14V  
0.06  
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-20:  
Load Regulation vs.  
FIGURE 2-23:  
Line Regulation vs.  
Temperature.  
Temperature.  
0.16  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VIN = 3.0 to 16.0V  
OUT = 1.2V  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
V
200 mA  
1 mA  
VR=1.2V  
0 mA  
VIN=2.7V  
VINAC = 100 mV p-p  
100 mA  
CIN=0 μF  
IOUT=100 µA  
-45  
-20  
5
30  
55  
80  
105  
130  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Temperature (°C)  
FIGURE 2-21:  
Line Regulation vs.  
FIGURE 2-24:  
PSRR vs. Frequency.  
Temperature.  
DS22049F-page 8  
© 2011 Microchip Technology Inc.  
MCP1703  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX) or 2.7V, whichever is greater.  
0
-10  
-20  
-30  
-40  
VR=5.0V  
-50  
VIN=6.0V  
-60  
-70  
-80  
-90  
V
C
INAC = 100 mV p-p  
IN=0 μF  
IOUT=100 µA  
0.01  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
FIGURE 2-25:  
PSRR vs. Frequency.  
FIGURE 2-28:  
Dynamic Load Response.  
100  
10  
IOUT=50 mA  
VR=5.0V, VIN=6.0V  
VR=2.8V, VIN=3.8V  
1
0.1  
VR=1.2V, VIN=2.7V  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-26:  
Output Noise vs. Frequency.  
FIGURE 2-29:  
Dynamic Load Response.  
4.0  
3.0  
RLOAD=10 k  
2.0  
1.0  
0.0  
VR = 2.5V  
4.0  
3.0  
2.0  
1.0  
0.0  
Input Voltage (V)  
FIGURE 2-27:  
Power Up Timing.  
FIGURE 2-30:  
Output Voltage vs. Input  
Voltage.  
© 2011 Microchip Technology Inc.  
DS22049F-page 9  
MCP1703  
4.0  
3.0  
2.0  
1.0  
VR = 3.3V  
ILOAD = 1 mA  
ILOAD = 44 µA  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Input Voltage (V)  
FIGURE 2-31:  
Output Voltage vs. Input  
Voltage.  
DS22049F-page 10  
© 2011 Microchip Technology Inc.  
MCP1703  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP1703 PIN FUNCTION TABLE  
Pin No.  
2x3 DFN-8  
Pin No.  
SOT-223-3  
Pin No.  
SOT-23A  
Pin No.  
SOT-89-3  
Name  
Function  
4
2,Tab  
3
1
2
1
3
GND  
VOUT  
VIN  
Ground Terminal  
1
Regulated Voltage Output  
Unregulated Supply Voltage  
No Connection  
8
1
3
2,Tab  
2, 3, 5, 6, 7  
9
NC  
EP  
Exposed Thermal Pad (EP); must be  
connected to VSS  
3.1  
Ground Terminal (GND)  
3.3  
Unregulated Input Voltage (V )  
IN  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (2.0 µA typical) flows out of  
this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
Connect VIN to the input unregulated source voltage.  
Like all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 1 µF of capacitance will ensure stable  
operation of the LDO circuit. For applications that have  
load currents below 100 mA, the input capacitance  
requirement can be lowered. The type of capacitor  
used can be ceramic, tantalum, or aluminum  
electrolytic. The low ESR characteristics of the ceramic  
will yield better noise and PSRR performance at  
high-frequency.  
3.2  
Regulated Output Voltage (V  
)
OUT  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current.  
3.4  
Exposed Thermal Pad (EP)  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the VSS pin; they must  
be connected to the same potential on the Printed  
Circuit Board (PCB).  
© 2011 Microchip Technology Inc.  
DS22049F-page 11  
MCP1703  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
4.3  
Overtemperature  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal band gap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
The internal power dissipation within the LDO is a  
function of input-to-output voltage differential and load  
current. If the power dissipation within the LDO is  
excessive, the internal junction temperature will rise  
above the typical shutdown threshold of 150°C. At that  
point, the LDO will shut down and begin to cool to the  
typical turn-on junction temperature of 130°C. If the  
power dissipation is low enough, the device will  
continue to cool and operate normally. If the power  
dissipation remains high, the thermal shutdown  
protection circuitry will again turn off the LDO,  
protecting it from catastrophic failure.  
4.2  
Overcurrent  
The MCP1703 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event of a short-circuit or excessive output  
current, the MCP1703 will turn off the P-Channel  
device for a short period, after which the LDO will  
attempt to restart. If the excessive current remains, the  
cycle will repeat itself.  
MCP1703  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
FIGURE 4-1:  
Block Diagram.  
DS22049F-page 12  
© 2011 Microchip Technology Inc.  
MCP1703  
5.2  
Output  
5.0  
FUNCTIONAL DESCRIPTION  
The maximum rated continuous output current for the  
MCP1703 is 250 mA (VR 2.5V). For applications  
where VR < 2.5V, the maximum output current is  
200 mA.  
The MCP1703 CMOS low dropout linear regulator is  
intended for applications that need the lowest current  
consumption while maintaining output voltage  
regulation. The operating continuous load range of the  
MCP1703 is from 0 mA to 250 mA (VR 2.5V). The  
input operating voltage range is from 2.7V to 16.0V,  
making it capable of operating from two or more  
alkaline cells or single and multiple Li-Ion cell batteries.  
A minimum output capacitance of 1.0 µF is required for  
small signal stability in applications that have up to  
250 mA output current capability. The capacitor type  
can be ceramic, tantalum, or aluminum electrolytic. The  
Equivalent Series Resistance (ESR) range on the  
output capacitor can range from 0Ω to 2.0Ω.  
5.1  
Input  
The output capacitor range for ceramic capacitors is  
1 µF to 22 µF. Higher output capacitance values may  
be used for tantalum and electrolytic capacitors. Higher  
output capacitor values pull the pole of the LDO  
transfer function inward that results in higher phase  
shifts which in turn cause a lower crossover frequency.  
The circuit designer should verify the stability by  
applying line step and load step testing to their system  
when using capacitance values greater than 22 µF.  
The input of the MCP1703 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance (10Ω)  
is needed to prevent the input impedance from causing  
the LDO to become unstable. The size and type of the  
capacitor needed depends heavily on the input source  
type (battery, power supply) and the output current  
range of the application. For most applications (up to  
100 mA), a 1 µF ceramic capacitor will be sufficient to  
ensure circuit stability. Larger values can be used to  
improve circuit AC performance.  
5.3  
Output Rise Time  
When powering up the internal reference output, the  
typical output rise time of 1000 µs is controlled to  
prevent overshoot of the output voltage.  
© 2011 Microchip Technology Inc.  
DS22049F-page 13  
MCP1703  
EQUATION 6-2:  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
6.0  
APPLICATION CIRCUITS &  
ISSUES  
Where:  
TJ(MAX)  
6.1  
Typical Application  
=
Maximum continuous junction  
temperature  
The MCP1703 is most commonly used as a voltage  
regulator. Its low quiescent current and low dropout  
voltage make it ideal for many battery-powered  
applications.  
PTOTAL  
=
=
Total device power dissipation  
RθJA  
Thermal resistance from  
junction-to-ambient  
TAMAX  
=
Maximum ambient temperature  
MCP1703  
VIN  
2.7V to 4.8V  
GND  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package maximum  
internal power dissipation.  
VOUT  
1.8V  
V
IN  
CIN  
V
OUT  
1 µF Ceramic  
IOUT  
50 mA  
COUT  
1 µF Ceramic  
FIGURE 6-1:  
Typical Application Circuit.  
EQUATION 6-3:  
6.1.1  
APPLICATION INPUT CONDITIONS  
Package Type = SOT-23A  
(TJ(MAX) TA(MAX)  
PD(MAX) = ---------------------------------------------------  
RθJA  
)
Input Voltage Range = 2.7V to 4.8V  
VIN maximum = 4.8V  
Where:  
PD(MAX)  
TJ(MAX)  
=
=
Maximum device power dissipation  
VOUT typical = 1.8V  
Maximum continuous junction  
temperature  
IOUT  
= 50 mA maximum  
TA(MAX)  
=
=
Maximum ambient temperature  
6.2  
Power Calculations  
RθJA  
Thermal resistance from  
junction-to-ambient  
6.2.1  
POWER DISSIPATION  
The internal power dissipation of the MCP1703 is a  
function of input voltage, output voltage and output  
current. The power dissipation, as a result of the  
quiescent current draw, is so low, it is insignificant  
(2.0 µA x VIN). The following equation can be used to  
calculate the internal power dissipation of the LDO.  
EQUATION 6-4:  
TJ(RISE) = PD(MAX) × RθJA  
Where:  
TJ(RISE)  
=
Rise in device junction temperature  
over the ambient temperature  
EQUATION 6-1:  
PTOTAL  
=
=
Maximum device power dissipation  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX ))  
RθJA  
Thermal resistance from junction to  
ambient  
Where:  
PLDO  
=
LDO Pass device internal power  
dissipation  
EQUATION 6-5:  
VIN(MAX)  
=
=
Maximum input voltage  
TJ = TJ(RISE) + TA  
VOUT(MIN)  
LDO minimum output voltage  
Where:  
The maximum continuous operating junction  
temperature specified for the MCP1703 is +125°C. To  
estimate the internal junction temperature of the  
MCP1703, the total internal power dissipation is  
multiplied by the thermal resistance from junction to  
ambient (RθJA). The thermal resistance from junction to  
ambient for the SOT-23A pin package is estimated at  
336°C/W.  
TJ  
=
=
Junction temperature  
TJ(RISE)  
Rise in device junction temperature  
over the ambient temperature  
TA  
=
Ambient temperature  
DS22049F-page 14  
© 2011 Microchip Technology Inc.  
MCP1703  
6.3  
Voltage Regulator  
Junction Temperature Estimate  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation, as a result of ground current, is small  
enough to be neglected.  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
TJ = TJRISE + TA(MAX)  
6.3.1  
POWER DISSIPATION EXAMPLE  
TJ = 91.3°C  
Package  
Maximum Package Power Dissipation at +40°C  
Ambient Temperature Assuming Minimal Copper  
Usage.  
Package Type: SOT-23A  
Input Voltage:  
VIN = 2.7V to 4.8V  
SOT-23A (336.0°C/Watt = RθJA  
)
LDO Output Voltages and Currents  
VOUT = 1.8V  
PD(MAX) = (+125°C - 40°C) / 336°C/W  
PD(MAX) = 253 milli-Watts  
I
OUT = 50 mA  
SOT-89 (153.3°C/Watt = RθJA  
PD(MAX) = (+125°C - 40°C) / 153.3°C/W  
D(MAX) = 0.554 Watts  
SOT-223 (62.9°C/Watt = RθJA  
)
Maximum Ambient Temperature  
TA(MAX) = +40°C  
P
Internal Power Dissipation  
)
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
PD(MAX) = (+125°C - 40°C) / 62.9°C/W  
PD(MAX) = 1.35 Watts  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX)  
PLDO = (4.8V - (0.97 x 1.8V)) x 50 mA  
PLDO = 152.7 milli-Watts  
6.4  
Voltage Reference  
The MCP1703 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1703 LDO. The low-cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1703 as a voltage  
reference.  
Device Junction Temperature Rise  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The  
thermal resistance from junction to ambient (RθJA) is  
derived from an EIA/JEDEC standard for measuring  
thermal resistance for small surface mount packages.  
The EIA/JEDEC specification is JESD51-7, “High  
Effective Thermal Conductivity Test Board for Leaded  
Surface Mount Packages”. The standard describes the  
test method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT23 Can Dissipate in an  
Application”, (DS00792), for more information  
regarding this subject.  
Ratio Metric Reference  
®
PIC  
MCP1703  
Microcontroller  
2 µA Bias  
V
IN  
C
V
IN  
V
GND  
REF  
OUT  
C
1 µF  
1 µF  
OUT  
ADO  
AD1  
Bridge Sensor  
TJ(RISE) = PTOTAL x RqJA  
TJRISE = 152.7 milli-Watts x 336.0°C/Watt  
FIGURE 6-2:  
Voltage Reference.  
Using the MCP1703 as a  
T
JRISE = 51.3°C  
© 2011 Microchip Technology Inc.  
DS22049F-page 15  
MCP1703  
6.5  
Pulsed Load Applications  
For some applications, there are pulsed load current  
events that may exceed the specified 250 mA  
maximum specification of the MCP1703. The internal  
current limit of the MCP1703 will prevent high peak  
load demands from causing non-recoverable damage.  
The 250 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
250 mA, pulsed higher load currents can be applied to  
the MCP1703. The typical current limit for the  
MCP1703 is 500 mA (TA +25°C).  
DS22049F-page 16  
© 2011 Microchip Technology Inc.  
MCP1703  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Standard Options for SOT-23A and SOT-89  
Extended Temp  
Voltage * Symbol  
3-Pin SOT-23A  
Example:  
Symbol  
Voltage *  
HM  
HP  
HQ  
HR  
HS  
1.2  
1.5  
1.8  
2.5  
2.8  
HT  
HU  
HV  
HW  
3.0  
3.3  
4.0  
5.0  
XXNN  
HWNN  
3-Lead SOT-89  
Example:  
* Custom output voltages available upon request. Contact  
your local Microchip sales office for more information.  
XXXYYWW  
NNN  
HM1014  
256  
Standard Options for SOT-223  
Extended Temp  
Symbol  
Voltage *  
Symbol  
Voltage *  
12  
15  
18  
25  
28  
1.2  
1.5  
1.8  
2.5  
2.8  
30  
33  
40  
50  
3.0  
3.3  
4.0  
5.0  
3-Lead SOT-223  
Example:  
Tab is GND  
Tab is GND  
Custom  
MCP1703  
15E1014  
XXXXXXX  
XXXYYWW  
33  
3.3  
256  
* Custom output voltages available upon request. Contact  
your local Microchip sales office for more information.  
NNN  
1
2
3
Standard Options for 8-Lead DFN (2 x 3)  
Extended Temp  
Example:  
8-Lead DFN (2 x 3)  
Symbol  
Voltage *  
Symbol  
Voltage *  
XXX  
YWW  
NN  
AAU  
AAV  
AAW  
AAT  
1.2  
1.8  
2.5  
3.0  
AAY  
AFR  
AAZ  
3.3  
4.0  
5.0  
AAU  
014  
25  
* Custom output voltages available upon request. Contact  
your local Microchip sales office for more information.  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2011 Microchip Technology Inc.  
DS22049F-page 17  
MCP1703  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖꢗꢘꢆꢙꢍꢏꢒꢁꢚꢀꢛꢜ  
ꢝꢔꢊꢃ  .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e1  
e
2
1
E
E1  
N
b
c
A
φ
A2  
L
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
ꢐꢁꢜ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢜꢐꢈ)ꢕ*  
ꢐꢁ:ꢜ  
ꢐꢁꢜꢐ  
ꢐꢁꢐꢐ  
ꢑꢁꢀꢐ  
ꢀꢁꢑꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢛꢐ  
ꢐꢁꢀ(  
ꢛꢁꢐꢐ  
ꢀꢁ:ꢐ  
ꢛꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢛꢐꢝ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
8
ꢐꢁꢐꢜ  
ꢐꢁꢛꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢝꢔꢊꢃꢉ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢛꢐ)  
DS22049F-page 18  
© 2011 Microchip Technology Inc.  
MCP1703  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22049F-page 19  
MCP1703  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆ!ꢃꢄꢅꢃꢓꢆꢕ"ꢗꢘꢆꢙꢍꢏꢒꢁ#$ꢜ  
ꢝꢔꢊꢃ  .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
D1  
E
H
L
N
1
2
b
b1  
b1  
e
E1  
e1  
A
C
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌꢈꢉ#ꢈ)ꢉ ꢅ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌꢈꢉ#ꢈ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
8ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈꢑꢈ<ꢃ!#ꢌ  
5
ꢅꢀ  
9
"
"ꢀ  
ꢂꢀ  
4
8
ꢀꢁ(ꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
ꢀꢁꢖꢐ  
ꢛꢁꢜꢖ  
ꢑꢁꢑꢜ  
ꢑꢁꢀꢛ  
ꢖꢁꢛꢜ  
ꢀꢁꢖꢐ  
ꢐꢁꢒꢜ  
ꢐꢁꢛ(  
ꢐꢁꢖꢀ  
ꢐꢁꢛ=  
ꢀꢁ=ꢐ  
ꢖꢁꢑ(  
ꢑꢁ=ꢐ  
ꢑꢁꢑꢜ  
ꢖꢁ=ꢐ  
ꢀꢁ:ꢛ  
ꢀꢁꢑꢐ  
ꢐꢁꢖꢖ  
ꢐꢁ(=  
ꢐꢁꢖ:  
4ꢅꢉ! ꢈꢀꢈ?ꢈꢛꢈ<ꢃ!#ꢌ  
8ꢀ  
ꢝꢔꢊꢃꢉ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢑꢜ)  
DS22049F-page 20  
© 2011 Microchip Technology Inc.  
MCP1703  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22049F-page 21  
MCP1703  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕ%ꢗꢘꢆꢙꢍꢏꢒꢁꢚꢚꢀꢜ  
ꢝꢔꢊꢃ  .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b2  
E1  
E
3
2
1
e
e1  
A2  
c
A
φ
b
L
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢕ#ꢉꢆ!ꢇ%%  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ9ꢅꢃꢓꢌ#  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
5
ꢅꢀ  
ꢔꢀ  
ꢔꢑ  
"
"ꢀ  
8
8ꢑ  
4
ꢑꢁꢛꢐꢈ)ꢕ*  
ꢖꢁ=ꢐꢈ)ꢕ*  
M
M
ꢀꢁ:ꢐ  
ꢐꢁꢀꢐ  
ꢀꢁꢒꢐ  
ꢒꢁꢛꢐ  
ꢛꢁꢒꢐ  
=ꢁꢒꢐ  
ꢐꢁꢛ(  
ꢐꢁ:ꢖ  
ꢛꢁꢀꢐ  
M
ꢐꢁꢐꢑ  
ꢀꢁ(ꢐ  
=ꢁꢒꢐ  
ꢛꢁꢛꢐ  
=ꢁꢛꢐ  
ꢐꢁꢑꢛ  
ꢐꢁ=ꢐ  
ꢑꢁꢜꢐ  
ꢐꢁꢒ(  
ꢐꢝ  
M
ꢀꢁ=ꢐ  
ꢒꢁꢐꢐ  
ꢛꢁ(ꢐ  
=ꢁ(ꢐ  
ꢐꢁꢛꢐ  
ꢐꢁꢒ=  
ꢛꢁꢐꢐ  
M
8ꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢔꢆꢓꢋꢅ  
M
ꢀꢐꢝ  
ꢝꢔꢊꢃꢉ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢛꢑ)  
DS22049F-page 22  
© 2011 Microchip Technology Inc.  
MCP1703  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕ%ꢗꢘꢆꢙꢍꢏꢒꢁꢚꢚꢀꢜ  
ꢝꢔꢊꢃ  .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2011 Microchip Technology Inc.  
DS22049F-page 23  
MCP1703  
#ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ%ꢐꢄꢈꢆ&ꢈꢄꢊ'ꢆꢝꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ(ꢄ)ꢃꢆꢕ"ꢖꢘꢆMꢆꢚ+ꢀ+,-$ꢆꢎꢎꢆꢗꢔꢅ.ꢆꢙ%&ꢝꢜ  
ꢝꢔꢊꢃ  .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
:
ꢐꢁ(ꢐꢈ)ꢕ*  
ꢐꢁꢜꢐ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
*ꢇꢆ#ꢉꢊ#ꢈꢗꢌꢃꢊ/ꢆꢅ    
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
5
ꢔꢀ  
ꢔꢛ  
ꢐꢁ:ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢐ(  
ꢐꢁꢐꢑ  
ꢐꢁꢑꢐꢈꢚ".  
ꢑꢁꢐꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
M
M
ꢐꢁꢑ(  
"
"&ꢎꢇ ꢅ!ꢈ1ꢉ!ꢈ4ꢅꢆꢓ#ꢌ  
"&ꢎꢇ ꢅ!ꢈ1ꢉ!ꢈ<ꢃ!#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢈ<ꢃ!#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢈ4ꢅꢆꢓ#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢞ#ꢇꢞ"&ꢎꢇ ꢅ!ꢈ1ꢉ!  
ꢂꢑ  
"ꢑ  
8
4
@
ꢀꢁꢛꢐ  
ꢀꢁ(ꢐ  
ꢐꢁꢑꢐ  
ꢐꢁꢛꢐ  
ꢐꢁꢑꢐ  
ꢀꢁ((  
ꢀꢁꢒ(  
ꢐꢁꢛꢐ  
ꢐꢁ(ꢐ  
M
ꢐꢁꢖꢐ  
M
ꢝꢔꢊꢃꢉ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ 1ꢉꢊ/ꢉꢓꢅꢈꢄꢉꢘꢈꢌꢉ,ꢅꢈꢇꢆꢅꢈꢇꢍꢈꢄꢇꢍꢅꢈꢅ&ꢎꢇ ꢅ!ꢈ#ꢃꢅꢈ8ꢉꢍ ꢈꢉ#ꢈꢅꢆ! ꢁ  
ꢛꢁ 1ꢉꢊ/ꢉꢓꢅꢈꢃ ꢈ ꢉ-ꢈ ꢃꢆꢓ$ꢋꢉ#ꢅ!ꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢑꢛ*  
DS22049F-page 24  
© 2011 Microchip Technology Inc.  
MCP1703  
#ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ%ꢐꢄꢈꢆ&ꢈꢄꢊ'ꢆꢝꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ(ꢄ)ꢃꢆꢕ"ꢖꢘꢆMꢆꢚ+ꢀ+,-$ꢆꢎꢎꢆꢗꢔꢅ.ꢆꢙ%&ꢝꢜ  
ꢝꢔꢊꢃ  .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2011 Microchip Technology Inc.  
DS22049F-page 25  
MCP1703  
NOTES:  
DS22049F-page 26  
© 2011 Microchip Technology Inc.  
MCP1703  
Revision A (June 2007)  
APPENDIX A: REVISION HISTORY  
• Original Release of this Document.  
Revision F (February 2011)  
The following is the list of modifications:  
1. Added a new line to Output Voltage Regulation  
in the DC Characteristics table.  
2. Added Figure 2-30 and Figure 2-31.  
3. Added a new line to the Tolerance field in the  
Product Identification System section.  
4. Added a new custom part to the Standard  
Options for SOT-223 table in the Package  
Marking Information section.  
Revision E (November 2010)  
The following is the list of modifications:  
1. Updated the Thermal Resistance Typical value  
for the SOT-89 package in the Junction  
Temperature Estimate section.  
Revision D (September 2009)  
The following is the list of modifications:  
1. Added the 8-Lead 2x3 DFN package.  
2. Updated the Temperature Specification table.  
3. Updated Table 3-1.  
4. Added Section 3.4 “Exposed Thermal Pad  
(EP)”.  
5. Updated the Package Outline Drawings and the  
information for the 8-Lead 2x3 DFN package.  
6. Added the information for the 8-Lead 2x3 DFN  
package in the Product Identification System  
section.  
Revision C (June 2009)  
The following is the list of modifications:  
1. Absolute Maximum Ratings: Updated this  
section.  
2. DC Characteristics table: Updated.  
3. Temperature Specifications table: Updated.  
4. Package Information: Update Package Outline  
Drawings.  
Revision B (February 2008)  
The following is the list of modifications:  
1. Updated Temperature Specifications table.  
2. Updated Table 3-1.  
3. Updated Section 5.2 “Output”.  
4. Added SOT-223 Landing Pattern Outline  
drawing.  
© 2011 Microchip Technology Inc.  
DS22049F-page 27  
MCP1703  
NOTES:  
DS22049F-page 28  
© 2011 Microchip Technology Inc.  
MCP1703  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X-  
XX  
X
X
X/  
XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1703T-1202E/XX: 1.2V Low Quiescent  
LDO, Tape and Reel  
MCP1703T-1502E/XX: 1.5V Low Quiescent  
LDO, Tape and Reel  
MCP1703T-1802E/XX: 1.8V Low Quiescent  
LDO, Tape and Reel  
MCP1703T-2502E/XX: 2.5V Low Quiescent  
LDO, Tape and Reel  
MCP1703T-2802E/XX: 2.8V Low Quiescent  
LDO, Tape and Reel  
MCP1703T-3002E/XX: 3.0V Low Quiescent  
LDO, Tape and Reel  
Tape  
and Reel Voltage  
Output Feature Tolerance Temp. Package  
Code  
Device:  
MCP1703: 250 mA, 16V Low Quiescent Current LDO  
Tape and Reel:  
T
=
Tape and Reel  
Output Voltage *: 12  
=
=
=
=
=
=
=
=
=
1.2V “Standard”  
1.5V “Standard”  
1.8V “Standard”  
2.5V “Standard”  
2.8V “Standard”  
3.0V “Standard”  
3.3V “Standard”  
4.0V “Standard”  
5.0V “Standard”  
15  
18  
25  
28  
30  
33  
40  
50  
g)  
h)  
i)  
MCP1703T-3302E/XX: 3.3V Low Quiescent  
LDO, Tape and Reel  
MCP1703T-3602E/XX: 3.6V Low Quiescent  
LDO, Tape and Reel  
MCP1703T-4002E/XX: 4.0V Low Quiescent  
LDO, Tape and Reel  
j)  
MCP1703T-5002E/XX: 5.0V Low Quiescent  
LDO, Tape and Reel  
*Contact factory for other output voltage options.  
Extra Feature  
Code:  
0
=
Fixed  
XX  
=
=
=
=
CB for 3LD SOT-23A package  
DB for 3LD SOT-223 package  
MB for 3LD SOT-89 package  
MC for 8LD DFN package.  
Tolerance:  
1
2
=
=
1.0% (Custom)  
2.0% (Standard)  
Temperature:  
Package Type:  
E
=
-40°C to +125°C  
CB  
DB  
MB  
MC  
=
=
=
=
Plastic Small Outline Transistor (SOT-23A) 3-lead,  
Plastic Small Outline Transistor (SOT-223) 3-lead,  
Plastic Small Outline Transistor (SOT-89) 3-lead.  
Plastic Dual Flat, No Lead Package (DFN) 2x3, 8-lead.  
© 2011 Microchip Technology Inc.  
DS22049F-page 29  
MCP1703  
NOTES:  
DS22049F-page 30  
© 2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-941-9  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2011 Microchip Technology Inc.  
DS22049F-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
China - Zhuhai  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
02/18/11  
DS22049F-page 32  
© 2011 Microchip Technology Inc.  

相关型号:

MCP1703T-2502E

250 mA, 16V, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1703T-2502E/CB

250 mA, 16V, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1703T-2502E/CD

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703T-2502E/DB

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703T-2502E/MB

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703T-2502E/MC

250 mA, 16V, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1703T-2802E

250 mA, 16V, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1703T-2802E/CB

250 mA, 16V, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1703T-2802E/CD

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703T-2802E/DB

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703T-2802E/MB

250 mA, 16V, Low Quiescent Current
MICROCHIP

MCP1703T-2802E/MC

250 mA, 16V, Low Quiescent Current LDO Regulator
MICROCHIP