MCP1711-25I/5X [MICROCHIP]

FIXED POSITIVE LDO REGULATOR;
MCP1711-25I/5X
型号: MCP1711-25I/5X
厂家: MICROCHIP    MICROCHIP
描述:

FIXED POSITIVE LDO REGULATOR

文件: 总36页 (文件大小:1982K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1711  
150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator  
Features  
General Description  
• Low Quiescent Current: 600 nA  
• Input Voltage Range: 1.4V to 6.0V  
The MCP1711 is a highly accurate CMOS low dropout  
(LDO) voltage regulator that can deliver up to 150 mA  
of current while consuming only 0.6 µA of quiescent  
current (typical). The input operating range is specified  
from 1.4V to 6.0V, making it an ideal choice for mobile  
applications and one-cell Li-Ion powered applications.  
• Standard Output Voltages: 1.2V, 1.8V, 1.9V, 2.0V,  
2.2V, 2.5V, 3.0V, 3.3V, 5.0V  
• Output Accuracy: ±20 mV for 1.2V and 1.8V  
Options and ±1% for VR 2.0V  
The MCP1711 is capable of delivering 150 mA output  
current with only 0.32V (typical) for VR = 5.0V, and  
1.41V (typical) for VR = 1.2V of input-to-output voltages  
differential. The output voltage accuracy of the  
MCP1711 is typically ± 0.02V for VR < 2.0V and ±1% for  
VR 2.0V at +25°C. The temperature stability is  
approximately ±50 ppm/°C. Line regulation is  
±0.01%/V typical at +25°C.  
Temperature Stability: ±50 ppm/°C  
• Maximum Output Current: 150 mA  
• Low ON Resistance: 3.3@ VR = 3.0V  
• Standby Current: 10 nA  
• Protection Circuits: Current Limiter, Short Circuit,  
Foldback  
• SHDN Pin Function: ON/OFF Logic = Enable  
High  
The output voltages available for the MCP1711 range  
from 1.2V to 5.0V. The LDO output is stable even if an  
output capacitor is not connected, due to an excellent  
internal phase compensation. However, for better tran-  
sient responses, the output capacitor should be added.  
The MCP1711 is compatible with low ESR ceramic  
output capacitors.  
• COUT Discharge Circuit when SHDN Function is  
Active  
• Output Capacitor: Low Equivalent Series  
Resistance (ESR) Ceramic, Capacitorless  
Compatible  
• Operating Temperature: -40°C to +85°C  
(Industrial)  
Overcurrent limit and short-circuit protection embed-  
ded into the device provide a robust solution for any  
application.  
• Available Packages:  
- 4-Lead 1 x 1 mm UQFN  
- 5-Lead SOT-23  
The MCP1711 has a true current foldback feature.  
When the load decreases beyond the MCP1711 load  
rating, the output current and output voltage will  
foldback toward 80 mA (typical) at approximately 0V  
output. When the load impedance increases and  
returns to the rated load, the MCP1711 will follow the  
same foldback curve as the device comes out of  
current foldback.  
• Environmentally Friendly: EU RoHS Compliant,  
Lead-Free  
Applications  
• Energy Harvesting  
• Long-Life, Battery-Powered Applications  
• Portable Electronics  
If the device is in Shutdown mode, by inputting a  
low-level signal to the SHDN pin, the current  
consumption is reduced to less than 0.1 µA (typically  
0.01 µA). In Shutdown mode, if the output capacitor is  
used, it will be discharged via the internal dedicated  
switch and, as a result, the output voltage quickly  
returns to 0V.  
• Ultra-Low Consumption “Green” Products  
• Mobile Devices/Terminals  
• Wireless LAN  
• Modules (Wireless, Cameras)  
Related Literature  
The package options for the MCP1711 are the 4-lead  
1 x 1 mm UQFN and the 5-lead SOT-23, which make  
the device ideal for small and compact applications.  
AN765, Using Microchip’s Micropower LDOs  
(DS00765), Microchip Technology Inc.  
• AN766,Pin-CompatibleCMOSUpgradestoBipolar  
LDOs (DS00766), Microchip Technology Inc.  
• AN792, A Method to Determine How Much Power  
a SOT23 Can Dissipate in an Application  
(DS00792), Microchip Technology Inc.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 1  
MCP1711  
Package Types  
Typical Application Circuit  
MCP1711  
1x1 UQFN*  
Top View  
MCP1711  
SOT-23  
Top View  
MCP1711  
1x1 UQFN and SOT-23  
VOUT  
NC  
4
MCP1711  
VIN  
4
VIN  
SHDN  
V
OUT  
5
V
V
OUT  
3
IN  
CIN  
C
OUT  
0.1 µF  
Ceramic  
EP  
5
SHDN  
ON  
GND  
2
1
3
OFF  
VIN GND SHDN  
1
2
VOUT  
GND  
* Includes Exposed Thermal Pad (EP);  
see Table 3-1  
Functional Block Diagram  
PMOS  
VIN  
VOUT  
Current  
Limit  
R1  
Ref  
Err Amp  
+
DT  
RDCHG  
R2  
SHDN to each block  
ON/OFF  
Control  
SHDN  
Discharge transistor (DT)  
DS20005415D-page 2  
2015-2016 Microchip Technology Inc.  
MCP1711  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage, VIN.....................................................................................................................................................+6.5V  
VIN, SHDN.................................................................................................................................................. -0.3V to +6.5V  
Output Current, IOUT (1).........................................................................................................................................470mA  
Output Voltage, VOUT (2)....................................................................................................... -0.3V to VIN + 0.3V or +6.5V  
Power Dissipation  
5-Lead SOT-23 ..................................................... 600 mW (JEDEC 51-7 FR-4 board with thermal vias) or 250 mW (3)  
4-Lead 1 x 1 mm UQFN........................................ 550 mW (JEDEC 51-7 FR-4 board with thermal vias) or 100 mW (3)  
Storage Temperature .............................................................................................................................. -55°C to +125°C  
Operating Ambient Temperature............................................................................................................... -40°C to +85°C  
ESD Protection on all pins ...........................................................................................................±1 kV HBM, ±200V MM  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Note 1: Provided that the device is used in the range of IOUT PD/(VIN - VOUT).  
2: The maximum rating corresponds to the lowest value between VIN + 0.3V or +6.5V.  
3: The device is mounted on one layer PCB with minimal copper that does not provide any additional cooling.  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VSHDN = VIN, IOUT = 1 mA, CIN = COUT = 0 µF, VIN = 3.5V for  
VR < 2.5V and VIN = VR + 1V for VR 2.5V, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input-Output Characteristics  
Input Voltage  
VIN  
1.4  
VR - 0.02  
VR x 0.99  
150  
-16  
VR  
VR  
6.0  
VR + 0.02  
VR x 1.01  
V
V
IOUT = 1 µA  
Output Voltage  
VOUT  
VR < 2.0V  
VR 2.0V  
Maximum Output Current  
Load Regulation  
IOUT  
mA  
mV  
VOUT  
±3  
+16  
1 µA IOUT 1 mA  
1 mA IOUT 150 mA  
IOUT = 50 mA  
-50  
±17  
+50  
(2)  
Dropout Voltage (1)  
VDROPOUT1  
VDROPOUT2  
Iq  
VDROP1  
V
(2)  
VDROP2  
IOUT = 150 mA  
VR < 1.9V  
Input Quiescent Current  
0.60  
0.65  
0.80  
0.01  
1.27  
1.50  
1.80  
0.10  
µA  
1.9V VR < 4.0V  
VR 4.0V  
Input Quiescent Current  
for SHDN mode  
ISHDN  
µA  
VIN = 6.0V  
VSHDN = VIN  
Line Regulation  
VOUT  
(VIN x VOUT  
/
-0.13  
-0.19  
±0.01  
±0.01  
+0.13  
+0.19  
%/V  
I
OUT = 1 µA  
)
VR + 0.5V VIN 6.0V  
I
OUT = 1 mA  
VR 1.2V,VR + 0.5V VIN  
6.0V  
Note 1: The dropout voltage is defined as the input to output differential at which the output voltage drops 2%  
below the output voltage value that was measured with an applied input voltage of VIN = VR + 1V.  
2:  
VDROP1, VDROP2: Dropout Voltage (Refer to the DC Characteristics Voltage Table).  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 3  
MCP1711  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, VSHDN = VIN, IOUT = 1 mA, CIN = COUT = 0 µF, VIN = 3.5V for  
VR < 2.5V and VIN = VR + 1V for VR 2.5V, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Output Voltage  
VOUT  
/
±50  
ppm/°C IOUT = 10 mA  
Temperature Stability  
Current Limit  
(T x VOUT  
)
-40°C TA +85°C  
VOUT = 0.95 x VR  
ILIMIT  
150  
270  
80  
mA  
mA  
Output Short-Circuit  
Foldback Current  
IOUT_SC  
VOUT = GND  
COUT Auto-Discharge  
Resistance  
RDCHG  
en  
280  
450  
30  
640  
SHDN = GND  
VOUT = VR  
Noise  
µV(rms) CIN = COUT = 1 µF, IOUT = 50  
mA, f = 10 Hz to 100 kHz  
Shutdown Input  
SHDN Logic High Input  
Voltage  
VSHDN-HIGH  
VSHDN-LOW  
0.91  
0
6.00  
0.38  
V
V
SHDN Logic Low Input  
Voltage  
SHDN High-Level Current  
SHDN Low-Level Current  
ISHDN-HIGH  
ISHDN-LOW  
-0.1  
-0.1  
+0.1  
+0.1  
µA  
µA  
VIN = 6.0V  
VIN = 6.0V  
SHDN = GND  
Note 1: The dropout voltage is defined as the input to output differential at which the output voltage drops 2%  
below the output voltage value that was measured with an applied input voltage of VIN = VR + 1V.  
2:  
VDROP1, VDROP2: Dropout Voltage (Refer to the DC Characteristics Voltage Table).  
DC CHARACTERISTICS VOLTAGE TABLE  
Nominal  
Output  
Voltage  
Output Voltage (V)  
Dropout Voltage (V)  
VOUT  
VDROP1  
Typ.  
VDROP1  
Max.  
VDROP2  
Typ.  
VDROP2  
Max.  
VR (V)  
Min.  
Max.  
1.2  
1.8  
1.9  
2.0  
2.2  
2.5  
3.0  
3.3  
5.0  
1.1800  
1.7800  
1.8800  
1.9800  
2.1780  
2.4750  
2.9700  
3.2670  
4.9500  
1.2200  
1.8200  
1.9200  
2.0200  
2.2220  
2.5250  
3.0300  
3.3330  
5.0500  
0.87  
0.47  
0.42  
0.37  
0.31  
0.26  
0.17  
0.17  
0.10  
1.23  
0.72  
0.64  
0.58  
0.47  
0.40  
0.26  
0.26  
0.16  
1.41  
0.99  
0.92  
0.86  
0.75  
0.67  
0.50  
0.50  
0.32  
1.93  
1.40  
1.29  
1.20  
1.05  
0.92  
0.67  
0.67  
0.43  
DS20005415D-page 4  
2015-2016 Microchip Technology Inc.  
MCP1711  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max. Units  
Conditions  
Operating Ambient Temperature Range  
Junction Operating Temperature  
Storage Temperature Range  
TA  
TJ  
TA  
-40  
-40  
-55  
+85  
+125  
+125  
°C  
°C  
°C  
Package Thermal Resistances  
Thermal Resistance, 1 x 1 UQFN-4Ld  
JA  
181.82  
°C/W JEDEC 51-7 FR4 board with  
thermal vias  
JA  
JC  
JA  
1000  
15  
°C/W Note 2  
°C/W  
Thermal Resistance, SOT-23-5Ld  
166.67  
°C/W JEDEC 51-7 FR4 board with  
thermal vias  
JA  
JC  
400  
81  
°C/W Note 2  
°C/W  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature, and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the max-  
imum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
2: The device is mounted on one layer PCB with minimal copper that does not provide any additional cooling.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 5  
MCP1711  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
NOTE: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
1.20  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
VR = 5.0V  
VR = 1.2V  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
TA = +85°C  
TA = +85°C  
TA = +25°C  
TA = +25°C  
TA = -40°C  
TA = -40°C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-1:  
Quiescent Current vs. Input  
FIGURE 2-4:  
Quiescent Current vs. Input  
Voltage.  
Voltage.  
1.2  
1
45  
VR = 1.2V  
VR = 1.8V  
40  
35  
30  
25  
20  
15  
10  
5
0.8  
0.6  
0.4  
0.2  
TA = +85°C  
TA = -40°C  
4
TA = +25°C  
2
0
0
0
0
1
3
5
6
30  
60  
90  
120  
150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-2:  
Quiescent Current vs. Input  
FIGURE 2-5:  
Ground Current vs. Load  
Voltage.  
Current.  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
45  
VR = 3.3V  
VR = 1.8V  
TA = +85°C  
40  
35  
30  
25  
20  
15  
10  
5
TA = -40°C  
TA = +25°C  
0.00  
0
0
1
2
3
4
5
6
0
30  
60  
90  
120  
150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-3:  
Quiescent Current vs. Input  
FIGURE 2-6:  
Ground Current vs. Load  
Voltage.  
Current.  
DS20005415D-page 6  
2015-2016 Microchip Technology Inc.  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
.
40  
VR = 3.3V  
35  
3.5V  
30  
tr = 5 µs  
25  
20  
15  
10  
5
VIN  
0V  
VOUT (DC Coupled, 1V/Div)  
IOUT = 1 µA  
VOUT  
IOUT = 150 mA  
IOUT = 10 mA  
Time = 80 µs/Div  
0
VR = 1.8V  
0
30  
60  
90  
120  
150  
Load Current (mA)  
FIGURE 2-7:  
Ground Current vs. Load  
FIGURE 2-10:  
Start-Up from VIN.  
Current.  
45  
VR = 5.0V  
40  
4.3V  
35  
30  
25  
20  
15  
10  
5
tr = 5 µs  
IOUT = 1 µA  
VIN  
0V  
VOUT (DC Coupled, 1V/Div)  
IOUT = 150 mA  
IOUT = 10 mA  
VOUT  
0
0
V
R = 3.3V  
Time = 80 µs/Div  
30  
60  
90  
120  
150  
Load Current (mA)  
FIGURE 2-11:  
Start-Up from VIN.  
FIGURE 2-8:  
Ground Current vs. Load  
Current.  
3.5V  
tr = 5 µs  
6.0 V  
0V  
VIN  
tr = 5 µs  
VIN  
0V  
IOUT = 1 µA  
VOUT (DC Coupled, 2V/Div)  
VOUT (DC Coupled, 0.5V/Div)  
IOUT = 1 µA  
IOUT = 150 mA  
IOUT = 150 mA  
IOUT = 10 mA  
VOUT  
VOUT  
IOUT = 10 mA  
VR = 5.0V  
VR = 1.2V  
Time = 80 µs/Div  
Time = 80 µs/Div  
FIGURE 2-12:  
Start-Up from VIN.  
FIGURE 2-9:  
Start-Up from VIN.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 7  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
6.0 V  
3.5V  
tr = 5 µs  
tr = 5 µs  
VIN  
0V  
VIN  
0V  
VOUT (DC Coupled, 2V/Div)  
V
OUT (DC Coupled, 0.5V/Div)  
IOUT = 10 mA  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 100 mA  
VOUT  
IOUT  
IOUT = 150 mA  
Time = 80 µs/Div  
I
OUT = 150 mA  
VR = 1.2V  
CIN = COUT = 1 µF  
V
C
R = 5.0V  
IN = COUT = 1 µF  
Time = 80 µs/Div  
FIGURE 2-13:  
Start-Up from VIN.  
FIGURE 2-16:  
Start-Up from VIN.  
3.5V  
3.5V  
tr = 5 µs  
tr = 5 µs  
0V  
VIN  
0V  
EN  
VOUT (DC Coupled, 1V/Div)  
V
OUT (DC Coupled, 0.5V/Div)  
IOUT = 1 µA  
IOUT = 10 mA  
IOUT = 100 mA  
VOUT  
I
OUT = 150 mA  
VOUT  
IOUT = 150 mA  
IOUT = 10 mA  
V
R = 1.8V  
CIN = COUT = 1 µF  
Time = 80 µs/Div  
VR = 1.2V  
Time = 80 µs/Div  
FIGURE 2-14:  
Start-Up from VIN.  
FIGURE 2-17:  
Start-Up from SHDN.  
4.3V  
3.5V  
tr = 5 µs  
OUT = 10 mA  
tr = 5 µs  
VIN  
0V  
0V  
SHDN  
VOUT (DC Coupled, 1V/Div)  
I
VOUT (DC Coupled, 1V/Div)  
IOUT = 100 mA  
IOUT = 1 µA  
VOUT  
VOUT  
IOUT = 150 mA  
Time = 80 µs/Div  
I
OUT = 150 mA  
V
R = 3.3V  
IOUT = 10 mA  
CIN = COUT = 1 µF  
VR = 1.8V  
Time = 80 µs/Div  
FIGURE 2-15:  
Start-Up from VIN.  
FIGURE 2-18:  
Start-Up from SHDN.  
DS20005415D-page 8  
2015-2016 Microchip Technology Inc.  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
2.00  
VR = 1.8V  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
4.3V  
VIN = 2.5V  
VIN = 6.0V  
tr = 5 µs  
0V  
SHDN  
VOUT (DC Coupled, 1V/Div)  
IOUT = 1 µA  
VIN = 4.5V  
VIN = 3.5V  
IOUT = 150 mA  
IOUT = 10 mA  
VOUT  
V
R = 3.3V  
Time = 80 µs/Div  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
FIGURE 2-19:  
Start-Up from SHDN.  
FIGURE 2-22:  
Output Voltage vs. Output  
Current.  
3.50  
VR = 3.3V  
3.00  
6.0 V  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
VIN = 5.0V  
VIN = 3.6V  
tr = 5 µs  
SHDN  
0V  
VIN = 4.3V  
VOUT (DC Coupled, 2V/Div)  
VIN = 6.0V  
IOUT = 1 µA  
IOUT = 150 mA  
VOUT  
IOUT = 10 mA  
VR = 5.0V  
0
50  
100  
150  
200  
250  
300  
350  
Time = 80 µs/Div  
Output Current (mA)  
FIGURE 2-23:  
Output Voltage vs. Output  
FIGURE 2-20:  
Start-Up from SHDN.  
Current.  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
5.50  
5.00  
VR = 1.2V  
VR = 5.0V  
4.50  
VIN = 3.5V  
VIN = 4.5V  
VIN = 2.5V  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
VIN = 5.5V  
VIN = 6.0V  
VIN = 6.0V  
VIN = 5.2V  
0.00  
0
50  
100  
150  
200  
250  
0
50 100 150 200 250 300 350 400  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-21:  
Output Voltage vs. Output  
FIGURE 2-24:  
Output Voltage vs. Output  
Current.  
Current.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 9  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
5.50  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
VR = 5.0V  
VR = 1.2V  
TA = +85°C  
TA = +25°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
TA = -40°C  
0
50  
100  
150  
200  
250  
0
50  
100 150 200 250 300 350  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-25:  
Output Voltage vs. Output  
FIGURE 2-28:  
Output Voltage vs. Output  
Current.  
Current.  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
VR = 1.8V  
VR = 1.2V  
TA = +85°C  
IOUT = 1 µA  
IOUT = 1 mA  
TA = +25°C  
IOUT = 10 mA  
IOUT = 100 mA  
TA = -40°C  
0
50  
100  
150  
200  
250  
300  
0
1
2
3
4
5
6
Output Current (mA)  
Input Voltage (V)  
FIGURE 2-26:  
Output Voltage vs. Output  
FIGURE 2-29:  
Output Voltage vs. Input  
Current.  
Voltage.  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
3.50  
VR = 1.8V  
VR = 3.3V  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
TA = +85°C  
TA = -40°C  
IOUT = 100 mA  
IOUT = 10 mA  
IOUT = 1 mA  
TA = +25°C  
IOUT = 1 µA  
0
1
2
3
4
5
6
0
50  
100  
150  
200  
250  
300  
350  
Output Current (mA)  
Input Voltage (V)  
FIGURE 2-27:  
Output Voltage vs. Output  
FIGURE 2-30:  
Output Voltage vs. Input  
Current.  
Voltage.  
DS20005415D-page 10  
2015-2016 Microchip Technology Inc.  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
VR = 3.3V  
VR = 1.8V  
IOUT = 1 µA  
IOUT = 100 mA  
IOUT = 100 mA  
IOUT = 10 mA  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 1 mA  
IOUT = 1 µA  
3
-40  
-15  
10  
35  
60  
85  
0
1
2
4
5
6
Ambient Temperature (°C)  
Input Voltage (V)  
FIGURE 2-31:  
Output Voltage vs. Input  
FIGURE 2-34:  
Output Voltage vs. Ambient  
Voltage.  
Temperature.  
3.60  
5.50  
VR = 3.3V  
VRR= 5.0V  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
3.55  
IOUT = 1 µA  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
IOUT = 1 mA  
IOUT = 100 mA  
IOUT = 10 mA  
IOUT = 1 mA  
IOUT = 1 µA  
IOUT = 10 mA  
IOUT = 100 mA  
35  
-40  
-15  
10  
60  
85  
0
1
2
3
4
5
6
Ambient Temperature (°C)  
Input Voltage (V)  
FIGURE 2-35:  
Output Voltage vs. Ambient  
FIGURE 2-32:  
Output Voltage vs. Input  
Temperature.  
Voltage.  
5.20  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
VR = 5.0V  
VR = 1.2V  
5.15  
IOUT = 1 µA  
IOUT = 100 mA  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
IOUT = 10 mA  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 1 mA  
IOUT = 1 µA  
1.17  
1.16  
1.15  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-36:  
Output Voltage vs. Ambient  
FIGURE 2-33:  
Output Voltage vs. Ambient  
Temperature.  
Temperature.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 11  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
1800  
1600  
1400  
1200  
1000  
800  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VR = 1.2V  
VR = 5.0V  
TA = +85°C  
TA = -40°C  
TA = +85°C  
TA = +25°C  
TA = +25°C  
600  
400  
TA = -40°C  
200  
0
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Output Current (mA)  
Load Current (mA)  
FIGURE 2-37:  
Dropout Voltage vs. Output  
FIGURE 2-40:  
Dropout Voltage vs. Output  
Current.  
Current.  
1400  
1200  
1000  
800  
600  
400  
200  
0
1.00  
0.80  
0.60  
0.40  
0.20  
VR = 1.8V  
VR = 1.2V to 5.0V  
SHDN High Level  
TA = +85°C  
TA = +25°C  
SHDN Low Level  
TA = -40°C  
0.00  
-40  
0
25  
50  
75  
100  
125  
150  
-15  
10  
35  
60  
85  
Ambient Temperature (°C)  
Output Current (mA)  
FIGURE 2-38:  
Dropout Voltage vs. Output  
FIGURE 2-41:  
Shutdown Threshold  
Current.  
Voltage vs. Ambient Temperature.  
500  
450  
VR = 3.3V  
TA = +85°C  
4.5V  
400  
350  
300  
250  
200  
150  
100  
50  
VIN  
tf = 5 µs  
tr = 5 µs  
3.5V  
V
OUT (AC Coupled, 500 mV/Div)  
TA = +25°C  
TA = -40°C  
VOUT  
VR = 1.2V  
V
IN = 3.5V to 4.5V  
0
Time = 80 µs/Div  
IOUT = 10 mA  
0
25  
50  
75  
100  
125  
150  
Load Current (mA)  
FIGURE 2-39:  
Dropout Voltage vs. Output  
FIGURE 2-42:  
Dynamic Line Response.  
Current.  
DS20005415D-page 12  
2015-2016 Microchip Technology Inc.  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
4.5V  
5.3V  
VIN  
VIN  
tr = 5 µs  
tf = 5 µs  
4.3V  
tr = 5 µs  
tf = 5 µs  
3.5V  
VOUT (AC Coupled, 500 mV/Div)  
VOUT (AC Coupled, 500 mV/Div)  
VOUT  
VOUT  
VR = 3.3V  
VIN = 4.3V to 5.3V  
V
V
R = 1.2V  
IN = 3.5V to 4.5V  
Time = 80 µs/Div  
Time = 80 µs/Div  
IOUT = 10 mA  
IOUT = 100 mA  
FIGURE 2-43:  
Dynamic Line Response.  
FIGURE 2-46:  
Dynamic Line Response.  
5.3V  
tr = 5 µs  
OUT (AC Coupled, 500 mV/Div)  
4.5V  
VIN  
tf = 5 µs  
VIN  
tr = 5 µs  
4.3V  
3.5V  
tf = 5 µs  
V
VOUT (AC Coupled, 500 mV/Div)  
VOUT  
VOUT  
VR = 3.3V  
VR = 1.8V  
VIN = 4.3V to 5.3V  
IOUT = 100 mA  
VIN = 3.5V to 4.5V  
IOUT = 10 mA  
Time = 80 µs/Div  
Time = 80 µs/Div  
FIGURE 2-44:  
Dynamic Line Response.  
FIGURE 2-47:  
Dynamic Line Response.  
4.5V  
6.0V  
VIN  
5.2V  
tr = 5 µs  
tf = 5 µs  
VIN  
tr = 5 µs  
3.5V  
tf = 5 µs  
V
OUT (AC Coupled, 500 mV/Div)  
VOUT (AC Coupled, 500 mV/Div)  
VOUT  
VOUT  
VR = 5.0V  
VR = 1.8V  
VIN = 5.2V to 6.0V  
IOUT = 10 mA  
V
IN = 3.5V to 4.5V  
Time = 80 µs/Div  
Time = 80 µs/Div  
IOUT = 100 mA  
FIGURE 2-45:  
Dynamic Line Response.  
FIGURE 2-48:  
Dynamic Line Response.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 13  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
150 mA  
6.0V  
tr = 5 µs  
VIN  
IOUT  
tr1  
5.5V  
tf = 5 µs  
tf = 5 µs  
1 mA  
VOUT (AC Coupled, 500 mV/Div)  
V
OUT (AC Coupled, 1V/Div)  
VOUT  
VOUT  
V
R = 1.2V  
V
R = 5.0V  
VIN = 3.5V  
VIN = 5.5V to 6.0V  
IOUT = 100 mA  
IOUT = 1 mA to 150 mA  
Time = 200 µs/Div  
1 tr set time = 5 µs  
Time = 80 µs/Div  
FIGURE 2-49:  
Dynamic Line Response.  
FIGURE 2-52:  
Dynamic Load Response.  
150 mA  
150 mA  
C
IN = COUT = 1 µF  
tr1  
IOUT  
IOUT  
tr1  
tf = 5 µs  
tf = 5 µs  
1 µA  
VOUT (AC Coupled, 1V/Div)  
VOUT (AC Coupled, 1V/Div)  
V
V
OUT  
OUT  
VR = 1.2V  
VIN = 3.5V  
VR = 1.2V  
VIN = 3.5V  
I
OUT = 1 µA to 150 mA  
Time = 200 µs/Div  
IOUT = 1 mA to 150 mA  
Time = 200 µs/Div  
1 tr set time = 5 µs  
1 tr set time = 5 µs  
FIGURE 2-50:  
Dynamic Load Response.  
FIGURE 2-53:  
Dynamic Load Response.  
150 mA  
C
IN = COUT = 1 µF  
150 mA  
tr1  
IOUT  
tf = 5 µs  
IOUT  
tr1  
tf = 5 µs  
1 µA  
1 µA  
VOUT (AC Coupled, 1V/Div)  
V
OUT (AC Coupled, 1V/Div)  
V
OUT  
V
OUT  
V
R = 1.8V  
VIN = 3.5V  
OUT = 1 µA to 150 mA  
V
R = 1.2V  
VIN = 3.5V  
OUT = 1 µA to 150 mA  
I
I
Time = 200 µs/Div  
1 tr set time = 5 µs  
Time = 200 µs/Div  
1 tr set time = 5 µs  
FIGURE 2-51:  
Dynamic Load Response.  
FIGURE 2-54:  
Dynamic Load Response.  
DS20005415D-page 14  
2015-2016 Microchip Technology Inc.  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
150 mA  
C
IN = COUT = 1 µF  
150 mA  
IOUT  
tr1  
1 µA  
tr1  
IOUT  
tf = 5 µs  
tf = 5 µs  
1 µA  
VOUT (AC Coupled, 1V/Div)  
VOUT (AC Coupled, 1V/Div)  
V
OUT  
V
OUT  
VR = 3.3V  
VIN = 4.3V  
IOUT = 1 µA to 150 mA  
V
R = 1.8V  
VIN = 3.5V  
IOUT = 1 µA to 150 mA  
Time = 200 µs/Div  
1 tr set time = 5 µs  
Time = 200 µs/Div  
1 tr set time = 5 µs  
FIGURE 2-55:  
Dynamic Load Response.  
FIGURE 2-58:  
Dynamic Load Response.  
150 mA  
150 mA  
CIN = COUT = 1 µF  
tr1  
IOUT  
IOUT  
tr1  
tf = 5 µs  
tf = 5 µs  
1 mA  
1 µA  
V
OUT (AC Coupled, 1V/Div)  
V
OUT (AC Coupled, 1V/Div)  
V
OUT  
V
OUT  
V
R = 1.8V  
VIN = 3.5V  
OUT = 1 mA to 150 mA  
V
V
R = 3.3V  
IN = 4.3V  
I
Time = 200 µs/Div  
1 tr set time = 5 µs  
IOUT = 1 µA to 150 mA  
Time = 200 µs/Div  
1 tr set time = 5 µs  
FIGURE 2-56:  
Dynamic Load Response.  
FIGURE 2-59:  
Dynamic Load Response.  
150 mA  
C
IN = COUT = 1 µF  
150 mA  
tr1  
tr1  
tf = 5 µs  
IOUT  
tf = 5 µs  
IOUT  
1 mA  
1 mA  
V
OUT (AC Coupled, 1V/Div)  
VOUT  
V
OUT  
VR = 3.3V  
VIN = 4.3V  
IOUT = 1 mA to 150 mA  
V
R = 1.8V  
VIN = 3.5V  
IOUT = 1 mA to 150 mA  
Time = 200 µs/Div  
1 tr set time = 5 µs  
Time = 200 µs/Div  
1 tr set time = 5 µs  
FIGURE 2-57:  
Dynamic Load Response.  
FIGURE 2-60:  
Dynamic Load Response.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 15  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
150 mA  
IOUT  
1 mA  
150 mA  
C
IN = COUT = 1 µF  
tr1  
IOUT  
tr1  
tf = 5 µs  
tf = 5 µs  
1 mA  
OUT (AC Coupled, 1V/Div)  
V
OUT (AC Coupled, 1V/Div)  
V
VOUT  
V
OUT  
VR = 5.0V  
VIN = 6.0V  
V
R = 3.3V  
VIN = 4.3V  
OUT = 1 mA to 150 mA  
IOUT = 1 mA to 150 mA  
Time = 200 µs/Div  
1 tr set time = 5 µs  
I
Time = 200 µs/Div  
1 tr set time = 5 µs  
FIGURE 2-61:  
Dynamic Load Response.  
FIGURE 2-64:  
Dynamic Load Response.  
150 mA  
150 mA  
CIN = COUT = 1 µF  
tr1  
IOUT  
tr1  
tf = 5 µs  
tf = 5 µs  
IOUT  
1 µA  
1 mA  
V
OUT (AC Coupled, 1V/Div)  
VOUT (AC Coupled, 1V/Div)  
VOUT  
V
OUT  
VR = 5.0V  
VIN = 6.0V  
V
V
R = 5.0V  
IN = 6.0V  
IOUT = 1 µA to 150 mA  
Time = 200 µs/Div  
IOUT = 1 mA to 150 mA  
Dynamic Load Response.  
CIN = 1 μF, COUT = 1 μF, IOUT = 50 mA  
Time = 200 µs/Div  
1 tr set time = 5 µs  
1 tr set time = 5 µs  
FIGURE 2-62:  
Dynamic Load Response.  
FIGURE 2-65:  
100  
10  
150 mA  
tr1  
C
IN = COUT = 1 µF  
tf = 5 µs  
IOUT  
1 µA  
1
VR = 3.3V  
VIN = 4.3V  
VOUT (AC Coupled, 1V/Div)  
0.1  
0.01  
VR = 5.0V  
VIN = 6.0V  
VR = 1.8V  
VIN = 3.5V  
V
OUT  
VR = 5.0V  
VIN = 6.0V  
0.001  
0.01  
IOUT = 1 µA to 150 mA  
Time = 200 µs/Div  
0.1  
1
10  
100  
1000  
1 tr set time = 5 µs  
Frequency (kHz)  
FIGURE 2-63:  
Dynamic Load Response.  
FIGURE 2-66:  
Output Noise vs. Frequency.  
DS20005415D-page 16  
2015-2016 Microchip Technology Inc.  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IOUT = 150 mA  
IOUT = 150 mA  
IOUT = 10 mA  
IOUT = 10 mA  
VR = 1.2V  
VR = 1.8V  
VIN = 3.5V  
V
IN = 3.5V  
VINAC = 0.5Vpk-pk  
V
INAC = 0.5Vpk-pk  
C
C
IN = 0 µF  
OUT = 0 µF  
C
IN = 0 µF  
COUT = 1 µF  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-67:  
Power Supply Ripple  
FIGURE 2-70:  
Power Supply Ripple  
Rejection vs. Frequency.  
Rejection vs. Frequency.  
0
0
-10  
IOUT = 150 mA  
-10  
IOUT = 150 mA  
-20  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-30  
-40  
-50  
-60  
-70  
-80  
IOUT = 10 mA  
VR = 3.3V  
IOUT = 10 mA  
VR = 1.2V  
VIN = 3.5V  
VIN = 4.3V  
VINAC = 0.5Vpk-pk  
CIN = 0 µF  
COUT = 0 µF  
V
INAC = 0.5Vpk-pk  
C
IN = 0 µF  
-90  
-100  
COUT = 1 µF  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-68:  
Power Supply Ripple  
FIGURE 2-71:  
Power Supply Ripple  
Rejection vs. Frequency.  
Rejection vs. Frequency.  
0
0
IOUT = 150 mA  
IOUT = 150 mA  
-10  
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-60  
-70  
-80  
-90  
-100  
IOUT = 10 mA  
IOUT = 10 mA  
VR = 3.3V  
VR = 1.8V  
VIN = 4.3V  
VIN = 3.5V  
VINAC = 0.5Vpk-pk  
VINAC = 0.5Vpk-pk  
CIN = 0 µF  
COUT = 0 µF  
C
IN = 0 µF  
COUT = 1 µF  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-69:  
Power Supply Ripple  
FIGURE 2-72:  
Power Supply Ripple  
Rejection vs. Frequency.  
Rejection vs. Frequency.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 17  
MCP1711  
Note: Unless otherwise indicated, VIN = 3.5V for VR < 2.5V or VIN = VR + 1V for VR 2.5V, IOUT = 1 mA,  
CIN = COUT = 0 µF, VSHDN = VIN, TA = +25°C.  
0
IOUT = 150 mA  
-10  
-20  
-30  
-40  
-50  
IOUT = 10 mA  
-60  
-70  
-80  
-90  
VR = 5.0V  
IN = 5.75V  
V
VINAC = 0.5Vpk-pk  
C
IN = 0 µF  
C
OUT = 0 µF  
-100  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-73:  
Power Supply Ripple  
Rejection vs. Frequency.  
0
-10  
IOUT = 150 mA  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IOUT = 10 mA  
VR = 5.0V  
IN = 5.75V  
V
VINAC = 0.5Vpk-pk  
C
C
IN = 0 µF  
OUT = 1 µF  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-74:  
Power Supply Ripple  
Rejection vs. Frequency.  
DS20005415D-page 18  
2015-2016 Microchip Technology Inc.  
MCP1711  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP1711  
MCP1711  
1X1 UQFN  
Symbol  
Description  
Unregulated Input Supply Voltage  
SOT-23  
4
2
1
2
VIN  
GND  
SHDN  
NC  
Ground Terminal  
3
3
Shutdown Input  
1
4
Not Connected (SOT-23 only)  
Regulated Voltage Output  
Exposed Thermal Pad (1x1 UQFN only)  
5
VOUT  
EP  
5
3.1  
Unregulated Input Voltage (V )  
3.3  
Shutdown Input (SHDN)  
IN  
The SHDN input is used to turn the LDO output voltage  
on and off.  
Connect the VIN pin to the output of the unregulated  
source voltage. Like all low dropout linear regulators,  
low-source impedance is necessary for ensuring stable  
operation of the LDO. The amount of capacitance  
required to ensure low-source impedance will depend  
on the proximity of the input source capacitors or bat-  
tery type. For most applications, 0.1 µF of capacitance  
will ensure stable operation of the LDO circuit. If the  
output capacitor is used, the input capacitor should  
have a capacitance value equal to or greater than the  
output capacitor for performance applications.  
When the SHDN input is at logic High level, the LDO  
output voltage is enabled. When the SHDN pin is pulled  
to a logic Low level, the LDO output voltage is disabled.  
When the SHDN pin is pulled low, the VOUT pin is  
pulled down to the ground level via, parallel to the feed-  
back resistors (R1 and R2), and the COUT discharge  
resistance (RDCHG).  
The output voltage becomes unstable when the SHDN  
pin is left floating.  
The input capacitor will supply the load current during  
transients and improve performance. For applications  
that have low load currents, the input capacitance  
requirement can be lowered.  
3.4  
Not Connected Pin (NC)  
The SOT-23 package has  
a pin that is not  
connected.This pin should be either left floating or tied  
to the ground plane.  
The type of capacitor used may be ceramic, tantalum or  
aluminum electrolytic. The low ESR characteristics of  
the ceramic will yield better noise and Power Supply  
Rejection Ratio (PSRR) performance at high  
frequency.  
3.5  
Regulated Output Voltage (V  
)
OUT  
Connect the VOUT pin to the positive side of the load  
and to the positive side of the output capacitor (if used).  
The positive side of the output capacitor should be  
physically located as close as possible to the LDO  
VOUT pin. The current flowing out of this pin is equal to  
the DC load current.  
3.2  
Ground Terminal (GND)  
This is the regulator ground. Tie GND to the negative  
side of the output capacitor (if used) and to the negative  
side of the input capacitor. Only the LDO bias current  
flows out of this pin, so there is no high current. The  
LDO output regulation is referenced to this pin.  
Minimize voltage drops between this pin and the  
negative side of the load. If a PCB ground plane is not  
used, minimize the length of the trace between the  
GND pin and the ground line.  
3.6  
Exposed Thermal Pad (EP)  
The 4-lead 1 x 1 UQFN package has an exposed metal  
pad on the bottom of the package. The exposed metal  
pad gives the device better thermal characteristics by  
providing a good thermal path to either a PCB isolated  
plane or a PCB ground plane. The exposed pad of the  
package is not internally connected to GND.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 19  
MCP1711  
4.3  
Output Capacitor  
4.0  
DEVICE OVERVIEW  
The MCP1711 can provide a stable output voltage even  
without an additional output capacitor due to its excel-  
lent internal phase compensation, so that a minimum  
output capacitance is not required. In order to improve  
the load step response and PSRR, an output capacitor  
can be added. A value in the range of 0.1 µF to 1.0 µF  
is recommended for most applications. The capacitor  
should be placed as close as possible to the VOUT pin  
and the GND pin. The device is compatible with low  
ESR ceramic capacitors. Ceramic materials like X7R  
and X5R have low temperature coefficients and are  
well within the acceptable ESR range required. A  
typical 1 µF X7R 0805 capacitor has an ESR of 50 m.  
The MCP1711 device is a 150 mA output current,  
low-dropout (LDO) voltage regulator. The low dropout  
voltage at high current makes it ideal for battery-pow-  
ered applications. The input voltage ranges from 1.4V  
to 6.0V. Unlike other high output current LDOs, the  
MCP1711 typically draws only 600 nA quiescent cur-  
rent and maximum 45 µA ground current at 150 mA  
load. MCP1711 has a shutdown control input pin  
(SHDN). The output voltage options are fixed.  
4.1  
LDO Output Voltage  
The MCP1711 LDO has a fixed output voltage. The  
output voltage range is 1.2V to 5.0V.  
4.4  
Input Capacitor  
4.2  
Output Current and Current  
Limiting  
Low-input source impedance is necessary for the LDO  
output to operate properly. When operating from batter-  
ies, or in applications with long lead length  
(> 10 inches) between the input source and the LDO,  
some input capacitance is recommended. A minimum  
of 0.1 µF to 1.0 µF is recommended for most applica-  
tions. For applications that have output step load  
requirements, the input capacitance of the LDO is very  
important. The input capacitance provides the LDO  
with a good local low-impedance source to pull the  
transient current from, so it responds quickly to the out-  
put load step. For good step response performance,  
the input capacitor should be of an equivalent or higher  
value than the output capacitor. The capacitor should  
be placed as close to the input of the LDO as is practi-  
cal. Larger input capacitors will also help reduce any  
high-frequency noise on the input and output of the  
LDO as well as reduce the effects of any inductance  
that exists between the input source voltage and the  
input capacitance of the LDO.  
The MCP1711 is tested and ensured to supply a  
maximum of 150 mA of output current. The device can  
provide a highly accurate output voltage even if the  
output current is only 1 µA (very light load).  
The MCP1711 also features a true output current fold-  
back. If an excessive load, due to a low impedance  
short-circuit condition at the output load, is detected,  
the output current and voltage will fold back towards  
80 mA and 0V, respectively. The output voltage and  
current will resume normal levels when the excessive  
load is removed. If the overload condition is a soft over-  
load, the MCP1711 will supply higher load currents of  
up to 270 mA typical. This allows for device usage in  
applications that have pulsed load currents having an  
average output current value of 150 mA or less.  
DS20005415D-page 20  
2015-2016 Microchip Technology Inc.  
MCP1711  
4.5  
Shutdown Input (SHDN)  
The MCP1711 internal circuitry can be shut down via  
the signal from the SHDN pin. The SHDN input is an  
active-low input signal that turns the LDO on and off.  
The shutdown threshold is a fixed voltage level. The  
minimum value of this shutdown threshold required to  
turn the output on is 0.91V. The maximum value  
required to turn the output off is 0.38V.  
In Shutdown mode, the VOUT pin will be pulled down to  
the ground level via, parallel to feedback resistors and  
COUT discharge resistance RDCHG. In this state, the  
application is protected from a glitch operation caused  
by the electric charge at the output capacitor. More-  
over, the discharge time of the output capacitor is set by  
the COUT auto-discharge resistance (RDCHG) and the  
output capacitor COUT. By setting the time constant of a  
COUT auto-discharge resistance value (RDCHG) and the  
output capacitor value (COUT) as = COUT x RDCHG  
,
the output voltage after discharge via the internal  
switch is calculated using Equation 4-1:  
Note:  
The RDCHG depends on VIN; when VIN is  
high the RDCHG is low.  
EQUATION 4-1:  
VOUTt= VOUT et    
or  
t =   lnVOUT VOUTt   
Where:  
VOUT(t) = The output voltage during discharging  
VOUT = The initial output voltage  
t = Discharge time  
= COUT x RDCHG  
4.6  
Dropout Voltage  
Dropout Voltage is defined as the input-to-output  
voltage differential at which the output voltage drops  
2% below the nominal value that was measured with a  
VR + 1.0V differential applied. See Section 1.0  
“Electrical Characteristics”, for minimum and  
maximum voltage specifications.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 21  
MCP1711  
The thermal resistance from junction-to-ambient for the  
5-Lead SOT-23 package is estimated at:  
5.0  
APPLICATION CIRCUITS AND  
ISSUES  
• 166.67°C with JEDEC 51-7 FR-4 board with  
thermal vias and  
5.1  
Typical Application  
• 400 °C/W when the device is not mounted on the  
PCB, or is mounted on the one layer PCB with  
minimal copper that doesn't provide any  
additional cooling.  
The MCP1711 is most commonly used as a voltage  
regulator. Its low quiescent current and low dropout  
voltage make it ideal for a multitude of battery-powered  
applications.  
EQUATION 5-2:  
V
= 1.8V  
OUT  
MCP1711  
TJMAX= PTOTAL RJA + TAMAX  
VIN  
I
= 50 mA  
OUT  
VIN VOUT  
3.6V to 4.8V  
CIN  
COUT  
Where:  
TJ(MAX) = Maximum continuous junction  
temperature  
SHDN  
GND  
PTOTAL = Total device power dissipation  
RJA = Thermal resistance from junction to  
Application Input conditions  
Package Type = 5-Lead SOT-23  
ambient  
TA(MAX) = Maximum ambient temperature  
Input Voltage Range = 3.5V to 4.8V  
VIN maximum = 4.8V  
The maximum power dissipation capability for a  
package can be calculated if given the  
junction-to-ambient thermal resistance (RJA) and the  
maximum ambient temperature for the application.  
Equations 5-3 to 5-5 can be used to determine the  
package maximum internal power dissipation:  
VOUT typical = 1.8V  
IOUT = 50 mA maximum  
FIGURE 5-1:  
Typical Application Circuit.  
5.2  
Power Calculations  
EQUATION 5-3:  
5.2.1  
POWER DISSIPATION  
TJMAXTAMAX  
PDMAX= -------------------------------------------------  
RJA  
The internal power dissipation of the MCP1711 is a  
function of input voltage, output voltage and output  
current. The power dissipation, as a result of the  
quiescent current draw, is so low that it is insignificant  
(0.6 µA x VIN). To calculate the internal power  
dissipation of the LDO use Equation 5-1:  
Where:  
PD(MAX) = Maximum device power dissipation  
TJ(MAX) = Maximum continuous junction  
temperature  
EQUATION 5-1:  
TA(MAX) = Maximum ambient temperature  
PLDO = VIN(MAXVOUT(MIN  IOUTMAX  
RJA = Thermal resistance from junction to  
ambient  
Where:  
PLDO = LDO pass device internal power  
dissipation  
EQUATION 5-4:  
VIN(MAX) = Maximum input voltage  
TJRISE= PDMAXRJA  
VOUT(MIN) = LDO minimum output voltage,  
including the line and load  
regulations  
Where:  
The maximum continuous operating junction  
temperature specified for the MCP1711 is +125°C. To  
estimate the internal junction temperature of the  
MCP1711, the total internal power dissipation is  
multiplied by the thermal resistance from  
junction-to-ambient (RJA).  
TJ(RISE) = Rise in device junction temperature  
over the ambient temperature  
PD(MAX) = Maximum device power dissipation  
RJA = Thermal resistance from junction to  
ambient  
DS20005415D-page 22  
2015-2016 Microchip Technology Inc.  
MCP1711  
EQUATION 5-5:  
5.3.1.1  
Device Junction Temperature Rise  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The ther-  
mal resistance from junction to ambient (RJA) is  
derived from an EIA/JEDEC standard for measuring  
thermal resistance for small surface mount packages.  
TJ = TJRISE+ TA  
Where:  
TJ = Junction temperature  
TJ(RISE) = Rise in device junction temperature  
over the ambient temperature  
The EIA/JEDEC specification is JESD51-7, High  
Effective Thermal Conductivity Test Board for Leaded  
Surface Mount Packages. The standard describes the  
test method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792 – A Method to Determine  
How Much Power a SOT-23 Can Dissipate in an  
Application (DS00792), for more information regarding  
this subject.  
TA = Ambient temperature  
5.3  
Voltage Regulator  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation, as a result of ground current, is small  
enough to be neglected.  
EXAMPLE 5-2:  
5.3.1  
POWER DISSIPATION EXAMPLE  
TJ(RISE) = PTOTAL x RJA  
TJRISE = 153.5 mW x 400.0°C/W  
TJRISE = 61.4°C  
EXAMPLE 5-1:  
Package  
POWER DISSIPATION  
Package Type = SOT-23  
Input Voltage  
5.3.1.2  
Junction Temperature Estimate  
VIN = 3.5V to 4.8V  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated:  
LDO Output Voltages and Currents  
VOUT = 1.8V  
I
OUT = 50 mA  
EXAMPLE 5-3:  
Maximum Ambient Temperature  
A(MAX) = +40°C  
TJ = TJRISE + TA(MAX)  
T
TJ = 61.4°C + 40°C = 101.4°C  
Internal Power Dissipation  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
5.3.1.3  
Maximum Package  
Power Dissipation Example  
at +40°C Ambient Temperature  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x  
IOUT(MAX)  
EXAMPLE 5-4:  
VOUT(MIN) = 1.78V - 0.05V = 1.73V, where  
1.78V is the minimum output  
SOT-23 (400.0 °C/W = RJA  
)
voltage due to accuracy, and  
0.05V is the load regulation; due  
to very small input voltage range,  
the line regulation is neglected  
PD(MAX) = (125°C - 40°C)/400°C/W  
PD(MAX) = 212 mW  
PLDO  
PLDO  
=
=
(4.8V - 1.73V) x 50 mA  
153.5 mW  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 23  
MCP1711  
5.4  
Voltage Reference  
The MCP1711 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1711 LDO. The low cost, low quiescent cur-  
rent and small ceramic output capacitor are all  
advantages when using the MCP1711 as a voltage  
reference.  
Ratio Metric Reference  
PIC®  
Microcontroller  
MCP1711  
0.6 µA Bias  
V
V
VREF  
OUT  
IN  
C
C
OUT  
IN  
0.1µF  
0.1µF  
GND  
ADO  
AD1  
Bridge Sensor  
Using the MCP1711 as a Voltage Reference.  
FIGURE 5-2:  
5.5  
Pulsed Load Applications  
For some applications, there are pulsed load current  
events that may exceed the specified 150 mA  
maximum specification of the MCP1711. The internal  
current limit of the MCP1711 will prevent high  
peak-load demands from causing nonrecoverable  
damage. The 150 mA rating is a maximum average  
continuous rating. As long as the average current does  
not exceed 150 mA, higher pulsed load currents can be  
applied to the MCP1711. The typical current limit for the  
MCP1711 is 270 mA (TA = +25°C).  
DS20005415D-page 24  
2015-2016 Microchip Technology Inc.  
MCP1711  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
4-Lead UQFN (1x1x0.6 mm)  
Example  
Device  
Code  
MCP1711T-12I/5X P2NN  
MCP1711T-18I/5X P8NN  
MCP1711T-20I/5X PANN  
MCP1711T-22I/5X PCNN  
MCP1711T-25I/5X PFNN  
MCP1711T-30I/5X PNNN  
MCP1711T-33I/5X PSNN  
XX  
NN  
P2  
56  
5-Lead SOT-23  
Example  
Device  
Code  
MCP1711T-12I/OT 9A2xx  
MCP1711T-18I/OT 9A8xx  
MCP1711T-19I/OT 9A9xx  
MCP1711T-22I/OT 9ACxx  
MCP1711T-25I/OT 9AFxx  
MCP1711T-30I/OT 9ANxx  
MCP1711T-33I/OT 9ASxx  
MCP1711T-50I/OT 9BAxx  
9A802  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 25  
MCP1711  
4-Lead Plastic Ultra Thin Quad Flatpack No-Leads (5X) - 1x1x0.6mm [UQFN]  
(Formerly USPQ-4B04)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
3
(DATUM A)  
(DATUM B)  
2X  
0.05 C  
2X  
1
2
TOP VIEW  
0.05 C  
A
C
SEATING  
PLANE  
SIDE VIEW  
e
L3  
D2  
1
2
3
L2  
L1  
N
E2  
3X CH  
4X b  
3X CH  
BOTTOM VIEW  
Microchip Technology Drawing C04-393B Sheet 1 of 2  
DS20005415D-page 26  
2015-2016 Microchip Technology Inc.  
MCP1711  
4-Lead Plastic Ultra Thin Quad Flatpack No-Leads (5X) - 1x1x0.6mm [UQFN]  
(Formerly USPQ-4B04)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Terminals  
Pitch  
N
4
e
0.65 BSC  
-
1.00 BSC  
0.48  
1.00 BSC  
0.48  
0.25  
0.25  
0.32  
0.07  
0.18  
Overall Height  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Terminal Width  
Terminal Length  
Terminal Length  
-
A
E
E2  
D
D2  
b
L1  
L2  
L3  
CH  
-
0.60  
0.53  
0.43  
0.43  
0.20  
0.20  
0.27  
0.02  
-
0.53  
0.30  
0.30  
0.37  
0.12  
-
Terminal Chamfer  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-393B Sheet 2 of 2  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 27  
MCP1711  
4-Lead Plastic Ultra Thin Quad Flatpack No-Leads (5X) - 1x1x0.6mm [UQFN]  
(Formerly USPQ-4B04)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
4X X1  
3X X2  
X4  
4X Y3  
4
3X Y1  
Y2  
2
1
Y4  
E
SILK SCREEN  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
E
0.65 BSC  
0.25  
0.18  
0.48  
0.40  
0.47  
0.22  
0.48  
X1  
X2  
X4  
Y1  
Y2  
Y3  
Y4  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2393B  
DS20005415D-page 28  
2015-2016 Microchip Technology Inc.  
MCP1711  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢛ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢛꢐ  
ꢐꢁ;ꢛ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢜꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢜ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢜꢐ  
ꢐꢁꢀ(  
ꢜꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢜꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢐꢁ;ꢐ  
ꢜꢐꢝ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢛꢀ)  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 29  
MCP1711  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005415D-page 30  
2015-2016 Microchip Technology Inc.  
MCP1711  
APPENDIX A: REVISION HISTORY  
Revision D (October 2016)  
The following is the list of modifications:  
• Added the 2.0V output voltage option (for the  
UQFN package) and related information  
throughout the document  
• Minor typographical corrections.  
Revision C (March 2016)  
• Minor typographical corrections.  
Revision B (October 2015)  
The following is the list of modifications:  
• Updated thermal resistances in Section 1.0,  
Electrical Characteristics.  
• Updated Section 2.0, Typical Performance  
Curves with new load step screen-shots.  
Revision A (June 2015)  
• Original release of this document.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 31  
MCP1711  
NOTES:  
DS20005415D-page 32  
2015-2016 Microchip Technology Inc.  
MCP1711  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
(1)  
-X  
X
/XX  
[X]  
PART NO.  
Device  
a)  
b)  
c)  
d)  
e)  
MCP1711T-12I/OT:  
Tape and Reel,  
Output  
Voltage  
Package  
Tape and Reel  
Option  
Temperature  
Range  
1.2V Output Voltage,  
Industrial temperature,  
5LD SOT-23  
MCP1711T-18I/OT:  
MCP1711T-19I/OT:  
MCP1711T-22I/OT:  
MCP1711T-25I/OT:  
Tape and Reel,  
Device:  
MCP1711:  
150 mA Ultra-Low Quiescent Current,  
Capacitorless LDO Regulator  
1.8V Output Voltage,  
Industrial temperature,  
5LD SOT-23  
Output Voltage:  
12  
=
=
=
=
=
=
=
=
=
1.2V  
Tape and Reel,  
18  
19  
20  
22  
25  
30  
33  
50  
1.8V  
1.9V  
2.0V  
2.2V  
2.5V  
3.0V  
3.3V  
5.0V  
1.9V Output Voltage,  
Industrial temperature,  
5LD SOT-23  
Tape and Reel,  
2.2V Output Voltage,  
Industrial temperature,  
5LD SOT-23  
Tape and Reel,  
Temperature  
Range:  
I
=
-40°C to +85°C (Industrial)  
2.5V Output Voltage,  
Industrial temperature,  
5LD SOT-23  
Packages:  
OT  
5X  
=
=
Plastic Small Outline Transistor, 5-Lead SOT-23  
Plastic Ultra Thin Quad Flatpack No-Leads,  
4-Lead 1x1 UQFN  
f)  
MCP1711T-30I/OT:  
MCP1711T-33I/OT:  
MCP1711T-50I/OT:  
Tape and Reel,  
3.0V Output Voltage,  
Industrial temperature,  
5LD SOT-23  
g)  
h)  
Tape and Reel,  
3.3V Output Voltage,  
Industrial temperature,  
5LD SOT-23  
Tape and Reel,  
5.0V Output Voltage,  
Industrial temperature,  
5LD SOT-23  
a)  
b)  
c)  
d)  
e)  
MCP1711T-12I/5X:  
MCP1711T-18I/5X:  
MCP1711T-20I/5X:  
MCP1711T-22I/5X:  
MCP1711T-25I/5X:  
Tape and Reel,  
1.2V Output Voltage,  
Industrial temperature,  
4LD UQFN  
Tape and Reel,  
1.8V Output Voltage,  
Industrial temperature,  
4LD UQFN  
Tape and Reel,  
2.0V Output Voltage,  
Industrial temperature,  
4LD UQFN  
Tape and Reel,  
2.2V Output Voltage,  
Industrial temperature,  
4LD UQFN  
Tape and Reel,  
2.5V Output Voltage,  
Industrial temperature,  
4LD UQFN  
f)  
MCP1711T-30I/5X:  
Tape and Reel,  
3.0V Output Voltage,  
Industrial temperature,  
4LD UQFN  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier is  
used for ordering purposes and is not printed on  
the device package. Check with your Microchip  
Sales Office for package availability with the  
Tape and Reel option.  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 33  
MCP1711  
NOTES:  
DS20005415D-page 34  
2015-2016 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate,  
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,  
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,  
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,  
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
ETHERSYNCH, Hyper Speed Control, HyperLight Load,  
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,  
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,  
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip  
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,  
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2015-2016, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-1009-6  
== ISO/TS 16949 ==  
2015-2016 Microchip Technology Inc.  
DS20005415D-page 35  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
Tel: 248-848-4000  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Houston, TX  
Tel: 281-894-5983  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
06/23/16  
DS20005415D-page 36  
2015-2016 Microchip Technology Inc.  

相关型号:

MCP1711-25I/OT

150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator
MICROCHIP

MCP1711-25I/SX

150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator
MICROCHIP

MCP1711-30I/OT

150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator
MICROCHIP

MCP1711-30I/SX

150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator
MICROCHIP

MCP1711-33I/5X

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MCP1711-33I/OT

150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator
MICROCHIP

MCP1711-33I/SX

150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator
MICROCHIP

MCP1711-50I/OT

150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator
MICROCHIP

MCP1711-50I/SX

150 mA Ultra-Low Quiescent Current, Capacitorless LDO Regulator
MICROCHIP

MCP1711T-25I/OT

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MCP1711T-33I/OT

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MCP1725

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP