MCP1754-3302E-DC [MICROCHIP]

150 mA, 16V, High Performance LDO; 150毫安, 16V ,高性能LDO
MCP1754-3302E-DC
型号: MCP1754-3302E-DC
厂家: MICROCHIP    MICROCHIP
描述:

150 mA, 16V, High Performance LDO
150毫安, 16V ,高性能LDO

文件: 总42页 (文件大小:1674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1754/MCP1754S  
150 mA, 16V, High Performance LDO  
Description  
Features  
• High PSRR: >70 dB @ 1 kHz typical  
The MCP1754/MCP1754S is a family of CMOS low  
dropout (LDO) voltage regulators that can deliver up to  
150 mA of current while consuming only 56.0 µA of  
quiescent current (typical). The input operating range is  
specified from 3.6V to 16.0V, making it an ideal choice  
for four to six primary cell battery-powered applications,  
12V mobile applications and one- to three-cell Li-Ion-  
powered applications.  
• 56.0 µA Typical Quiescent Current  
• Input Operating Voltage Range: 3.6V to16.0V  
• 150 mA Output Current for All Output Voltages  
• Low Drop Out Voltage, 300 mV Typical @ 150 mA  
• 0.4% Typical Output Voltage Tolerance  
• Standard Output Voltage Options (1.8V, 2.5V,  
2.8V, 3.0V, 3.3V, 4.0V, 5.0V)  
The MCP1754/MCP1754S is capable of delivering  
150 mA with only 300 mV (typical) of input to output  
voltage differential. The output voltage tolerance of the  
MCP1754/MCP1754S is typically ±0.4% at +25°C and  
±2.0% maximum over the operating junction  
temperature range of -40°C to +125°C. Line regulation  
is ±0.01% typical at +25°C.  
• Output Voltage Range 1.8V to 5.5V in 0.1V  
Increments (tighter increments also possible per  
design)  
• Output Voltage Tolerances of ±2.0% Over Entire  
Temperature Range  
• Stable with Minimum 1.0 µF Output Capacitance  
• Power Good Output  
Output voltages available for the MCP1754/MCP1754S  
range from 1.8V to 5.5V. The LDO output is stable when  
using only 1 µF of output capacitance. Ceramic,  
tantalum or aluminum electrolytic capacitors may all be  
used for input and output. Overcurrent limit and  
overtemperature shutdown provide a robust solution for  
any application.  
• Shutdown Input  
• True Current Foldback Protection  
• Short-Circuit Protection  
• Overtemperature Protection  
Applications  
The MCP1754/MCP1754S family introduces a true  
current foldback feature. When the load impedance  
decreases beyond the MCP1754/MCP1754S load  
rating, the output current and voltage will gracefully  
foldback towards 30 mA at about 0V output. When the  
load impedance decreases and returns to the rated  
load, the MCP1754/MCP1754S will follow the same  
foldback curve as the device comes out of current  
foldback.  
• Battery-powered Devices  
• Battery-powered Alarm Circuits  
• Smoke Detectors  
• CO2 Detectors  
• Pagers and Cellular Phones  
• Smart Battery Packs  
• PDAs  
Package options for the MCP1754S include the SOT-  
23A, SOT-89-3, SOT-223-3 and 2x3 DFN-8.  
• Digital Cameras  
• Microcontroller Power  
• Consumer Products  
• Battery-powered Data Loggers  
Package options for the MCP1754 include the SOT-23-  
5, SOT-223-5, and 2x3 DFN-8.  
Related Literature  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., 2007  
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs”, DS00766,  
Microchip Technology Inc., 2003  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”,  
DS00792, Microchip Technology Inc., 2001  
© 2011 Microchip Technology Inc.  
DS22276A-page 1  
MCP1754/MCP1754S  
Package Types - MCP1754S  
SOT-223-3  
8-Lead 2X3 DFN(*)  
3-Pin SOT-89  
3-Pin SOT-23A  
GND  
VIN  
3
4
GND  
2
V
V
IN  
1
2
8
7
OUT  
NC  
NC  
EP  
9
NC  
NC  
3
4
6
5
GND  
GND  
1
2
3
1
2
3
1
2
Tab will be connected to GND  
VIN  
VIN  
GNDVOUT  
GND VOUT  
GND VOUT  
(Note: The 3-lead SOT-223 (DB) is not a  
standard package for output voltages  
below 3.0V)  
* Includes Exposed Thermal Pad (EP); see Table 3-2.  
Package Types - MCP1754  
SOT23-5  
SOT-223-5  
8-Lead 2X3 DFN(*)  
4
3
5
1
3
V
V
IN  
1
2
8
7
OUT  
PWRGD  
NC  
EP  
9
NC  
NC  
3
4
6
5
GND  
SHDN  
2
1
2
3
4
5
Tab will be connected to GND  
PIN FUNCTION  
PIN FUNCTION  
1
2
3
4
5
VIN  
GND  
/SHDN  
PWRGD  
VOUT  
1
2
3
4
5
/SHDN  
VIN  
GND  
VOUT  
PWRGD  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
DS22276A-page 2  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
Functional Block Diagrams  
MCP1754S  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Over Current  
Over Temperature  
GND  
© 2011 Microchip Technology Inc.  
DS22276A-page 3  
MCP1754/MCP1754S  
PMOS  
MCP1754  
VIN  
VOUT  
Undervoltage  
Lock Out  
Sense  
(UVLO)  
ISNS  
Cf  
Rf  
SHDN  
+
Driver w/limit  
and SHDN  
EA  
Overtemperature  
Sensing  
SHDN  
VREF  
V
IN  
Reference  
SHDN  
Soft-Start  
PWRGD  
Comp  
TDELAY  
GND  
92% of VREF  
Typical Application Circuits  
+
CIN  
12V  
1 µF Ceramic  
MCP1754S  
VOUT  
5.0V  
IOUT  
COUT  
1 µF Ceramic  
30 mA  
DS22276A-page 4  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage, V ..................................................................+17.6V  
IN  
VIN, PWRGD, SHDN .....................(GND-0.3V) to (V +0.3V)  
IN  
VOUT .................................................. (GND-0.3V) to (+5.5V)  
Internal Power Dissipation ............ Internally-Limited (Note 6)  
Output Short Circuit Current .................................Continuous  
Storage temperature .....................................-55°C to +150°C  
Maximum Junction Temperature......................165°C(Note 7)  
Operating Junction Temperature...................-40°C to +150°C  
ESD protection on all pins..........≥ 4 kV HBM and 200V MM  
AC/DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for V = V + 1V, Note 1, I  
= 1 mA, C  
=
IN  
R
LOAD  
OUT  
1 µF (X7R), C = 1 µF (X7R), T = 25°C, t  
= 0.5V/µs, SHDN = V , PWRGD = 10K to V  
.
IN  
A
r(VIN)  
IN  
OUT  
Boldface type applies for junction temperatures, T (Note 7) of -40°C to +125°C.  
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input / Output Characteristics  
Input Operating Voltage  
VIN  
3.6  
1.8  
16.0  
5.5  
V
V
Output Voltage Operating  
Range  
VOUT-RANGE  
Input Quiescent Current  
Iq  
56  
90  
5
µA  
µA  
IL = 0 mA  
Input Quiescent Current  
for SHDN mode  
ISHDN  
0.1  
SHDN = GND  
Ground Current  
IGND  
150  
150  
250  
µA  
mA  
mA  
ILOAD = 150 mA  
Maximum Output Current  
Output Soft Current Limit  
IOUT_mA  
IOUT_CL  
250  
VIN = VIN(MIN), VOUT 0.1V,  
Current measured 10 ms after  
load is applied  
Output Pulse Current Limit  
IOUT_CL  
250  
mA  
mA  
Pulse Duration < 100 ms, Duty  
Cycle < 50%, VOUT 0.1V,  
Note 6  
Output Short Circuit  
Foldback Current  
IOUT_SC  
VOVER  
30  
VIN = VIN(MIN), VOUT = GND  
Output Voltage Overshoot  
on Startup  
0.5  
%VOUT VIN = 0 to 16V, ILOAD = 150 mA  
Note 1: The minimum V must meet two conditions: V 3.6V and V V + V  
.
IN  
IN  
IN  
R
DROPOUT(MAX)  
2:  
V
is the nominal regulator output voltage when the input voltage V = V  
+ V  
or Vi = 3.6V (which-  
R
IN  
Rated  
DROPOUT(MAX) IN  
ever is greater); I  
= 1 mA.  
- V  
OUT  
6
3: TCV  
= (V  
) *10 / (V * ΔTemperature), V  
= highest voltage measured over the  
OUT-HIGH  
OUT  
OUT-HIGH  
OUT-LOW  
R
temperature range. V  
= lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCV  
.
OUT  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal V  
measured value. The nominal VR measured value is obtained with  
R
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
© 2011 Microchip Technology Inc.  
DS22276A-page 5  
MCP1754/MCP1754S  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for V = V + 1V, Note 1, I  
= 1 mA, C  
=
IN  
R
LOAD  
OUT  
1 µF (X7R), C = 1 µF (X7R), T = 25°C, t  
= 0.5V/µs, SHDN = V , PWRGD = 10K to V  
.
IN  
A
r(VIN)  
IN  
OUT  
Boldface type applies for junction temperatures, T (Note 7) of -40°C to +125°C.  
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Output Voltage Regulation  
VOUT  
VR-  
VR±0. VR+2.0  
V
Note 2  
2.0%  
2%  
22  
%
VOUT Temperature  
TCVOUT  
ppm/°C Note 3  
Coefficient  
Line Regulation  
ΔVOUT  
/
-0.05  
±0.01  
+0.05  
%/V  
VR + 1V VIN 16V  
(VOUTXΔVIN)  
ΔVOUT/VOUT  
VDROPOUT  
IDO  
Load Regulation  
-1.1  
-0.4  
300  
50  
0
%
mV  
µA  
IL = 1.0 mA to 150 mA, Note 4  
IL = 150 mA  
Dropout Voltage (Note 5)  
Dropout Current  
500  
85  
VIN = 0.95VR, IOUT = 0 mA  
Undervoltage Lockout  
Undervoltage Lockout  
UVLO  
2.95  
285  
V
Rising VIN  
Falling VIN  
Undervoltage Lockout  
Hysterisis  
UVLOHYS  
mV  
Shutdown Input  
Logic High Input  
Logic Low Input  
VSHDN-HIGH  
VSHDN-LOW  
SHDNILK  
2.4  
VIN(MAX)  
V
V
0.0  
0.8  
Shutdown Input Leakage  
Current  
0.100  
0.500  
0.500  
2.0  
µA  
SHDN = GND  
SHDN = 16V  
Power Good Output  
PWRGD Input Voltage  
Operating Range  
VPWRGD_VIN  
VPWRGD_TH  
VPWRGD_HYS  
VPWRGD_L  
IPWRGD_L  
1.7  
90  
92  
2.0  
0.2  
VIN  
94  
V
ISINK = 1 mA  
PWRGD Threshold Volt-  
age (Referenced to VOUT  
%VOUT Falling Edge of VOUT  
%VOUT Rising Edge of VOUT  
)
PWRGD Threshold  
Hysteresis  
PWRGD Output Voltage  
Low  
0.6  
V
IPWRGD_SINK = 5.0 mA,  
VOUT = 0V  
PWRGD Output Sink  
Current  
5.0  
mA  
nA  
VPWRGD 0.4V  
PWRGD Leakage Current  
IPWRGD_LK  
40  
700  
VPWRGD Pullup = 10 KΩ to VIN,  
VIN = 16V  
Note 1: The minimum V must meet two conditions: V 3.6V and V V + V  
.
IN  
IN  
IN  
R
DROPOUT(MAX)  
2:  
V
is the nominal regulator output voltage when the input voltage V = V  
+ V  
or Vi = 3.6V (which-  
R
IN  
Rated  
DROPOUT(MAX) IN  
ever is greater); I  
= 1 mA.  
- V  
OUT  
6
3: TCV  
= (V  
) *10 / (V * ΔTemperature), V  
= highest voltage measured over the  
OUT-HIGH  
OUT  
OUT-HIGH  
OUT-LOW  
R
temperature range. V  
= lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCV  
.
OUT  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal V  
measured value. The nominal VR measured value is obtained with  
R
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
DS22276A-page 6  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for V = V + 1V, Note 1, I  
= 1 mA, C  
=
IN  
R
LOAD  
OUT  
1 µF (X7R), C = 1 µF (X7R), T = 25°C, t  
= 0.5V/µs, SHDN = V , PWRGD = 10K to V  
.
IN  
A
r(VIN)  
IN  
OUT  
Boldface type applies for junction temperatures, T (Note 7) of -40°C to +125°C.  
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Rising Edge of VOUT  
PULLUP = 10 kΩ  
PWRGD Time Delay  
TPG  
100  
µs  
,
R
Detect Threshold to  
PWRGD Active Time  
Delay  
TVDET_PWRGD  
200  
240  
µs  
µs  
Falling Edge of VOUT after  
Transition from  
VOUT = VPRWRGD_TH + 50 mV,  
to VPWRGD_TH - 50 mV,  
RPULLUP = 10kΩ to VIN  
AC Performance  
Output Delay From VIN To  
VOUT = 90% VREG  
TDELAY  
VIN = 0V to 16V, VOUT = 90%  
VR,  
t
r (VIN)= 5V/µs,  
COUT = 1 µF, SHDN = VIN  
Output Delay From VIN To TDELAY_START  
OUT > 0.1V  
80  
µs  
µs  
VIN = 0V to 16V, VOUT 0.1V,  
tr (VIN)= 5V/µs,  
COUT = 1 µF, SHDN = VIN  
V
Output Delay From SHDN TDELAY_SHDN  
160  
VIN = 16V, VOUT = 90% VR,  
C
OUT = 1 µF, SHDN = GND to  
VIN  
µV/(Hz)1/2 IL = 50 mA, f = 1 kHz,  
OUT = 1 µF  
Output Noise  
eN  
3
C
Power Supply Ripple  
Rejection Ratio  
PSRR  
72  
dB  
VR = 5V, f = 1 kHz, IL =  
150 mA,  
VINAC = 1V pk-pk, CIN = 0 µF,  
VIN = VR + 1.5V  
Thermal Shutdown  
Temperature  
TSD  
150  
10  
°C  
°C  
Note 6  
Thermal Shutdown  
Hysteresis  
ΔTSD  
Note 1: The minimum V must meet two conditions: V 3.6V and V V + V  
.
IN  
IN  
IN  
R
DROPOUT(MAX)  
2:  
V
is the nominal regulator output voltage when the input voltage V = V  
+ V  
or Vi = 3.6V (which-  
R
IN  
Rated  
DROPOUT(MAX) IN  
ever is greater); I  
= 1 mA.  
- V  
OUT  
6
3: TCV  
= (V  
) *10 / (V * ΔTemperature), V  
= highest voltage measured over the  
OUT-HIGH  
OUT  
OUT-HIGH  
OUT-LOW  
R
temperature range. V  
= lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCV  
.
OUT  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal V  
measured value. The nominal VR measured value is obtained with  
R
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
© 2011 Microchip Technology Inc.  
DS22276A-page 7  
MCP1754/MCP1754S  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, SOT-223-3  
TA  
TJ  
TA  
-40  
-40  
-55  
+125  
+150  
+150  
°C  
°C  
°C  
θJA  
θJC  
62  
15  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, SOT-223-5  
Thermal Resistance, SOT-23A-3  
Thermal Resistance, SOT-89-3  
Thermal Resistance, 2X3 DFN  
θJA  
θJC  
62  
15  
θJA  
θJC  
336  
110  
θJA  
θJC  
153.3  
100  
θJA  
θJC  
93  
26  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
DS22276A-page 8  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
2.0 TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise indicated V = 3.3V, C  
= 1 µF Ceramic (X7R), C = 1 µF Ceramic (X7R), I = 1 mA, T = +25 °C,  
OUT IN L A  
R
V
= V + 1V or V = 3.6V (whichever is greater), SHDN = V , package = SOT223.  
R IN IN  
IN  
Note:  
Junction Temperature (T ) is approximated by soaking the device under test to an ambient temperature equal to the  
J
desired Junction temperature. The test time is small enough such that the rise in Junction temperature over the ambient  
temperature is not significant.  
80  
70  
60  
50  
40  
180  
+90°C  
160  
140  
120  
100  
80  
+25°C  
+130°C  
0°C  
VOUT = 5.0V  
-45°C  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 1.8V  
IOUT = 0 µA  
60  
40  
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
20  
40  
60  
80 100 120 140 160  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-1:  
Quiescent Current vs. Input  
FIGURE 2-4:  
Ground Current vs. Load  
Voltage.  
Current.  
70  
80  
VOUT = 3.3V  
OUT = 0 µA  
VOUT = 5.0V  
VOUT = 1.8V  
I
70  
60  
50  
40  
30  
20  
10  
0
65  
60  
55  
50  
45  
40  
+130°C  
+90°C  
+25°C  
0°C  
VOUT = 3.3V  
-45°C  
3
5
7
9
11  
13  
15  
-45  
-20  
5
30  
55  
80  
105 130  
Input Voltage (V)  
Junction Temperature (°C)  
FIGURE 2-5:  
Quiescent Current vs.  
FIGURE 2-2:  
Quiescent Current vs. Input  
Junction Temperature.  
Voltage.  
80  
80  
70  
60  
50  
40  
30  
20  
10  
VOUT = 5.0V  
+130°C +90°C  
VOUT = 5.0V  
70 IOUT = 0 µA  
60  
50  
40  
30  
20  
10  
0
+25°C  
0°C  
+25°C  
-45°C  
0
1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0  
Input Voltage (V)  
18 16 14 12 10  
8
6
4
2
0
Input Voltage (V)  
FIGURE 2-6:  
Voltage.  
Quiescent Current vs. Input  
FIGURE 2-3:  
Voltage.  
Quiescent Current vs. Input  
© 2011 Microchip Technology Inc.  
DS22276A-page 9  
MCP1754/MCP1754S  
Note:  
Unless otherwise indicated V = 3.3V, C  
= 1 µF Ceramic (X7R), C = 1 µF Ceramic (X7R), I = 1 mA, T = +25 °C,  
R
OUT  
IN  
L
A
V
= V + 1V or V = 3.6V (whichever is greater), SHDN = V , package = SOT223.  
IN  
R
IN  
IN  
1.814  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
VOUT = 1.8V  
VOUT = 1.8V  
+90°C  
25°C  
+25°C  
1.812  
1.810  
1.808  
1.806  
1.804  
1.802  
1.800  
90°C  
+130°C  
0°C  
0°C  
130°C  
-45°C  
-45°C  
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
25  
50  
75  
100  
125  
150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load  
Voltage.  
Current.  
3.310  
3.308  
3.306  
3.310  
3.305  
VOUT = 3.3V  
VOUT = 3.3V  
+90°C  
25°C  
+130°C  
90°C  
3.304  
3.302  
3.300  
3.298  
3.296  
3.294  
3.292  
3.290  
3.300  
3.295  
3.290  
3.285  
3.280  
+25°C  
0°C  
-45°C  
0°C  
-45°C  
130°C  
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
25  
50  
75  
100  
125  
150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-8:  
Output Voltage vs. Input  
FIGURE 2-11:  
Output Voltage vs. Load  
Voltage.  
Current.  
5.020  
5.016  
5.020  
5.015  
VOUT = 5.0V  
VOUT = 5.0V  
130°C  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
4.980  
90°C  
+130°C  
+90°C  
5.012  
5.008  
5.004  
5.000  
25°C  
+25°C  
-45°C  
-45°C  
0°C  
0°C  
6
7
8
9
10 11 12 13 14 15 16  
Input Voltage (V)  
0
25  
50  
75  
100  
125  
150  
Load Current (mA)  
FIGURE 2-9:  
Output Voltage vs. Input  
FIGURE 2-12:  
Output Voltage vs. Load  
Voltage.  
Current.  
DS22276A-page 10  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
Note:  
Unless otherwise indicated V = 3.3V, C  
= 1 µF Ceramic (X7R), C = 1 µF Ceramic (X7R), I = 1 mA, T = +25 °C,  
OUT IN L A  
R
V
= V + 1V or V = 3.6V (whichever is greater), SHDN = V , package = SOT223.  
IN  
R
IN  
IN  
0.500  
VOUT = 3.3V  
0.400  
0.300  
0.200  
0.100  
0.000  
+25°C  
0°C  
+90°C  
+130°C  
-45°C  
0
15 30 45 60 75 90 105 120 135 150  
Load Current (mA)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Dynamic Line Response.  
Current.  
50  
40  
30  
20  
10  
0
0.400  
0.350  
0.300  
0.250  
0.200  
0.150  
0.100  
0.050  
0.000  
0°C  
25°C  
90°C  
130°C  
VOUT = 3.3V  
VOUT = 3.3V  
+25°C  
+90°C  
-45°C  
-45°C  
+130°C  
0°C  
4
6
8
10  
12  
14  
16  
0
15 30 45 60 75 90 105 120 135 150  
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-17:  
Input Voltage.  
Short Circuit Current vs.  
FIGURE 2-14:  
Current.  
Dropout Voltage vs. Load  
FIGURE 2-15:  
Dynamic Line Response.  
© 2011 Microchip Technology Inc.  
DS22276A-page 11  
MCP1754/MCP1754S  
Note:  
Unless otherwise indicated V = 3.3V, C  
= 1 µF Ceramic (X7R), C = 1 µF Ceramic (X7R), I = 1 mA, T = +25 °C,  
R
OUT  
IN  
L
A
V
= V + 1V or V = 3.6V (whichever is greater), SHDN = V , package = SOT223.  
IN  
R
IN  
IN  
0.01  
-0.50  
-0.60  
-0.70  
-0.80  
-0.90 VIN = 16V  
-1.00  
-1.10  
-1.20  
-1.30  
-1.40  
VOUT=1.8V  
10 mA  
V
IN
= 3.6V  
VOUT=1.8V  
0 mA  
Iout = 1 mA to 150 mA  
0.00  
-0.01  
-0.02  
-0.03  
VIN = 5V  
VIN = 12V  
50 mA  
150 mA  
VIN = 10V  
100 mA  
-1.50  
-45  
-20  
5
30  
55  
80  
105 130  
-45  
-20  
5
30  
55  
80  
105 130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-18:  
Load Regulation vs.  
FIGURE 2-21:  
Line Regulation vs.  
Temperature.  
Temperature.  
0.00  
0.01  
0 mA  
VOUT=3.3V  
VOUT=3.3V  
Iout = 1 mA to 150 mA  
VIN = 4.3V  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
0.00  
VIN = 5V  
VIN = 10V  
10 mA  
-0.01  
50 mA  
VIN = 16V  
VIN = 12V  
150 mA  
-0.02  
100 mA  
105  
-0.03  
-45  
-20  
5
30  
55  
80  
105 130  
-45  
-20  
5
30  
55  
80  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19:  
Load Regulation vs.  
FIGURE 2-22:  
Line Regulation vs.  
Temperature.  
Temperature.  
0.00  
0.01  
0 mA  
VOUT=3.3V  
VOUT=5V  
Iout = 1 mA to 150 mA  
VIN = 4.3V  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
0.00  
VIN = 5V  
VIN = 10V  
10 mA  
-0.01  
50 mA  
VIN = 16V  
VIN = 12V  
150 mA  
-0.02  
-0.03  
100 mA  
105  
-45  
-20  
5
30  
55  
80  
105 130  
-45  
-20  
5
30  
55  
80  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-20:  
Temperature.  
Load Regulation vs.  
FIGURE 2-23:  
Temperature.  
Line Regulation vs.  
DS22276A-page 12  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
Note:  
Unless otherwise indicated V = 3.3V, C  
= 1 µF Ceramic (X7R), C = 1 µF Ceramic (X7R), I = 1 mA, T = +25 °C,  
R
OUT  
IN  
L
A
V
= V + 1V or V = 3.6V (whichever is greater), SHDN = V , package = SOT223.  
R IN IN  
IN  
0
VOUT=1.8V  
VIN=6.5V  
-10  
-20  
IOUT = 150 mA  
VINAC = 1 V p-p  
C
IN=0 μF  
-30  
-40  
-50  
-60  
-70  
-80  
IOUT = 10 mA  
-90  
-100  
-110  
0.01  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
FIGURE 2-24:  
Power Supply Ripple  
FIGURE 2-27:  
Power Up Timing.  
Rejection vs. Frequency.  
0
-10  
VOUT=5.0V  
VIN=6.5V  
VINAC = 1V p-p  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IOUT = 160 mA  
C
IN=0 μF  
IOUT = 40 mA  
0.01  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
FIGURE 2-28:  
Startup From Shutdown.  
FIGURE 2-25:  
Power Supply Ripple  
Rejection vs. Frequency.  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
10.000  
IOUT=50mA  
VOUT=5.0V, VIN=6.0V  
1.000  
VIN = 3.6V  
VOUT = 1.8V  
VOUT=3.3V, VIN=4.3V  
0.100  
VOUT=1.8V, VIN=3.6V  
Increasing Load  
Decreasing Load  
0.010  
0.001  
0.00 0.05 0.10 0.15 0.20 0.25 0.30  
Output Current (A)  
0.01  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
FIGURE 2-29:  
Foldback.  
Short Circuit Current  
FIGURE 2-26:  
(3 lines, VR = 1.2V, 3.3V, 5.0V).  
Output Noise vs. Frequency  
© 2011 Microchip Technology Inc.  
DS22276A-page 13  
MCP1754/MCP1754S  
Note:  
Unless otherwise indicated V = 3.3V, C  
= 1 µF Ceramic (X7R), C = 1 µF Ceramic (X7R), I = 1 mA, T = +25 °C,  
OUT IN L A  
R
V
= V + 1V or V = 3.6V (whichever is greater), SHDN = V , package = SOT223.  
R IN IN  
IN  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN = 4.3V  
OUT = 3.3V  
V
Increasing Load  
Decreasing Load  
0.00 0.05 0.10 0.15 0.20 0.25 0.30  
Output Current (A)  
FIGURE 2-30:  
Short Circuit Current  
FIGURE 2-32:  
Dynamic Load Response.  
Foldback.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN = 6V  
V
OUT = 5V  
Increasing Load  
Decreasing Load  
0.00 0.05 0.10 0.15 0.20 0.25 0.30  
Output Current (A)  
FIGURE 2-33:  
Dynamic Load Response.  
FIGURE 2-31:  
Short Circuit Current  
Foldback.  
DS22276A-page 14  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1 and Table 3-2.  
TABLE 3-1:  
MCP1754 PIN FUNCTION TABLE  
Pin No.  
SOT223-5  
Pin No.  
SOT23-5  
Pin No.  
2X3 DFN  
Name  
Function  
3
4
2
5
4
1
GND  
VOUT  
VIN  
Ground Terminal  
Regulated Voltage Output  
Unregulated Supply Voltage  
No Connection  
2
1
8
5
4
3,6,7  
2
NC  
PWRGD  
SHDN  
GND  
Open Drain Power Good Output  
Shutdown Input  
1
3
5
EP  
EP  
Exposed Pad, Connected to GND  
TABLE 3-2:  
MCP1754S PIN FUNCTION TABLE  
Pin No.  
SOT223-3  
Pin No.  
SOT23A  
Pin No.  
SOT89  
Pin No.  
2X3 DFN  
Name  
Function  
Ground Terminal  
2
3
1
2
2
3
4
GND  
VOUT  
VIN  
1
8
Regulated Voltage Output  
Unregulated Supply Voltage  
No Connection  
1
3
1
EP  
EP  
2,3,5,6,7  
EP  
NC  
GND  
Exposed Pad, Connected to GND  
3.1  
Ground Terminal (GND)  
3.3  
Unregulated Input Voltage (V )  
IN  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current flows out of this pin; there is  
no high current. The LDO output regulation is  
referenced to this pin. Minimize voltage drops between  
this pin and the negative side of the load.  
Connect VIN to the input unregulated source voltage.  
Like all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 1 µF of capacitance will ensure stable  
operation of the LDO circuit. The input capacitor should  
have a capacitance value equal to or larger than the  
output capacitor for performance applications. The  
input capacitor will supply the load current during  
transients and improve performance. For applications  
that have load currents below 10 mA, the input  
capacitance requirement can be lowered. The type of  
capacitor used may be ceramic, tantalum or aluminum  
electrolytic. The low ESR characteristics of the ceramic  
will yield better noise and PSRR performance at high-  
frequency.  
3.2  
Regulated Output Voltage (V  
)
OUT  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current.  
© 2011 Microchip Technology Inc.  
DS22276A-page 15  
MCP1754/MCP1754S  
3.4  
Shutdown Input (SHDN)  
3.6  
Exposed Pad (EP)  
The SHDN input is used to turn the LDO output voltage  
on and off. When the SHDN input is at a logic-high  
level, the LDO output voltage is enabled. When the  
SHDN input is pulled to a logic-low level, the LDO  
output voltage is disabled. When the SHDN input is  
pulled low, the PWRGD output also goes low and the  
LDO enters a low quiescent current shutdown state.  
Some of the packages have an exposed metal pad on  
the bottom of the package. The exposed metal pad  
gives the device better thermal characteristics by  
providing a good thermal path to either the PCB or heat  
sink to remove heat from the device. The exposed pad  
of the package is internally connected to GND.  
3.5  
Power Good Output (PWRGD)  
For fixed applications, the PWRGD output is an open-  
drain output used to indicate when the LDO output  
voltage is within 92% (typically) of its nominal  
regulation value. The PWRGD threshold has a typical  
hysteresis value of 2%. The PWRGD output is delayed  
by 100 µs (typical) from the time the LDO output is  
within 92% + 2% (typical hysteresis) of the regulated  
output value on power-up. This delay time is internally  
fixed. The PWRGD pin may be pulled up to VIN or  
VOUT. Pulling up to VOUT conserves power when the  
device is in shutdown (/SHDN = 0V) mode.  
DS22276A-page 16  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
MCP1754S will supply higher load currents of up to  
typically 250 mA. This allows for device usage in  
applications that have pulsed load currents having an  
average output current value of 150 mA or less.  
4.0  
DEVICE OVERVIEW  
The MCP1754/MCP1754S is a 150 mA output current,  
Low Dropout (LDO) voltage regulator. The low dropout  
voltage of 300 mV typical at 150 mA of current makes  
it ideal for battery-powered applications. The input  
voltage range is 3.6V to 16.0V. Unlike other high output  
current LDOs, the MCP1754/MCP1754S typically  
draws only 150 µA of quiescent current for a 150 mA  
load. The MCP1754 adds a shutdown control input pin  
and a power good output pin. The output voltage  
options are fixed.  
Output overload conditions may also result in an over-  
temperature shutdown of the device. If the junction  
temperature rises above 150°C (typical), the LDO will  
shut  
down  
the  
output.  
See  
Section 4.8  
“Overtemperature Protection” for more information  
on overtemperature shutdown.  
4.3  
Output Capacitor  
4.1  
LDO Output Voltage  
The MCP1754/MCP1754S requires a minimum output  
capacitance of 1 µF for output voltage stability. Ceramic  
capacitors are recommended because of their size,  
cost and environmentally robust qualities.  
The MCP1754/MCP1754S LDO has a fixed output  
voltage. The output voltage range is 1.8V to 5.5V.  
Aluminum-electrolytic and tantalum capacitors can be  
used on the LDO output as well. The Equivalent Series  
Resistance (ESR) of the electrolytic output capacitor  
should be no greater than 2.0 Ω. The output capacitor  
should be located as close to the LDO output as is  
practical. Ceramic materials X7R and X5R have low  
temperature coefficients and are well within the  
acceptable ESR range required. A typical 1 µF X7R  
0805 capacitor has an ESR of 50 milliohms.  
4.2  
Output Current and Current  
Limiting  
The MCP1754/MCP1754S LDO is tested and ensured  
to supply a minimum of 150 mA of output current. The  
MCP1754/MCP1754S has no minimum output load, so  
the output load current can go to 0 mA and the LDO will  
continue to regulate the output voltage to within  
tolerance.  
Larger LDO output capacitors can be used with the  
The MCP1754/MCP1754S also incorporates a true  
output current foldback. If the output load presents an  
excessive load due to a low impedance short circuit  
condition, the output current and voltage will fold back  
towards 30 mA and 0V respectively.  
MCP1754/MCP1754S  
performance and power supply ripple rejection  
performance. maximum of 1000 µF is  
to  
improve  
dynamic  
A
recommended. Aluminum-electrolytic capacitors are  
not recommended for low temperature applications of  
< -25°C.  
The output voltage and current will resume normal  
levels when the excessive load is removed. If the  
overload condition is a soft overload, the MCP1754/  
Typical Current FoldBack - 5V Output  
Increasing Load Decreasing Load  
6
5
4
3
2
1
0
0.000  
0.050  
0.100  
0.150  
0.200  
0.250  
IOUT (A)  
FIGURE 4-1:  
Typical Current Foldback.  
© 2011 Microchip Technology Inc.  
DS22276A-page 17  
MCP1754/MCP1754S  
out of regulation. The timing diagram for the power  
good output when using the shutdown input is shown in  
Figure 4-3.  
4.4  
Input Capacitor  
Low input source impedance is necessary for the LDO  
output to operate properly. When operating from  
batteries, or in applications with long lead length  
(> 10 inches) between the input source and the LDO,  
some input capacitance is recommended. A minimum  
of 1.0 µF to 4.7 µF is recommended for most  
applications.  
The power good output is an open-drain output that can  
be pulled up to any voltage that is equal to or less than  
the LDO input voltage. This output is capable of sinking  
1.2 mA minimum (VPWRGD < 0.4V maximum).  
For applications that have output step load  
requirements, the input capacitance of the LDO is very  
important. The input capacitance provides the LDO  
with a good local low-impedance source to pull the  
transient currents from in order to respond quickly to  
the output load step. For good step response  
performance, the input capacitor should be of  
equivalent or higher value than the output capacitor.  
The capacitor should be placed as close to the input of  
the LDO as is practical. Larger input capacitors will also  
help reduce any high-frequency noise on the input and  
output of the LDO and reduce the effects of any  
inductance that exists between the input source  
voltage and the input capacitance of the LDO.  
VPWRGD_TH  
VOUT  
TPG  
VOH  
TVDET_PWRGD  
PWRGD  
VOL  
FIGURE 4-2:  
Power Good Timing.  
4.5  
Power Good Output (PWRGD)  
The open drain PWRGD output is used to indicate  
when the output voltage of the LDO is within 94%  
V
IN  
T
DELAY_SHDN  
(typical  
value,  
see  
Section 1.0  
“Electrical  
Characteristics” for minimum and maximum  
specifications) of its nominal regulation value.  
As the output voltage of the LDO rises, the open drain  
PWRGD output will actively be held low until the output  
voltage has exceeded the power good threshold plus  
the hysteresis value. Once this threshold has been  
exceeded, the power good time delay is started (shown  
as TPG in the Electrical Characteristics table). The  
power good time delay is fixed at 100 µs (typical). After  
the time delay period, the PWRGD open drain output  
becomes inactive and may be pulled high by an  
external pullup resistor, indicating that the output  
voltage is stable and within regulation limits. The power  
good output is typically pulled up to VIN or VOUT. Pulling  
the signal up to VOUT conserves power during  
shutdown mode.  
T
PG  
SHDN  
V
OUT  
PWRGD  
FIGURE 4-3:  
Shutdown.  
Power Good Timing from  
If the output voltage of the LDO falls below the power  
good threshold, the power good output will transition  
low. The power good circuitry has a 200 µs delay when  
detecting a falling output voltage, which helps to  
increase noise immunity of the power good output and  
avoid false triggering of the power good output during  
fast output transients. See Figure 4-2 for power good  
timing characteristics.  
4.6  
Shutdown Input (SHDN)  
The SHDN input is an active-low input signal that turns  
the LDO on and off. The SHDN threshold is a fixed  
voltage level. The minimum value of this shutdown  
threshold required to turn the output ON is 2.4V. The  
maximum value required to turn the output OFF is 0.8V.  
When the LDO is put into Shutdown mode using the  
SHDN input, the power good output is pulled low  
immediately, indicating that the output voltage will be  
DS22276A-page 18  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
The SHDN input will ignore low-going pulses (pulses  
meant to shut down the LDO) that are up to 400 ns in  
pulse width. If the shutdown input is pulled low for more  
than 400 ns, the LDO will enter Shutdown mode. This  
small bit of filtering helps to reject any system noise  
spikes on the shutdown input signal.  
For high-current applications, voltage drops across the  
PCB traces must be taken into account. The trace  
resistances can cause significant voltage drops  
between the input voltage source and the LDO. For  
applications with input voltages near 3.0V, these PCB  
trace voltage drops can sometimes lower the input  
voltage enough to trigger  
undervoltage lockout.  
a shutdown due to  
On the rising edge of the SHDN input, the shutdown  
circuitry has a 30 µs delay before allowing the LDO  
output to turn on. This delay helps to reject any false  
turn-on signals or noise on the SHDN input signal. After  
the 30 µs delay, the LDO output enters its soft-start  
period as it rises from 0V to its final regulation value. If  
the SHDN input signal is pulled low during the 30 µs  
delay period, the timer will be reset and the delay time  
will start over again on the next rising edge of the  
SHDN input. The total time from the SHDN input going  
high (turn-on) to the LDO output being in regulation is  
typically 100 µs. See Figure 4-4 for a timing diagram of  
the SHDN input.  
4.8  
Overtemperature Protection  
The MCP1754/MCP1754S LDO has temperature-  
sensing circuitry to prevent the junction temperature  
from exceeding approximately 150°C. If the LDO  
junction temperature does reach 150°C, the LDO  
output will be turned off until the junction temperature  
cools to approximately 137°C, at which point the LDO  
output will automatically resume normal operation. If  
the internal power dissipation continues to be  
excessive, the device will again shut off. The junction  
temperature of the die is a function of power  
dissipation, ambient temperature and package thermal  
resistance. See Section 5.0 “Application Circuits &  
Issues” for more information on LDO power  
dissipation and junction temperature.  
TDELAY_SHDN  
400 ns (typ)  
70 µs  
30 µs  
SHDN  
VOUT  
FIGURE 4-4:  
Shutdown Input Timing  
Diagram.  
4.7  
Dropout Voltage and Undervoltage  
Lockout  
Dropout voltage is defined as the input-to-output  
voltage differential at which the output voltage drops  
2% below the nominal value that was measured with a  
VR  
+ 1.0V differential applied. The MCP1754/  
MCP1754S LDO has a very low dropout voltage  
specification of 300 mV (typical) at 150 mA of output  
current. See Section 1.0 “Electrical Characteristics”  
for maximum dropout voltage specifications.  
The MCP1754/MCP1754S LDO operates across an  
input voltage range of 3.6V to 16.0V and incorporates  
input Undervoltage Lockout (UVLO) circuitry that keeps  
the LDO output voltage off until the input voltage  
reaches a minimum of 2.95V (typical) on the rising  
edge of the input voltage. As the input voltage falls, the  
LDO output will remain on until the input voltage level  
reaches 2.70V (typical).  
© 2011 Microchip Technology Inc.  
DS22276A-page 19  
MCP1754/MCP1754S  
NOTES:  
DS22276A-page 20  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
EQUATION  
5.0  
5.1  
APPLICATION CIRCUITS &  
ISSUES  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
TJ(MAX) = Maximum continuous junction  
Typical Application  
temperature  
The MCP1754/MCP1754S is most commonly used as  
a voltage regulator. It’s low quiescent current and low  
dropout voltage make it ideal for many battery-powered  
applications.  
PTOTAL = Total device power dissipation  
RθJA = Thermal resistance from junction to ambient  
TAMAX = Maximum ambient temperature  
MCP1754S  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package maximum  
internal power dissipation.  
VIN  
3.6V to 4.8V  
GND  
VOUT  
1.8V  
V
IN  
CIN  
V
OUT  
1 µF Ceramic  
IOUT  
50 mA  
COUT  
1 µF Ceramic  
EQUATION  
FIGURE 5-1: Typical Application Circuit.  
(TJ(MAX) TA(MAX)  
)
PD(MAX) = ---------------------------------------------------  
RθJA  
5.1.1  
APPLICATION INPUT CONDITIONS  
PD(MAX) = Maximum device power dissipation  
Package Type = SOT23  
Input Voltage Range = 3.6V to 4.8V  
VIN maximum = 4.8V  
TJ(MAX) = Maximum continuous junction  
temperature  
TA(MAX) = Maximum ambient temperature  
VOUT typical = 1.8V  
RθJA = Thermal resistance from junction to ambient  
IOUT = 50 mA maximum  
5.2  
Power Calculations  
EQUATION  
5.2.1  
POWER DISSIPATION  
TJ(RISE) = PD(MAX) × RθJA  
The internal power dissipation of the MCP1754/  
MCP1754S is a function of input voltage, output  
voltage and output current. The power dissipation, as  
a result of the quiescent current draw, is so low, it is  
insignificant (56.0 µA x VIN). The following equation  
can be used to calculate the internal power dissipation  
of the LDO.  
TJ(RISE) = Rise in device junction temperature over  
the ambient temperature  
PD(MAX) = Maximum device power dissipation  
RθJA = Thermal resistance from junction to ambient  
EQUATION  
EQUATION  
TJ = TJ(RISE) + TA  
TJ = Junction Temperature  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX ))  
TJ(RISE) = Rise in device junction temperature over  
the ambient temperature  
PLDO = LDO Pass device internal power dissipation  
VIN(MAX) = Maximum input voltage  
TA = Ambient temperature  
VOUT(MIN) = LDO minimum output voltage  
The maximum continuous operating junction  
temperature specified for the MCP1754/MCP1754S is  
+150°C. To estimate the internal junction temperature  
of the MCP1754/MCP1754S, the total internal power  
dissipation is multiplied by the thermal resistance from  
junction to ambient (RθJA). The thermal resistance from  
junction to ambient for the SOT23A pin package is  
estimated at 336 °C/W.  
© 2011 Microchip Technology Inc.  
DS22276A-page 21  
MCP1754/MCP1754S  
5.3  
Voltage Regulator  
TJ = TJRISE + TA(MAX)  
TJ = 91.3°C  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation, as a result of ground current, is small  
enough to be neglected.  
Maximum Package Power Dissipation Examples at  
+40°C Ambient Temperature  
SOT23 (336.0°C/Watt = RθJA  
)
P
D(MAX) = (125°C - 40°C) / 336°C/W  
5.3.1  
POWER DISSIPATION EXAMPLE  
PD(MAX) = 253 milliwatts  
Package  
SOT89 (153.3°C/Watt = RθJA  
)
Package Type = SOT23  
Input Voltage  
P
D(MAX) = (125°C - 40°C) / 153.3°C/W  
PD(MAX) = 554 milliwatts  
VIN = 3.6V to 4.8V  
LDO Output Voltages and Currents  
5.4  
Voltage Reference  
VOUT = 1.8V  
The MCP1754/MCP1754S can be used not only as a  
regulator, but also as a low quiescent current voltage  
reference. In many microcontroller applications, the  
initial accuracy of the reference can be calibrated using  
I
OUT = 50 mA  
Maximum Ambient Temperature  
TA(MAX) = +40°C  
production test equipment or by using  
a ratio  
Internal Power Dissipation  
measurement. When the initial accuracy is calibrated,  
the thermal stability and line regulation tolerance are  
the only errors introduced by the MCP1754/  
MCP1754S LDO. The low cost, low quiescent current  
and small ceramic output capacitor are all advantages  
when using the MCP1754/MCP1754S as a voltage  
reference.  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX)  
PLDO = (4.8V - (0.97 x 1.8V)) x 50 mA  
PLDO = 152.7 milli-Watts  
Ratio Metric Reference  
Device Junction Temperature Rise  
®
MCP1754S  
PICmicro  
microcontroller  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The thermal  
resistance from junction to ambient (RθJA) is derived  
from an EIA/JEDEC standard for measuring thermal  
resistance for small surface mount packages. The EIA/  
JEDEC specification is JESD51-7, “High Effective  
Thermal Conductivity Test Board for Leaded Surface  
Mount Packages”. The standard describes the test  
method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT23 Can Dissipate in an  
Application”, (DS00792), for more information regarding  
this subject.  
56 µA Bias  
V
IN  
V
C
V
IN  
REF  
OUT  
C
1 µF  
OUT  
GND  
1 µF  
ADO  
AD1  
Bridge Sensor  
FIGURE 5-2: Using the MCP1754/MCP1754S  
as a Voltage Reference.  
5.5  
Pulsed Load Applications  
For some applications, there are pulsed load current  
events that may exceed the specified 150 mA  
maximum specification of the MCP1754/MCP1754S.  
The internal current limit of the MCP1754/MCP1754S  
will prevent high peak load demands from causing non-  
recoverable damage. The 150 mA rating is a maximum  
average continuous rating. As long as the average  
current does not exceed 150 mA, pulsed higher load  
currents can be applied to the MCP1754/MCP1754S.  
The typical current limit for the MCP1754/MCP1754S is  
250 mA (TA +25°C).  
TJ(RISE) = PTOTAL x RqJA  
TJRISE = 152.7 milliwatts x 336.0°C/Watt  
TJRISE = 51.3°C  
Junction Temperature Estimate  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
DS22276A-page 22  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
3-Lead SOT-223 (MCP1754S)  
Part Number  
Code  
1754S18  
XXXXXXX  
MCP1754ST-3302E/DB  
MCP1754ST-5002E/DB  
1754S33  
1754S50  
XXXYYWW  
NNN  
EDB1130  
256  
3-Lead SOT-23A (MCP1754S)  
Example:  
Part Number  
Code  
JC25  
MCP1754ST-1802E/CB JCNN  
MCP1754ST-3302E/CB JDNN  
MCP1754ST-5002E/CB JENN  
XXNN  
3-Lead SOT-89 (MCP1754S)  
Example:  
Part Number  
Code  
MT1130  
256  
MCP1754ST-1802E/MB MTYYWW  
MCP1754ST-3302E/MB MUYYWW  
MCP1754ST-5002E/MB MVYYWW  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available characters  
for customer-specific information.  
© 2011 Microchip Technology Inc.  
DS22276A-page 23  
MCP1754/MCP1754S  
Package Marking Information (Continued)  
Example:  
YQ25  
5-Lead SOT-23 (2x3) (MCP1754)  
Part Number  
Code  
MCP1754T-1802E/OT  
MCP1754T-3302E/OT  
MCP1754T-5002E/OT  
YQNN  
YRNN  
YSNN  
XXNN  
5-Lead SOT-223 (MCP1754)  
Example:  
Part Number  
Code  
175418  
XXXXXXX  
XXXYYWW  
MCP1754T-1802E/DC  
MCP1754T-3302E/DC  
MCP1754T-5002E/DC  
175418  
175433  
175450  
EDC1130  
256  
NNN  
Example:  
8-Lead DFN (2x3) (MCP1754)  
Part Number  
Code  
Part Number  
Code  
MCP1754-1802E/MC AKG MCP1754S-1802E/MC ALN  
MCP1754-3302E/MC AKH MCP1754S-3302E/MC ALM  
MCP1754-5002E/MC AKJ MCP1754S-5002E/MC ALL  
MCP1754T-1802E/MC AKG MCP1754ST-1802E/MC ALN  
MCP1754T-3302E/MC AKH MCP1754ST-3302E/MC ALM  
MCP1754T-5002E/MC AKJ MCP1754ST-5002E/MC ALL  
AKJ  
130  
25  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available characters  
for customer-specific information.  
DS22276A-page 24  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢉꢇꢐꢑꢋꢉꢌꢒꢄꢇꢓꢔꢅꢒꢊꢌꢊꢋꢕꢔꢇꢖꢗꢘꢙꢇꢚꢎꢐꢓꢂꢛꢛꢁꢜ  
!ꢕꢋꢄ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b2  
E1  
E
3
2
1
e
e1  
A2  
c
A
φ
b
L
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢕ#ꢉꢆ!ꢇ%%  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ:ꢅꢃꢓꢌ#  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
5
ꢅꢀ  
ꢔꢀ  
ꢔꢑ  
"
"ꢀ  
8
8ꢑ  
4
ꢑꢁꢛꢐꢈ)ꢕ*  
ꢖꢁ9ꢐꢈ)ꢕ*  
M
M
ꢀꢁ<ꢐ  
ꢐꢁꢀꢐ  
ꢀꢁꢒꢐ  
ꢒꢁꢛꢐ  
ꢛꢁꢒꢐ  
9ꢁꢒꢐ  
ꢐꢁꢛ(  
ꢐꢁ<ꢖ  
ꢛꢁꢀꢐ  
M
ꢐꢁꢐꢑ  
ꢀꢁ(ꢐ  
9ꢁꢒꢐ  
ꢛꢁꢛꢐ  
9ꢁꢛꢐ  
ꢐꢁꢑꢛ  
ꢐꢁ9ꢐ  
ꢑꢁꢜꢐ  
ꢐꢁꢒ(  
ꢐꢝ  
M
ꢀꢁ9ꢐ  
ꢒꢁꢐꢐ  
ꢛꢁ(ꢐ  
9ꢁ(ꢐ  
ꢐꢁꢛꢐ  
ꢐꢁꢒ9  
ꢛꢁꢐꢐ  
M
8ꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢔꢆꢓꢋꢅ  
M
ꢀꢐꢝ  
!ꢕꢋꢄꢊ"  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢛꢑ)  
© 2011 Microchip Technology Inc.  
DS22276A-page 25  
MCP1754/MCP1754S  
ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢉꢇꢐꢑꢋꢉꢌꢒꢄꢇꢓꢔꢅꢒꢊꢌꢊꢋꢕꢔꢇꢖꢗꢘꢙꢇꢚꢎꢐꢓꢂꢛꢛꢁꢜ  
!ꢕꢋꢄ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS22276A-page 26  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢉꢇꢐꢑꢋꢉꢌꢒꢄꢇꢓꢔꢅꢒꢊꢌꢊꢋꢕꢔꢇꢖ#ꢘꢙꢇꢚꢎꢐꢓꢂꢛꢁ$ꢜ  
!ꢕꢋꢄ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e1  
e
2
1
E
E1  
N
b
c
A
φ
A2  
L
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
ꢐꢁꢜ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢜꢐꢈ)ꢕ*  
ꢐꢁ<ꢜ  
ꢐꢁꢜꢐ  
ꢐꢁꢐꢐ  
ꢑꢁꢀꢐ  
ꢀꢁꢑꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢛꢐ  
ꢐꢁꢀ(  
ꢛꢁꢐꢐ  
ꢀꢁ<ꢐ  
ꢛꢁꢀꢐ  
ꢐꢁ9ꢐ  
ꢛꢐꢝ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
8
ꢐꢁꢐꢜ  
ꢐꢁꢛꢐ  
ꢐꢁꢑ9  
ꢐꢁ(ꢀ  
!ꢕꢋꢄꢊ"  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢛꢐ)  
© 2011 Microchip Technology Inc.  
DS22276A-page 27  
MCP1754/MCP1754S  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22276A-page 28  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢉꢇꢐꢑꢋꢉꢌꢒꢄꢇꢓꢔꢅꢒꢊꢌꢊꢋꢕꢔꢇ%ꢄꢅꢆꢄꢔꢇꢖ&ꢘꢙꢇꢚꢎꢐꢓꢂ'*ꢜ  
!ꢕꢋꢄ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
D1  
E
H
L
N
1
2
b
b1  
b1  
e
E1  
e1  
A
C
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌꢈꢉ#ꢈ)ꢉ ꢅ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌꢈꢉ#ꢈ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
8ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈꢑꢈ=ꢃ!#ꢌ  
5
ꢅꢀ  
:
"
"ꢀ  
ꢂꢀ  
4
8
ꢀꢁ(ꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
ꢀꢁꢖꢐ  
ꢛꢁꢜꢖ  
ꢑꢁꢑꢜ  
ꢑꢁꢀꢛ  
ꢖꢁꢛꢜ  
ꢀꢁꢖꢐ  
ꢐꢁꢒꢜ  
ꢐꢁꢛ(  
ꢐꢁꢖꢀ  
ꢐꢁꢛ9  
ꢀꢁ9ꢐ  
ꢖꢁꢑ(  
ꢑꢁ9ꢐ  
ꢑꢁꢑꢜ  
ꢖꢁ9ꢐ  
ꢀꢁ<ꢛ  
ꢀꢁꢑꢐ  
ꢐꢁꢖꢖ  
ꢐꢁ(9  
ꢐꢁꢖ<  
4ꢅꢉ! ꢈꢀꢈ?ꢈꢛꢈ=ꢃ!#ꢌ  
8ꢀ  
!ꢕꢋꢄꢊ"  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢑꢜ)  
© 2011 Microchip Technology Inc.  
DS22276A-page 29  
MCP1754/MCP1754S  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22276A-page 30  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
+ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢉꢇꢐꢑꢋꢉꢌꢒꢄꢇꢓꢔꢅꢒꢊꢌꢊꢋꢕꢔꢇꢖꢐꢓꢙꢇꢚꢎꢐꢓꢂꢛꢁꢜ  
!ꢕꢋꢄ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢜ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢜꢐꢈ)ꢕ*  
ꢐꢁꢜꢐ  
ꢐꢁ<ꢜ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢛꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢛ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢛꢐ  
ꢐꢁꢀ(  
ꢛꢁꢑꢐ  
ꢀꢁ<ꢐ  
ꢛꢁꢀꢐ  
ꢐꢁ9ꢐ  
ꢐꢁ<ꢐ  
ꢛꢐꢝ  
4ꢀ  
8
ꢐꢁꢐ<  
ꢐꢁꢑꢐ  
ꢐꢁꢑ9  
ꢐꢁ(ꢀ  
!ꢕꢋꢄꢊ"  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢜꢀ)  
© 2011 Microchip Technology Inc.  
DS22276A-page 31  
MCP1754/MCP1754S  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22276A-page 32  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
+ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢉꢇꢐꢑꢋꢉꢌꢒꢄꢇꢓꢔꢅꢒꢊꢌꢊꢋꢕꢔꢇꢖꢗ#ꢙꢇꢚꢎꢐꢓꢂꢛꢛꢁꢜ  
!ꢕꢋꢄ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b2  
E
E1  
3
4
2
N
1
e
e1  
A2  
c
A
φ
L
b
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
(
ꢀꢁꢑꢒꢈ)ꢕ*  
(ꢁꢐ<ꢈ)ꢕ*  
M
ꢐꢁꢐ9  
ꢀꢁ9ꢐ  
ꢒꢁꢐꢐ  
ꢛꢁ(ꢐ  
9ꢁ(ꢐ  
ꢐꢁꢑ<  
ꢐꢁꢖ(ꢒ  
ꢛꢁꢐꢐ  
M
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢕ#ꢉꢆ!ꢇ%%  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ:ꢅꢃꢓꢌ#  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
5
ꢅꢀ  
ꢔꢀ  
ꢔꢑ  
"
"ꢀ  
8
8ꢑ  
4
M
ꢀꢁ<ꢐ  
ꢐꢁꢀꢐ  
ꢀꢁ9(  
ꢒꢁꢑ9  
ꢛꢁ((  
9ꢁ((  
ꢐꢁꢛꢑ  
ꢐꢁ(ꢀ  
ꢛꢁꢐ(  
ꢀꢁꢀꢖ  
<ꢝ  
ꢐꢁꢐꢑ  
ꢀꢁ((  
9ꢁ<9  
ꢛꢁꢖ(  
9ꢁꢖ(  
ꢐꢁꢑꢖ  
ꢐꢁꢖꢀ  
ꢑꢁꢜ(  
ꢐꢁꢜꢀ  
ꢐꢝ  
8ꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢔꢆꢓꢋꢅ  
ꢖꢝ  
!ꢕꢋꢄꢊ"  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢛꢒ)  
© 2011 Microchip Technology Inc.  
DS22276A-page 33  
MCP1754/MCP1754S  
+ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢉꢇꢐꢑꢋꢉꢌꢒꢄꢇꢓꢔꢅꢒꢊꢌꢊꢋꢕꢔꢇꢖꢗ#ꢙꢇꢚꢎꢐꢓꢂꢛꢛꢁꢜ  
!ꢕꢋꢄ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS22276A-page 34  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
'ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢗꢑꢅꢉꢇ,ꢉꢅꢋ-ꢇ!ꢕꢇꢃꢄꢅꢆꢇꢈꢅꢍ.ꢅ0ꢄꢇꢖ&#ꢙꢇMꢇꢛ2ꢁ234*ꢇꢏꢏꢇꢘꢕꢆ5ꢇꢚꢗ,!ꢜ  
!ꢕꢋꢄ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
<
ꢐꢁ(ꢐꢈ)ꢕ*  
ꢐꢁꢜꢐ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
*ꢇꢆ#ꢉꢊ#ꢈꢗꢌꢃꢊ/ꢆꢅ    
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
5
ꢔꢀ  
ꢔꢛ  
ꢐꢁ<ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢐ(  
ꢐꢁꢐꢑ  
ꢐꢁꢑꢐꢈꢚ".  
ꢑꢁꢐꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
M
M
ꢐꢁꢑ(  
"
"&ꢎꢇ ꢅ!ꢈ1ꢉ!ꢈ4ꢅꢆꢓ#ꢌ  
"&ꢎꢇ ꢅ!ꢈ1ꢉ!ꢈ=ꢃ!#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢈ=ꢃ!#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢈ4ꢅꢆꢓ#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢞ#ꢇꢞ"&ꢎꢇ ꢅ!ꢈ1ꢉ!  
ꢂꢑ  
"ꢑ  
8
4
@
ꢀꢁꢛꢐ  
ꢀꢁ(ꢐ  
ꢐꢁꢑꢐ  
ꢐꢁꢛꢐ  
ꢐꢁꢑꢐ  
ꢀꢁ((  
ꢀꢁꢒ(  
ꢐꢁꢛꢐ  
ꢐꢁ(ꢐ  
M
ꢐꢁꢖꢐ  
M
!ꢕꢋꢄꢊ"  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ 1ꢉꢊ/ꢉꢓꢅꢈꢄꢉꢘꢈꢌꢉ,ꢅꢈꢇꢆꢅꢈꢇꢍꢈꢄꢇꢍꢅꢈꢅ&ꢎꢇ ꢅ!ꢈ#ꢃꢅꢈ8ꢉꢍ ꢈꢉ#ꢈꢅꢆ! ꢁ  
ꢛꢁ 1ꢉꢊ/ꢉꢓꢅꢈꢃ ꢈ ꢉ-ꢈ ꢃꢆꢓ$ꢋꢉ#ꢅ!ꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢑꢛ*  
© 2011 Microchip Technology Inc.  
DS22276A-page 35  
MCP1754/MCP1754S  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22276A-page 36  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
APPENDIX A: REVISION HISTORY  
Revision A (August 2011)  
• Original data sheet for the MCP1754/MCP1754S  
family of devices.  
© 2011 Microchip Technology Inc.  
DS22276A-page 37  
MCP1754/MCP1754S  
NOTES:  
DS22276A-page 38  
© 2011 Microchip Technology Inc.  
MCP1754/MCP1754S  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
X-  
XX  
X
X
X/  
XX  
a) MCP1754T-1802E/DC: 1.8V, 5LD SOT-223,  
Tape and Reel  
Device  
Tape  
Output Feature Tolerance Temp. Package  
Code  
b) MCP1754T-3302E/DC: 3.3V, 5LD SOT-223,  
Tape and Reel  
and Reel Voltage  
c) MCP1754T-5002E/DC: 5.0V, 5LD SOT-223,  
Tape and Reel  
MCP1754:  
150 mA, 16V High Performance LDO  
MCP1754T:  
150 mA, 16V High Performance LDO  
(Tape and Reel) (SOT)  
150 mA, 16V High Performance LDO  
150 mA, 16V High Performance LDO  
(Tape and Reel) (SOT)  
a) MCP1754T-1802E/CB: 1.8V, 3LD SOT-23A,  
Tape and Reel  
b) MCP1754T-3302E/CB: 3.3V, 3LD SOT-23A,  
Tape and Reel  
c) MCP1754T-5002E/CB: 5.0V, 3LD SOT-23A,  
Tape and Reel  
MCP1754S:  
MCP1754ST:  
Tape and Reel:  
Output Voltage*:  
T
=
Tape and Reel  
a) MCP1754T-1802E/MB: 1.8V, 3LD SOT-89,  
Tape and Reel  
b) MCP1754T-3302E/MB: 3.3V, 3LD SOT-89,  
Tape and Reel  
c) MCP1754T-5002E/MB: 5.0V, 3LD SOT-89,  
Tape and Reel  
18  
33  
50  
=
=
=
1.8V “Standard”  
3.3V “Standard”  
5.0V “Standard”  
a) MCP1754T-1802E/OT: 1.8V, 5LD SOT-23,  
Tape and Reel  
*Contact factory for other voltage options  
b) MCP1754T-3302E/OT: 3.3V, 5LD SOT-23,  
Tape and Reel  
c) MCP1754T-5002E/OT: 5.0V, 5LD SOT-23,  
Tape and Reel  
Extra Feature Code:  
Tolerance:  
0
2
E
=
=
=
Fixed  
2% (Standard)  
-40°C to +125°C  
a) MCP1754T-1802E/MC: 1.8V, 8LD DFN,  
Tape and Reel  
b) MCP1754T-3302E/MC: 3.3V, 8LD DFN,  
Tape and Reel  
c) MCP1754T-5002E/MC: 5.0V, 8LD DFN,  
Tape and Reel  
Temperature Range:  
Package:  
*DB = Plastic Small Outline, (SOT-223), 3-lead  
CB = Plastic Small Outline, (SOT-23A), 3-lead  
MB = Plastic Small Outline, (SOT-89), 3-lead  
DC = Plastic Small Outline, (SOT223), 5-lead  
OT = Plastic Small Outline, (SOT-23), 5-lead  
MC = Plastic Dual Flat, No Lead, (2x3 DFN), 8-lead  
a) MCP1754ST-1802E/MC: 1.8V, 8LD DFN,  
Tape and Reel  
b) MCP1754ST-3302E/MC: 3.3V, 8LD DFN,  
Tape and Reel  
c) MCP1754ST-5002E/MC: 5.0V, 8LD DFN,  
Tape and Reel  
*Note: The3-lead SOT-223(DB) isnot astandard package  
for output voltages below 3.0V  
a) MCP1754ST-3302E/DB: 3.3V, 3LD SOT-223,  
Tape and Reel  
b) MCP1754ST-5002E/DB: 5.0V, 3LD SOT-223,  
Tape and Reel  
© 2011 Microchip Technology Inc.  
DS22276A-page 39  
MCP1754/MCP1754S  
NOTES:  
DS22276A-page 40  
© 2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-570-2  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2011 Microchip Technology Inc.  
DS22276A-page 41  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/02/11  
DS22276A-page 42  
© 2011 Microchip Technology Inc.  

相关型号:

MCP1754-3302E-MB

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754-3302E-MC

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754-3302E-OR

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754-5002E-CB

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754-5002E-DB

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754-5002E-DC

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754-5002E-MB

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754-5002E-MC

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754-5002E-OR

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754-5002E/MC

5 V FIXED POSITIVE LDO REGULATOR, 0.5 V DROPOUT, PDSO8, 2 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-8
MICROCHIP

MCP1754S

150 mA, 16V, High Performance LDO
MICROCHIP

MCP1754S-1802E-CB

150 mA, 16V, High Performance LDO
MICROCHIP