MCP1799 [MICROCHIP]

80 mA High-Voltage Automotive LDO;
MCP1799
型号: MCP1799
厂家: MICROCHIP    MICROCHIP
描述:

80 mA High-Voltage Automotive LDO

文件: 总25页 (文件大小:1083K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1799  
80 mA High-Voltage Automotive LDO  
Features  
Description  
• AEC-Q100 with Grade 0 and PPAP Capable  
• Wide Input Voltage Range: 4.5V to 45V  
- Under Voltage Lock Out: 2.8V typical  
The MCP1799 is a high-voltage, low-dropout (LDO)  
regulator, capable of generating 80 mA output current.  
The input voltage range of 4.5V to 45V makes it ideal in  
12V to 36V power rails and in high-voltage battery  
packs.  
• Extended Working Temperature Range: -40°C to  
+150°C  
The MCP1799 comes in two standard fixed output-  
voltage versions: 3.3V and 5.0V. The regulator output  
is stable with 1 µF ceramic capacitors. The device is  
protected from short circuit events by the current limit  
function and from over heating by means of thermal  
shutdown protection.  
• Standard Output Regulated Voltages (VR): 3.3V  
and 5.0V  
- Tolerance ±2%  
• Low Quiescent Supply Current: 25 µA typical  
• Output Current Capability: 80 mA typical  
• Stable with 1 µF Ceramic Output Capacitor  
• Short Circuit Protection  
• Thermal Shutdown Protection:  
- +180°C typical  
The device itself has a low ground current of 45 µA  
typical, while delivering maximum output current of 80  
mA. Without load the device consumes 25 µA typical.  
- Hysteresis: 22°C typical  
• High PSRR:  
- 70 dB @ 1 kHz typical  
• Available in the Following Packages:  
- 3-Lead SOT-23  
- 3-Lead SOT-223  
Applications  
• Automotive Electronics  
• Microcontroller Biasing  
• Cordless Power Tools, Home Appliances  
E-bikes, drones, etc.  
• Smoke Detectors and Other Alarm Sensors  
Typical Application  
VBAT = 12 to 36V  
LOAD  
VOUT  
VIN  
CIN  
1 µF  
COUT  
1 µF  
MCP1799  
GND  
2019 Microchip Technology Inc.  
DS20006248A-page 1  
MCP1799  
Package Types  
3-Pin SOT-23  
3-Pin SOT-223  
GND  
VIN  
3
4
1
2
3
1
2
VIN  
GNDVOUT  
GND VOUT  
2019 Microchip Technology Inc.  
DS20006248A-page 2  
MCP1799  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage ..........................................................................................................................................................+66.0V  
Maximum Voltage on VIN ......................................................................................................(GND - 0.3V) to (VIN+0.3V)  
Maximum Voltage on VOUT- ............................................................................................................(GND - 0.3V) to 5.5V  
Internal Power Dissipation .......................................................................... ............................Internally-Limited (Note 3)  
Output Short Circuit Current..........................................................................................................................Continuous  
Storage Temperature ............................................................................................................................. -55°C to +175°C  
Maximum Junction Temperature, TJ ..................................................................................................................... +185°C  
Operating Junction Temperature, TJ .......................................................................................................-40°C to +150°C  
ESD protection on all pins:  
HBM....................................................................................................................................................................... 4 kV  
CDM...................................................................................................................................................................... 750V  
MM.........................................................................................................................................................................400V  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operational listings of this specification is not intended. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
AC/DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, VIN = 6.2V(for VR =5V), VIN = 4.5V(for VR =3.3V), IOUT = 1 mA,  
CIN = COUT = 1.0 µF ceramic (X7R), TA = +25°C. Boldface type applies for ambient temperatures TA of -40°C to  
+150°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
4.5  
6.2  
45  
45  
VR = 3.3V, IOUT 80 mA  
VR = 5V, IOUT 80 mA  
Input Operating Voltage  
VIN  
V
Input Voltage to Turn On  
Output  
VUVLO_High  
VUVLO_Low  
2.8  
2.6  
rising VIN, VIN = 0 to VIN(MIN)  
falling VIN, VIN = VIN(MIN) to 0  
V
Input Voltage to Turn Off  
Output  
Output Voltage Range  
Input Quiescent Current  
Ground Current  
VOUT  
IQ  
VR-2%  
VR  
25  
45  
VR+2%  
45  
(Note 1)  
µA  
µA  
IOUT = 0A  
IOUT = 80 mA  
IGND  
110  
Maximum  
Output Current  
IOUT  
80  
mA  
(Note 3)  
VOUT  
(VOUTxVIN)  
/
4.5V VIN 45V for VR = 3.3V  
6.2V VIN 45V for VR = 5V  
Line Regulation  
-0.05  
±0.02  
+0.05  
%/V  
Note 1: VR is the nominal regulator output voltage.  
2: Load regulation is measured at a constant ambient temperature using a DC current source. Load  
regulation is tested over a load range 1 mA to the maximum specified output current.  
3: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air. (i.e., TA, TJ, JA). See Section  
“Temperature Specifications” for more information. Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating.  
Sustained junction temperatures above +150°C might impact the device reliability.  
4: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2%  
below its nominal value that was measured with an input voltage of VIN = VR + 1.2V.  
5: PSRR measurement is carried out with CIN = 0 µF, VIN = 7V, IOUT = 50 mA, VINAC = 0.4Vpkpk  
6: Not production tested.  
2019 Microchip Technology Inc.  
DS20006248A-page 3  
MCP1799  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = 6.2V(for VR =5V), VIN = 4.5V(for VR =3.3V), IOUT = 1 mA,  
CIN = COUT = 1.0 µF ceramic (X7R), TA = +25°C. Boldface type applies for ambient temperatures TA of -40°C to  
+150°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Load Regulation  
I
OUT = 1 mA to 80 mA  
VOUT/VOUT  
IOUT_CL  
-0.8  
±0.4  
150  
+0.8  
215  
%
(Note 2)  
Output Current Limit  
mA  
mA  
mV  
VIN = VIN(MIN), VOUT > 0.1V,  
(Note 6)  
Output Peak Current  
Limit  
IOUT_PCL  
1700  
300  
2500  
1100  
Dropout Voltage  
VDROPOUT  
IOUT = 80 mA (Note 4)  
AC Performance  
f = 100 Hz to 100 kHz  
Output Noise  
eN  
500  
µVrms VIN = 12V, VR = 5V  
OUT = 10 mA(Note 6)  
I
70  
70  
35  
f = 100 Hz (Note 5) (Note 6)  
f = 1 kHz (Note 5) (Note 6)  
f = 100 kHz (Note 5) (Note 6)  
Power Supply Ripple  
Rejection Ratio  
PSRR  
dB  
Note 1: VR is the nominal regulator output voltage.  
2: Load regulation is measured at a constant ambient temperature using a DC current source. Load  
regulation is tested over a load range 1 mA to the maximum specified output current.  
3: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air. (i.e., TA, TJ, JA). See Section  
“Temperature Specifications” for more information. Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating.  
Sustained junction temperatures above +150°C might impact the device reliability.  
4: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2%  
below its nominal value that was measured with an input voltage of VIN = VR + 1.2V.  
5: PSRR measurement is carried out with CIN = 0 µF, VIN = 7V, IOUT = 50 mA, VINAC = 0.4Vpkpk  
6: Not production tested.  
2019 Microchip Technology Inc.  
DS20006248A-page 4  
MCP1799  
TEMPERATURE SPECIFICATIONS  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Thermal Shutdown  
TSD  
180  
22  
°C  
°C  
Rising Temperature  
Falling Temperature  
Thermal Shutdown Hysteresis TSD  
Thermal Package Resistances  
Thermal Resistance,  
SOT23-3LD  
JA  
JC  
JA  
JC  
212  
139  
70  
°C/W JEDEC® standard 4 layer FR4 board  
with 1 oz. copper  
Thermal Resistance,  
SOT223-3LD  
60  
2019 Microchip Technology Inc.  
DS20006248A-page 5  
MCP1799  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, CIN = COUT = 1 µF ceramic (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1.2V.  
FIGURE 2-1:  
Voltage (VR = 3.3V).  
Output Voltage vs. Input  
Output Voltage vs. Input  
Output Voltage vs. Output  
FIGURE 2-4:  
Current (VR = 5.0V).  
Output Voltage vs. Output  
FIGURE 2-2:  
Voltage (VR = 5.0V).  
FIGURE 2-5:  
Current.  
Dropout Voltage vs. Output  
0.05  
0.00  
IOUT = 1 mA to 80 mA  
VR = 3.3V  
VIN = 4.5V  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-40 -15  
10  
35  
60  
85 110 135 160  
Ambient Temperature (°C)  
FIGURE 2-3:  
FIGURE 2-6:  
Load Regulation vs.  
Current (VR = 3.3V).  
Ambient Temperature (VR = 3.3V).  
2019 Microchip Technology Inc.  
DS20006248A-page 6  
MCP1799  
Note: Unless otherwise indicated, CIN = COUT = 1 µF ceramic (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1.2V.  
0.05  
IOUT = 1 mA to 80 mA  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.35  
VR = 5.0V  
VIN = 6.2V  
-40 -15  
10  
35  
60  
85 110 135 160  
Ambient Temperature (°C)  
FIGURE 2-7:  
Load Regulation vs.  
FIGURE 2-10:  
Quiescent Current vs.Input  
Ambient Temperature (VR = 5.0V).  
Voltage (VR = 3.3V).  
FIGURE 2-8:  
Line Regulation vs. Ambient  
FIGURE 2-11:  
Quiescent Current vs.Input  
Temperature (VR = 3.3V).  
Voltage (VR = 5.0V).  
FIGURE 2-9:  
Line Regulation vs. Ambient  
FIGURE 2-12:  
Ground Current vs. Output  
Temperature (VR = 5.0V).  
Current (VR = 3.3V).  
2019 Microchip Technology Inc.  
DS20006248A-page 7  
MCP1799  
Note: Unless otherwise indicated, CIN = COUT = 1 µF ceramic (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1.2V.  
0
-10  
VR = 3.3V  
CIN = not used  
COUT = 1 μF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VIN = 7V + 0.4VPKPK  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-13:  
Ground Current vs. Output  
FIGURE 2-16:  
Power Supply Ripple  
Current (VR = 5.0V).  
Rejection Ratio vs. Frequency (VR = 3.3V).  
0
-10  
VR = 5.0V  
100.000  
10.000  
1.000  
CIN = not used  
COUT = 1 μF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VIN = 7V + 0.4VPKPK  
0.100  
0.010  
0.001  
VIN [V] = 12  
VOUT [V] = 3.3  
load [mA] = 10  
COUT [μF] = 1  
Output Noise 10 Hz - 100 kHz [μVrms] = 295.78  
0.01  
0.1  
1
10  
100  
1000 10000  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-14:  
Noise vs. Frequency  
FIGURE 2-17:  
Power Supply Ripple  
(VR = 3.3V).  
Rejection Ratio vs. Frequency (VR = 5.0V).  
100.000  
10.000  
1.000  
0.100  
VIN [V] = 12  
VOUT [V] = 5  
load [mA] = 10  
COUT [μF] = 1  
0.010  
Output Noise 10 Hz - 100 kHz [μVrms] = 444.13  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000  
Frequency (kHz)  
FIGURE 2-15:  
Noise vs. Frequency  
(VR = 5.0V).  
2019 Microchip Technology Inc.  
DS20006248A-page 8  
MCP1799  
Note: Unless otherwise indicated, CIN = COUT = 1 µF ceramic (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1.2V.  
IOUT = 10 mA  
VOUT  
50 mV/div, BW = 20 MHz  
3.3V DC Offset  
VOUT  
50 mV/div, BW = 20 MHz  
5V DC Offset  
Step from 6.2V to 14V  
Step from 1 mA to 80 mA  
Rise and Fall  
Slope = 1V/µs  
IOUT  
50 mA/div  
VIN  
5V/div, BW = 20 MHz  
6.2V DC Offset  
40 µs/div  
40 µs/div  
FIGURE 2-18:  
Load Step Response  
FIGURE 2-21:  
Line Step Response  
(VR = 3.3V).  
(VR = 5.0V).  
I
OUT = 10 mA  
14V  
Rise Slope = 1V/µs  
VOUT  
50 mV/div, BW = 20 MHz  
5V DC Offset  
VIN  
5V/div  
Step from 1 mA to 80 mA  
IOUT  
50 mA/div  
VOUT  
1V/Div  
200 µs/div  
40 µs/div  
FIGURE 2-22:  
Start-up (VR = 3.3V).  
FIGURE 2-19:  
Load Step Response  
(VR = 5.0V).  
IOUT = 10 mA  
IOUT = 10 mA  
14V  
Rise Slope = 1V/µs  
VOUT  
50 mV/div, BW = 20 MHz  
3.3V DC Offset  
VIN  
5V/div  
Step from 4.5V to 14V  
Rise and Fall  
Slope = 1V/µs  
VOUT  
VIN  
1V/Div  
5V/div, BW = 20 MHz  
4.5V DC Offset  
200 µs/div  
40 µs/div  
FIGURE 2-23:  
Start-up (VR = 5.0V).  
FIGURE 2-20:  
Line Step Response  
(VR = 3.3V).  
2019 Microchip Technology Inc.  
DS20006248A-page 9  
MCP1799  
Note: Unless otherwise indicated, CIN = COUT = 1 µF ceramic (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1.2V.  
IOUT = 10 mA  
IOUT = 10 mA  
45V  
45V  
Rise Slope = 1V/µs  
Rise Slope = 1V/µs  
VIN  
VIN  
10V/div  
10V/div  
VOUT  
VOUT  
200 µs/div  
200 µs/div  
1V/div  
1V/div  
FIGURE 2-24:  
Start-up (VR = 3.3V).  
FIGURE 2-25:  
Start-up (VR = 5V).  
2019 Microchip Technology Inc.  
DS20006248A-page 10  
MCP1799  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
SOT 23-3  
PIN FUNCTION TABLE  
SOT 223-3  
Symbol  
Description  
1
2
2
3
1
4
GND  
VOUT  
VIN  
Ground  
Regulated Output Voltage VR  
Input Voltage Supply  
3
TAB  
Exposed Thermal Pad, connected internally to GND  
3.1  
Ground Pin (GND)  
3.3  
Input Voltage Supply Pin (V )  
IN  
For optimal noise and Power Supply Rejection Ratio  
(PSRR) performance, the GND pin of the LDO should  
be tied to an electrically “quiet” circuit ground. This will  
ensure the LDO power supply rejection ratio and noise  
device performance. The GND pin of the LDO conducts  
only ground current, so a wide trace is not required. For  
applications that have switching or noisy inputs, tie the  
GND pin to the return of the output capacitor. Ground  
planes help lower the inductance and as a result,  
reduce the effect of fast current transients.  
Connects the voltage source to VIN. If the input voltage  
source is located several inches away from the LDO, or  
the input source is a battery, it is recommended that an  
input capacitor be used. A typical input capacitance  
value of 1 µF to 10 µF should be sufficient for most  
applications. The type of capacitor used is ceramic.  
However, the low ESR characteristics of the ceramic  
capacitor will yield better noise and PSRR performance  
at high frequency.  
3.2  
Regulated Output Voltage Pin  
(V  
)
OUT  
The VOUT pin is the regulated output voltage VR of the  
LDO. A minimum output capacitance of 1 µF is  
required for the LDO to ensure the stability in all the typ-  
ical applications. The MCP1799 is stable with ceramic  
capacitors. See Section 4.2, Output Capacitance  
Requirements for output capacitor selection guidance.  
2019 Microchip Technology Inc.  
DS20006248A-page 11  
MCP1799  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Overview  
The MCP1799 is an AEC-Q100 qualified LDO, capable  
of delivering 80 mA of current, over the entire operating  
temperature range. The part is stable with a minimum  
1 µF output ceramic capacitor, has current limit  
protection and extended working temperature range:  
-40° to +150°. The device also features a PSRR of  
70 dB typical for 100 Hz frequency.  
FIGURE 4-1:  
Simplified Functional Block Diagram.  
4.3  
4.2 Output Capacitance Requirements  
Input Capacitance Requirements  
The MCP1799 requires a minimum output capacitance  
of 1 µF for output voltage stability. The output capacitor  
should be located as close to the LDO output as it is  
practical. The device is designed to work with low ESR  
ceramic capacitors. Ceramic materials X8R\L or X7R  
have low temperature coefficients and are well within  
the acceptable ESR range required. A typical 1 µF X7R  
0805 capacitor has an ESR of 50 m. It is  
recommended to use an appropriate voltage rating  
capacitor, and the derating of the capacitance as a  
function of voltage and temperature needs to be taken  
into account. For improved transitory behavior over the  
entire temperature range, a 2.2 µF output capacitor is  
recommended. The ceramic capacitor type should be  
X7R or X8R/L because their dielectrics are rated for use  
with temperatures between -40°C to +125° or -55°C to  
+150°C, respectively.  
Low input-source impedance is necessary for the LDO  
output to operate properly. When operating from  
batteries, or in applications with long lead length  
(>10 inches) between the input source and the LDO,  
adding input capacitance is recommended. A minimum  
of 1 µF to 10 µF of capacitance is sufficient for most  
applications. Given the high input voltage capability of  
the MCP1799, of up to 45V DC, it is recommended to  
use an appropriate voltage rating capacitor, and the de-  
rating of the capacitance as a function of voltage and  
temperature needs to be taken into account. The  
ceramic capacitor type should be X7R or X8R\L  
because their dielectrics are rated for use with  
temperatures between -40°C to +125°C or -55°C to  
+150°C, respectively.  
2019 Microchip Technology Inc.  
DS20006248A-page 12  
MCP1799  
Note that the VOUT pin can withstand a maximum of  
-0.3VDC (see Absolute Maximum Ratings †). This  
can be achieved by placing a Schottky diode with the  
cathode to VOUT and anode to ground.  
4.4  
Circuit Protection  
The MCP1799 features current limit protection during  
an output short circuit event that occurs in normal oper-  
ation.  
Thermal shutdown functionality is present on the  
device and adds to the protection features of the part.  
Thermal shutdown gets triggered at typical value of  
+180°C and has a typical hysteresis of 22°C.  
The MCP1799 was tested using the AEC-Q100 test  
set-up in Figure 4-2. The testing conditions require the  
use of very high parasitic inductances on the input and  
output. For cases like this, it is required to prevent the  
output voltage going below ground with more than 1V.  
Lshort = 5 µH  
Lshort = 5 µH  
VOUT  
VIN  
ON  
CIN  
COUT  
Rshort = 10 mΩ  
Rshort = 100 mΩ  
MCP1799  
Ideal  
1 µF  
1 µF  
Supply  
100V  
50V  
OFF  
GND  
GND  
GND  
FIGURE 4-2:  
Short Circuit Test Set-Up.  
4.5  
Dropout Operation  
4.6  
Input UVLO  
For VR = 5V, MCP1799 can be found operating in a  
dropout condition (the minimum input voltage is 4.5V),  
which can happen during a cold crank event, when the  
supply voltage can drop down to 3V. It is preferred to  
make sure that the part does not operate in dropout  
during DC operation so that the AC performance is  
maintained.  
On the rising edge of the VIN input, the internal  
architecture adds 550 µs delay before allowing the  
regulator output to turn on. After this 550 µs delay, the  
regulator starts charging the load capacitor as the  
output rises from 0V to its regulated value. The  
charging current amplitude will be limited by the short  
circuit current value of the device.  
The device has a dropout voltage of approximately  
300 mV at full load and room temperature, but because  
of the extended temperature range at +150°C, due to  
increased leakage at hot, it reaches up to 1100 mV. For  
a 5V output, the minimum supply voltage required in  
order to have a regulated output, within specification, is  
6.2V.  
The UVLO block helps prevent false start-ups, during  
the power-up sequence, until the input voltage reaches  
a value of 2.8V. The minimum input voltage required for  
normal operation is 4.5V.  
4.7  
Package and Device  
Qualifications  
The MCP1799 are AEC-Q100, grade 0 and PPAP  
capable. The Grade qualification allows the  
MCP1799 to be used within an extended temperature  
range, from -40°C to +150°C.  
IOUT = 10 mA  
R = 5V  
11V  
0
V
VIN  
2V/div  
3V  
VOUT  
2V/div  
200 ms/div  
FIGURE 4-3:  
Line Step from Dropout.  
2019 Microchip Technology Inc.  
DS20006248A-page 13  
MCP1799  
5.0  
5.1  
APPLICATION INFORMATION  
Typical Application  
The MCP1799 is used for applications that require  
high input voltage and are prone to high transient  
voltages on the input.  
VBAT = 4.5V to 45V  
µController  
VOUT  
VIN  
CIN  
1 µF  
COUT  
1 µF  
MCP1799  
ꢂꢁ0V DC  
ꢀꢁV DC  
GND  
FIGURE 5-1:  
Typical Application Circuit using a High Voltage Battery Pack.  
The total power dissipated within the MCP1799 is the  
sum of the power dissipated in the LDO pass device  
5.2  
Power Calculations  
POWER DISSIPATION  
and the P(IGND) term. Because of the CMOS  
5.2.1  
construction, the typical IGND for the MCP1799 is  
typical 50 µA at full load. Operating at a maximum VIN  
of 45V results in a power dissipation of 2.25 mW.  
For most applications, this is small compared to the  
LDO pass device power dissipation, and can be  
neglected.  
The internal power dissipation within the MCP1799 is a  
function of input voltage, output voltage, output current  
and quiescent current. Equation 5-1 can be used to  
calculate the internal power dissipation for the LDO.  
EQUATION 5-1:  
The maximum continuous operating junction  
temperature specified for the MCP1799 is +150°C. To  
estimate the internal junction temperature of the  
MCP1799, the total internal power dissipation is  
multiplied by the thermal resistance from junction-to-  
ambient (RJA) of the device. For example, the thermal  
resistance from junction-to-ambient for the 3-Lead  
SOT-223 package is estimated at 70°C/W.  
PLDO = VINMAXVOUTMIN  IOUTMAX  
Where:  
PLDO = Internal power dissipation of the  
LDO pass device  
VIN(MAX) = Maximum input voltage  
VOUT(MIN) = LDO minimum output voltage  
IOUT(MAX) = Maximum output current  
EQUATION 5-3:  
In addition to the LDO pass element power dissipation,  
there is power dissipation within the MCP1799 as a  
result of quiescent or ground current. The power  
dissipation, as a result of the ground current, can be  
calculated by applying Equation 5-2:  
TJMAX= PLDO  JA + TAMAX  
Where:  
TJ(MAX) = Maximum continuous junction  
temperature  
PLDO = Total power dissipation of the device  
EQUATION 5-2:  
JA = Thermal resistance from junction-to-  
PIGND= VINMAXIGND  
ambient  
Where:  
TA(MAX) = Maximum ambient temperature  
PI(GND) = Power dissipation due to the ground  
current of the LDO  
The maximum power dissipation capability for a pack-  
age can be calculated given the junction-to-ambient  
thermal resistance and the maximum ambient tem-  
perature for the application. Equation 5-4 can be used  
to determine the package maximum internal power  
dissipation.  
VIN(MAX) = Maximum input voltage  
IGND = Current flowing into the GND pin  
2019 Microchip Technology Inc.  
DS20006248A-page 14  
MCP1799  
EQUATION 5-4:  
IOUT = 50 mA  
Maximum Ambient Temperature  
A(MAX) = +60°C  
Internal Power Dissipation  
TJMAXTAMAX  
PDMAX= ---------------------------------------------------  
JA  
T
Where:  
PD(MAX) = Maximum power dissipation of the  
device  
P
LDO(MAX) = (VIN(MAX) – VOUT(MIN)) x IOUT(MAX)  
PLDO = (14.7 – 4.9) x 50 mA  
TJ(MAX) = Maximum continuous junction  
temperature  
PLDO = 0.49 Watts  
5.3.1.1  
Device Junction Temperature Rise  
TA(MAX) = Maximum ambient temperature  
JA = Thermal resistance from  
The internal junction temperature rise is a function of  
internal power dissipation and of the thermal resistance  
from junction-to-ambient for the application. The  
thermal resistance from junction-to-ambient (JA) is  
derived from EIA/JEDEC standards for measuring  
thermal resistance. The EIA/JEDEC specification is  
JESD51. The standard describes the test method and  
board specifications for measuring the thermal  
resistance from junction-to-ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors such as copper area and  
thickness. Refer to Application Note AN792, “A Method  
to Determine How Much Power a SOT23 Can  
Dissipate in an Application” (DS00792), for more  
information regarding this subject.  
junction-to-ambient  
EQUATION 5-5:  
TJRISE= PDMAX JA  
Where:  
TJ(RISE) = Rise in the device junction  
temperature over the ambient  
temperature  
PD(MAX) = Maximum power dissipation of the  
device  
JA = Thermal resistance from junction-to-  
ambient  
EXAMPLE 5-2:  
EQUATION 5-6:  
TJ(RISE) = PLDO(Max) x JA  
TJ(RISE) = 0.49W x 70°C/W  
TJ = TJRISE+ TA  
T
J(RISE) = 34.3°C  
Where:  
TJ = Junction temperature  
5.3.1.2 Junction Temperature Estimate  
TJ(RISE) = Rise in the device junction  
temperature over the ambient  
temperature  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below:  
TA = Ambient temperature  
EXAMPLE 5-3:  
TJ = TJ(RISE) + TA(MAX)  
TJ = 34.3°C + 60.0°C  
TJ = 94.3°C  
5.3  
Typical Application Examples  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation as a result of ground current is small  
enough to be neglected.  
5.3.1.3  
Maximum Package Power  
Dissipation at +60°C Ambient  
Temperature  
5.3.1  
POWER DISSIPATION EXAMPLE  
EXAMPLE 5-1:  
Package  
EXAMPLE 5-4:  
3Lead SOT223 (JA = 70°C/W):  
Package Type = 3 Lead SOT223  
Input Voltage  
P
D(MAX) = (150°C - 60°C)/70°C/W  
D(MAX) = 1.28W  
P
V
IN = 14V ± 5%  
LDO Output Voltage and Current  
OUT = 5V  
V
2019 Microchip Technology Inc.  
DS20006248A-page 15  
MCP1799  
6.0  
BATTERY PACK APPLICATION  
The features of the MCP1799 make it a candidate for  
use in smart battery packs. The high input voltage  
range of up to 45V and the transient voltage capability  
makes it ideal for powering low power microcontrollers  
used for monitoring battery health.  
Power  
Disconnect  
Current  
Sense  
+VBAT  
VBAT_1  
VBAT_2  
µController  
MCP1799  
VBAT_n-1  
VBAT_n  
Voltage  
Sense  
Network  
-VBAT  
FIGURE 6-1:  
Smart Battery Pack Application Example.  
2019 Microchip Technology Inc.  
DS20006248A-page 16  
MCP1799  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Lead SOT-23  
Example  
Part Number  
Code  
330256  
MCP1799T-3302H/TT  
MCP1799T-5002H/TT  
330256  
500256  
;;;111  
3-Lead SOT-223  
Example  
;;;;;;;  
;;;<<::  
MCP1799  
3301932  
256  
111  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2019 Microchip Technology Inc.  
DS20006248A-page 17  
MCP1799  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢒꢒꢖꢆꢗꢍꢏꢒꢁꢘꢀꢙ  
ꢚꢔꢊꢃꢛ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢒꢅꢈ!ꢍꢉ-ꢃꢆꢒ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢒꢃꢆꢒꢈꢔꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢒꢃꢆꢒ  
b
N
E
E1  
2
1
e
e1  
D
c
A
A2  
φ
A1  
L
3ꢆꢃ#  
ꢏꢘ44ꢘꢏ"ꢖ"ꢙꢔ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢘ5  
56ꢏ  
ꢏꢓ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
9
ꢐꢁꢚ'ꢈ)ꢔ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢒꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢒꢅꢈꢖꢌꢃꢊ/ꢆꢅ    
ꢔ#ꢉꢆ!ꢇ%%  
ꢅꢀ  
ꢓꢑ  
ꢓꢀ  
"
"ꢀ  
4
ꢀꢁꢚꢐꢈ)ꢔ*  
ꢐꢁꢛꢚ  
ꢐꢁꢜꢚ  
ꢐꢁꢐꢀ  
ꢑꢁꢀꢐ  
ꢀꢁꢀ=  
ꢑꢁ=ꢜ  
ꢐꢁꢀ9  
ꢐꢝ  
M
ꢐꢁꢚ'  
M
ꢀꢁꢀꢑ  
ꢀꢁꢐꢑ  
ꢐꢁꢀꢐ  
ꢑꢁ=ꢕ  
ꢀꢁꢕꢐ  
9ꢁꢐ'  
ꢐꢁ=ꢐ  
ꢀꢐꢝ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
M
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢒꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢒ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢒ#ꢌ  
ꢀꢁ9ꢐ  
ꢑꢁꢚꢐ  
ꢐꢁ'ꢐ  
M
.ꢇꢇ#ꢈꢓꢆꢒꢋꢅ  
4ꢅꢉ!ꢈꢖꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
8
ꢐꢁꢐꢛ  
ꢐꢁ9ꢐ  
M
M
ꢐꢁꢑꢐ  
ꢐꢁ'ꢕ  
ꢚꢔꢊꢃꢉꢛ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢑ'ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢒꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢒꢈꢎꢅꢍꢈꢓꢔꢏ"ꢈ(ꢀꢕꢁ'ꢏꢁ  
)ꢔ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢖꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢗꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢒꢗ ꢂꢍꢉ-ꢃꢆꢒ *ꢐꢕꢞꢀꢐꢕ)  
2019 Microchip Technology Inc.  
DS20006248A-page 18  
MCP1799  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2019 Microchip Technology Inc.  
DS20006248A-page 19  
MCP1799  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢜꢝꢖꢆꢗꢍꢏꢒꢁꢘꢘꢀꢙ  
ꢚꢔꢊꢃꢛ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢒꢅꢈ!ꢍꢉ-ꢃꢆꢒ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢒꢃꢆꢒꢈꢔꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢒꢃꢆꢒ  
D
b2  
E1  
E
3
2
1
e
e1  
A2  
c
A
φ
b
L
A1  
3ꢆꢃ#  
ꢏꢘ44ꢘꢏ"ꢖ"ꢙꢔ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢘ5  
56ꢏ  
ꢏꢓ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢒꢌ#  
ꢔ#ꢉꢆ!ꢇ%%  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢒꢅꢈ:ꢅꢃꢒꢌ#  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢒꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢒ#ꢌ  
4ꢅꢉ!ꢈꢖꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
5
ꢅꢀ  
ꢓꢀ  
ꢓꢑ  
"
"ꢀ  
8
8ꢑ  
4
9
ꢑꢁ9ꢐꢈ)ꢔ*  
ꢕꢁ=ꢐꢈ)ꢔ*  
M
M
ꢀꢁꢛꢐ  
ꢐꢁꢀꢐ  
ꢀꢁꢜꢐ  
ꢜꢁ9ꢐ  
9ꢁꢜꢐ  
=ꢁꢜꢐ  
ꢐꢁ9'  
ꢐꢁꢛꢕ  
9ꢁꢀꢐ  
M
ꢐꢁꢐꢑ  
ꢀꢁ'ꢐ  
=ꢁꢜꢐ  
9ꢁ9ꢐ  
=ꢁ9ꢐ  
ꢐꢁꢑ9  
ꢐꢁ=ꢐ  
ꢑꢁꢚꢐ  
ꢐꢁꢜ'  
ꢐꢝ  
M
ꢀꢁ=ꢐ  
ꢜꢁꢐꢐ  
9ꢁ'ꢐ  
=ꢁ'ꢐ  
ꢐꢁ9ꢐ  
ꢐꢁꢜ=  
9ꢁꢐꢐ  
M
8ꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢒ#ꢌ  
4ꢅꢉ!ꢈꢓꢆꢒꢋꢅ  
M
ꢀꢐꢝ  
ꢚꢔꢊꢃꢉꢛ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢜꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢒꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢒꢈꢎꢅꢍꢈꢓꢔꢏ"ꢈ(ꢀꢕꢁ'ꢏꢁ  
)ꢔ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢖꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢗꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢒꢗ ꢂꢍꢉ-ꢃꢆꢒ *ꢐꢕꢞꢐ9ꢑ)  
2019 Microchip Technology Inc.  
DS20006248A-page 20  
MCP1799  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢜꢝꢖꢆꢗꢍꢏꢒꢁꢘꢘꢀꢙ  
ꢚꢔꢊꢃꢛ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢒꢅꢈ!ꢍꢉ-ꢃꢆꢒ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢒꢃꢆꢒꢈꢔꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢒꢃꢆꢒ  
2019 Microchip Technology Inc.  
DS20006248A-page 21  
MCP1799  
APPENDIX A: REVISION HISTORY  
Revision A (September 2019)  
• Initial release of this document.  
2019 Microchip Technology Inc.  
DS20006248A-page 22  
MCP1799  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
(1)  
PART NO.  
Device  
X
-XX  
X
X/  
XX  
X
a)  
b)  
c)  
d)  
e)  
f)  
MCP1799T-3302H/TT: Tape and Reel,  
3.3V output voltage,  
Automotive temperature,  
3-LD SOT-23 package  
Tape and Output Featured  
Reel  
Temp. Package  
Tolerance  
Voltage  
Code  
MCP1799T-5002H/TT: Tape and Reel,  
5.0V output voltage,  
Automotive temperature,  
3-LD SOT-23 package  
Device:  
MCP1799: High-voltage, low-dropout  
LDO Regulator, Tube  
MCP1799T: High-voltage, low-dropout  
MCP1799-3302H/DB: Tube,  
LDO Regulator, Tape and Reel  
3.3V output voltage,  
Automotive temperature,  
3-LD SOT-223 package  
Standard Output  
Voltages:  
33  
50  
=
=
3.3V  
5.0V  
MCP1799-5002H/DB: Tube,  
5.0V output voltage,  
Automotive temperature,  
3-LD SOT-223 package  
Temperature:  
Feature Code:  
Tolerance:  
H
0
2
=
=
=
-40C to +150C  
Fixed  
MCP1799T-3302H/DB: Tape and Reel,  
3.3V output voltage,  
Automotive temperature,  
3-LD SOT-223 package  
MCP1799T-5002H/DB: Tape and Reel,  
Standard Accuracy  
5.0V output voltage,  
Automotive temperature,  
3-LD SOT-223 package  
Package Type:  
TT  
=
=
3-Lead Plastic Small Outline Transistor, SOT-23  
3-Lead Plastic Small Outline Transistor, SOT-223  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier  
is used for ordering purposes and is not  
printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
DB  
2019 Microchip Technology Inc.  
DS20006248A-page 23  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA  
are registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
APT, ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision  
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,  
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2019, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-4995-9  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2019 Microchip Technology Inc.  
DS20006248A-page 24  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
2019 Microchip Technology Inc.  
DS20006248A-page 25  
05/14/19  

相关型号:

MCP1799-3302H/DB

Fixed Positive LDO Regulator
MICROCHIP

MCP1799-5002H/DB

Fixed Positive LDO Regulator
MICROCHIP

MCP1799-5002H/TT

Fixed Positive LDO Regulator
MICROCHIP

MCP1799T-3302H/TT

Fixed Positive LDO Regulator
MICROCHIP

MCP1799T-5002H/TT

Fixed Positive LDO Regulator
MICROCHIP

MCP1801

150 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1801T-0902I/OT

150 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1801T-1202I/OT

150 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1801T-1802I/OT

150 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1801T-2502I/OT

150 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1801T-3002I/OT

150 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1801T-3302I/OT

150 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP